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Abstract. In this paper, a skew and uni-/bi-modal extension of the Student-t
distribution is considered. This model is more flexible and has wider ranges
of skewness and kurtosis than the other skew distributions in literature. Fisher
information matrix for the proposed model and some submodels are derived.
With a simulation study and some real data sets, applicability of the proposed
models are illustrated.

1 Introduction

In practice, we sometimes encounter datasets having high values of skewness
and/or kurtosis in their frequency curves which may cause the inadequacy of using
the ordinary normal or other symmetric distributions such as the Student-t or the
Laplace family of distributions as fitting models. In these cases, there is a tendency
towards more flexible distributions to represent features of the data. The first pro-
posals of such non-normal or non-symmetric distributions can be traced back to
the nineteenth century. Edgeworth (1886) studied the problem of fitting asymmet-
ric distributions to asymmetric frequency data. A few years later, Pearson (1893)
defined a “generalized form of the normal curve of an asymmetrical character”. In
the second half of the twentieth century, the interest for skew distributions grows
even stronger.

A decisive point in the development of skew distributions is the paper by
Azzalini (1985), where is introduced the so-called skew-normal distribution. Fur-
ther Azzalini (1986) extended this class to a general class known in the literature as
the skew-symmetric distributions. This class is presented in the following theorem.

Theorem 1.1. Let f0 be a probability density function (p.d.f.) symmetric about
zero, and G is a cumulative distribution function (c.d.f.) such that G′ exists and is
a p.d.f. symmetric about zero, then

f (z;λ) = 2f0(z)G(λz), z ∈ R,
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is a p.d.f. for any λ ∈ R. For this family the notation Z ∼ Sf0(λ) is used to denote
the fact that Z is distributed according to the density above.

Skew normal (Azzalini (1985)) p.d.f. is derived from Theorem 1.1 with replac-
ing f0 and G by standard normal p.d.f. φ and c.d.f. � respectively and related
random variable Z having this p.d.f. is denoted by Z ∼ SN(λ). Henze (1986),
using a probabilistic representatin for the SN distribution, derived the moments.
Problems of inference for SN distribution were studied by Pewsey (2000).

In recent years, wide range of skew (unimodal or multimodal) distributions have
been discussed in literature. A unimodal family is considered by Gupta, Chang
and Huang (2002) who replaced f0 with the Laplace, logistic and uniform p.d.f.s
and G with the respective c.d.f.s. Nadarajah and Kotz (2003) considered another
unimodal family by replacing f0 with fixed standard normal p.d.f. φ and G with
the c.d.f. Student-t , Cauchy, Laplace, logistic and uniform, named as the distribu-
tions skew-normal-t , skew-normal-Cauchy, skew-normal-Laplace, skew-normal-
logistic and skew-normal-uniform, respectively. Gómez, Venegas and Bolfarine
(2007) considered f0 to be the Student-t , logistic, Laplace, uniform p.d.f.s and G

be the fixed as �.
By generalizing the SN model by adding a further shape parameter, the extended

SN (ESN) family of distributions is presented in the seminal paper of Azzalini
(1985) and it is studied subsequently by Arnold et al. (1993). Extensions to the
multivariate context are also studied by Arnold and Beaver (2002). Azzalini and
Capitanio (2003) presented a multivariate skew-t distribution as scale-mixture of

the multivariate SN distribution. The random variable X
d= W−1/2Z, where W and

Z are independent, W ∼ Gamma(ν/2, ν/2) (Gamma distribution with shape and
scale parameters ν/2) and Z ∼ SN(λ), has the univariate skew-t distribution with
parameters λ and ν (degrees of freedom) and denoted by X ∼ St(λ, ν). The skew
generalized normal (SGN) distribution has been introduced by Arellano-Valle,
Gómez and Quintana (2004). In particular, it was established that the SGN distribu-
tion can be represented as a shape mixture of the SN distribution by taking a normal
mixing distribution for the shape parameter. Arslan and Genc (2009) studied skew
generalized-t (SGT) distribution as the scale mixture of a skew exponential power
and generalized gamma distributions. Ma and Genton (2004) proposed a flexible
class of skew-symmetric distributions and captured skewness, heavy tails and mul-
timodality systematically. Another generalization of the SN distribution is the Bal-
akrishnan skew-normal (BSN) introduced by Balakrishnan (2002), as a discussant
of Arnold and Beaver (2002). Shafiei and Doostparast (2014) proposed a general-
ization of skew-t distribution of Azzalini and Capitanio (2003), as a scale mixture
of the BSN distribution, named Balakraisnan skew-t (BST) distribution. Gómez
et al. (2011) extended the class of skew-symmetric distributions by proposing the
class of skew flexible elliptical distributions. Ali, Woo and Nadarajah (2010) intro-
duced skew symmetric inverse reflected distributions. Their proposed distributions
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are skew-symmetric distributions, defined based on the reflected gamma, reflected
Weibull and the reflected Pareto distributions.

The classes mentioned above, include the SN distribution as a particular case.
Many authors proposed an asymmetric normal family of distributions with a dif-
ferent structure than the SN class considered by Azzalini (1985). For example,
Mudholkar and Hutson (2000) (Epsilon-skew-normal distribution), Kim (2005)
(Two piece skew-normal distribution), Elal-Olivero (2010) (Alpha-skew-normal
distribution), Arellano-Valle, Cortés and Gómez (2010) (Extended epsilon skew-
normal distribution) and Rosco, Jones and Pewsey (2011) (Sinh-arcsinhed t distri-
bution).

