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ROBUST GAUSSIAN STOCHASTIC PROCESS EMULATION1
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We consider estimation of the parameters of a Gaussian Stochastic Pro-
cess (GaSP), in the context of emulation (approximation) of computer models
for which the outcomes are real-valued scalars. The main focus is on estima-
tion of the GaSP parameters through various generalized maximum likeli-
hood methods, mostly involving finding posterior modes; this is because full
Bayesian analysis in computer model emulation is typically prohibitively ex-
pensive.

The posterior modes that are studied arise from objective priors, such as
the reference prior. These priors have been studied in the literature for the
situation of an isotropic covariance function or under the assumption of sepa-
rability in the design of inputs for model runs used in the GaSP construction.
In this paper, we consider more general designs (e.g., a Latin Hypercube De-
sign) with a class of commonly used anisotropic correlation functions, which
can be written as a product of isotropic correlation functions, each having an
unknown range parameter and a fixed roughness parameter. We discuss prop-
erties of the objective priors and marginal likelihoods for the parameters of
the GaSP and establish the posterior propriety of the GaSP parameters, but
our main focus is to demonstrate that certain parameterizations result in more
robust estimation of the GaSP parameters than others, and that some param-
eterizations that are in common use should clearly be avoided. These results
are applicable to many frequently used covariance functions, for example,
power exponential, Matérn, rational quadratic and spherical covariance. We
also generalize the results to the GaSP model with a nugget parameter. Both
theoretical and numerical evidence is presented concerning the performance
of the studied procedures.

1. Introduction. A Gaussian Stochastic Process (GaSP) is a useful tool for
analyzing spatially correlated data. For example, in geostatistics, it has been pop-
ularly used to model various types of data with complicated patterns ([10]). This
paper, however, focuses on the use of GaSPs in emulation (approximation) of com-
plex computer models. Computer models are developed in an effort to reproduce
the behavior of engineering, physical, biological and human processes. A key is-
sue with such computer models is that they are typically very time-consuming to
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run (e.g., the TITAN2D computer model that models volcanic pyroclastic flows
([4]) requires up to 2 hours for a single run) and a large number of runs is typically
needed for inferences concerning the computer model (i.e., estimation of parame-
ters of the computer model) or predictions using the computer model, both being
aspects of what is called Uncertainty Quantification (UQ) for computer models. It
is thus typically crucial to develop a fast (and accurate) emulator to approximate
the computer model, for use in UQ tasks ([3, 20, 26, 30]).

Data from a computer model (i.e., runs from the computer model) is typically
rather different than spatial data. First, the input space of the computer model (e.g.,
the space of model parameters, initial conditions, boundary conditions, etc.) often
has high dimension, while the maximum dimension for spatial data is typically
three. Second, the inputs of a computer model typically are variables on com-
pletely different scales, so the effect of the inputs on the correlations will be highly
variable. Consequently, the assumption of isotropy, which is often adopted in spa-
tial processes, usually does not hold for modeling data from computer models.
Different types of geometrically anisotropic spatial processes are discussed in the
literature (cf. [18, 42]). For computer models, it is common to use a product corre-
lation function ([4, 28, 29, 35]), typically with very different correlation parameters
for each input; the product form also keeps computations tractable, and this choice
will be followed herein. Third, many computer models are deterministic, or close
to being deterministic, while noise in data from spatial processes can be large. The
fourth difference is that, by design, data from computer models is typically taken
at input values that are far apart, whereas this may well not be so for spatial data.

In this paper, we focus on the problem of estimating the parameters of the GaSP
emulator. These parameters typically consist of mean parameters, a variance pa-
rameter and the parameters in the correlation functions, such as range and rough-
ness parameters (introduced in more detail in the next section). Although the mean
parameters and variance parameter are relatively easy to deal with, it was pointed
out in [20] that the parameters in the correlation functions are notoriously difficult
to estimate. For instance, maximum likelihood estimation (MLE) of these param-
eters has been widely recognized to be unstable ([21, 23, 25, 31]) and can be in-
consistent under infill asymptotics ([40, 41]). The instability is partially caused by
the Cholesky decomposition of covariance matrices that are often close to singular,
when evaluating the likelihood. This can often be overcome by adding a nugget to
stabilize the computation, but studies have found that the features of the emulator
can significantly change when a nugget is added ([2]). Another difficulty that will
be discussed herein is that serious problems can arise when the covariance matrix
is estimated to be near-diagonal, and this can easily happen when a product cor-
relation structure is used because, if even one of the terms in the product is close
to zero, the correlation will be close to zero. Two R packages, DiceKriging and
DiceOptim, use several different ways to avoid unstable results, such as using ex-
pected improvement criteria and bounds for the range parameters ([34]). Although
these methods can yield stable computations, they produce larger predictive errors
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(as shown in Section 5) than the methods proposed herein, which seek parameter
estimates that are naturally robust.

To obtain parameter estimates that are naturally robust, that is, that stabilize the
computation without degrading the predictive accuracy of the emulator, we utilize
formal objective prior distributions (namely reference priors) and then find poste-
rior modes for the correlation parameters. The first use of reference priors in mod-
eling spatially correlated data was [5]; that paper was restricted to consideration of
an isotropic covariance function, with only one range/scale parameter. Reference
priors for an anisotropic process were studied in [28, 33], and their properties were
studied in the context of product correlation functions and separable designs (e.g.,
a lattice) for the input values over which the computer model is run. Most designs
used for creating emulators of computer models—such as the Latin Hypercube
Design (LHD)—are, however, nonseparable, and so we need to extend the analy-
sis of the reference priors and likelihoods to cover nonseparable situations and to
include the possibility of a nugget parameter (a noise term). (Objective priors for
isotropic GaSPs with a nugget were discussed recently in [7, 19, 32].)

Posterior modes of the correlation parameters depend on the parameterization
used for the parameters and it was first found in [23] that this choice of parameter-
ization can make a major difference of the “robustness” of the posterior mode. The
word “robust” in this context was first used in [37] and will be formally defined
in Section 3, but, informally, a robust procedure avoids the numerical issues dis-
cussed above while producing an emulator with good predictive performance. In
this investigation, it was also found that robustness is considerably more difficult
to obtain for the anisotropic case with product correlation functions than for the
isotropic case. As an example, the posterior density of the range parameters goes to
infinity when the correlation matrix, for a product correlation function, approaches
a matrix of ones, under one frequently used parameterization, while this does not
happen in the isotropic case. One of the major contributions of this work is in mak-
ing the study of robustness of the parameterization rigorous by determining the tail
behavior of the resulting posterior distributions.

The paper is organized as follows. In Section 2, we introduce the GaSP emula-
tor with product correlation functions and designs for the input values at which the
computer model is run, and we begin the comparison of our methods to two stan-
dard approaches—maximum likelihood estimation (MLE) and maximum marginal
likelihood estimation (MMLE)—in order to highlight some of the key concerns.
In Section 3, we first study a closed-form example of profile and marginal like-
lihood, where a sufficient and necessary condition is provided under which the
MLE has poor behavior. Then we formally define robust parameter estimation in
the development of GaSP emulators and prove our main results concerning ro-
bustness, along with establishing posterior propriety of the suggested priors. The
potentially serious consequences of using nonrobust estimation methods will also
be highlighted. In Section 4, we extend the results to a GaSP with a noise term.
The robust method has been implemented in a new R package ([13]), which will
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be used for comparison of the method with other approaches, such as the MLE and
DiceKriging, in Section 5. Section 6 presents some conclusions.

2. Gaussian stochastic processes.

2.1. Background and a recommendation. Consider a real-valued Gaussian
stochastic process y(·) ∈ R on a p-dimensional input domain X ,

(2.1) y(·) ∼ GaSP
(
μ(·), σ 2c(·, ·)),

where μ(·) is the mean function and σ 2c(·, ·) is the covariance function with vari-
ance σ 2 and correlation function c(·, ·). For any inputs xi ∈ X , i = 1, . . . , n, the
outputs (y(x1), . . . , y(xn))

T follow a multivariate normal distribution,

(2.2)
[(

y(x1), . . . , y(xn)
)T | μ, σ 2,R

]∼MN
((

μ(x1), . . . ,μ(xn)
)T

, σ 2R
)
,

where R denotes the correlation matrix with the (i, j) entry c(xi ,xj ) and μ =
(μ(x1), . . . ,μ(xn))

T . The mean function for any input x ∈ X is modeled via the
regression

μ(x) = E
[
y(x)

]= h(x)θ =
q∑

t=1

ht (x)θt ,

where h(x) = (h1(x), h2(x), . . . , hq(x)) is a q-dimensional vector of basis func-
tions and θ = (θ1, . . . , θq)

T , with θt being an unknown regression parameter for
the basis function ht .

