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This article proposes a new general methodology for constructing non-
parametric and semiparametric Asymptotically Distribution-Free (ADF) tests
for semiparametric hypotheses in regression models for possibly dependent
data coming from a strictly stationary process. Classical tests based on the dif-
ference between the estimated distributions of the restricted and unrestricted
regression errors are not ADF. In this article, we introduce a novel transfor-
mation of this difference that leads to ADF tests with well-known critical
values. The general methodology is illustrated with applications to testing
for parametric models against nonparametric or semiparametric alternatives,
and semiparametric constrained mean—variance models. Several Monte Carlo
studies and an empirical application show that the finite sample performance
of the proposed tests is satisfactory in moderate sample sizes.

1. Introduction. Let Y; be a response variable and X; a d-dimensional ex-
planatory variable. Assume that the process (X;, Y;),t =0, £1, £2, ..., is strictly
stationary and ergodic, and that E (Ytz) < oo. Let Y; be related to X; through the
heteroskedastic regression model

(D Y = u(Xy) +o(Xp)e,

where u(x) = E(Y;|X; = x) and o%(x) = Var(Y;|X; = x) are almost surely (a.s.)
the conditional mean and the conditional variance of ¥; given X; = x, respectively,
and ¢; is an error term, which is independent of X;. Let i belong to a certain class
of measurable functions, M, that will be specified for each application. This class
may consist of semiparametric or nonparametric specifications for w. In this arti-
cle, we propose a general methodology for testing parametric or semiparametric
hypotheses about the regression function w. That is, we are interested in testing
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where
Mo={n: R? — R such that u(x) = g0, n(x),x),0e®CR", neH}

is a subclass of M of parametric or semiparametric models defined in terms of
a known function g, an unknown parameter 6 € ® C R” and a possibly infinite-
dimensional unknown parameter 1 belonging to a class of functions .

This general formulation covers many testing problems in regression with a
parametric/semiparametric null hypothesis versus a semiparametric/nonparametric
alternative. In particular, if g(, n(x), x) = g(6, x), then the problem reduces to
testing for a parametric model for the regression function w, which is a classical
problem in statistics. See, for instance, the review that [19] offers about this topic.
Special cases of semiparametric null hypotheses include the partially linear model
with g(0, n(x),x) = 0'x1 + n(x2), x’ = (x],x) (where A" denotes the trans-
pose of A), additive models with g(@, n(x), x) = ni(x1) + n2(x2), n = (11, N2),
varying-coefficient models g(6, n(x), x) = xén(xl), and single-index models with
g(0,n(x),x) = n(0’x), among many others. Our methodology can also be ap-
plied to semiparametric alternative hypotheses. For example, a researcher sus-
pecting of nonlinear effects might be interested in testing the parametric linear
model g(0, n(x), x) = 0]x1 +05x2, 0" = (6], 05), against the partially linear model
g0, nx),x) = G{xl + n(x2), or against the single-index model g(0, n(x), x) =
n(0'x). The proposed methodology can be equally applied to these different set-
tings.

A new class of examples that we analyze below is that of constrained mean—
variance models, where n(x) = o(x). The statistical properties of this class
of semiparametric models have not been investigated in this generality before.
Among other interesting specifications, the choice g(6,0(x),x) = o (x)g1(0, x)
leads to a parametric model given by g (6, x) for the nonparametric standardized
first moment p(x) /o (x). When Y; is a stock return, w(x) /o (x) is called the Sharpe
ratio, and its statistical analysis is of practical interest because it measures the stock
return per unit of risk. Indeed, there is an extensive literature in financial time se-
ries on modeling and testing hypotheses on u(x)/o(x) (see, e.g., [29, 30]) but
there are no statistical tests available for parametric specifications of w(x)/o (x)
when p(x) and o (x) are nonparametric.

Tests for parametric and some semiparametric hypotheses on the regression
function have been investigated before in the literature, with a special focus on in-
dependent and identically distributed (i.i.d.) observations; see the above mentioned
paper [19] for a recent comprehensive survey on the topic. The two main method-
ologies are based on comparisons of unrestricted (i.e., nonparametric) estimators
of u and restricted estimators of u (see, e.g., [22]), or their corresponding cumu-
lative processes (see, e.g., [4, 26, 34, 35]). Test statistics in the first methodology
have rates of convergence that depend on suitable bandwidth sequences and lead
to tests which are unable to detect local alternatives converging at the parametric
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rate. Tests based on cumulative processes detect such local alternatives, although
their asymptotic local power function is essentially flat (see [24]). Moreover, the
“directions” where local power is nontrivial lack interpretation (see [11]). Direc-
tional tests that specify the direction of departure exist (see [34], Section 3 and
[35]), and although they are easy to interpret, they are inconsistent against all but
one fixed alternative.

A third methodology is based on the comparison of unrestricted and restricted
estimators of the distributions of the standardized errors. This methodology has
been used in several regression contexts in the recent literature, and it is widely
applicable. For instance, [38] and [6] used this idea to develop goodness-of-fit
tests for the parametric form of the regression function and the variance function,
respectively. [7] developed goodness-of-fit tests for a multiplicative structure be-
tween the regression function and the scale function. Tests using this methodology
have parametric rates of convergence, unlike tests based on direct comparisons of
unrestricted and restricted estimates of ©. However, their null limit distribution
depends on the unknown density of the error distribution and, therefore, are not
Asymptotically Distribution-Free (ADF). Smoothed bootstrap methods have been
proposed to approximate the corresponding critical values. These bootstrap meth-
ods are computationally intensive and require the choice of additional smoothing
parameters.

This article provides three main contributions within the context of the third
methodology explained above. First, it proposes a novel transformation of the
difference of error distributions that leads to ADF tests. Second, it widens the
scope of applications of this third methodology to general semiparametric null and
semiparametric/nonparametric alternative hypotheses. Compared to other existing
ADF tests available in the literature for dependent data, such as Koul and Stute’s
[26] ADF test for parametric autoregressions, the proposed tests are ADF in a
much more general setting that includes semiparametric null and semiparamet-
ric/nonparametric alternative hypotheses. Third, this article provides a global and
local power analysis of tests based on the third methodology. We show that from
the local point of view our tests are directional, with a nontrivial local power at the
parametric rate that can be tailored to specific alternatives of interest, while from
the global point of view our tests are consistent against all fixed global alterna-
tives. Thus, the power properties of tests in the third methodology are fundamen-
tally different from those of existing tests based on the first and second method-
ologies. Monte Carlo experiments show a satisfactory finite sample performance
for the proposed tests in three different applications: parametric regression mod-
els, mean—variance constrained models and parametric linear regression models
against semiparametric partially linear models.

The remainder of this article is organized as follows. In Section 2, we intro-
duce the new methodology in a general context. In Section 3, we discuss practical
implementation in several examples. In Section 4, we investigate the asymptotic
power properties of the tests. In Section 5, we report some simulation studies and
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a real data example. Finally, we conclude in Section 6. All mathematical proofs
are gathered in an Appendix and in the Supplementary Material [14].

2. General methodology.

2.1. Test statistics. This section introduces the general methodology. The dis-
cussion here is organized around a few “high-level” assumptions. More spe-
cific conditions can be given in specific applications; see Section 3 below for
illustrations. Define the restricted model for the regression function as pg(x) =
g6, no(x), x), where

(B, m0) =arg | min E(((X;) = (6. n(X0), X,))").

Henceforth, for the sake of identifiability, we assume that (6p, o) exists and is
unique. Note that Hy is equivalent to the fact that & = po. Then define the stan-
dardized errors

Yy — pno(Xy) Yy — n(Xy)
———~ and =——"-—""
o(Xr) o(Xr)
with cumulative distribution functions Fyo(y) = P(g,0 < y) and F.(y) = P(& <

y), respectively. We show in Theorem 1 below three equivalent formulations for
Hp which motivate the testing methodology introduced in this article.

&0 =

’

THEOREM 1. Assume that E (8[20) < 00. The following statements are equiva-
lent:

(1) Hy is true;
(i1) &;0 and &; have the same distribution;
(iii) D(y) = [2 oo (Feo(s) — Fe(s))ds =0 forall y € R.

The equivalence between statements (i) and (ii) has been used in recent literature
to construct tests for specific examples of Hy (see, e.g., [38] or [7]). In this article,
we will exploit the equivalence between (i) and (iii), which, as we show below,
will allow us to obtain ADF tests.