With this setup, the rest of the paper is organized as follows. In Section 2, the
skew-flexible-t-normal (SFTN) distribution is introduced and some of its statisti-
cal properties are discussed. In Section 3, the moments of the SFTN distribution
are derived and the additional flexibility of the model in covering skewness and
kurtosis with respect to other skew models is shown. In Section 4, the Fisher in-
formation matrix is obtained. With a simulation study in Section 5, consistency
of the maximum likelihood estimators of the parameters are illustrated. Three fa-
mous real data sets in the literature are considered in Section 6 to illustrate the
applicability of the proposed models.

2 Skew-flexible-t-normal distribution

An extension of skew-symmetric distributions is proposed by Gómez et al. (2011).
They extend Theorem 1.1, as follows.

Theorem 2.1. Let f be a p.d.f. symmetric about zero, F the c.d.f. of f and G an
absolutely continuous c.d.f. such that G(x) + G(−x) = 1. Then

g(z;λ, δ) = cδf
(|z| + δ

)
G(λz), z ∈R,

is the p.d.f. where λ, δ ∈ R and cδ = (F (−δ))−1. The random variable Z with
the above p.d.f., is said to have skew-flexible-elliptical distribution, denoted by
SFf (λ, δ).

Taking f = φ and G = �, we have the skew-flexible-normal (SFN) distribution
(Gómez et al. (2011)) with p.d.f. as

f (z;λ, δ) = cδφ
(|z| + δ

)
�(λz), z ∈ R, (2.1)

where cδ = (�(−δ))−1. A random variable Z having the above p.d.f. is denoted
by Z ∼ SFN(λ, δ). With numerical calculations, maximum values of skewness
and kurtosis coefficients for this family were computed as 1.995 and 5.967, re-
spectively.

The applied models in this paper are a special case of the SFf distributions and
is defined as follows.
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Corollary 2.1. The random variable Z has the skew-flexible-t-normal (SFTN) dis-
tribution if its p.d.f. is given by

f (z;λ, δ, ν) = cδ,νtν
(|z| + δ

)
�(λz), z ∈R, (2.2)

where λ, δ ∈ R, ν ∈ R
+, cδ,ν = (Tν(−δ))−1 and tν(·) andTν(·) are respectively the

p.d.f. and the c.d.f. of tν (Student-t distribution with ν degrees of freedom). This
distribution is denoted by Z ∼ SFTN(λ, δ, ν).

Using Corollary 2.1, the following properties are derived.

Remark 1.

(a) f (z;λ,0, ν) = 2tν(z)�(λz),

(b) f (z;0, δ, ν) =
⎧⎪⎨⎪⎩

cδ,ν

2
tν(z − δ), z < 0,

cδ,ν

2
tν(z + δ), z ≥ 0,

(c) If λ → +∞, then f (z;λ, δ, ν) → cδ,νtν(z + δ)I (z ≥ 0),
(d) f (z;0,0, ν) = tν(z),
(e) If λ → −∞, then f (z;λ, δ, ν) → cδ,νtν(z − δ)I (z < 0),
(f) If v → +∞, then f (z;λ, δ, ν) → (�(−δ))−1φ(|z| + δ)�(λz).

Results (a) and (d) in Remark 1 imply that the family of SFTN distributions con-
tains the skew-t-normal distribution, proposed by Gómez, Venegas and Bolfarine
(2007), and Student-t distribution. Result (b) indicates that the symmetric form
of the SFTN distribution (λ = 0) coincides with unimodal and bimodal mixture
of two truncated Student-tv distributions T t(−∞,0)(v; δ,1) and T t(0,+∞)(v;−δ,1)

where T tI (v;μ,σ) denotes the Student-tν distribution with location parameter μ,
scale parameter σ and ν degrees of freedom truncated to interval I ⊆ R. This mix-
ture form is unimodal if δ > 0 and bimodal if δ < 0. Result (f) establishes that the
family of SFTN distributions contains the SFN distribution with p.d.f. (2.1).

A special case of the SFTN model is when ν = 1, which follows from (2.2).

Corollary 2.2. A random variable Z has the skew-flexible-cauchy-normal (SFCN)
distribution with parameters λ, δ ∈ R, denoted by Z ∼ SFCN(λ, δ), if its p.d.f. is
given by

f (z;λ, δ) = (π
2 − tan−1(δ))−1�(λz)

(1 + (|z| + δ)2)
, z ∈ R. (2.3)

2.1 Uni-/bi-modality property

We investigate the properties related to the uni/bi-modality of SFTN(λ, δ, ν) dis-
tribution. It is easy to verify

∂

∂z
log

(
f (z;λ, δ, ν)

) = λ
φ(λz)

�(λz)
− (ν + 1)(|z| + δ)

ν + (|z| + δ)2 sign(z)

and hence the p.d.f.s (2.2) and (2.3) is not differentiable at z = 0.
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Set ∂
∂z

log(f (z;λ, δ, ν)) to zero, we conclude that zero points z1 ∈ R
+ and z2 ∈

R
− (if there exist any) can be found by solving the following equations

(ν + 1)
(z1 + δ)

ν + (z1 + δ)2 = λ
φ(λz1)

�(λz1)
,

(ν + 1)
(z2 − δ)

ν + (z2 − δ)2 = λ
φ(λz2)

�(λz2)
.

The second derivative test can be applied to show that z1 and z2 are two different
modes. For δ < 0 and λ = 0, the zero points are z1 = −δ, z2 = δ and p.d.f.s (2.2)
and (2.3) are bimodal. For δ < 0, if λ → +∞ then zero point z1 → −δ and if
λ → −∞ then zero point z2 → δ which proves the unimodality of these p.d.f.s.
Numerical calculations show that these p.d.f.s are unimodal for the finite λ and
δ > 0. Figure 1 depicts examples of the SFTN and SFCN distributions given in
(2.2) and (2.3).

2.2 Stochastic representation and data generation

In the following proposition, we give a stochastic representation of the SFTN dis-
tributed random variable. This representation will be useful for calculating the
moments and random data generation.