The process is called isotropic if the correlation function is only a function of
‖xi − xj‖2, for any xi = (xi1, . . . , xip)T ∈ X and xj = (xj1, . . . , xjp)T ∈ X ,
where ‖ · ‖2 is the Euclidean distance or the L2 norm. As mentioned earlier,
isotropy is often too restrictive to emulate complicated functions and a product
of p one-dimensional correlation functions is typically assumed for the computer
model emulation instead

(2.3) c(xi ,xj ) =
p∏

l=1

cl(xil, xjl),

with cl(·, ·) being a one-dimensional correlation function for the lth coordinate of
the input vector.

The simulator is run at a set of n chosen inputs xD = {xD
1 , . . . ,xD

n }, often se-
lected using some “space filling” technique over the input domain X , for example,
a Latin Hypercube Design ([35, 36]); let yD = (y(xD

1 ), . . . , y(xD
n ))T denote the

corresponding simulator outputs. Given the product correlation function in (2.3),
the correlation matrix of these inputs is thus

(2.4) R = R1 ◦ R2 ◦ · · · ◦ Rp,
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TABLE 1
Popular choices of correlation functions, where cl(xil , xjl) ≡ c(d), with d = |xil − xjl |. Here, α is
the roughness parameter and γ is the range parameter. �(·) is the gamma function and Kα(·) is the
modified Bessel function of the second kind. ν(γ ) and ω(γ ) are terms in the Taylor expansion of the

correlation functions, as γ → ∞ (see Section 3)

c(d) ν(γ ) ω(γ )

Power exponential exp{−(d/γ )α}, α ∈ (0,2] γ −α γ −α

Spherical (1 − 3
2 ( d

γ ) + 1
2 ( d

γ )3)1[d/γ≤1] γ −1 γ −2

Rational quadratic (1 + ( d
γ )2)−α,α ∈ (0,+∞) γ −2 γ −2

Matérn 1
2α−1�(α)

( d
γ )αKα( d

γ ), 0 < α < 1 γ −2α γ −2+2α

α = 1 log(γ )

γ 2
1

log(γ )

1 < α < 2 γ −2 γ 2−2α

α = 2 γ −2 log(γ )

γ 2

α > 2 γ −2 γ −2

where each Rl is the correlation matrix for the lth input, having (i, j)th element
cl(xil, xjl), and ◦ is the Hadamard product.

Some frequently chosen correlation functions are listed in Table 1 (dropping
the subscript l). The correlation function cl(·, ·) typically has a range parameter
γl > 0, which controls how fast the correlation decays with the distance, and a
roughness parameter αl > 0, controlling the geometric properties of the process
([5]). As mentioned earlier, the points in xD are typically chosen as far apart as
possible, in order to sample the computer model output at as many diverse points
as possible. Consequently, the roughness parameters αl , 1 ≤ l ≤ p, are not highly
influential and typically have quite flat likelihood surfaces. They are also highly
confounded with γl and σ 2, causing computational and inferential difficulties if
left in the model ([10, 40]). It is thus common (and herein adopted) to fix the
roughness parameters at prespecified values and focus only on estimation of the
range parameters. An alternative possibility would be to assign a discrete prior—
concentrated on a few values—to the roughness parameters, as in [8]; the results
herein would likely generalize to that situation.

One of most frequently used correlation functions is the Gaussian correlation,
which is the special case of αl = 2 in the power exponential correlation func-
tion. The sample paths of the resulting GaSP process are infinitely differentiable,
which is sometimes desirable in applications. However, the choice of αl = 2 has
been criticized since it often yields too smooth sample paths for many applications
([38]) and because computational difficulties can arise with this choice (see the
Appendix). Thus 1 < αl < 2 is typically chosen in the power exponential family
([4]), although the process is then not even once differentiable, sometimes not ideal
for applications.
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Another popular choice of the correlation function is the Matérn correlation.
The isotropic, stationary form of the Handcock–Stein–Wallis parametrization of
the Matérn function was introduced in [15, 16] and was extended to the nonsta-
tionary case in [27] via kernel convolution. When αl = (2k + 1)/2 for k ∈ N, the
Matérn correlation has a closed-form expression. For example, when αl = 1/2, the
Matérn correlation reduces to the power exponential correlation with αl = 1; when
αl → ∞, it reduces to Gaussian correlation. One nice feature of Matérn correla-
tion is that its sample paths are 
αl − 1� times differentiable, so the smoothness of
the process can be directly controlled by the roughness parameters. Hence, it has
become the recommended choice for the correlation function in spatial modeling
([38]). One of the most frequently used Matérn correlation functions is αl = 5/2,
which has the form

(2.5) cl(dl) =
(

1 +
√

5dl

γl

+ 5d2
l

3γ 2
l

)
exp
(
−

√
5dl

γl

)
,

where dl stands for any of the |xil − xjl|.
Use of Matérn correlation functions has been less popular in the computer

model emulation literature. Here is an argument as to why (2.5) should be seri-
ously considered for emulation, noting first that it is computationally tractable.
Denoting d̃l = dl/γl , the following is easy to establish for (2.5):

• When d̃l → 0, cl(d̃l) ≈ 1 − Cd̃2
l with C > 0 being a constant. This thus be-

haves similarly to exp(−d̃2
l ) ≈ 1 − d̃2

l , which corresponds to the power expo-
nential correlation with αl = 2 (i.e., Gaussian correlation). This suggests that the
Matérn correlation in (2.5) will maintain the smoothness induced by Gaussian
correlation for nearby inputs.

• When d̃l → ∞, the dominant part of cl(d̃l) is exp(−√
5d̃l) which matches

the power exponential correlation with αl = 1. Thus the Matérn correlation in
(2.5) prevents the correlation from decreasing quickly with distance, as does the
Gaussian correlation. This can be of benefit in the computer model emulation
since some inputs may have almost no effect on the computer model, which
would correspond to near constant correlations even for distant inputs.

We have also found that the Matérn correlation function with αl = 5/2 yields
very good empirical results in emulation. In addition, it is the default correlation
function in the DiceKriging package. For these reasons, it will be used as the de-
fault correlation function for the numerical study in Section 5. However, our results
are applicable to the much larger class of correlation functions listed in Table 1, as
shown in Section 3.

2.2. Marginal likelihood and marginal posterior.

2.2.1. Marginal likelihood. Although maximum likelihood estimation of all
parameters of the covariance function is possible, it has become standard to treat
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the mean parameters and variance in a fully objective Bayesian fashion, since they
can be dealt with in closed-form in the Bayesian computations. Thus these param-
eters are assigned the objective prior

π
(
θ , σ 2)∝ 1

(σ 2)a
,

with a fixed a > 0, where a = 1 corresponds to the standard reference prior. (It has
become customary to also compare results with other choices of a, so we allow
that in what follows.)

Using this prior to marginalize out the mean and variance parameters in the
likelihood function, we obtain the marginal likelihood

(2.6) L
(
γ | yD )∝ |R|− 1

2
∣∣hT (xD )R−1h

(
xD )∣∣− 1

2
(
S2)−(

n−q
2 +a−1)

,

where h(xD ) is the n × q basis matrix with the (i, j) entry hj (xD
i ); S2 =

(yD )T QyD with Q = R−1PR and PR = In − h(xD ){hT (xD )R−1h(xD )}−1 ×
hT (xD )R−1, with In being the identity matrix of size n.