In practice, the variables &; and &, are not observable, so they need to be esti-
mated. Assume that a sample (X;, ¥;),t =1, ..., T, is available and construct the
estimated residuals

~ Y; _ﬁO(Xt) ~ Y —ﬁ(Xt)
(2) E0= ——— o and &t = —— 5 >
o (Xr) o(Xy)
fort =1,...,T, where [&(x) is an estimator of u(x) under model M, & (x) is a

consistent estimator of o (x) under model M, and ig(x) is a suitable consistent es-
timator of g (x) under model M. For example, if M is fully nonparametric, then
examples of estimators f£(x) and & (x) include kernel and sieve estimators. There



DISTRIBUTION-FREE TESTS FOR SEMIPARAMETRIC REGRESSIONS 1171

are also general estimation methods available for semiparametric models that can
be used to estimate (90 no), and hence uq. For example we can use the sieve least
squares estimators (9 1) = argmingee yery 1 Zt 1 (Y — g0, n(Xy), Xt))
where Hr is a sieve approximation of H (see, e.g., [2] and references therein).
In other applications, alternative estimators for 19, such as kernel estimators, can
be used. This is the case for our constrained mean—variance example, where 7 =&,
and where 6 can be es’umated by the (two-step) semiparametric least squares esti-
mator § = argmingee T~ Z, (Y — 80,0 (X)), X;))2. Rather than focusing on
a specific estimator or class of estimators, here we assume that consistent estima-
tors for (u, o, 6y, no), say (i, 7, 5, 1), are available and satisfy certain conditions,
and we refer to the detailed examples below for specific choices of estimators and
verification Qf the conditions. The restricted estimator of pg(x) is then denoted by
Ho(x) = g0, n(x), x).
The corresponding distribution functions F¢o(y) and F,(y) are estimated by

T

_ 1 . 1 &
Foo() = 7= Y w(X)IGEo<y) and F(y)= T S wX)IE <),
=1 =

respectively, where w is a positive weight function and w = 7 ~! Z;T:1 w(X;). The
weights are introduced as a technical device to allow for covariates with noncom-
pact support. Note that when w = 1, then the regular empirical distribution func-
tions based on estimated residuals are obtained. Given the standardized difference
of empirical distributions

R(y) =T (Foo(y) — Fe()),

—00 <y < 400, under suitable regularity conditions (see below) and the null
hypothesis Hp, one can establish an asymptotic expansion for R(y) as follows:

Bl fe(y) —1/2 4
3) R(y)——E(w(XZ))T ;w<xz>wz+0p<1),

uniformly in —oo < y < 0o, where f¢(y) is the density function corresponding to
F:(y), and W; is a zero-mean random variable, which will be defined later. We
further assume that 0 < 0%, < 00, Where

E[w*(X)W/]

(E(w(X))?*

The random variables W; and the regularity conditions needed for (3) to hold
are of course specific to each application. For instance, [38] obtained this expan-
sion to derive goodness-of-fit tests for parametric regression models, that is, for
g(6,n(x),x) = g(0,x), and used it to propose Kolmogorov—Smirnov (KS) and
Cramér-von Mises (CM)-type statistics. Also [7] gave the analogous expansion
and constructed tests for constrained mean—variance models when g(0, o (x), x) =

(4) o =
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fo (x) and x is univariate. Tests based on the expansion of R (y) have unknown null
limiting distributions, as they depend on the density of the errors f;(y) and other
unknown quantities. Both [38] and [7] suggested to implement the tests with the
assistance of a smoothed bootstrap procedure, which requires simulations and an
additional bandwidth choice.

This article introduces a novel transformation of R (y) that leads to ADF tests.
Specifically, we consider the integrated process

~ Yoo
5) Cor= Rwas,
—00
—00 < y < 00, and show that the expansion

Fe(y)

T
_ ~1/2
= Zaway ! Y w(X)W: +op(l),

t=1

C(y)

holds uniformly in —0co < y < oo under the null hypothesis (see Theorem 2 be-
low). This expansion allows to easily obtain the asymptotic null distribution of
test statistics that are continuous functionals of C(-). In particular, taking into ac-
count that SUP_ o< y<oo |Fe(y)| =1 and f_oooo Fsz(y)dFs(y) = 1/3, the expansion
above allows us to obtain the asymptotic null distribution of the KS and CM-type
statistics
1~ 3 [® &~ 2 =~
Ksr= s —|C| and M=y [ (C)dFu).
—oo<y<oo OW Oy J—o0

where 6‘%, is a congistent estimator of avzv in (4), by essentially using the central
limit theorem over the asymptotic expansion. We show in the next section that,
under Hy,

(6) KSt —4|Z| and CMp —4 Z>,

where Z ~ N(0, 1). Therefore, the proposed tests are very easy to implement for
two reasons. First, test statistics are straightforward to compute, since (5) has a
closed-form expression as

1
VTw

where a4 = max{a, 0} and, therefore,

T
C(y) = (Zwm){(y —80)+ — (v —a)+}),
s=1

1 ~ -
KS7 = max — max{|C(&)|, |C (&)
1<t<T Ow

b

)
M = 2 S ) (CGEn)
T
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Second, critical values are readily available from (6). For instance, the CM test
rejects Ho at significance level o if CM7 > X12,1—a where CMt is computed as
in (8) and Xlz,lfa is the (1 — «)-quantile of the chi-square distribution with one
degree of freedom.

2.2. A general theory. We investigate now the limit distribution of the test
statistics proposed in the previous section under a general set of regularity condi-
tions. To that end, we introduce the following notation. Let Fx(x) = P(X; < x)
and let F(x, y) = P(X; <x,Y; <y) (which under Assumption G1 below do not
depend on t). Lowercase letters will be used to denote the corresponding density
functions. Define the -mixing coefficients as (see, e.g., [9])

B =sup sup E|P(A|F".)— P(A)

meZ AeFX,,

’

where F; denotes the o -algebra generated by the sequence {(X;, Y;), j =s, ..., 1}
for s <t. Henceforth, C is a generic constant that may change from expression to
expression.

ASSUMPTION G1. The process (X, Yy),t =0,+£1,%2, ..., satisfies (1) and
is strictly stationary and absolutely regular (8-mixing), with mixing coefficients
satisfying 8; = O(t_b), for some b > 2.

ASSUMPTION G2. (i) The weight function w has a compact support R,, in
R? and satisfies w(x) > 0forall x € Ry, and SUP,eR,, wx) <C;

(i) & 1is continuous with density fe(y) satisfying sup, fe(y) < oo and
sup,, [yfe ()] < 003

(iii)) The errors of the regression model satisfy E(e/| X, ]-"’__oé) = E(&|X;) and
Var(g;| X;, F- _Oé) =F (8?|X ¢) a.s. Furthermore, &; is independent of X, with mean
zero and unit variance;

(iv) infyeg, o(x) > 0.

Whenever there is no ambiguity, we use the same notation for any function of X
as for its version restricted to the compact set R,,. The class of smooth functions
C}s(Ry) is defined in the Appendix (see also p. 154 in [37]).

ASSUMPTION G3. The unrestricted estimators fi(x) and & (x) satisfy:

(i) supyep, () — p@)| = op(T~*) and sup,cp, 16(x) — o(x)] =
op(T~1/%);
(i) P(t —pn € Cj;(Ry)) — 1 as T tends to infinity, where T > d/2;
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(iii) For a measurable function [(-) satisfying E(I(Y;, X;)|X¢, .Ft:o(l)) =0 a.s.
and E(12(Y;, X;)) < 0o, we have

T
/ %(ﬁ(x) — pn(x))dFx(x)=T"" Zw(X’)l(Y” X)) +op(T™V/2).
t=1

ASSUMPTION G4. Under Hy, the restricted estimator fio(x) = g(@, n(x), x)
satisfies:

(i) sup,cp, [Ho(x) — po(x)| =o0p(T~1/H);
(ii) P(fto — o € Cj;(Ry)) — 1 as T tends to infinity, where 7 > d/2;
(iii) For a measurable function lo(-) satisfying E (lo(Y;, X;)| X;, .7-"1;) =0a.s.
and E(lg(Yt, X)) < oo, we have

T
2 o) ~ w0l dFx () =T~ Y w(Xlo(Fi, X +0p(T 7).
o(x) P

Assumptions G1-G4 are standard in the literature. If 7i(x), io(x) and & (x) are
kernel estimators, there are well-known conditions for these assumptions to hold;
see, for example, [20] for G3(i) and G4(i), and Lemma A.1 in [31] for G3(ii) and
G4(ii). Note that [31] assume that the data are i.i.d., whereas here we have de-
pendent data. However, the proof of their Lemma A.1 is based on [28], which is
also valid for dependent data. G3(iii) and G4(iii) require a linear asymptotic repre-
sentation for a linear functional of the estimators. For many examples of nonpara-
metric/semiparametric models and estimators this representation has been already
established. [32] (p. 1361) can be used to obtain the expression for /(¥;, X;) and
lo(Yy, X;) in a general setting. We verify these conditions for our leading exam-
ples below. In particular, as we will show later (see Lemma 4 in Section 3), if M
is fully nonparametric and fi is a kernel-based estimator, then G3(iii) holds with
[(Ye, X)) = (Y — (X)) /o (Xy) = &. .