Proposition 2.1. If T ∼ T t(0,+∞)(ν;−δ,1) and S+1
2 |(T = t) ∼ Bernou-

lli(�(λt)), then T S ∼ SFTN(λ, δ, ν).

Proof. Let Z = T S. Then the p.d.f. of Z is given by

fT (z; δ, ν)P (S = 1|T = z) = cδ,νtν(z + δ)�(λz), for z > 0,

fT (−z; δ, ν)P (S = −1|T = −z) = cδ,νtν(−z + δ)
(
1 − �(−λz)

)
,

for z < 0, which is of the form (2.2). �

The pth quantile of the random variable T ∼ T t(0,+∞)(ν;−δ,1) is

QT (p; δ, ν) = qt

(
1 + p − 1

cδ,ν

;ν
)

− δ, 0 < p < 1, (2.4)

where qt (α;ν) is the αth quantile of the Student-tν distribution. In the special case
when ν = 1, it reduces to QT (p; δ,1) = tan(π

2 p + tan−1(δ)(1 − p)) − δ.
To simulate the data from SFTN and SFCN distributions, we can use the Propo-

sition 2.1 and the above results and present the following corollary.

Corollary 2.3. The random variable Z ∼ SFTN(λ, δ, ν) can be simulated as fol-
lows:

First, generate U ∼ U(0,1) and put T = QT (U ; δ, ν) given by (2.4). Next, gen-
erate B ∼ Bernoulli(�(λT )), then set Z = (2B − 1)T .
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Figure 1 Density plots, First row: SFTN(0.5, δ,3) (left figure), SFTN(−3, δ,8) (right figure) and
Second row: SFCN(−3, δ) (left figure) and SFTN(0.5, δ) (right figure).

3 Moments

To derive the moments of SFTN distribution, the following lemma is useful.

Lemma 3.1 (Ho et al. (2012)). Let X ∼ T t(δ,+∞)(ν;0,1) and μn = E(Xn), then

μ2k+1 = νk+1c(ν)cδ,ν

k∑
j=0

(
k

j

)
(−1)k−j

ν − 2j − 1
�ν(j),

μ2k = νkcδ,ν

k∑
j=0

(
k

j

)
(−1)k−jpj

�(ν
2 − j)�(ν+1

2 )

�(ν
2 )�(ν+1

2 − j)
,
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where c(ν) = �( ν+1
2 )

�( ν
2 )

√
πν

, �ν(j) = (1 + δ2

ν
)−(ν−2j−1)/2 and

pj = Tν−2j

(
−δ

√
ν − 2j

ν

)
.

Using Lemma 3.1, the moments of T ∼ T t(0,+∞)(ν;−δ,1) can be obtained as
follows,

E
(
T n) =

n∑
j=0

(
n

j

)
(−1)n−j δn−jμj . (3.1)

Applying representation given in Proposition 2.1, the moments of SFTN distri-
bution are as follows,

Proposition 3.1. Let Z ∼ SFTN(θ) where θ = (λ, δ, ν) and ν > n, then

Eθ

(
Zn) =

{
Eθ

(
T 2k), n = 2k,

d2k+1(θ) − Eθ

(
T 2k+1)

, n = 2k + 1,
k = 0,1, . . . ,

where dj (θ) = 2cδ,ν

∫ +∞
0 zj tν(z + δ)�(λz)dz, for j = 0,1, . . . , should be calcu-

lated numerically and Eθ (T
n) is given by (3.1).

Proof. Following Proposition 2.1,

Eθ

(
Zn) = Eθ

(
SnT n)

= Eθ

(
T nE

{
Sn|T })

= E
{
T n{

�(λT ) + (−1)n�(−λT )
}}

=
{
Eθ

(
T 2k), n = 2k,

2Eθ

(
T 2k+1�(λT )

) − Eθ

(
T 2k+1)

, n = 2k + 1,

which completes the proof. �

Using Proposition 3.1, we can obtain the skewness and kurtosis coefficients of
Z ∼ SFTN(θ), which are defined by

γ1(θ) = E(Z − E(Z))3

√
var(Z)

3 , γ2(θ) = E(Z − E(Z))4

√
var(Z)

4 − 3.

Table 1 represents these ranges of γi, i = 1,2, for different values of ν.
To show the superiority and flexibility of the SFTN model in covering the

skewness and kurtosis of the data, we also compute the maximum ranges of
skewness and kurtosis for the families, STN (Gómez, Venegas and Bolfarine
(2007)), skewed distributions generated by the normal kernel (Nadarajah and
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Kotz (2003)), alpha-skew-normal (Elal-Olivero (2010)), extended-skew-normal
(Arnold, Castillo and Sarabia (2002)), epsilon-skew-normal (Mudholkar and Hut-
son (2000)), skew-flexible-normal (Gómez et al. (2011)), epsilon-half-normal
(Castro, Gómez and Valenzuela (2012)), normal-skew-normal (Gómez, Varela and
Vidal (2013)), skew-t (Azzalini and Capitanio (2003)) and our proposed model.
Table 2 gives these ranges.