Assuming the roughness parameters α = (α1, . . . , αp) have been pre-specified,
the range parameters of the correlation function can be estimated by maximiz-
ing (2.6), which is denoted as maximum marginal likelihood estimator (MMLE).
While this approach was argued in [4] to be superior to maximum likelihood esti-
mation (MLE), we will see that it is still nonrobust, in the sense that will be defined
in Section 3. The main problem is that the marginal likelihood will often not go to
zero in the tails and, indeed, can be increasing. Thus it was argued in [23, 37] that
the marginal likelihood needs to be augmented by the reference prior for the range
parameters.

2.2.2. Reference prior and posterior. The reference prior for a separable prod-
uct correlation function was developed in [28] and is given by

(2.7) πR(θ, σ 2,γ
)∝ πR(γ )

(σ 2)a
,

with πR(γ ) ∝ |I∗(γ )|1/2, where I∗(·) is the expected Fisher information matrix as
below:

(2.8) I∗(γ ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

n − q tr(W1) tr(W2) · · · tr(Wp)

tr
(
W2

1
)

tr(W1W2) · · · tr(W1Wp)

tr
(
W2

2
) · · · tr(W2Wp)

. . .
...

tr
(
W2

p

)

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where Wl = ṘlQ, for 1 ≤ l ≤ p, and Ṙl is the partial derivative of the correlation
matrix R with respect to the lth range parameter.
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The marginal posterior of γ with regard to this reference prior is

(2.9) p
(
γ | yD )∝ L

(
γ | yD )∣∣I∗(γ )

∣∣1/2
.

Sampling from this posterior requires a Metropolis-type algorithm and each evalu-
ation of the likelihood typically requires O(n3) flops for the inverse of the correla-
tion matrix, which is computationally prohibitive for many applications. Moreover,
the computation error can be very large when the correlation matrix is close to the
matrix of all ones. For these reasons, it is common ([4, 37]) to instead simply
estimate γ by its marginal posterior mode, using (2.9),

(2.10) (γ̂1, . . . , γ̂p) = argmax
γ1,...,γp

{
L
(
γ1, . . . , γp | yD )πR(γ1, . . . , γp)

}
.

2.2.3. Parameterizations. Maximum likelihood estimation is invariant under
the choice of parameterization, but the posterior mode is not invariant because
of the presence of the Jacobian for the prior. Here are three common ways of
parameterizing the range parameters in the power exponential correlation function
([3–5, 28, 37]), for any l = 1, . . . , p:

cγl

(|xil − xjl|)= exp
{−(|xil − xjl|/γl

)αl
}
,(2.11)

cβ̃l

(|xil − xjl|)= exp
{−β̃l|xil − xjl|αl

}
,(2.12)

cξ̃l

(|xil − xjl|)= exp
{− exp(ξ̃l)|xil − xjl|αl

}
.(2.13)

Table 1 gives various correlation functions in their natural parameterizations, in
which the range parameter and roughness parameter are independent; we will call
this the α-free parameterization of the range parameter. In contrast, in the above
parameterizations of the power exponential correlation function, β̃l = γ

−αl

l and
ξ̃l = log(γ

−αl

l ) both depend on αl . We will also consider the following transfor-
mations of the α-free parameterization (dropping the subscript l for convenience).

DEFINITION 2.1. For the range parameters γ in Table 1:

(i) β = 1/γ will be called the inverse range parameter;
(ii) ξ = log(1/γ ) will be called the log inverse range parameter.

Note that β̃ = βα and ξ̃ = αξ . The mode of the posterior distributions for the
ξ̃ and ξ parameterizations will be the same (properly transformed), because the
Jacobians of the transformations differ only by the prefixed constant α; thus we
need to consider only the ξ—and not the ξ̃—parameterization of the power ex-
ponential correlation function in what follows. On the other hand, the posterior
modes of β̃ and β are not the same (when transformed), so we have to consider
both parameterizations in what follows.
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2.2.4. Predictions using the emulator. After obtaining the estimates of the
range parameters under a specified parameterization, transform back to obtain the
corresponding γ = (γ1, . . . , γp), after which the predictive distribution of y(x∗),
given yD and γ , is a Student’s t-distribution,

(2.14) y
(
x∗) | yD ,γ ∼ t

(
ŷ
(
x∗), σ̂ 2c∗∗, n − q

)
,

with n − q degrees of freedom, where

ŷ
(
x∗)= h

(
x∗)θ̂ + rT (x∗)R−1(yD − h

(
xD )θ̂),

σ̂ 2 = (n − q)−1(yD − h
(
xD )θ̂)T R−1(yD − h

(
xD )θ̂),

c∗∗ = c
(
x∗,x∗)− rT (x∗)R−1r

(
x∗)+ (h(x∗)− hT (xD )R−1r

(
x∗))T

× (hT (xD )R−1h
(
xD ))−1(h(x∗)− hT (xD )R−1r

(
x∗)),

with θ̂ = (hT (xD )R−1h(xD ))−1hT (xD )R−1yD being the generalized least squares
estimator for θ ; R being the correlation matrix corresponding to the design inputs
and r(x∗) = (c(x∗,xD

1 ), . . . , c(x∗,xD
n ))T , both obtained by plugging in the esti-

mated γ values. The corresponding prediction and any quantile of the predictive
distribution are then readily available.

2.3. Profile likelihood. For comparison purposes, we will also consider the
full likelihood approach, which utilizes the MLE for the mean and variance pa-
rameters, θ̂MLE = θ̂ , σ̂ 2

MLE = (n − q)σ̂ 2/n, where θ̂ and σ̂ 2 are defined in (2.14).
Plugging θ̂MLE and σ̂ 2

MLE into (2.2) and ignoring the normalizing constant, the
likelihood of (2.2) reduces to the profile likelihood

(2.15) L
(
γ | yD , σ̂ 2

MLE, θ̂MLE
)∝ |R|− 1

2
(
S2)− n

2 .

To complete the MLE analysis, γ is estimated by the mode of this profile likelihood
and denoted by γ̂ MLE. The predictive distribution of a new input x∗, conditional
on the previous outputs and the MLE, is

(2.16) y
(
x∗) | yD , σ̂ 2

MLE, θ̂MLE, γ̂ MLE ∼ N
(
ŷMLE

(
x∗), σ̂ 2

MLEc∗
MLE
)
,

where ŷMLE(x∗) = ŷ(x∗), with ŷ(x∗) defined in (2.14), and c∗
MLE = cMLE(x∗,x∗)−

rT
MLE(x∗)R−1

MLErMLE(x∗), obtained by plugging γ̂ MLE into cMLE(x∗,x∗), rMLE(x∗)
and RMLE.

The profile likelihood is sometimes very flat in the tails, resulting in γ̂ MLE being
near zero and R̂MLE being near In (see the details in Section 3). This can be shown
to result in the predicted mean, ŷMLE(x∗), being essentially an impulse function
at each of the observations, while following the GaSP mean elsewhere. Figure 1
gives an example of this scenario, where the GaSP mean is assumed to be a con-
stant. In the left panel of the figure, the roughness parameter was α = 1 for the
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FIG. 1. Emulation of the function y = 3 sin(5πx)x + cos(7πx), graphed as the black solid curves
(overlapping the green and red curves in the right panel). The design for the input x is equally spaced
from [0,1] with n = 12, with the resulting function values indicated by the black circles. A constant
mean function is used. The left panel is for α = 1 and the right panel for α = 1.9, for the power
exponential correlation function. The blue curves (which are essentially unit impulse functions at the
observations and constant elsewhere) give the emulator mean obtained from the profile likelihood
approach; the red curves give the emulator mean from the MMLE approach; and the green curves
give the emulator mean arising from the maximum posterior mode approach with the reference prior.

power exponential correlation function, and both the MLE and MMLE became
essentially degenerate, while the prediction from the posterior mode approach was
reasonable (although not quite smooth enough). In the right panel of the figure, the
roughness parameter was α = 1.9; here, both the MMLE and marginal posterior
mode approaches gave excellent predictions, but the profile likelihood approach
still resulted in a degenerate prediction. Such degeneracies are somewhat unusual
in one-dimension, but are not particularly unusual with higher dimensional inputs,
as shown numerically in Section 5.

3. Robust parameter estimation for GaSP models. In this section, we ex-
plore the ways in which GaSP emulator construction can fail, developing the “ro-
bustness criteria” that are needed to avoid such failures. We then examine which
estimation methods satisfy the criteria. To begin, it is pedagogically useful to look
at a special case ([23]), where the analysis is essentially closed-form. The proofs
of the lemmas and theorems in this section are provided in the Supplementary
Materials ([14]).