Our next result establishes a uniform expansion of the process C(y).

THEOREM 2. Assume G1-G4. Then, under the null hypothesis Hy the follow-
ing holds:

T
T2 wX) Wi +op(D),

t=1

S 72 [T s B _ F(y)
Co)=T"2 [ [Fuo®) Fo)ds = om0

uniformly in —oo <y < 0o, where W; = lo(Y;, X;) — 1 (Yy, X;).
Theorem 2 does not follow directly from (3), since the mapping R —

/2 R(s)ds is not continuous in the space of uniformly bounded functions. Also
note that the rate of convergence of C is T7~!/? and it does not depend on the
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dimension of X;, in contrast to alternative nonparametric tests based on direct
comparisons of fZ(x) and fo(x).

We now assume that a consistent estimator exists for ovzv = Ew*(X I)Wtz) /
(E(w (X))

ASSUMPTION G5. 0 < O’%V < 00, and there exists a weakly consistent estima-

2 =2
tor for oy, say oy .

A natural candidate to estimate a‘%, is
2 1 & 2 %)
(8) 8W:wTZw (X)W,
t=1

where W, =76(Y,, X;) —T(Y,, X;) is a suitable consistent estimator of W;; see the
examples below.

The following corollary is a consequence of Theorem 2, the continuous map-
ping theorem, the central limit theorem for mixing sequences (see, for instance,

Theorem 2.20 in [16]) and the consistency of the estimator G2,

COROLLARY 3. Assume G1-G5. Then, under the null hypothesis Hy,
KS7 —4|Z| and CMp —qZ2,

where Z ~ N (0, 1).

3. Practical implementation and examples. This section discusses issues of
practical implementation. In particular, it provides detailed specific formulae for
the estimators, influence functions, asymptotic variances 0%, and their estimators
for several examples: (1) parametric models against nonparametric alternatives;
(2) parametric linear models against partially linear alternatives; (3) parametric
linear models against single-index alternatives and (4) several constrained mean—
variance models. This section also provides primitive regularity conditions under
which our general high-level conditions hold for each of these examples. For each
example, we will explain how to estimate u and .

The implementation of our tests entails computing unrestricted and restricted
residuals (£; and €9, resp.), the weights w(X;) and the variance estimator 851,.
For the latter, we use (8), with an estimated W;. In all the examples below, W; is
a continuous function of &;. In our implementations, we suggest to replace &; by
€, in Wy, but it is also possible to use € instead, since we only need a consis-
tent estimator of o*%, under the null. Unreported Monte Carlo simulations suggest
that the choice of €; or € for estimating a%, has little effect on the finite sample
performance of the test statistics.
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Although they will not be needed in all examples, we will start by defining non-
parametric estimators of p(-) and o (-) to ease the presentation. To estimate non-
parametrically wu(x), we use local polynomial estimators, that is, f(x) = @o(x),
where &g (x) is the first component of the vector @ (x), which is the solution of the
local minimization problem

T
© min Y {¥; — Pi(e, x, )} Kn(X: = %),
t=1

where P; (o, x, p) is a polynomial of order p built up with all 0 <i < p products of
factors of the form X ;, —x;, j =1,...,d, and d is the dimension of x. The vector
« consists of all coefficients of this polynomial. Here, for u = (u1,...,uq) € R4,
K@) = ]_[?:1 k(uj) is a d-dimensional product kernel, k is a univariate kernel
function, & = (hy, ..., hg) is a d-dimensional bandwidth vector converging to zero
when T tends to infinity, and Kj (1) = ]_[?:1 k(uj/hj;)/h;. To estimate o (x), de-
fine

(10) 52(x) = Po(x) — & (x),
where 99 is defined in the same way as &, but with ¥; replaced by Yl2 in (9),
t=1,...,T. We note that such an estimator of the conditional variance is not

guaranteed to be positive, and we refer to [15] or [27] for alternative positive esti-
mators.

We need assumptions that guarantee that Assumption G3 holds for the local
polynomial estimators.

ASSUMPTION N1. (i) All partial derivatives of Fx up to order 2d + 1 exist
on the interior of Ry, they are uniformly continuous and inf,cg, fx(x) > 0;

(ii) All partial derivatives of © and o up to order p + 2 exist on the interior of
Ry, they are uniformly continuous.

ASSUMPTION N2. (i) E(|Yp]*) < oo and SUPyeRy E(|Yy|*| X9 = x) < oo for
some s > 2+ 2/(b — 2), where b is as in Assumption G1;
(i1) There exists some j’ such that for all j > j/,

sup  E(|YoY;I*|Xo = xo, X = x;) f (x0, x,) < 00,

X0,XjE€ERx

where f;(xp, x;) denotes the joint density of (X, X ;).

ASSUMPTION N3. The function F(x,y) is continuous in (x, y), and twice
continuously differentiable with respect to x and y. Let L(x, y) denote generically

L . 22 2 2
the derivatives %F(x, v), %F(x, y), 867F(x, y), BB?F(x, y) and 3)?—3yF(x, y).

Then L(x, y) is continuous in (x, y) and satisfies sup, |y2L(x, V)| < o0.
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ASSUMPTION N4. (i) Forall j =1,...,d: hj/h1 — Cj, with0 < C; < 00,
and the bandwidth /4 satisfies (log T)_lT”h‘f — oo for n = b=1-d—(1+b)/(s—1)

b3—d—(1+b)/(—1)*
(b—2)(s—2—SZ/1(b—2))+s—2’ and with b and s as

defined in Assumptions G1 and N2, respectively, Th%‘“”S — oo for some small

5>0, Th%p+2 — 0 for odd p and Th%ij4 — 0 for even p;
(i) The kernel k is a symmetric probqbility density function on [—1, 1], k is d
times continuously differentiable, and kU )(:izl) =0for j=0,...,d—1.

where d, b and s are such that d <

Assumptions N1-N4 are standard in the literature of nonparametric regres-
sion estimation. Assumption N2 and Assumption N4(i) are taken from [20], and
they ensure suitable uniform rates of convergence of the kernel estimators of p(-)
and o (+).

LEMMA 4. Assume that G1-G2 and N1-N4 hold. Then Assumption G3 holds
for the local polynomial estimator jt(x) with (Y, X;) = (Y; — u(X;))/o(X;) =
Et.

The proof is straightforward and is therefore omitted. We proceed to describe
semiparametric estimators and regularity conditions for each of the examples enu-
merated at the beginning of the section.

3.1. Parametric models against nonparametric alternatives. Consider the
specification g(8, n(x),x) = g(6, x). The testing problem is then a goodness-
of-fit test for a parametric form of the regression function w(-). The unknown
parameter 6y can be estimated by the nonlinear least squares estimator 0 =
argmingce % ZtT:] Yr—g@, X ))2. The following assumption is needed to verify
Assumption G4 in this example.

ASSUMPTION E1. 6y belongs to the interior of a compact subset ® of R”. The
function g(-, x) is continuously differentiable with respect to 6 in a neighborhood
of 6y, say O, for all x € R4, with derivative go:(0) = 0g(0, X;)/00 satisfying
that E (gg,(@o)gét(eo)) is finite and nonsingular. Also, lo(Y;, X;) defined in (11)
satisfies E(l%(Y,, X)) < oo. Furthermore, for all 6 € @, g(0, ) € Cj;(Ry), for
some 7 > max(d/2, 1).