Table 1 Ranges for the measures of skewness and kurtosis coefficients for different values of ν for
the SFTN distribution

Range for γ1 Range for γ2 + 3

ν Lower Upper Lower Upper

5 −4.648 4.648 6.810 73.799
6 −3.810 3.810 4.888 38.667
7 −3.381 3.381 4.211 27.857
8 −3.118 3.118 3.861 22.725
9 −2.940 2.940 3.648 19.756

10 −2.811 2.811 3.504 17.828
20 −2.344 2.344 3.043 12.127
30 −2.218 2.218 2.934 10.892
40 −2.160 2.160 2.885 10.356
50 −2.126 2.126 2.857 10.056

100 −2.061 2.061 2.805 9.498
150 −2.040 2.040 2.778 9.331

Table 2 Maximum of skewness (γ1) and kurtosis (γ2 + 3) coefficients

Distribution family Max. γ1 Max. γ2 + 3

Skew-normal 0.995 3.869
Skew-normal-t 0.995 4.124
Skew-normal-cauchy 0.995 4.124
Skew-normal-Laplace 0.995 3.869
Skew-normal-logistic 0.995 3.869
Skew-normal-uniform 0.995 3.869
Alpha-skew-normal 0.811 3.749
Epsilon-skew-normal 0.995 3.869
Epsilon-half-normal 1.311 13.077
Extended-skew-normal 1.983 5.607
Normal-skew-normal 1.010 3.956
Skew-flexible-normal 1.995 8.967
Skew-t-normal 2.55 23.108
Skew-t 2.55 23.108
Skew-flexible-t-normal 4.648 73.799
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4 Inference

In the following, inference aspects are discussed for the proposed distribution.
The inference procedures are based on the maximum likelihood estimation (MLE)
method.

Let Z ∼ SFTN(λ, δ, ν), then SFTN family of distributions with location-scale
parameters is defined as the distribution of X = μ + σZ for μ ∈ R and σ ∈ R

+
and the corresponding p.d.f. is given by

f (x;η) = cδ,ν

σ
tν

( |x − μ|
σ

+ δ

)
�

(
λ
(x − μ)

σ

)
, x ∈ R, (4.1)

and denoted by X ∼ SFTN(η) where η = (μ,σ,λ, δ, ν). Also location-scale ver-
sion of the random variable Z ∼ SFCN(λ, δ) with p.d.f. (2.3) is

f (x; ξ) = (π
2 − tan−1(δ))−1�(λσ−1(x − μ))

σ(1 + (σ−1|x − μ| + δ)2)
, x ∈R, (4.2)

and denoted by X ∼ SFCN(ξ) where ξ = (μ,σ,λ, δ).
Let X1,X2, . . . ,Xn be a random sample drawn from the SFTN distribution. The

log-likelihood function for η is
∑n

i=1 �(η|Xi), where �(η|X) is the log-likelihood
for η based on a single observation X from (4.1), that is,

�(η|x) = log
(
c(ν)

) + log
(

cδ,ν

σ

)
− ν + 1

2
log

(
w(z)

) + τ(z), (4.3)

where z = x−μ
σ

, w(z) = 1 + (|z|+δ)2

ν
and τ(z) = log(�(λz)). Now, the score func-

tion is
∑n

i=1 S(η|Xi), with S(η|X) = ∂�(η|X)/∂η = (�μ, �σ , �λ, �δ, �ν), where

�μ = ν + 1

νσ

z + δ sign(z)

w(z)
− λφ(λz)

σ�(λz)
,

�σ = ν + 1

νσ

z2 + δ|z|
w(z)

− λzφ(λz)

σ�(λz)
− 1

σ
,

�λ = z
φ(λz)

�(λz)
, (4.4)

�δ = cδ,νtν(δ) − ν + 1

ν

|z| + δ

w(z)
,

�ν = H(ν) − cδ,ν

∂Tν(−δ)

∂ν
+ ν + 1

2ν
− ν + 1

2νw(z)
− 1

2
log

(
w(z)

)
,

where H(ν) = 1
2(�(ν+1

2 ) − �(ν
2 ) − 1

ν
) and � is di-gamma function.
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4.1 Fisher information matrix

In this section, we derive the Fisher information matrix (FIM) of the SFTN distri-
bution. Suppose that η represents the vector of MLEs for the model (4.1) based on
a random sample X = (X1,X2, . . . ,Xn) with associated log-likelihood (4.3). Let
I(η) denotes the FIM for η based on a single observation X, that is,

I (η) = E

(
−∂2�(η|X)

∂η ∂ηT

)
.

It is well known that in most setting, a set of non-restrictive regularity assumptions
can be identified which will ensure that

√
n(̂η − η) is asymptotically multivari-

ate normal with mean 0 and covariance matrix I−1(η). To estimate I(η) for the
approximation of I−1(η), it is common to use either the expected FIM or the ob-
served FIM. The expected FIM is defined as

I (̂η) = E

(
−∂2�(η|X)

∂η ∂ηT

)∣∣∣η = η̂, (4.5)

whereas the observed FIM is defined as

I (̂η,X) =
n∑

i=1

(
−∂2�(η|Xi)

∂η ∂ηT

)∣∣∣η = η̂.

Perhaps the primary advantage of using I (η̂) over n−1I(η̂,X) as an estimator of
I (η) is that I (η̂) is the MLE of I (η). Yet in many instances, evaluating the expec-
tation in (4.5) is either infeasible or impractical, making n−1I(η̂,X) the estimator
of choice.

For computing the expectations of the second derivatives of (4.3) (See Ap-
pendix), it suffices to apply the following expressions,

E
(
Z2i+1R(Z)

) = 0, E
(
Z2iR(Z)

) = 2c(ν)√
2π

Ki,

E
(
ZiR(Z)2) = c(ν)

π
Ii, E

(
Z

w(Z)j

)
= 2c(ν)Jj ,

(4.6)

ai,j = E

( |Z|i
w(Z)j

)
= cδ,νp−j

�(ν
2 + j)�(ν+1

2 )

�(ν+1
2 + j)�(ν

2 )

(
ν

ν + 2j

) i
2
Eθ j

(
T i),

bj = E

(
sign(Z)

w(Z)j

)
= cδ,ν

�(ν
2 + j)�(ν+1

2 )

�(ν+1
2 + j)�(ν

2 )

(
p−j d0( θ j ) − 1

2

)
,

where c(ν), �ν(·), pi and dj (·) are defined in Lemma 3.1, R(z) = φ(λz)
�(λz)