3.1. A closed-form example for the profile likelihood and marginal likelihood.
Suppose the input is one-dimensional and that the design is equally spaced with the
design points being d0 units apart. Consider a constant mean h(x) = 1 and power
exponential correlation with roughness parameter α = 1. Denote ρ = e−d0/γ , write
c(xi, xj ) = ρ
ij , with 
ij = |xi −xj |/d0, and write y(xD

i ) as yi to simplify the no-
tation. The closed-form logarithm of the profile likelihood and marginal likelihood
(obtained by integrating out the mean and variance parameters using the standard
reference prior), as well as their limiting values when ρ → 0 and ρ → 1, are given
in the Supplementary Materials ([14]). From these, we can establish the following
condition, under which the mode of the profile likelihood occurs at ρ = 0.
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LEMMA 3.1. A necessary and sufficient condition that the mode of the profile
likelihood in (2.15) is at ρ = 0 [causing the unwelcome degeneracy] is, defining
ȳ =∑n

i=1 yi/n,

(3.1)
n−1∑
i=1

(yi − ȳ)(yi+1 − ȳ) ≤ 0.

The intuition behind Lemma 3.1 comes from the fact that, in this case, the GaSP
becomes an autoregressive model of order 1. When the empirical lag-1 autocorre-
lation is less than zero, the profile likelihood estimate of the correlation ρ will be
zero, since the correlation ρ is parameterized to be nonnegative here. On the other
hand, if either likelihood is maximized at ρ = 1, then R = 1n1T

n , where 1n is the
vector of all ones, so that the correlation matrix becomes ill-conditioned, causing
large approximation errors in computation of its inverse.

For the general case considered in the remainder of the paper, explicit results
such as that in Lemma 3.1 are not available. However, we can still look at the
tail rates (corresponding to ρ going to 0 or 1) for various likelihoods and posteri-
ors and assess when problems will occur. We formalize these notions in the next
subsection, through our criteria for robust estimation.

3.2. Robust estimation. As discussed in the previous section, when R ≈ In,
the GaSP predictive mean will degenerate to the fitted mean and impulse functions
at the observed inputs, as happened in Figure 1. When R ≈ 1n1T

n , the correlation
matrix R is almost singular, leading to very large computational errors in the GaSP
predictive mean. Robust estimation of the parameters is defined as avoiding these
two possible problems.

DEFINITION 3.1 (Robust estimation). Estimation of the parameters in the
GaSP is called robust, if the following two situations do NOT happen:

(i) R̂ = 1n1T
n ,

(ii) R̂ = In,

where R̂ is the estimated correlation matrix.

Note that the predictive mean of the GaSP is not well defined in these two
situations when the inputs are at one of the design points, but it can be defined as
the limit as R̂ → 1n1T

n , and R̂ → In.
The following basic lemma is immediate from the definition of the correlation

matrix.

LEMMA 3.2. Robustness is lacking in either of the following two cases.
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Case 1. If, for all 1 ≤ l ≤ p, γ̂l = ∞ (or ξ̂l = −∞ or β̂l = 0 in the other pa-
rameterizations), then R̂ = 1n1T

n .
Case 2. If ∃l, 1 ≤ l ≤ p, for which γ̂l = 0 (equivalent to ξ̂l = ∞ or β̂l = ∞),

then R̂ = In.

Note that it is generally fine if some (but not all) of the estimated γl are close
to ∞, because this will just make R̂l ≈ 1n1T

n for some l but not R̂ ≈ 1n1T
n . In

such a situation, the inputs associated with the large γl can be called inert inputs,
since they will have only a small effect on the outputs. Indeed, this is a desirable
situation, since such inputs could be removed from the emulator, simplifying and
improving the approximation.

The MLE, MMLE and marginal posterior modes (for the various parameteri-
zations) all reduce to mode estimation with regard to a function G(γ ). Thus the
following guarantees that the problematic situations cannot occur.

COROLLARY 3.1. Estimation of γ = (γ1, . . . , γp)T as the mode of a nonneg-
ative function G(γ ) is robust if G(γ ) → 0, under the following two situations:

(i) ∃ l, 1 ≤ l ≤ p, γl → 0,
(ii) For all l, 1 ≤ l ≤ p, γl → ∞.

COROLLARY 3.2. Estimation of any monotonic transformation of the range
parameters ζ = f(γ ) = (f1(γ ), . . . , fp(γ ))T , by the mode of its marginal poste-
rior, is robust if

L
(
f−1(ζ ) | yD )πR(f−1(ζ )

)∣∣∣∣∂f−1(ζ )

∂ζ

∣∣∣∣→ 0

under the following two situations:

(i) ∃ l, 1 ≤ l ≤ p, f −1
l (ζ ) → 0,

(ii) For all l, 1 ≤ l ≤ p, f −1
l (ζ ) → ∞.

where f−1(ζ ) = (f −1
1 (ζ ), . . . , f −1

p (ζ ))T .

3.3. Robustness results. From the results in the previous section, it is clear that
we should compute the tail rates, in terms of γ , of the marginal likelihood, profile
likelihood and the various posteriors to see if they are robust. Computation of the
tail rates of the posteriors requires computation of the tail rates of the reference
prior, as well as the tail rates of the marginal likelihood. We need the following
two mild assumptions (cf. [5, 32]) to establish the main results concerning these
rates.

ASSUMPTION 3.1. For any dl ≥ 0 and 1 ≤ l ≤ p, cl(dl) = c0
l (dl/γl), where

c0
l (·) is a correlation function that satisfies limu→∞ c0

l (u) = 0.
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ASSUMPTION 3.2. For any 1 ≤ l ≤ p, as γl → ∞,

Rl(γl) = 1n1T
n + νl(γl)Dl + νl(γl)ωl(γl)

(
D∗

l + Bl(γl)
)
,

where Dl is a nonsingular and symmetric matrix with 1T
n D−1

l 1n �= 0, D∗
l is a fixed

matrix, νl(γl) > 0 is a nonincreasing and differentiable function, ωl(γl) is a dif-
ferentiable function, and Bl(γl) is a differentiable matrix (incorporating the higher
order terms of the expansion), satisfying

νl(γl) → 0, ωl(γl) → 0,
ω′

l(γl)

∂
∂γl

logνl(γl)
→ 0,

∥∥Bl(γl)
∥∥∞ → 0,

‖ ∂
∂γl

Bl(γl)‖∞
∂

∂γl
log(ωl(γl))

→ 0,

where ω′
l(γl) = ∂ωl(γl)/∂γl , and ‖B‖∞ = maxi,j |aij | with aij being the (i, j)

entry of the matrix B.

The first assumption ensures that the correlation function will decrease to zero
as the distance between two points goes to infinity. The second assumption guar-
antees that the first two small terms in the Taylor expansion of the correlation
function decrease to zero at an appropriate rate as γl → ∞. The assumptions hold
for all the correlation functions listed in Table 1, in which the functions νl and ωl

are also given.
The following lemma gives the tail rates for the marginal and profile likelihoods.

LEMMA 3.3 (Tail rates of the marginal likelihood and profile likelihood). If
Assumption 3.1 and Assumption 3.2 hold for each of the Rl , 1 ≤ l ≤ p, the
marginal likelihood and profile likelihood have the following tail rates:

(i) If ∃l, 1 ≤ l ≤ p, such that γl → 0, the marginal likelihood and profile like-
lihood both exist and are greater than zero.

(ii) If γl → ∞ for all l, 1 ≤ l ≤ p, and C(h(xD )) denotes the column space of
the mean basis matrix h(xD ), the marginal likelihood satisfies

L
(
γ | yD )=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O

(( p∑
l=1

νl(γl)

)a−1/2)
, 1n /∈ C

(
h
(
xD )),

O

(( p∑
l=1

νl(γl)

)a−1)
, 1n ∈ C

(
h
(
xD )).

The profile likelihood, in this case, satisfies

L
(
γ | yD , σ̂ 2

MLE, θ̂MLE
)= O

(( p∑
l=1

νl(γl)

)1/2)
.
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Part (i) of this lemma indicates that the marginal likelihood and profile likeli-
hood could have their modes at R = In, and thus could potentially be nonrobust;
one such case was given in Figure 1.