LEMMA 5. Assume that G1-G2 and E1 hold. Then Assumption G4 holds for
the parametric estimator fio(x) = g(0, x) with

(Y, X)) =w ' (X)E(w(X)o ™ (X)) gh, (00))

(11)
x (E(g6:(00) 25, (60))) ™" 801 (0)0 (X1)e:.
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In the particular case of testing for a linear model g(6, x) = 0’x and go;(6p) =
X, and thus lo(Y;, X;) = w™ (X)) E(w(X)o " X)X (EX X)) Xi0(X)e;.
If the alternative is nonparametric, then [(Y;, X;) = &;. Hence,

W, =ew™ (X)Ew(X)o " (X)X)(EX, X)) X,0(X;) — 1},

A consistent estimator for a%, is then obtained by replacing o (X;) and & in the

previous expression by & (X;) and &, respectively, and then using equation (8).

From a practical point of view, for the goodness-of-fit problem it is also rec-
ommended to apply some smoothing to the restricted estimator of w as in [38].
That is, in the definition of &, in (2), replace ito(X;) by ito(X;), where to(X;) is
obtained in the same way as the nonparametric estimator it(X,), but replacing the
responses Y; by tg(X;). Our asymptotic theory is still valid when this modification
is applied to the estimated residuals.

3.2. Parametric linear model against partially linear model. Our methodol-
ogy can be also used to test for parametric models against semiparametric al-
ternatives, such as partially linear models. Consider testing for the linear model
Y, =0 X1 +6:Xo + 06, 0" = (0], 02), against the partially linear model ¥; =
B’ X1: + n(X2r) + o&, with dim(X ;) =d — 1 and dim(X»;) = 1. Identifiabil-
ity requires that X, does not contain an intercept. For simplicity and in order to
avoid multivariate estimation of the conditional variance function, in this example
we assume a constant error conditional variance, o2, Also, throughout this and
the next subsection we assume w = 1. For this partially linear model, we take
the estimators of B and n given in [33], that is, the unrestricted estimator of . is
(x) = B'x1 +7(x2), where

S k(X = x2) (Y, — B'X11)
I kn(X25 — x2)
where k;(u) = h~'k(u /h) is the rescaled kernel, 7 > 0 is the smoothing pa-
rameter, Sx.x = T~ 'Y (X1, — iiix,(X2))(X1; — iy, (X2))' and Sxy =
T (X — iy, (X20)) (X1 — iy (X2,))', with
Z;T:1 kp(Xor — x2) X411 Zthl kn(Xar — x2)Y;
1 kn(Xag — x2) k(X2 —x2)

Note that 7 x, (x2) and 7y (x2) are kernel estimators of myx, (x2) = E(X1,|X2 =
x3) and my (x2) = E(Y;| X2 = x2), respectively.

’

B=SxxSxy and 7(x)=

and my(xp) =

f)’l,\Xl (x2) =

ASSUMPTION E2. Assume that the conditions of the Theorem in [33] (p. 939)
are satisfied.

LEMMA 6. Assume that G1-G2 and E2 hold. Then Assumption G3 holds for
the partially linear estimator jt(x) with [(Y;, X;) = o Y, —my (Xo) — B X1 —
mx, (X201} = &;.
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Taking into account the influence function of the linear model given in the pre-
vious section and that we are working under constant error variance, we obtain
that W, = (E(X;)(E(X,X;))_IX, — 1)g;. An estimator of a%, is then obtained
by taking (8) with W, = (T~' X, x){T~' X, X, X))~' X, — )&, where
G2 =T (i —A(X))* and & =&~ (Y, =y (X2)) — B[ X1 — i, (X20)1}.

3.3. Parametric linear model against single-index model. Next, we consider
testing for the linear model Y; = X;0 + o¢,;, against the single-index model
Y; = n(X;B) + o&. A natural estimator of 8 under the single-index model is the
semiparametric least squares estimator

N 1 2
=argmin — Y, —7(X! 1(X; €A,
B gﬁeBT;( (= (X[BIB)"1(X; € A)
where A is a subset of R?, 7j(u|B) is a kernel estimator of n(u|8) = E(Y:|X;B =
u):

T /
_ kit — X/B)Y,
wlf) = ,
WD =2 T - xp)

and B is a compact subset of the unit sphere in RY (for identifiability). The esti-
mator of u(x) = n(x’B) is then given by i(x) = (x’'B).

ASSUMPTION E3. (i) Fyx is continuous, and fx is bounded away from O on
Ad = {x e R4 . llx — A|l <}, where A is an open convex subset of R? and § > 0.

(ii) n has two bounded, continuous derivatives on {x'B : x € A%}, Assume
that [ SUPgep n(x'B|B)dFx(x) < oo.

(iii) k is supported on (—1, 1) and is a symmetric probability density function
with a bounded derivative. Moreover, Th? — oo and Th* — 0.

(iv) El|&|™ = M,, < oo for all m.

Assumption E3 is standard in the literature; see [21]. The bounded integral as-
sumption in E3(ii) enables us to interchange integrals with derivatives with respect
to B in our next result.

LEMMA 7. Assume that G1-G2 and E3 hold. Then Assumption G3 holds for
the single-index estimator [(x) with [(Y;, X;) = oy, — n(X;B)}=¢.

3.4. Constrained mean—variance models. This section illustrates the general
methodology with an application to constrained mean—variance models. In these
models, n(x) = o(x). [7] studied the special case g(8, o(x), x) =00 (x) and de-
veloped bootstrap-based tests for the corresponding hypothesis under the assump-
tion that the covariate is one-dimensional. See also [5] for an alternative test with
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i.i.d. data. Our more general formulation here is motivated from applications in
economics and finance.

The general null hypothesis Hp also incorporates as a special case the hy-
pothesis that w(X;)/o(X;) follows a specific parametric model. For instance, if
the null hypothesis is of a multiplicative form g(6, o (x), x) = o (x)g1(6, x), then
w(X;)/o(X;) will have the parametric structure specified in g;. Examples are the
linear model with g;(6,x) = 6’x in [36], and the exponential model in [8] and
[1], with g1(0, x) = exp(#’x). These examples will be treated in detail in Sections
3.4.1 and 3.4.2. Hence, our null hypothesis encompasses tests for the correct speci-
fication of a parametric coefficient of variation. To the best of our knowledge, such
tests are not available in the literature.

In the general case, the parameter 6y can be estimated by the following weighted
least-squares (LS) estimator:

T
(12) 6= argmin 3" w(X)(Y; ~ £(0.5(X,)., X1))".
t=1

where 6 () is defined in (10). See also [13] /f\or a related estimator of 6y in a more
general context. We now define ig(x) = g(6,d (x), x). The following assumption
is needed to verify Assumption G4 in this general example.

ASSUMPTION E4. The function g(0, u, x) is continuously Qifferentiable with
respect to the components of 6 and u, with derivatives gy;(6) = % g0,0(Xy), X¢)

and g,;(0) = %g(@, u, X¢)lu=0(x,) satisfying that E(gg,(@o)gél(eo)) is finite and
nonsingular, and that E (gﬁ, (60)) < 0o. Assume E (8;‘) < 00. Furthermore, for all
0 € ®p, P(g(0,5(-),-) € Cj;(Ry)) — 1, for some T > max(d/2, 1).

Define u; = & — 0.5g.:(60)(f — 1), S(60) = E[w(X,)g0:(60)gy,(60)1/
Ew(X,)), s(X, &) = S~ (60)o (X1) o1 (B0)us, and

w(X,) )
).
Ew(X,)) (o(xng“( )

LEMMA 8. Assume that G1-G2, N1-N4 and E4 hold. Then Assumption G4
holds for the estimator fig(x) = g(0, 7 (x), x) with

(13) lo(Ye, X1) = ¢/ (B0)s (X1, &) + 0.58u:(B0) (7 — 1).

p(0) =

The first term s (X, &;) arises in the linear expansion because (12) satisfies

N 1 T _
6 — 6o Y w(X)s(Xy &) +op(T73),
t=1

T E(X)T =

as shown in [13]. The second term in (13) accounts for the effect of estimating o
in g(0, 0 (X;), X;). Therefore, for this example G4 holds. As given in Lemma 4,
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G3(iii) holds for the unrestricted nonparametric estimator with /(Y;, X;) = &;, and
we thus obtain
= (P,(QO)S(Xt, &) +0. Sgut(Oo)(stz - 1) — & = A(Xp)uy,

where A(X;) =@ (90)S 1(9())0’(X;)g9t(9()) — 1 The variable W, can be consis-
tently estimated by W; Atut, with A, (G)S 1(O)G(X,)ggt(G) -1,
o A A 1 & w(Xo) -
=% —0.58.,: @) (&> - 1), 6) = — 6)
Uy =¢&; 8ui ( )(81 ) p0) = wT A(Xt) — - 860:(0),

~

§(9) is a consistent estimate for S(6p),

9g(@,u, X,) _ ~ 080.5(X)), X))

il and gy:(0) = .
ou u=6(X;) a0

It is straightforward to prove the consistency of 3‘%, in a given application, as the
following examples illustrate.