, Eθ j
(T i)

is defined in (3.1), θ j = (λj , δj , νj ), for j = 1,2, where λj = λ
√

ν
ν+2j

, δj =
δ

√
ν+2j

ν
, νj = ν + 2j .
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Also we need the partial derivatives ∂2 log(cδ,ν)

∂δ∂ν
, ∂2 log(cδ,ν)

∂ν2 and the following in-
tegrals

Ii = cδ,ν

2

∫ +∞
−∞

ui

(
1 + (|u| + δ)2

ν

)−(ν+1)/2 exp{−λ2u2}
�(λu)

du, i = 0,1,2,

Jj = cδ,ν

2

∫ +∞
−∞

u

(
1 + (|u| + δ)2

ν

)−(ν+2j+1)/2
�(λu)du, j = 1,2, (4.7)

Ki = cδ,ν

2

∫ +∞
−∞

u2i

(
1 + (|u| + δ)2

ν

)−(ν+1)/2
exp

{−λ2u2/2
}
du, i = 0,1,

which must be computed numerically.
After simple algebraic computations, the FIM, for ν > 4, derived as

I(η) =

⎛⎜⎜⎜⎜⎜⎝
Iμμ Iμσ Iμλ Iμδ Iμν

Iσσ Iσλ Iσδ Iσν

Iλλ Iλδ Iλν

Iδδ Iδν

Iνν

⎞⎟⎟⎟⎟⎟⎠ (4.8)

where

Iμμ = cδ,ν

σ 2

{
2p−2

ν + 2

ν + 3
− p−1

}
+ λ2c(ν)

πσ 2 I0,

Iμσ = c(ν)

σ 2

{
4
ν + 1

ν
J2 − 2λ√

2π
K0 + 2λ3

√
2π

K1 + λ2

π
I1

}
+ δ(ν + 1)

νσ 2 b1,

Iμλ = 2c(ν)

σ
√

2π

{
K0 − λ2K1 − λ√

2π
I1

}
, Iμδ = ν + 1

νσ
{b1 − 2b2},

Iμν = δ

νσ

{
ν + 1

ν
b2 − b1

}
+ 2c(ν)

νσ

{
ν + 1

ν
J2 − J1

}
,

Iσσ = ν + 1

νσ 2

{
2a2,2 − (

ν + δ2)
a0,1

} + νπ + λ2c(ν)I2

πσ 2 ,

Iσλ = −λc(ν)

πσ
I2, Iσδ = ν + 1

νσ
(a1,1 − 2a1,2),

Iσν = 1

νσ

(
ν + 1

ν
a2,2 − a2,1

)
+ δ

νσ

(
ν + 1

ν
a1,2 − a1,1

)
,

Iλλ = c(ν)

π
I2, Iλδ = 0, Iλν = 0,

Iδδ = δ
c(ν)(ν + 1)cδ,ν�ν(−2)

ν
− (

cδ,νtν(δ)
)2 + cδ,ν

{
2p−2

ν + 2

ν + 3
− p−1

}
,
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Iδν = −∂2 log(cδ,ν)

∂δ∂ν
+ δcδ,ν

ν

(
ν

ν + 1
p−1 − ν + 2

ν + 3
p−2

)
+ 1

ν

(
a1,1 − ν + 1

ν
a1,2

)
,

Iνν = 1 − ν

2ν2 − ∂2 log(cδ,ν)

∂ν2 − h(ν) + cδ,ν

2ν

(
2p−1

ν

ν + 1
− p−2

ν + 2

ν + 3

)
,

where h(ν) = 1
4( 2

ν2 + � ′(ν+1
2 ) − � ′(ν

2 )).

4.1.1 Some special cases. Now for some special submodels from SFTN family,
FIMs are derived. In the particular case, when δ = 0 and λ 
= 0 in (4.1), skew-
t-normal model (Gómez, Venegas and Bolfarine (2007)) is obtained. In this case
θ i = (λi,0, νi), the integrals Ki Ji, ki , defined in (4.7), should be calculated nu-
merically with δ = 0 and expectations ai,j and bj in (4.6) can be written as:

ai,j = E

( |Z|i
w(Z)j

)
= c(ν)

�( i+1
2 )�(ν−i

2 + j)

�(ν+1
2 + j)

ν
i+1

2 ,

bj = E

(
sign(Z)

w(Z)j

)
= �(ν

2 + j)�(ν+1
2 )

�(ν+1
2 + j)�(ν

2 )

(
d0(θ j ) − 1

)
.

Thus the elements of the FIM (4.8) reduce to

Iμμ = ν + 1

(ν + 3)σ 2 + λ2c(ν)

πσ 2 I0,

Iμσ = c(ν)

σ 2

{
4
ν + 1

ν
J2 − 2λ√

2π
K0 + 2λ3

√
2π

K1 + λ2

π
I1

}
,

Iμλ = 2c(ν)

σ
√

2π

{
K0 − λ2K1 − λ√

2π
I1

}
,

Iμδ = 1

σ

{(
d0( θ1) − 1

) − 2
ν + 2

ν + 3

(
d0(θ2) − 1

)}
,

Iμν = 2c(ν)

νσ

{
ν + 1

ν
J2 − J1

}
, Iσσ = 2ν

(ν + 3)σ 2 + λ2c(ν)

πσ 2 I2,

Iσλ = −λc(ν)

πσ
I2, Iσδ = −2(ν − 1)c(ν)

σ (ν + 3)
, Iσν = − 2

σ(ν + 1)(ν + 3)
,

Iλλ = c(ν)

π
I2, Iλδ = 0, Iλν = 0, Iδδ = ν + 1

ν + 3
− (

2c(ν)
)2

,

Iδν = 2c(ν)(ν − 1)