Part (ii) of the lemma shows that the mode of the marginal likelihood could be
at R = 1n1T

n for the frequently used setting of a = 1 and 1n ∈ C(h(xD )). On the
other hand, the profile likelihood will decrease to zero at this limit, so it cannot
be nonrobust in this fashion. A byproduct of Lemma 3.3 is that, when a = 1 and
1n ∈ C(h(xD )), use of a constant prior for γ would result in an improper posterior
distribution, consistent with the result for isotropic case given in [5].

The asymptotic behaviors of the reference prior for the two limiting cases of
interest are given in the lemma below.

LEMMA 3.4 (Tail rates of the prior). If Assumption 3.1 and Assumption 3.2
hold for each of the Rl , 1 ≤ l ≤ p, then πR(γ ) has the following two limiting
properties. Here, γ E denotes the vector of γl for all l ∈ E, E ⊂ {1,2, . . . , p}, and
γ −E denotes the complementary vector:

(i) As γ E → 0,

πR(γ ) ≤ C(γ −E)

[∏
l∈E

tr
(

∂R
∂γl

)2]1/2
,

where C(γ −E) is constant in γ E .
(ii) As γl → ∞ for all l, 1 ≤ l ≤ p, if 1 /∈ C(h(x)),

(3.2) πR(γ ) ≤ C1

∣∣∣∣
∏p

l=1 ν′
l (γl)

(
∑p

l=1 νl(γl))p

∣∣∣∣,
where ν′

l (γl) = ∂νl(γl)/∂γl ; if 1 ∈ C(h(xD )) and p ≥ 2,

πR(γ ) ≤ C2

∣∣∣∣
∏p

l=1 ν′
l (γl)

(
∑p

l=1 νl(γl))p

∣∣∣∣
∣∣∣∣∣

p∑
l=1

ν2
l (γl)ω

′
l(γl)

ν′
l (γl)νm(γm)

∣∣∣∣∣,
for every index m between 1 and p; if 1 ∈ C(h(xD )) and p = 1,

πR(γ ) ≤ C3
∣∣ω′

1(γ1)
∣∣,

where C1, C2 and C3 are all positive and not related to γl .

The bounds for the one-dimensional case in Lemma 3.4(ii) were proved in [5].
These results are a generalization of the p dimensional results in [28], which con-
sidered only separable designs.

Interestingly, the bounds in part (ii) of Lemma 3.4 seem to be almost exact in
numerical examples we have studied for the power exponential correlation func-
tion. Figure 2 presents some of the evidence for this.
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FIG. 2. The tail behavior of the reference prior (black curves), and its upper bound (red curves)
from Lemma 3.4 part (ii), when γ1 = · · · = γp → ∞. The power exponential correlation function is

used with fixed αl = 1.9, 1 ≤ l ≤ p. The first row is for the case in which 1n /∈ C(h(xD )), while the
second row is for 1n ∈ C(h(xD )). From left to right, the dimension of the inputs are p = 1, p = 2
and p = 3. The prior and bounds are evaluated at points uniformly sampled from [0,1]p . The black
curves and red curves overlap when γl is large.

The following theorem states that, under the γ and ξ parameterizations and
when a = 1, the mode of the marginal posterior with the reference prior for the
range parameters will typically be robust for the correlation functions listed in
Table 1. Similar theorems can be stated for other choices of a but, since a = 1 is
the near universal choice, we restrict the statement of the results to that case.

THEOREM 3.1. Under the parameterizations of the range parameter γ and
log inverse range ξ in Definition 2.1, the posterior mode in (2.9) with a = 1 is
robust for the product form of the power exponential, spherical and Matérn corre-
lation functions over the domain of α listed in Table 1. In addition, the posterior
mode of γ is robust for the rational quadratic correlation if αl > 1/2, 1 ≤ l ≤ p

and the posterior mode of ξ is robust for the rational quadratic correlation over
the entire domain of α.

PROOF. Theorem 3.1 can be proved by verifying Corollary 3.1 and Corol-
lary 3.2 using the results from Lemma 3.3 and Lemma 3.4. �

While use of the mode of the marginal posterior for the γ and ξ parameteriza-
tions is robust, the mode of the marginal posterior under other parameterizations,
such as the β̃ parameterization in (2.12), can be nonrobust. Indeed, directly apply-
ing Lemma 3.4 and Lemma 3.3, the bounds on the tail rates of the marginal pos-
terior under the various parameterizations (and also for the profile and marginal
likelihood) are given in Table 2. For simplicity, we assume roughness parameters
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TABLE 2
Tail behaviors of the profile likelihood, the marginal likelihood and the posterior distributions for different parameterizations of the power exponential

correlation function, using the reference prior in (2.7) with a = 1. In the 2nd and 4th columns, E is a nonempty set such that for l ∈ E, γl → 0
(equivalent to β̃l → ∞ or ξ̃l → ∞), and C and Cl are positive numbers depending on |xD

il − xD
j l |, 1 ≤ i, j ≤ n, l ∈ E. In the 3rd and 5th columns,

γl → ∞ (equivalent to β̃l → 0 or ξ̃l → −∞), for all 1 ≤ l ≤ p; in the stated tail rates, γ(1) is defined as the minimum of the γl , β̃(p) is the largest β̃l ,

and ξ̃(p) is the largest ξ̃l , where 1 ≤ l ≤ p. Blue highlights the cases where the tail behavior is constant, so that there is danger of nonrobustness. Red
highlights the cases where the posterior goes to infinity in the tail, necessarily leading to nonrobustness, as this will be shown to be the unique mode

1n ∈ C(h(xD )) 1n /∈ C(h(xD ))

l ∈ E, γl → 0 γl → ∞ for all l l ∈ E, γl → 0 γl → ∞ for all l

Profile Lik O(1) O(γ
−α/2
(1)

) O(1) O(γ
−α/2
(1)

)

Marginal Lik O(1) O(1) O(1) O(γ
−α/2
(1)

)

Post γ , p = 1 O(
exp(−C/γ α)

γ (α+1) ) O(γ −α−1) O(
exp(−C/γ α)

γ (α+1) ) O(γ −α/2−1)

p ≥ 2 O(
∏

l∈E
exp(−Cl/γ

α
l )

γ
(α+1)
l

) O(

∏p
l=1 γ −α−1

l

γ
(1−p)α
(1)

) O(
∏

l∈E
exp(−Cl/γ

α
l )

γ
(α+1)
l

) O(

∏p
l=1 γ −α−1

l

γ
(1/2−p)α
(1)

)

Post β̃, p = 1 O(exp(−β̃C)) O(1) O(exp(−β̃C)) O(β̃−1/2)

p ≥ 2 O(
∏

l∈E exp(−β̃lCl)) O(β̃
−(p−1)
(p)

) O(
∏p

l=1 exp(−β̃l )Cl) O(β̃
−(p−1/2)
(p)

)

Post ξ̃ , p = 1 O(exp(− exp(ξ̃ )C + ξ̃ )) O(exp(ξ̃ )) O(exp(− exp(ξ̃ )C)) O(exp(ξ̃/2))

p ≥ 2 O(
∏

l∈E exp(− exp(ξ̃l )Cl + ξ̃l )) O(
exp(

∑p−1
l=1 ξ̃l )

exp((p−2)ξ̃(p))
) O(

∏
l∈E exp(− exp(ξ̃l )Cl)) O(

exp(
∑p−1

i=1 ξ̃l )

exp((p−1/2)ξ̃(p))
)
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FIG. 3. Examples of the marginal posterior of β̃ in the power exponential family with α = 1.9,
when emulating the modified Branin function ([9]), which has p = 2 inputs. Two data sets of size
n = 20 were generated using uniform designs at [0,1]2 with 1 ∈ C(h(xD )). The black curves are
the log marginal posterior of β̃ arising from setting β̃1 = β̃2 = β̃ , and both exhibit infinite posterior
density at the mode of 0.

are kept the same, that is, α1 = α2 = · · · = αp = α. The blue highlighted entries
are those in which the tail rate is constant, so that there is a potential problem of
nonrobustness.