Gur(0) =

3.4.1. Linear model with time-varying coefficient of variation. 1If g(6g, o (x),
xX)=o0 (x)%x we estimate 9y by the LS estimator

-1 T
0= (Zw(xt)XfX“%Xt)) Y w(X)Y X5 (X))

t=1 =1

A consistent estimator for o%, is then given by (8) with W\t = Z(X )iz, where
i =8 —0.50'X,(& - 1),

< 1¢
== 2 wX)F (X)X, X] and
=1

Z(X,):[ Zw(xt)x} 152X X, — 1.

t=1

By the uniform consistency of 62(-) and fi(-) on Ry, and the consistency of 0 it
follows that 8‘%, = JVZV +op(1).

3.4.2. Nonlinear model with time-varying coefficient of variation. A nonlinear
specification for w(X;)/o (X;) that has been entertained is g1(6p, x) = exp(%x);
see, for example, [8]. In this case, the LS estimator irl\(12) leads to a consistent
estimator for 6y and cr‘%, can be estimated by (8) with W, = A(X;)u,, where u; =

—0.5exp@ X)(E> — 1), A(X,) =31 S '52(X) X, exp(@' X,) — 1:

1 & _
o1=—> w(X)X,exp(6’X;) and
t=1

L1 & -
S=- > w(X)EH (X)X, X, exp(20'X,).
t=1
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4. Asymptotic power properties. This section investigates the asymptotic
power of the proposed tests. We first analyze the power against the fixed alter-
natives:

Hy: () # no() with positive probability on R,,.

That is, under this alternative hypothesis Hy, P(u(X;) # pno(Xe)| X € Ry) > 0.
We shall show that under certain conditions the proposed test statistics will diverge
to infinity under Hy as T — 00, thereby proving the consistency of the tests against
these fixed alternatives. To that end, we show below in Proposition 9 that under the
alternative hypothesis, uniformly in —oco < y < 00,

T*W@(y):f_y R(s)ds + op(1) = C(y) + op (1),

where R(s) = E(w(X){I (g0 <s) — I(e; <s5)})/E(w(X;)). Therefore, by the
continuous mapping theorem,

) 3 oo
1My == [ (€I dFo +or(D
GW —00
and
—1,2 1
T-'°KSr= sup —I|C(y)|+op(1).

—oco<y<oo OW

Thus, given that both C(-) and F¢o(-) are continuous under our conditions, it fol-
lows that the test statistics will diverge to infinity as 7 — oo if C(y) # 0 for some
y € R. The next result shows that this is the case under H;. The following condi-
tion simplifies some of the previous assumptions.

ASSUMPTION G6. It holds that:

(i) E(eg) < 003
(i) sup,eg, [H(x) — n@)| = op(1); sup,cg, [0(x) — o(x)] = op(1) and
SUPeg, [H0(x) — mo(x)|=op(D).

Assumption G6 is standard in the literature. If i (x), o(x) and & (x) are kernel
estimators, there are well-known conditions for Assumption G6(ii) to hold; see,
for example, [20] and Section 3 of the present article.

PROPOSITION 9. Assume that G1, G2, G5 and G6 hold. Then our tests are
consistent against Hy, that is, the power of our tests tends to 1 when T tends to

infinity.

This shows that our tests are omnibus tests, in the sense that for any fixed alter-
native in Hj, that is, any possible direction @ (x) — po(x), the power of our tests
goes to one as the sample size goes to infinity.
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We consider now the limiting distribution under the local alternative

o (x)a(x)
VT
where a # 0 is the (standardized) direction of departure, such that E(|a(X;|) <

oo and 0 < E[a%(X ,)W,Z] < 00. The following standard assumption is needed to
control the behavior of the estimator jig(x) under Hir(a).

Hir(a) : n(x) = po(x) +

ASSUMPTION G4BIS. Under Hir(a), the restricted estimator [ig(x) =
g(@,7(x), x) satisfies:

(i) sup,cg, |@0(x) — n(x)| =op(T~1/);
(i) P(flo — o € Ciy(Ry)) — 1 as T tends to infinity, where 7 > d/2;
(iii) For a measurable function [o(-) satisfying E (lo(Y;, X;)|X¢, ]-'t_g(l)) =0a.s.
and E(l%(Y,, X;)) < oo, we have

T
/ :gj; (ﬁ()(x) - PLO(X))dFX(X) = T_l Zw(Xt)lO(Yt, X;)
t=1

— T_I/Z/d(x)a(x)dFX(x) +op(T71?),
where d(-) depends on the estimator of 6y used.

Define
_ E[(w(X)) +d(X)a(X)]
T (E[w2(X)W21/2

Then we have the following asymptotic result under the local alternative Hi7(a).

3(a)

COROLLARY 10. Assume G1-G3, G4bis and G5. Then, under the local alter-
native H 1 (a),

KSr—a|Z+8@)]| and CMy—q(Z +6@)?,
where Z ~ N (0, 1).

This result shows that our tests are able to detect local alternatives converging
at the parametric rate. Our tests are directional from a local perspective, that is,
the tests are not consistent against all local alternatives, as there are directions a
for which §(a) = 0. This is a generic property of directional tests, including those
in [34] (Section 3) and [35]. On the other hand, note that our tests are consistent
against all fixed alternatives and all local alternatives that converge at rate rr with
1/rr = o(ﬁ ). In particular, for all alternatives of order st, with st being the
rate of convergence of ii(-) — ig(-), the test statistics diverge to infinity. This is
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an important advantage of our test with respect to tests that are based on the dis-
tance between () and o(-) like, for example, in [22], or the directional tests of
[34] (Section 3) and [35] that are inconsistent against a large class of fixed alter-
natives.

Thus, our tests have the advantages of omnibus tests against fixed global al-
ternatives, and the simplicity of interpretation of directional tests at local alter-
natives converging at the parametric rate, with local power functions that can
be explicitly computed and tailored to specific alternatives of interest. There-
fore, from the power point of view our tests have fundamentally different
properties from those of existing tests. The following example illustrates these
points.

EXAMPLE (Parametric models, cont.). Suppose we aim to test the linear
model u(x) = Ox against all fixed alternatives p(x) # 6x with positive probability
on Ry, (where Ry, is alarge compact set satisfying our conditions above). Consider,
for instance, the CM-type test. Proposition 9 shows that our CM-type test is consis-
tent against all fixed alternatives under the conditions of Section 3.1, that is, under
u(x) # 6x with positive probability on R,,, P(CMt > X12,17a) —lasT — oo.
Now, consider, for example, a quadratic local alternative u(x) = 6x + T 1/2x2,
From the arguments of Section 3.1, it is straightforward to verify that Assumption
G4bis(iii) holds with

d(X;) = —E(w(X)o " (X)X )(E(X?) " X0 (X))

We show now that there is a choice of w that makes the drift function §(a) # 0
for the quadratic local alternative a(x) = o 1(x)x2. As in [25] (p. 996), we
can assume without loss of generality that E[d(X;)a(X;)] = 0. Then choose
wo(x) =a(x)I(x € Ry), for a compact set R, in the support of X;, so that the
corresponding drift is

5(@) — E[wo(X)a(X,)]
(E[wd(X ) WZ]1/2

0.