ν(ν + 1)(ν + 3)
, Iνν = − ν − 3

2ν2(ν + 1)(ν + 3)
− h(ν).
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In this case the FIM is nonsingular for finite values of ν (ν > 4). Also, when
λ = δ = 0, the model SFTN reduces to Student-tν . In this case d0(θ j ) = 1 and the
elements of the FIM (4.8) are as follows,

Iμμ = ν + 1

(ν + 3)σ 2 , Iμσ = 0, Iμλ = 2

σ
√

2π
,

Iμδ = 0, Iμν = 0, Iσσ = 2ν

(ν + 3)σ 2 , Iσλ = 0,

Iσδ = −2(ν − 1)c(ν)

σ (ν + 3)
, Iσν = − 2

σ(ν + 1)(ν + 3)
, Iλλ = 2ν

π(ν − 2)
,

Iλδ = 0, Iλν = 0, Iδδ = ν + 1

ν + 3
− (

2c(ν)
)2

,

Iδν = 2c(ν)(ν − 1)

ν(ν + 1)(ν + 3)
, Iνν = − ν − 3

2ν2(ν + 1)(ν + 3)
− h(ν).

In this case, the FIM is also nonsingular for finite ν (ν > 4). Notice that the FIM
of the SFN, SN and normal models are derived from the results for models SFTN,
submodels STN and Student-tν as ν → ∞, respectively (see Gómez et al. (2011)).

Profile FIM for the model (4.1) with parameters μ,σ,λand δ with fixed ν re-
duces to

I(η|ν) =

⎛⎜⎜⎝
Iμμ Iμσ Iμλ Iμδ

Iσσ Iσλ Iσδ

Iλλ Iλδ

Iδδ

⎞⎟⎟⎠ .

Further for the standard model (2.2), profile FIM reduces to

I(θ |ν) =
(
Iλλ 0
0 Iδδ

)
. (4.9)

5 Numerical illustration

Now to illustrate the consistency of the MLEs of the parameters in the models
SFTN and SFCN, we apply the methodology discussed in Corollary 2.3 to sim-
ulate the data from these models. We consider standard cases SFTN(λ, δ, ν) and
SFCN(λ, δ). The MLEs of the parameters for n = 50,100,200,300,500,1000
simulated data are evaluated by the function “optim” available in software R.
For the function “optim”, we use the method “L-BFGS-B”, which use a limited-
memory modification of the quasi-Newton method.

The simulations from the models SFTN(0.5,−0.5,4) and SFTN(2,0,8) are
performed 15,000 times and the average and the estimated mean square errors
(EMSE) are reported in Tables 3 and 4 respectively. Also simulations from the
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Table 3 Average and EMSE (in parentheses) of the estimated parameters in 15,000 simulated path
from SFTN(0.5,−0.5,4) model

n λ̂ δ̂ ν̂

50 0.56188 (0.06525) −0.46199 (0.06898) 4.04953 (0.00340)
100 0.53068 (0.02346) −0.48260 (0.02876) 4.04962 (0.00292)
200 0.51523 (0.00891) −0.49320 (0.01022) 4.04980 (0.00268)
300 0.51178 (0.00581) −0.49838 (0.00584) 4.04969 (0.00256)
500 0.50879 (0.00349) −0.50000 (0.00344) 4.04988 (0.00256)

1000 0.50319 (0.00153) −0.50693 (0.00184) 4.03036 (0.00094)

Table 4 Average and EMSE (in parentheses) of the estimated parameters in 15,000 simulated path
from SFTN(2,0,8) model

n λ̂ δ̂ ν̂

50 2.04410 (0.15109) 0.11041 (0.21323) 8.0500 (0.00375)
100 2.02846 (0.09003) 0.07521 (0.11683) 8.05005 (0.00315)
200 2.01899 (0.04529) 0.03474 (0.04519) 8.05040 (0.00275)
300 2.01028 (0.02653) 0.02257 (0.02454) 8.05013 (0.00265)
500 2.00270 (0.01396) 0.01351 (0.01205) 8.05021 (0.00259)

1000 1.996 (0.00575) 0.00811 (0.00526) 7.96954 (0.00096)

Table 5 Average and EMSE (in parentheses) of the estimated parameters in 15,000 simulated path
from SFCN(−0.3,0.2) (with λ̂1, δ̂1) and SFCN(1,−1) (with λ̂2, δ̂2) models

n λ̂1 δ̂1 λ̂2 δ̂2

50 −0.3823 (0.0460) 0.2072 (0.0124) 1.0666 (0.0981) −0.9729 (0.09610)
100 −0.3408 (0.0136) 0.2085 (0.0065) 1.0295 (0.0468) −0.9928 (0.0341)
200 −0.3242 (0.0061) 0.2091 (0.0030) 1.0106 (0.0185) −0.9982 (0.0130)
300 −0.3179 (0.0040) 0.2093 (0.0019) 1.0059 (0.0104) −0.9973 (0.0084)
500 −0.3124 (0.0025) 0.2084 (0.0011) 1.0015 (0.0060) −0.9986 (0.0047)

1000 −0.3040 (0.0009) 0.2173 (0.0008) 0.9997 (0.0028) −0.9995 (0.0023)

models SFCN(−0.3,0.2) and SFCN(1,−1) are performed and the results are re-
ported in Table 5. Note that in the simulation examples, the EMSE of the estimators
becomes smaller when the sample size increases. For large sample size, the EMSE
tends to zero and this illustrates the consistency of the estimators.