The red highlighted entries in Table 2 are quite surprising, as here the marginal
posterior density becomes infinite in the tail, so that the mode will be at the prob-
lematical 1n1T

n . (The following Corollary 3.3 establishes that there is no other
infinite mode.) That the posterior mode for the β̃ parameterization has this bizarre
behavior has not been previously recognized, and should clearly rule out use of
this parameterization (at least when estimating by the marginal posterior mode
with the standard reference prior). Figure 3 gives numerical evidence of this fea-
ture, where we plot the log-marginal posterior as a function of β̃1 = β̃2 = β̃ . Both
examples have local modes with a finite marginal posterior, while the real modes
with infinite posterior density occur as β̃1 = β̃2 → 0.

The following lemma is needed to establish posterior propriety in the next sub-
section and also to establish Corollary 3.3. It calculates the tail rates when some,
but not all, of the range parameters are close to zero.

LEMMA 3.5. Assume Assumption 3.1 and Assumption 3.2 hold for each Rl ,
1 ≤ l ≤ p. If (i) γl1 → ∞ for 1 ≤ l1 ≤ p1 with p1 < p, (ii) γl2 → 0 for p1 + 1 ≤
l2 ≤ p2 and (iii) γl3 is bounded between 0 and ∞ for p2 + 1 ≤ l3 ≤ p, then a
bound on the tail rate of the marginal posterior of γ is

p
(
γ | yD )≤ C4

p1∏
l1=1

∣∣ν′
l1
(γl1)

∣∣[ p2∏
l2=p1+1

tr
(

∂R
∂γl2

)2
]1/2

,

where C4 > 0 is a positive constant.

The following corollary is a direct consequence of the above lemma and states
that, when the power exponential correlation is used, the only possible infinite
mode of the marginal posterior of β̃ is at β̃l → 0 for all 1 ≤ l ≤ p.
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COROLLARY 3.3. For the power exponential correlation function, if there
is one l, 1 ≤ l ≤ p, for which β̃l > K where K is a positive constant, then the
marginal posterior of β̃ using the standard reference prior (2.7) with a = 1 satis-
fies

p
(
β̃ | yD )≤ O(1).

3.4. Posterior propriety. Propriety of the posterior distribution for γ (and
hence, for all other parameterizations) is established in the following theorem
for general designs, generalizing the theorems in [5] under the isotropic assump-
tion and in [28] for separable designs. For simplicity, we assume α1 = α2 = · · · =
αp = α.

THEOREM 3.2. When α1 = α2 = · · · = αp = α, the reference prior in (2.7)
with a = 1 results in a proper posterior for GaSP models with the power exponen-
tial, spherical, rational quadratic and Matérn correlation functions, under general
p-dimensional designs.

4. Robust inference when noise is added to the GaSP model. Some inputs
have little effect on the output of the computer model. Such inputs are called inert
inputs ([22]) and are usually not used in building the emulator ([12, 37]). However,
when inert inputs are omitted in the emulator, the emulator can no longer be an
interpolator at the design points so that the GaSP model is then inappropriate.
The common solution is to add a small noise term (sometimes called a nugget) to
account for the error, such as ỹ(·) = y(·) + ε, where y(·) is the noise-free GaSP
and ε is i.i.d. mean-zero Gaussian white noise. This section handles the case where
the noise is present in the model. The proofs of the lemmas and theorems in this
section are provided in the Supplementary Materials ([14]).

4.1. Parameter estimation. After adding the noise, the covariance function for
the new process ỹ(·) can be expressed as

(4.1) σ 2c̃(xl ,xm) := σ 2{c(xl ,xm) + ηδlm

}
,

where η is defined to be the nugget-variance ratio and δlm is a Dirac delta function
when l = m, that is, δmm = 1 and δlm = 0 if l �= m. Using this parameterization
enables marginalization of the likelihood over σ 2 (cf. [32]). After adding the noise,
the covariance matrix becomes

(4.2) σ 2R̃ = σ 2(R + ηIn).

The reference prior for a real-valued output and isotropic GaSP model with
a nugget has been discussed in [19, 32]. Extending it to the GaSP model with
multiple range parameters results in the following form:

(4.3) πR̃(θ , σ 2,γ , η
)= πR̃(θ , σ 2)πR̃(γ , η | θ , σ 2)∝ πR̃(γ , η)

(σ 2)a
,
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with πR̃(γ , η) ∝ |Ĩ∗(γ , η)|1/2, Ĩ∗(·) the expected Fisher information matrix,

(4.4) Ĩ∗(γ , η) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

n − q tr(W̃ 1) tr(W̃2) · · · tr(W̃p+1)

tr
(
W̃2

1
)

tr(W̃1W̃2) · · · tr(W̃1W̃p+1)

tr
(
W̃2

2
) · · · tr(W̃2W̃p+1)

. . .
...

tr
(
W̃2

p+1
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where W̃l = ˙̃RlQ̃, for 1 ≤ l ≤ p, p is the number of range parameters in the corre-

lation matrix R̃, ˙̃Rl is the partial derivative of R̃ with respect to the lth range param-
eter, and Q̃ = R̃−1PR̃ with PR̃ = In − h(xD ){hT (xD )R̃−1h(xD )}−1hT (xD )R̃−1;

W̃p+1 = Q̃.
As in the previous sections, one can estimate the nugget and range parameters

by their marginal maximum posterior mode,

(4.5) (γ̂1, . . . , γ̂p, η̂) = argmax
γ1,...,γp,η

{
L
(
γ1, . . . , γp, η | yD )π R̃(γ1, . . . , γp, η)

}
.

4.2. Robustness of the posterior mode. Note that

R̃ = R1 ◦ R2 ◦ · · · ◦ Rp ◦ Rp+1,

where Rp+1 = 1n1T
n +ηIn. Also, Rp+1 satisfies Assumption 3.2 with νp+1(η) = η

and ωp+1(η) = 0. Using these facts and in parallel to Lemma 3.3 and Lemma 3.4,
the tail rates of the likelihood and the prior for the GaSP with a nugget are given
in the following lemmas.

LEMMA 4.1. If Assumption 3.1 and Assumption 3.2 hold for each of the Rl ,
1 ≤ l ≤ p, the marginal likelihood and profile likelihood have the following tail
rates:

(i) If ∃l, 1 ≤ l ≤ p, such that γl → 0, the marginal likelihood and profile like-
lihood both exist and are greater than zero.

(ii) If γl → ∞ for all l, 1 ≤ l ≤ p,

L
(
γ , η | yD )=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O

(( p∑
l=1

νl(γl) + η

)a−1/2)
, 1n /∈ C

(
h
(
xD )),

O

(( p∑
l=1

νl(γl) + η

)a−1)
, 1n ∈ C

(
h
(
xD )),

and the profile likelihood, in this case, satisfies

L
(
γ | yD , σ̂ 2

MLE, θ̂MLE
)= O

( p∑
l=1

νl(γl) + η

)1/2

.
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LEMMA 4.2. If Assumption 3.1 and Assumption 3.2 hold for each of the Rl ,
1 ≤ l ≤ p, then πR̃(γ, η) has the following two limiting properties. Here, γ E de-
notes the vector of γl for all l ∈ E, E ∈ {1,2, . . . , p}, and γ −E denotes the com-
plementary vector:

(i) When γ E → 0 for all l ∈ E, E ⊂ {1,2, . . . , p}, then

πR(γ ) ≤ C̃(γ −E)

[∏
l∈E

tr
(

∂R̃
∂γl

)2]1/2
,

where C̃(γ −E) is a constant in γ E .
(ii) As γl → ∞ for all 1 ≤ l ≤ p and η → 0, if 1 /∈ C(h(xD )), then

πR(γ ) ≤ C̃1

∣∣∣∣
∏p

l=1 ν′
l (γl)

(
∑p

l=1 νl(γl) + η)p+1

∣∣∣∣;
further, if 1 ∈ C(h(xD )) and p ≥ 2,

πR(γ ) ≤ C̃2

∣∣∣∣
∏p

l=1 ν′
l (γl)

(
∑p

l=1 νl(γl) + η)p+1

∣∣∣∣
∣∣∣∣∣

p∑
l=1

ν2
l (γl)ω

′
l(γl)

ν′
l (γl)νm(γm)

∣∣∣∣∣,
for every index m between 1 to p; if 1 ∈ C(h(xD )) and p = 1,

πR(γ ) ≤ C̃3
ν1(γ1)|ω′

1(γ1)|
(ν1(γ1) + η)2 ,

where C̃1, C̃2 and C̃3 are positive constants.