Thus, the CM test based on wg guarantees a nontrivial local power against
quadratic local alternatives, with an asymptotic local power function given by
P(Xlz(é (@) > X12,1—a)’ where X12(8 (a)) is chi-square distribution with one de-
gree of freedom and noncentrality parameter §(a). More generally, for any al-
ternative a such that E[d(X;)a(X;)] = 0 and with a nonzero positive part, we
can choose w(x) = ay(x)I(x € Ry,) for a suitable R,, so that the drift term
d(a) # 0. It is in this precise sense that the test can be tailored to specific local
alternatives of interest, while preserving the omnibus feature against global alter-
natives.
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5. Numerical examples.

5.1. Monte Carlo simulations. In this section, we will illustrate the fi-
nite sample performance of the asymptotic distribution-free tests based on the
Kolmogorov—Smirnov (KS7) and Cramér—von Mises (CM 1) statistics for the ap-
plications described in the previous section. In all cases, the rejection probabilities
are based on 2000 simulated data sets. The estimation of the finite-dimensional
parameter involved in the specification given in the null hypothesis is done by
using the least squares estimator, as in (12), and the variance a‘%, 1s estimated
as explained in (8). Nonparametric estimators of u(-) and o (-) are obtained by
local-linear estimation and Nadaraya—Watson estimation, respectively, with fixed
bandwidths and least-squares cross-validation bandwidths (indicated as “c—v” in
the tables). The nominal level is 0.05 in all cases. Some further numerical results
and discussion can be found in the Supplementary Material [14].

5.1.1. Goodness-of-fit tests for parametric models for . In this first set of
simulations, we will deal with the goodness-of-fit problem of parametric models
for the regression function w(-). The null hypothesis is Hp : n(x) = 6x. We gen-
erate i.i.d. samples of sizes T = 100 and 7T = 200 from the model proposed in
[38]:

Y = 60X +a(X) +0.20(1 + X)e,

where the covariate X has a uniform distribution on [0, 1] and the error ¢ is stan-
dard normal. The parameter is fixed at & = 1. The term a(X) gives different possi-
bilities:
(1) a(x)=0;
(i) a(x)=x2;
(iil) a(x) =0.5xexp(x);
(iv) a(x) =0.3sin(4mx).

Model (i) is under the null hypothesis, whereas models (ii), (iii) and (iv) are under
the alternative. In this case, since the covariate has compact support, the weight
function is w(x) = 1 and, therefore, the tests will be constructed on the basis of
the regular empirical distributions.

Table 1 summarizes the obtained results for the proposed tests in comparison
with the bootstrap-based tests in [38], which are denoted by KSy g and CMy k. In
order to make a fair comparison, we have adjusted the critical values of our tests
to match the empirical levels of the bootstrap-based tests. The empirical powers
are then size-corrected. To achieve that, instead of taking the critical values from
the asymptotic distributions given in Corollary 3, we take them from the empiri-
cal distributions of the test statistics obtained from the 2000 simulations under the
null hypothesis (model i). The critical value is chosen as the quantile that makes
the level equal to the level of the bootstrap-based test and then that critical value
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TABLE 1
Observed rejection proportions in 2000 simulated data sets when the null hypothesis is
Hp : u(x) = Ox with the tests based on CM T and KSt and those proposed in [38] , indicated as
CMy g and KSy g . Model (i) is under the null; models (i), (iii) and (iv) are under the alternative
hypothesis. The significance level is 0.05. The size of the asymptotic test is adjusted so as to equal
the size of the bootstrap test

Size-adjusted Van Keilegom et al. [38]
KSt CMr KSyk CMyg
Model h T: 100 200 100 200 100 200 100 200

(1) 0.15 0.0455 0.0410 0.0410 0.0480 0.0455 0.0410 0.0410 0.0480
0.2 0.0500 0.0445 0.0430 0.0455 0.0500 0.0445 0.0430 0.0455
0.25 0.0520 0.0495 0.0460 0.0460 0.0520 0.0495 0.0460 0.0460
c-v 0.0600 0.0490 0.0450 0.0480 0.0600 0.0490 0.0450 0.0480
(i1) 0.15 0.8055 0.9850 0.8435 0.9935 0.7300 0.9715 0.8375 0.9905
0.2 0.7915 0.9805 0.8330 0.9905 0.7350 0.9695 0.8210 0.9865
0.25 0.7710 0.9730 0.8190 0.9855 0.7245 0.9660 0.7970 0.9805
c—v 0.8460 0.9885 0.8555 0.9945 0.7485 0.9725 0.8380 0.9905
(iii) 0.15 0.7330 0.9640 0.7925 0.9860 0.6855 0.9555 0.7910 0.9780
0.2 0.7270 09585 0.7710 0.9765 0.6905 0.9480 0.7695 0.9720
0.25 0.7040 0.9500 0.7585 0.9730 0.6775 0.9350 0.7410 0.9595
c-v 0.8015 0.9760 0.8125 0.9875 0.6950 0.9510 0.7800 0.9815
(iv) 0.15 0.6650 09115 0.3815 0.7795 0.8395 0.9965 0.8440 0.9980
0.2 0.6675 0.9095 0.3880 0.7135 0.8135 0.9920 0.7930 0.9945
0.25 0.6910 0.9275 0.4445 0.7535 0.7590 0.9810 0.7245 0.9835
c—v 0.7710 0.9440 0.4920 0.8670 0.8635 0.9965 0.8805 0.9990

is employed to obtain the power in models (ii), (iii) and (iv). We observe that for
models (ii) and (iii), the new tests yield better power than the bootstrap-based tests.
On the other hand, model (iv) shows an advantage in favor of the bootstrap-based
tests, especially in the case of the CM-type statistics. We must recall that the tests
based on a bootstrap approximation require the choice of a second bandwidth and
are more computationally demanding. In view of the results of this simulation, it
seems that the proposed asymptotically distribution-free tests are reasonable com-
petitors.

5.1.2. Parametric linear model against partially linear model. 1In this section,
we will perform a simulation study to test for the validity of a linear model versus
a partially linear model. The alternative hypothesis is therefore semiparametric.
More precisely, the null hypothesis is

Ho : p(x1, x2) = 01x1 + 02x2,
and the alternative hypothesis is

Hy:p(xy, x2) =601x1 + n(x2),
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TABLE 2
Observed rejection proportions in 2000 simulated data sets testing the linear null hypothesis
Ho : u(x1, xp) = 01x1 + Oxp versus the semiparametric alternative
Hi:pu(xy, xp) =01x1 + n(x2). Model (i) is under the null hypothesis. Models (ii) and (iii) are
under the alternative hypothesis. The significance level is 0.05

KSt CMrt
Model h T 200 500 200 500
1) 0.15 0.0480 0.0560 0.0590 0.0550
0.20 0.0480 0.0510 0.0500 0.0515
0.25 0.0430 0.0490 0.0460 0.0485
c—v 0.0405 0.0460 0.0505 0.0530
(i1) 0.15 0.9680 1.000 0.8625 0.9985
0.20 0.9595 1.000 0.8615 0.9975
0.25 0.9555 1.000 0.8605 0.9975
c-v 0.9605 1.000 0.8670 0.9985
(iii) 0.15 0.9530 1.000 0.9185 0.9995
0.20 0.9480 1.000 0.9200 0.9995
0.25 0.9425 0.9995 0.9220 0.9995
c-v 0.9380 0.9995 0.9125 0.9995

where 7 is a smooth nonlinear function. We consider the following three specifi-
cations of u:

1) pxi, x2) =x1 +x2;
(1) u(xr, x2) =x1 4+ 0.2s5in(2wx2);
(i) p(xr, x2) = x1 4+ 0.2exp(x2).

Model (i) satisfies the null hypothesis, whereas models (ii) and (iii) are under the
alternative hypothesis. In the simulations, the bidimensional covariate (X1;, X2;)
is drawn from two independent uniform distributions on [0, 1]. We work under ho-
moscedasticity with & = 0.25 and the error follows a standard normal distribution.
Since the supports of the covariates are bounded, we take w = 1. For the estima-
tion of the partially linear model and the required quantities to construct the test
statistics we follow the steps described in Section 3.2. Table 2 collects the results
obtained from data sets with sample sizes 7' = 200 and 500.