Using FIM (4.9), with different sample sizes, we can derive the 95% confi-
dence interval for the shape/skewness parameters λ and δ with fixed ν > 4. We
generate the samples of sizes n = 50,100,200,300,500,1000 from the model
SFTN(λ, δ, ν). Our simulation are done 15,000 times and coverage probability
(CP) of the 95% confidence intervals and average length (AL) of simulated 95%
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Table 6 CP and AL (in parentheses) of parameters λ and δ in 15,000 simulated path from
SFTN(λ, δ, ν)

Model SFTN(−1,0.2,8) SFTN(1,−1,6)

n λ = −1 δ = 0.2 λ = 1 δ = −1

50 0.9604 (1.19) 0.9029 (1.32) 0.9673 (1.06) 0.9531 (0.77)
100 0.9548 (0.81) 0.9283 (0.95) 0.9564 (0.69) 0.9523 (0.54)
200 0.9522 (0.56) 0.9378 (0.67) 0.9529 (0.48) 0.9514 (0.38)
300 0.9527 (0.45) 0.9431 (0.55) 0.9521 (0.39) 0.9486 (0.31)
500 0.9497 (0.35) 0.9469 (0.43) 0.9471 (0.29) 0.9502 (0.24)

1000 0.9514 (0.24) 0.9472 (0.30) 0.9538 (0.21) 0.9517 (0.17)

confidence intervals for the parameters are computed and the results are given in
Table 6. Histograms of the standardized MLEs of parameters λ and δ for the sim-
ulated samples of size n = 1000 are shown in Figure 2. This figure shows the
asymptotic normality of the distribution of MLEs.

6 Illustrations with real data sets

To illustrate the applicability of the proposed models, we analyze three real data
sets available from different sources. To compare the fitting of various models,
we use the Akaike (AIC) information criteria and the Bayesian information crite-
ria (BIC) which defined as AIC = 2m − 2�(̂θ |X) and BIC = m Ln(n) − 2�(̂θ |X)

where �(̂θ |X) is the maximized log-likelihood, n is the sample size and m is the
number of the model parameters. In this section, for fitting SFTN distribution with
p.d.f. introduced in (4.1) to a set of data, the parameters θ = (μ,σ,λ, δ, ν) are esti-
mated by maximizing �(θ |X), using the method of “Profile maximum likelihood”.
That is for some fixed values of ν (ν = 1,2,3, . . .), the likelihood function is max-
imized with respect to the other parameters. In Examples 1–2, using the profile
method, the parameter ν is estimated as 6 and 5, respectively, and in the last exam-
ple, the model SFCN with p.d.f. (4.2) is fitted. The observed standard errors (SE)
of the estimates θ̂ are extracted from the square root of the diagonal elements of
the inverse of the observed FIM. For the 4 distributions skew-normal (SN), skew-
flexible-normal (SFN), skew-t-normal (STN) and SFTN, in each example, the re-
lated table lists the MLEs for parameters with their SEs (in parenthesis) and the
information criteria AIC and BIC. Also, in the examples, we use the Kolmogorov–
Smirnov (K–S) and Anderson–Darling (A–D) (Anderson and Darling (1954)) tests
of goodness-of-fit of the proposed model. Furthermore, the likelihood ratio test
(LRT) statistic, which is a comparison of likelihood scores between two competi-
tive models, is used to judge which of the two models is more appropriate for this
data set. For testing the null hypothesis H0i versus the alternative hypothesis H1i ,
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Figure 2 Histograms of standardized λ̂ (left column) and standardized δ̂ (right column) for the
models: SFTN(−1,0.2,8) (first row) and SFTN(1,−1,6) (second row) in 15,000 simulated samples
of size n = 1000 with the standard normal p.d.f. plot (dashed line).

for i = 1,2,3, in the following cases

H01: δ = 0, υ = +∞ (SN) versus H11 : δ 
= 0, υ < +∞ (SFTN),

H02: υ = +∞(SFN) versus H12 : υ < +∞ (SFTN),

H03: δ = 0(STN) versus H13 : δ 
= 0 (SFTN),

the LRT statistics are as �i = −2(�0i − �1), where �0i are the maximized log-
likelihood value for the model under the the null hypothesis H0i and �1 is the
maximized log-likelihood value for the SFTN model. For the enough large sample
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Table 7 MLEs with SEs and Information Criteria for the Strength of glass fibres in Example 1

Distributions μ̂(SE) σ̂ (SE) λ̂(SE) δ̂(SE) AIC BIC

SN 1.85 (0.05) 0.47 (0.06) −2.68 (0.80) – 33.91 40.34
SFN 1.09 (0.05) 0.23 (0.02) 0.72 (0.17) −1.99 (0.31) 29.50 38.07
STN (̂ν = 1.96) 1.65 (0.06) 0.18 (0.03) −0.36 (0.27) – 31.57 40.14
SFTN (ν = 6) 1.16 (0.04) 0.19 (0.02) 0.53 (0.13) −2.20 (0.32) 27.64 36.21

Figure 3 Histogram of the strength of glass fibres and fitted STN, SFN and SFTN models on them
(left figure) and PP-plot based on the fitted SFTN model (right figure).

size n, at the significant level of 0.05, H0i is rejected if �i > χ2
dfi ,0.05, for df1 = 2

and df2 = df3 = 1.

Example 1 (Strength of glass fibres data set). Smith and Naylor (1987) pre-
sented an experimental data set on the strength of 63 glass fibres of length 1.5 cm.
This data set has been considered by several authors in the literature. The results
for the mentioned models are presented in Table 7. Graphical results are shown
in Figure 3. By assuming the SFTN distribution for the strength of glass fibers,
the K–S statistic and the A–D statistic obtained. The corresponding p-values are
0.93 and 0.98, respectively. For testing the null hypothesis H0i versus the alterna-
tive hypothesis H1i , for i = 1,2,3, the LRT statistic gives the values �1 = 10.27,
�2 = 3.86 and �3 = 5.93 which are significant, indicating that the null hypothe-
sises are not acceptable for the Strength of glass fibres data.