Directly applying Lemma 4.1 and Lemma 4.2 yields the bounds on the tail rates
of the marginal posterior under the various parameterizations (and also for the
profile and marginal likelihood) in Table 3. For simplicity, we assume α1 = α2 =
· · · = αp = α.

Comparing Table 2 with Table 3, it is clear that addition of the nugget can
cause a loss of robustness of the posterior mode for the (γ1, γ2, . . . , γp, η)T and
(ξ1, ξ2, . . . , ξp, η)T parameterizations, in certain cases. Luckily, a simple reparam-
eterization of η, to τ = log(η), with estimation by the corresponding posterior
mode, achieves robustness, as shown in the following theorem.

THEOREM 4.1. When a = 1, marginal posterior mode estimation of (γ1, . . . ,

γp, τ )T , and (ξ1, . . . , ξp, τ )T , where τ = log(η), is robust for the product form of
the power exponential family, spherical, and Matérn correlation functions listed
in Table 1, and for the rational quadratic correlation function when α > 1/2. In
addition, marginal posterior mode estimation of (ξ1, . . . , ξp, τ )T , for 1 ≤ l ≤ p, is
robust for the rational quadratic correlation function for all α > 0, 1 ≤ l ≤ p.

PROOF. Theorem 4.1 can be proved by verifying Corollary 3.1 and Corol-
lary 3.2, using the results from Lemma 4.1 and Lemma 4.2. �
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TABLE 3
Tail behaviors of the profile likelihood, the marginal likelihood and the posterior distributions for different parameterizations of the power exponential

correlation function, using the reference prior in (4.3) with a = 1. In the 2nd and 4th columns, E is a nonempty set such that for l ∈ E, γl → 0
(equivalent to β̃l → ∞ or ξ̃l → ∞), and C and Cl are positive numbers not depending on γl ∈ E (or β̃l ∈ E or ξ̃l ∈ E). In the 3rd and 5th columns,

γl → ∞ (equivalent to β̃l → 0 or ξ̃l → −∞), for all 1 ≤ l ≤ p; in the stated tail rates, γ(1) is defined as minimum of the γl , β̃(p) is the largest β̃l , and

ξ̃(p) is the largest ξ̃l , where 1 ≤ l ≤ p. Blue highlights the cases where the tail behavior is constant; red highlights the cases where the posterior goes to
infinity in the tail; and green highlights situations in which the rate might go to zero, a constant or infinity, depending on the speed of η and γl to their

limits and the choice of the roughness parameter α

1n ∈ C(h(xD )) 1n /∈ C(h(xD ))

l ∈ E, γl → 0 γl → ∞ for all l and η → 0 l ∈ E, γl → 0 γl → ∞ for all l and η → 0

Profile Lik O(1) O((γ −α
(1)

+ η)
1
2 ) O(1) O((γ −α

(1)
+ η)

1
2 )

Marginal Lik O(1) O(1) O(1) O((γ −α
(1)

+ η)
1
2 )

Post γ , p = 1 O(
exp(−C/γ α)

γ (α+1) ) O(
γ −2α−1

(γ −α+η)2 ) O(
exp(−C/γ α)

γ (α+1) ) O(
γ −α−1

(γ −α+η)3/2 )

p ≥ 2 O(
∏

l∈E
exp(−Cl/γ

α
l )

γ
(α+1)
l

) O(

∏p
l=1 γ −α−1

l γ −α
(1)

(γ −α
(1) +η)p+1 ) O(

∏
l∈E

exp(−Cl/γ
α
l )

γ
(α+1)
l

) O(

∏p
l=1 γ −α−1

l

(γ −α
(1) +η)p+1/2 )

Post β̃, p = 1 O(exp(−β̃C)) O(
β̃

(β̃+η)2 ) O(exp(−β̃C)) O((β̃ + η)−3/2)

p ≥ 2 O(
∏

l∈E exp(−β̃lCl)) O(
β(p)

(β̃(p)+η)p+1 ) O(
∏p

l=1 exp(−β̃l )Cl) O((β̃(p) + η)−p−1/2)

Post ξ̃ , p = 1 O(exp(− exp(ξ̃ )C + ξ̃ )) O(
exp(2ξ̃ )

(exp(ξ̃ )+η)2 ) O(exp(− exp(ξ̃ )C)) O(
exp(ξ̃ )

(exp(ξ̃ )+η)3/2 )

p ≥ 2 O(
∏

l∈E exp(− exp(ξ̃l )Cl + ξ̃l )) O(
exp(

∑p
l=1 ξ̃l ) exp(ξ̃(p))

(exp(ξ̃(p))+η)p+1 ) O(
∏

l∈E exp(− exp(ξ̃l )Cl)) O(
exp(

∑p
l=1 ξ̃l )

(exp(ξ̃(p))+η)p+1/2 )
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4.3. Posterior propriety for the GaSP model with noise. Propriety of the pos-
terior distribution for γ and η (and hence, for all other parameterizations) is es-
tablished in the following theorem, generalizing the theorems in [19, 32] under
the isotropic assumption with a nugget. It can be proved in the same way as Theo-
rem 3.2, so we omit the details. For simplicity, we assume α1 = α2 = · · · = αp = α.

THEOREM 4.2. When α1 = α2 = · · · = αp = α, the reference prior in (4.3)
with a = 1 results in a proper posterior for the GaSP models with noise, under
the power exponential, spherical, rational quadratic and Matérn correlation func-
tions, for general p-dimensional designs.

5. Numerical results.

5.1. Comparison criteria. In this section, we numerically compare the perfor-
mance of several of the methods discussed above, including the MLE and marginal
posterior mode estimation with parameterizations γ and ξ (the log inverse of γ ).
We do not include the MMLE method or results for the β̃ parameterization because
of the robustness problems these methods have, as indicated in Table 2 and Table 3.
A constant GaSP mean is assumed for all cases, that is, h(x) = 1, and we use the
Matérn correlation with α = 5/2 in (2.5) for all methods. Also included are the
results produced by the DiceKriging package ([34]), where the Matérn correlation
is also the default setting.

We mainly compare the out of sample prediction evaluated by Mean Square Er-
ror (MSE). In each simulation, we use n runs, where n is small (typically chosen to
be n ≈ 10p), to build the GaSP emulator, and then record the out-of-sample MSE
of n∗ = 10,000 held-out outputs. This is repeated for N = 500 random designs,
with the resulting average MSE being reported. The criteria are thus

MSEj = 1

n∗
n∗∑
i=1

(
y
(
x∗
ij

)− ŷ
(
x∗
ij

))2
, and AvgMSE =

N∑
j=1

MSEj /N,

where x∗
ij is the ith held-out input in the j th design and ŷ(x∗

ij ) is its prediction.
To provide a better visual comparison between the methods, we also study the
out-of-sample Normalized-RMSE

Normalized-RMSEj =
√√√√ n∗∑

i=1

(
y
(
x∗
ij

)− ŷ
(
x∗
ij

))2
/

n∗∑
i=1

(
y
(
x∗
ij

)− ȳj

)2
,

where ȳj is the mean of the observed output for the j th experiment, j = 1, . . . ,N .
For an effective method, this should range from 0 to 1.
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5.2. GaSP model without a nugget. We test the following five functions (im-
plemented in [39]):

i. 1-dimensional Higdon function from [17],
Y = sin(2πX/10) + 0.2 sin(2πX/2.5), where X ∈ [0,10].
ii. 2-dimensional Branin function from [9],
Y = [X2 −5.1X2

1/(4π2)+5X1/π −6]2 +10[1−1/(8π)] cos(X1)+10, where
X1 ∈ [−5,10] and X2 ∈ [0,15].

iii. 3-dimensional Dette and Pepelyshev function from [6],
Y = 4(X1 − 2 + 8X2 − 8X2

2)
2 + (3 − 4X2)

2 + 16
√

X3 + 1(2X3 − 1)2, where
Xi ∈ [0,1], for i = 1,2,3.

iv. 4-dimensional modified Gramacy and Lee function from [11],
Y = 2 exp{sin[0.98(X1 + 0.48)8]} + X2X3 + X4, where Xi ∈ [0,1), for i =

1,2,3,4.
v. 10-dimensional Linkletter decreasing coefficient function from [22],

Y = 0.2(X1 + X2/2 + X3/4 + X4/8 + X5/16 + X6/32 + X7/64 + X8/128),
where Xi ∈ [0,1], for i = 1 to 10. Only the first eight inputs are effective.