Under model (i), a good approximation of the level is observed for both sample
sizes. In terms of power—models (ii) and (iii)—the behavior is as expected: larger
sample sizes produce larger power, with a small advantage of KSt over CM7.
Finally, it is worth noting that the choice of the smoothing parameter does not
have relevant impact on the obtained results. The choice based on cross-validation
behaves satisfactorily.
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5.1.3. Constrained mean—variance models. 1In this third set of simulations, we
will investigate the practical performance of the proposed methodology to test for
relationships between w(-) and o (-). In this case, we consider data from pairs
(X¢, Yy) with a dependence structure given by X; = Y;_1, t € Z. More precisely,
sequences of sizes T =200 and 7 = 500 are generated from the following data
generating processes:

(i) Y, =0.1X,(1+02X)Y2 4+ (1+0.2X2)1/2¢,;

(i) ¥, =exp(—=0.1X>)(1 +0.2XH)1/2 + (1 +0.2X3)1/2¢,;
(iii) ¥, =0.24 (1+0.2X2)1/2¢,;
(iv) ¥, =exp(—0.1XH(1+0.2X*)1/2 4+ (14 0.2X?) /2.

In this case, since the covariate has no compact support, the nonparametric
estimation of the conditional mean and variance function are performed on the
[5%, 95%] range of the covariate by conveniently adapting the weight function w.
The values of the bandwidths are also adapted to the covariates.

Two null hypotheses will be tested: (a) Hp : i(x) = 6xo(x), for which model
(i) is under the null; and (b) Hp : u(x) = exp(—08x)o (x), for which model (ii) is
under the null. These specifications provide parametric models for the Sharpe ratio
n(Xp)/o(Xy).

Table 3 displays the results. In the case of the null hypothesis (a) (left part of the
table), the approximation of the level in model (i) is good and the behavior in terms
of power is very satisfactory. The results for model (iii) show that KS7 and CM 1
produce similar rejection probabilities. On the other hand, the right part of the table
shows the results for the null hypothesis (b). In this case, the results for model (ii)
show that although the level is overestimated for 7 = 200, the approximation is
reasonably good for T = 500, especially for fixed values of the bandwidth. The
cross-validation bandwidths still lead to an overestimation of the level. The power
is excellent under both models (i) and (iii). Finally, although model (iv) is very
close to the null hypothesis (b), we can see that both tests reach nontrivial power.

5.2. Real data example. As an illustration of our methodology, we will test
parametric and semiparametric restrictions for the coefficient of variation or
Sharpe ratio in a real data set. We consider the monthly continuously compounded
return of the Center for Research on Security Prices (CRSP) value-weighted index
(including dividends) during the period 1926-2008. The response variable Y; is
the excess return constructed by subtracting to the CRSP index the monthly return
on the 30-day Treasury Bill. The covariate is the one-month lagged value of the
response, that is, X; = Y;_1. A detailed explanation of this data set can be found in
[13], where estimation of a semiparametric index model was considered. In this ap-
plication, we wish to test for several parametric and semiparametric specifications
for the Sharpe ratio (x)/o (x) in this data set. We consider three specifications:
(i) linear w(x)/o(x) = Ox; (ii) exponential p(x)/o(x) = exp(#’'x) and (iii) pro-
portional to standard deviation u(x)/o(x) = 6o (x). The linear specification (i)



DISTRIBUTION-FREE TESTS FOR SEMIPARAMETRIC REGRESSIONS 1189

TABLE 3
Observed rejection proportions in 2000 simulated data sets when the null hypothesis is (a)
Hy : u(x) = 0xo0(x) [left panel, model (i) is under the null], or (b) Hy : ;t(x) = exp(—0x)o (x)
[right panel, model (ii) is under the null]. The significance level is 0.05, and the sample size is
T =200 and T =500

(a) Hy : p(x) = 0x0 (x) (b) Hy : (x) = exp(—6x)0 (x)
KST CMy KSyk CMy g
Model h T: 200 500 200 500 200 500 200 500

1) 0.50 0.0575 0.0535 0.0565 0.0535 1.000 1.000 1.000 1.000
0.75 0.0520 0.0515 0.0510 0.0515  1.000 1.000 1.000 1.000
1.00 0.0500 0.0500 0.0490 0.0500  1.000 1.000 1.000 1.000
c—v 0.0565 0.0475 0.0545 0.0480  1.000 1.000 1.000 1.000
(ii) 0.50 1.000 1.000 1.000 1.000  0.0825 0.0535 0.0795 0.0540
0.75 1.000 1.000 1.000 1.000  0.0680 0.0540 0.0715 0.0550
1.00 1.000 1.000 1.000 1.000  0.0640 0.0590 0.0680 0.0600
c—v 1.000 1.000 1.000 1.000  0.0725 0.0710 0.0700 0.0715
(iii) 0.50 0.7335 0.9810 0.6735 0.9740 1.000 1.000 1.000 1.000
0.75 0.7210 0.9810 0.6840 0.9780  1.000 1.000 1.000 1.000
1.00 0.7125 0.9805 0.6825 0.9790  1.000 1.000 1.000 1.000
c—v 0.7170  0.9830 0.6755 0.9780  1.000 1.000 1.000 1.000
(iv) 0.50 1.000 1.000 1.000 1.000  0.2140 0.2900 0.1875 0.2595
0.75 1.000 1.000 1.000 1.000  0.1715 0.2510 0.1580 0.2390
1.00 1.000 1.000 1.000 1.000 0.1485 0.2255 0.1410 0.2175
c-v 1.000 1.000 1.000 1.000  0.1850 0.2655 0.1600 0.2420

is very common in applied work; see, for example, [36]. The exponential model
(ii) was considered in [8] and [1]. The proportional model (iii) is the most popular
model, and it was introduced in the seminal work of [29, 30]. Although there exists
an extensive literature using and estimating these models (see, e.g., [17, 18, 23]),
there are no nonparametric tests available to evaluate their goodness-of-fit.

We now apply our nonparametric tests to this data set. The sample size is 995
and the support of the covariate ranges between —0.31 and 0.67, approximately.
The tests are implemented on the [5%, 95%] range of the covariate with a local-
linear estimator for ©(-) and a Nadaraya—Watson estimator for o (-), with a com-
mon bandwidth obtained by cross-validation. The cross-validation bandwidth was
hey = 0.048. In order to check whether the choice of the bandwidth has an effect
on the results, we have also performed the tests with bandwidths of the form ch.,,
where ¢ = 0.5, 1, 1.5, 2. The results are collected in Table 4. The reported p-values
suggest that the linear and exponential specifications are rejected at 1% nominal
level for all values of the bandwidth. In contrast, the tests fail to reject [29, 30]’s
proportional model for all values of the bandwidth parameter. Thus, our empirical
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TABLE 4
Real data application: p-values of the tests based on KST and CM to test the specifications given
in Hy. The smoothing parameters are of the form ch¢y, where hey is the cross-validation bandwidth

H, Test statistic c: 0.5 1.0 1.5 2.0
n(x)/o(x)==6x KSt 0.0010 0.0033 0.0063 0.0100
CMt 0.0010 0.0029 0.0056 0.0086
w(x)/o(x) =exp(—6x) KSt 0.0000 0.0000 0.0000 0.0000
CMt 0.0000 0.0000 0.0000 0.0000
w(x)/o(x) =60 (x) KSt 0.1999 0.4063 0.5922 0.7751
CMt 0.2811 0.4971 0.6706 0.8162

results confirm the suitability of the widely used proportional model in applied
work.

6. Conclusions. In this article, we have proposed a general and simple-
to-implement methodology for testing parametric or semiparametric hypotheses
against semiparametric or nonparametric alternatives in regression models with
possibly dependent data. The tests are based on the cumulative difference of the
standardized error distributions under the null and alternative hypotheses, respec-
tively. The asymptotic null distributions of the tests are known functionals of a
standard normal random variable, for which critical values are readily available.
The tests are consistent against fixed alternatives and are able to detect local al-
ternatives converging to the null at the parametric rate. Some Monte Carlo exper-
iments have shown a satisfactory finite sample performance for the tests in three
different applications.

We now point out several topics for future research. We have not discussed the
choice of the bandwidth parameters in our testing problem. Although there exists
an extensive literature on bandwidth choice for estimation, there is no general the-
ory available for testing purposes (see, e.g., the discussion in [19]). One possible
approach in our context is to choose the bandwidth that maximizes the test statistic
subject to convergence constraints on the bandwidth. This procedure is likely to be
more stable for our methodology than for alternative nonparametric tests based on
smoothers, since the rates of convergence of our tests do not depend on those of
the bandwidth under standard rate conditions on bandwidth parameters. To apply
these ideas, we would need to establish the expansion of Theorem 2 uniformly in
the bandwidth parameters in a suitable range that converges to zero. This uniform
expansion is feasible given existing results; see, for example, [10] and [12]. In any
case, as shown in our simulations the impact of the smoothing parameter on the
results seems rather mild, and the cross-validation bandwidth yielded satisfactory
results.