Example 2 (Fibers data set). To illustrate more, we used a set of data that were
part of an extensive study on the association of plasma retinol and beta-carotene
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Table 8 MLEs with SEs and Information Criteria for the Fibers data in Example 2

Distributions μ̂(SE) σ̂ (SE) λ̂(SE) δ̂(SE) AIC BIC

SN 6.25 (0.43) 8.43 (0.47) 4.54 (1.14) – 1902.85 1914.11
SFN 6.70 (0.85) 9.29 (1.58) 4.25 (1.21) 0.35 (0.64) 1904.45 1919.46
STN (̂ν = 10.6) 6.89 (0.42) 7.15 (0.47) 3.07 (0.81) – 1901.42 1916.43
SFTN (ν = 5) 4.41 (0.52) 5.19 (0.38) 6.83 (2.51) −1.32 (0.24) 1894.16 1909.17

Figure 4 Histogram of the Grams of fibre and fitted SN, STN and SFTN models on them (left figure)
and PP-plot based on the fitted SFTN model (right figure).

levels with the risk of developing certain types of cancer (see http://lib.stat.cmu.
edu/datasets/Plasma_Retinol). The data consist of 315 observations of grams of
fibre consumed per day taken from patients who had an elective surgical procedure
during a 3-year period to biopsy or removal of a lesion of the lung, colon, breast,
skin, ovary or uterus that was found to be non-cancerous. By assuming the above
mentioned distributions for the random variable of grams of fibre consumed per
day, the MLEs of the parameters are obtained and the results are made out in
Table 8 and Figure 4. By assuming the SFTN distribution for the Grams of fibre
observations, the K–S and the A–D tests of goodness-of-fit have the p-values 0.91
and 0.99, respectively. For testing H0i versus the H1i , for i = 1,2,3, we obtain the
LRT statistic values �1 = 12.69, �2 = 12.29 and �3 = 9.26 which are significant,
indicating that the null hypothesises are not acceptable for the Grams of fiber data.

Example 3 (Nickel concentration data set). The data set is related to nickel con-
centration in 86 soil samples analyzed at the Mining Department in University of
Atacama-Chile. Table 9 shows the MLEs of the parameters of SN, SFN and STN

http://lib.stat.cmu.edu/datasets/Plasma_Retinol
http://lib.stat.cmu.edu/datasets/Plasma_Retinol
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Table 9 MLEs with SEs and Information Criteria for the Nickel data in Example 3

Distributions μ̂(SE) σ̂ (SE) λ̂(SE) δ̂(SE) AIC BIC

SN 2.62 (2.07) 24.97 (2.46) 10.21 (9.53) – 695.52 702.89
SFN 7.18 (2.35) 150 (246) 27.23 (44.16) 9.84 (17.07) 686.14 695.96
STN (̂ν = 2.42) 8.47 (2.59) 11.59 (2.27) 1.81 (1.24) – 682.41 692.23
SFCN 9.32 (1.43) 5.74 (1.04) 0.80 (0.31) −1.01 (0.30) 679.55 689.37

Figure 5 Histogram of the Nickel data set and fitted SFCN, STN and SFN models on them (left
figure) and PP-plot based on the fitted SFCN model (right figure).

distributions and our proposed SFCN distribution. Graphical fitness of the models
are shown in Figure 5. By assuming the SFCN distribution for the nickel concen-
tration, the K–S and the A–D tests of goodness-of-fit have the p-values 0.90 and
0.91, respectively. For testing H0i versus the H1i , for i = 1,2,3, we obtain the
LRT statistic values �1 = 19.97, �2 = 8.59 and �3 = 4.86 which are significant,
indicating that the H0i , i = 1,2,3, are not acceptable for the Nickel concentration
data.

Appendix: The second partial derivatives of (4.3)

�μμ = ν + 1

νσ 2

(
1

w(z)
− 2

w(z)2

)
+ τμμ,

�μσ = −ν + 1

νσ 2

(
2z

w(z)2 + δ sign(z)

w(z)

)
+ τμσ ,
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�μλ = τμλ, �μδ = ν + 1

νσ
sign(z)

(
2

w(z)2 − 1

w(z)

)
,

�μν = 1

νσ
sign(z)

(|z| + δ
)( 1

w(z)
− ν + 1

νw(z)2

)
,

�σσ = − ν

σ 2 − ν + 1

νσ 2

(
2

z2

w(z)2 − ν + δ2

w(z)

)
+ τσσ ,

�σλ = τσλ, �σδ = ν + 1

νσ
|z|

(
2

w(z)2 − 1

w(z)

)
,

�σν = 1

νσ
|z|(|z| + δ

)( 1

w(z)
− ν + 1

νw(z)2

)
,

�λλ = τλλ, �λδ = 0, �λv = 0,

�δδ = (
cδ,νtν(δ)

)2 − ν + 1

ν
c(ν)δcδ,ν�ν(−2)

− ν + 1

ν

(
2

w(z)2 − 1

w(z)

)
,

�δν = ∂2 log(cδ,ν)

∂δ ∂ν

− |z| + δ

ν

(
1

w(z)
− ν + 1

νw(z)2

)
,

�νν = ∂2 log(cδ,ν)

∂ν2 + h(ν) + ν − 1

ν2 − 1

νw(z)
+ ν + 1

2ν2w(z)2 ,

where R(z) = φ(λz)
�(λz)

, h(ν) = 1
4( 2

ν2 + � ′(ν+1
2 ) − � ′(ν

2 )) and

τμμ = −λ3zR(z) + λ2R(z)2

σ 2 ,

τμσ = λR(z) − λ3z2R(z) − λ2zR(z)2

σ 2 ,

τμλ = −R(z) + λzR(z)2 + λ2z2R(z)

σ
,

τσσ = 2λzR(z) − λ3z3R(z) − λ2z2R(z)2

σ 2 ,

τσλ = λ2z3R(z) + λz2R(z)2 − zR(z)

σ
,

τλλ = −λz3R(z) − z2R(z)2.
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