The average MSEs of the four estimation methods for the five functions are
shown in Table 4. The robust GaSP methods were implemented using [13] and
they clearly outperformed the MLE and DiceKriging, with the ξ parameterization
yielding the best performance for most of the cases. Note that all methods used the
same GaSP prediction equations; the only difference was in the estimates of the
correlation parameters.

The first row in Figure 4 gives the difference of MSEj of prediction, for each of
500 designs j (for functions iii, iv and v), between the MLE GaSP and the robust
GaSP under the ξ parameterization. Note that, for a significant proportion of the
designs, the MLE GaSP is much worse than the robust GaSP. In these cases, the
MLE GaSP estimate yields a covariance matrix that is close to R̂ ≈ In, so that the
prediction degenerated to the fitted mean with impulse functions at the observed
values of the inputs.

TABLE 4
Average MSE of the four estimation procedures for the five experimental functions. From the upper
to the lower rows, the sample size is n = 15,20,30,40 and 40 for these five functions, respectively.
Designs are generated by maxmin LHD. The baseline MSE is 0.52, 2.2 × 103, 52, 0.52 and 0.0044

for these five functions if only the mean of the training output is used for the predictions

Robust GaSP ξ Robust GaSP γ MLE DiceKriging

1-dim Higdon 1.1 × 10−3 1.1 × 10−3 1.2 × 10−3 1.2 × 10−3

2-dim Branin 1.2 × 102 1.9 × 102 2.0 × 102 2.0 × 102

3-dim D&P 8.0 × 10−2 1.5 × 10−1 8.0 × 10−1 5.7 × 10−1

4-dim G&L 4.2 × 10−3 1.3 × 10−2 2.8 × 10−2 4.9 × 10−2

10-dim Linkletter 1.7 × 10−12 2.4 × 10−12 4.8 × 10−5 5.7 × 10−4
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FIG. 4. Plots of MSE difference for each of N = 500 designs for the Dette and Pepelyshev func-
tion (left panels), Gramacy and Lee function (middle panels), and Linkletter decreasing coefficient
function (right panels). The MSE for the MLE GaSP minus the MSE for the robust GaSP under the
ξ parameterization is plotted in the first row, and the MSE for DiceKriging minus the MSE for the
robust GaSP under the ξ parameterization is plotted in the second row.

The second row in Figure 4 gives the difference of MSEj of prediction, for
each of 500 designs j , between the DiceKriging GaSP and the robust GaSP under
the ξ parameterization. The DiceKriging package uses a number of techniques to
avoid unstable prediction of the correlation parameters ([34]) and is more stable
than the MLE (without any constraints), as can be seen by a comparison of the
upper panels and the lower panels of Figure 4 (the y-axis scales are considerably
smaller for DiceKriging). Clearly, however, DiceKriging produces inferior corre-
lation parameter estimates than does the robust GaSP in virtually all of the design
cases for the three functions in Figure 4; indeed, only for few design choices for
the Gramacy and Lee function does DiceKriging produce better predictions than
the robust GaSP.

5.3. GaSP model with noise. The borehole function models water flow
through a borehole ([1, 24]) and is given by

Y = 2πTu(Hu − Hl)

ln(r/rω){1 + 2LTu/[ln(r/rω)r2
ωKω] + Tu/Tl} ,

where rω, r , Tu, Hu, Tl , Hl , L, Kω are the 8 inputs. The inputs r , Tu and Tl barely
affect the output (as clearly shown in Figure S1 of the Supplementary Materials
[14], where we draw plots of the borehole function by fixing seven of the inputs
and varying one), and this holds globally over the input space. We thus only use the
remaining five influential inputs to build the GaSP model, and then add a nugget
to account for the error.
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FIG. 5. Boxplots, for the four estimation methods, of the normalized RMSE for prediction of the
Borehole function, based on n = 25 design points to build the emulator and averaging over N = 500
different designs generated from a Maximin LHD design. The average baseline MSE is 2079.36,
using only the mean for prediction. The average MSE for the 4 methods (from the left to the right)
are 9.07, 8,72, 14.77 and 41.29.

The results of Normalized-RMSE for the borehole function are shown in Fig-
ure 5. The average MSE of the GaSP with parameters estimated by MLE is 14.77,
which is worse than the robust GaSP with the ξ or γ parameterization, whose av-
erage MSEs are 9.07 and 8.72, respectively. This is because R̃ → (1 + η̂)In for
the MLE in several of the cases. Although the nugget might stabilize the computa-
tion when R ≈ 1n1T

n , it cannot help when R becomes nearly proportional to In. In
contrast, the robust GaSP, with a good parameterization, prevents these bad cases
from materializing.

DiceKriging is worse than the robust GaSP in almost all cases, in terms of
Normalized-RMSE. The average Normalized-RMSE for robust GaSP, with the ξ

or γ parameterization, are around 0.064 and 0.063, respectively, both of which are
quite small, considering that only n = 25 observations were utilized to build the
emulators.

6. Concluding remarks. We have introduced the robust GaSP for computer
model emulation, namely marginal posterior mode estimation of the emulating
Gaussian process correlation parameters, using the reference prior and certain
parameterizations. This emulation methodology was shown to be robust for a
wide class of correlation functions, whereas a number of alternative methods were
shown to be nonrobust. Robustness here means that the estimates of the correlation
parameters avoid two possibly severe problems that can happen: the estimated cor-
relation matrix could be nearly singular or could nearly equal the identity matrix.
We also proved posterior propriety, under the reference prior, for general multidi-
mensional designs.
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The current study of the tail behavior of the likelihoods and posteriors can be
extended to the situation where both the roughness and range parameters are un-
known and to a more general class of correlation functions. In addition, the results
hold when the inputs are divided into k < p groups, and an isotropic correlation
function is assumed for each group. The results about tail behavior, given here,
were for a finite number of observations and it would be interesting to understand
the tail behavior as the number of observations goes to infinity.

APPENDIX: THE PROBLEM OF DESIGN SINGULARITY FOR POWER
EXPONENTIAL CORRELATION AND α = 2

Consider a single input and an equally-spaced design on [0,1], with n = 10,
so that the inputs are xD

i = (i − 1)/(n − 1), i = 1, . . . , n. Suppose one uses the
power exponential correlation function in Table 1 with roughness parameter α = 2.
Denote the “design correlation” matrix as R0 with the (i, j) entry |xD

i − xD
j |2,

1 ≤ i, j ≤ n. The condition number of R0 is larger than 1016. R in this case is also
ill-conditioned with a small range parameter γ , for example, γ = 1. Although R
is quite far away from 1n1T

n , it is near singular and becomes almost noninvertible
when n ≥ 15.

This type of singularity is reported in the literature (cf. [29]). When R0 is ill-
conditioned, then usually R is ill-conditioned even if R is far away from 1n1T

n .
Clearly, this type of matrix singularity is related to the choice of roughness param-
eters α, but not related to the range parameters γ .

One remedy for design singularity is to replace Gaussian covariance by Matérn
covariance, or simply choose the range parameter α < 2 in power exponential cor-
relation as in [4, 37]. This type of singularity is a separate problem from what we
considered, and can be avoided by a pre-experimental check of the design correla-
tion matrix.
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SUPPLEMENTARY MATERIAL

Supplement to “Robust Gaussian stochastic process emulation” (DOI:
10.1214/17-AOS1648SUPP; .pdf). This supplement consists of four parts: the
proofs of Section 3.1, the proofs of Section 3.3, the proofs of 4.3 and the plot
of the borehole function in Section 5.3.
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