The main contribution of this article is the use of the integrated empirical pro-
cess of nonparametric residuals to obtain ADF tests for the regression function.
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Nevertheless, this idea goes beyond inference on the regression function, and it
can be used more generally for inferences where suitable tests statistics are func-
tionals of the error distribution. For example, using a similar idea to the one used
in this article one can develop ADF nonparametric goodness-of-fit tests for the
error distribution in a model with nonparametric conditional mean and variance.
This application follows straightforwardly from our results and is of independent
interest.

Another extension would be to semiparametric hypotheses on the condi-
tional variance, as in [6]. Our transformation does not lead to asymptotic
distribution-free tests in that context, but alternative transformations may ex-
ist.

APPENDIX: PROOFS

This Appendix contains the proofs of Theorems 1 and 2. The proofs of Lemmas
5-8, Proposition 9 and Corollary 10 can be found in the Supplementary Mate-
rial [14].

PROOF OF THEOREM 1. The implications (i) = (ii) = (iii) are obvious.
To prove (iii) = (ii), it suffices to take the derivative of D(y). Finally, let us
prove (i) = (i). If ¢ and ¢o have the same distribution, then it also holds that
E(e) = E(gg) and Var(e) = Var(gp). It is easy to see that E(eg) = E(¢) +
E((u(X;)—po(Xy))/o(Xy)), and hence E ((u(X;) — no(X;)) /0o (X;)) =0.On the
other hand, we also have that Var(eg) = Var(e) + Var[(u(X;) — no(Xy)) /o (Xe)1,
and hence Var[ (i (X;) — uo(X;))/o (X;)] = 0. We can now conclude that (u(X;) —
no(Xy))/o(Xy) =0 a.s., or, equivalently, u(X;) = no(Xy) a.s. O

PROOF OF THEOREM 2. First, consider

: i (X)fy [1G <s)—1( )} d
p— w & <s)—1(&=s Ky
th:l t o t t

T
= Tw Zw(Xt){I(gt <N —8) —1(e <)y — &)}
t=1
1 T
=—) wX)I(e =y)e —&)
. ; ) 1(& r— &

1 T
+ ﬁzw(Xz){I(a <y -1 <o —2)

=1

=A(y) + B(y) (say).
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When ; is replaced by & in the above sum, we get a similar decomposition which
we denote by Ag(y) + Bo(y). First, consider

A(y) — Ao(y)
1 T
=— Y wX)I( <y)(Eo—%r)
Tw; ! ! ' '

m(X:) — 1o (X1)
o (X)

1 T
== wX)I(e =y)
Tw; t t

1
" TEw(X))

T =X T X
Zw(X,)I(etfy)M( t;(xl:)()( ’)+0P(T_1/2)-
r=1

We will now show that

d AX) = fo(X)
TE S t:Z][w(Xol(ef =yl

(14)

—op(T7'2),

_E{w(x)l(g Sy)ﬁ(X)—ﬁo(X)}]

o(X)

uniformly in —oo < y < 0o, where the latter expectation is taken conditional on
i and 1o, and where the pair (X, ¢) has the same distribution as (X;, ;) and is
independent of (X1, €1), ..., (X7, 7). Define the class

F={(x,e) = wx)o ' (x)I(e < y)v(x): —o0 <y < 400,v e Ch(Ry)},

where Cj,(Ry,) is the space of continuous functions v defined on the compact set
R, for which

|DRu(x) = DRu()| _

lvll; = max sup| D*v(x)| + max sup <M < o0,
k<t x k=t v flx=x|IF7E
where 7 is the largest integer strictly smaller than t, k = (ky, ..., kq), Dk =

8k'/8xlf‘ . -Bxsd, and k. =" k;. Note that P(@ — fip € C},(Ry)) — 1 as T tends
to infinity, by Assumptions G3(ii) and G4(ii). We will show that this class is
Donsker. A sufficient condition for the class F to be Donsker is that

2M
/0 \/logN[.](S,f, - ll2.8) d8 < o0,

where for any function g, ||g||%43 = fol,B_l(u) Q;(u)du, and where f~! is the
inverse cadlag of the decreasing function u — B, (Lu] being the integer part of
u, and B; being the mixing coefficient) and Q, is the inverse cadlag of the tail
function u — P(||g|| > u) (see Section 4.3 in [3]). Here, Njj(8, F, || - [|2,) is the
8-bracketing number of the class F, that is, it is the smallest number of §-brackets
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needed to cover the space F, where a §-bracket is the set of all functions / such that
h¢ < h < hy and where (hy, h,) satisfy ||h, — h¢|l2,5 < 8. From Corollary 2.7.2
in [37], it follows that Njj(8, CF,(Ry), || - [l2) < exp(K §~9/F). Moreover, defining
yj = Fg_l(j(S) for j=1,..., o@™h, it is easily seen that Njj(8, F, || - [l2,8) =
052 exp(K(S_d/T)) (see, e.g., the proof of Lemma 1 in [7]). It now follows that
the class JF is Donsker, provided t > d/2. Next, note that

(X) —ﬁo(X)}

co0 | =K swp [0 — o) Lo,

XERy,

Var{w(X)I(e <y)

where the variance is conditional on /& and &g, and where the pair (X, &) is as
before independent of & and fio. Hence, it follows from Corollary 2.3.12 in [37]
that (14) holds true. It remains to calculate

- {w(X)I(S )M}
E(w(X)) X)
Fe(y) Ho(x) — po(x)
15 dF
(15) e A e
Fe(y) M(X) M(x)
rogy [ peOE L ),
which follows from the independence between X and e.
By Assumption G3(iii),

T
2 () — w(0) dFx () =T S w(X0l, X)) +0p(1772),
o)

t=1

whereas by Assumption G4(iii) under the null hypothesis

T
/wg ))(MO(X)—M(X))dFX(x)_ Ty w(X)lo(Ys, X)) +op(T7'3).
t=1

Next, consider the term B(y), which can be bounded as follows:

1
B(Y) = 7= Zw(xt) I@<y<e)y—8)—I(e <y<&)(y—&)]

=1
1 T
=< _E Zw(Xt) 1@ <y<e)e —8)+1(e <y <8&)E —e&)).

Each of the above terms is 0p (7 ~'/?) uniformly in y. Indeed, the first term on the
right-hand side is bounded by

: Bl S WO E <y <e)
E—— max Er — & w £ < &¢).
TW rw(X)=0 = ' ot DEE =Y =&
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Note that [where the probability P (€ < y) is conditional on & and &, and where
the pair (X, &) is as before independent of i and 7]

= Z w(X)I @ <y <é&)
tl

Pﬂ

T
—Z wX)(I@ <y)—1(& <y) — E{wX)(IE<y) —I(e <y)}]

4+ E[w(X)(I(S <y)—1(e=y)]

< sup wo) {sup £2(2) sup [206) — ()|

XERy XERy

+suplyfe ] sup [0 = o ()] +0p (1717,
XERy
uniformly in y (where the term op (7 ~!/?) in the last line follows from a com-
bination of the above arguments for the term A(y) and the proof of Lemma 1 in
[7]). Hence, the first term of B(y) is of the order Op(sup,cg, [H(x) — w(x)?) +
Op(sup,cp, 16 (x) — o (X)) + 0p(T™Y?) = 0p(T~1/?) by Assumption G3(i).
The second term of B(y) can be bounded in a similar way. Finally, it can be shown
that By(y) is also op(T~12) by using Assumption G4(i).
Therefore, by the arguments above, uniformly in y:

f_ ;[EO(S) _ Fu(s)]ds
= Ao(y) — A(Y) +op(T™1/?)

Ly}ijw(xz)wt—FOP( 1/2)'
TE(w(Xy))

This completes the proof. [J

SUPPLEMENTARY MATERIAL

Supplement to “Asymptotic distribution-free tests for semiparametric re-
gressions with dependent data” (DOI: 10.1214/17-AOS1581SUPP; .pdf). The
supplement contains further Monte Carlo simulations and the proofs of some
asymptotic results.
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