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CANONICAL SUPERMARTINGALE COUPLINGS

BY MARCEL NUTZ1 AND FLORIAN STEBEGG

Columbia University

Two probability distributions μ and ν in second stochastic order can
be coupled by a supermartingale, and in fact by many. Is there a canonical
choice? We construct and investigate two couplings which arise as optimizers
for constrained Monge–Kantorovich optimal transport problems where only
supermartingales are allowed as transports. Much like the Hoeffding–Fréchet
coupling of classical transport and its symmetric counterpart, the antitone
coupling, these can be characterized by order-theoretic minimality proper-
ties, as simultaneous optimal transports for certain classes of reward (or cost)
functions, and through no-crossing conditions on their supports; however,
our two couplings have asymmetric geometries. Remarkably, supermartin-
gale optimal transport decomposes into classical and martingale transport in
several ways.

1. Introduction. Let μ and ν be probability measures on the real line. A mea-
sure P on R

2 whose first and second marginals are μ and ν, respectively, is called
a coupling (or transport) of μ and ν, and the set of all such measures is denoted
by �(μ,ν). We shall be interested in couplings that are supermartingales; that is,
if (X,Y ) denotes the identity on R

2, then EP [Y |X] ≤ X P -a.s. Thus, we assume
throughout that μ and ν have a finite first moment, and denote by S(μ, ν) the set
of supermartingale couplings. A classical result of Strassen (cf. Proposition 2.1)
shows that S(μ, ν) is nonempty if and only if μ and ν are in convex-decreasing
(or second stochastic) order, denoted μ ≤cd ν and defined by the requirement that
μ(φ) ≤ ν(φ) for any convex and decreasing function φ, where μ(φ) := ∫

φ dμ.
Given μ ≤cd ν, there are typically infinitely many supermartingale couplings. Our
question: are there some special, “canonical” choices? The aim of this paper is to
introduce and describe two such couplings, called the Increasing and the Decreas-

ing Supermartingale Transport and denoted
→
P and

←
P , respectively. They have re-

markable properties that are, in several ways, analogous to the Hoeffding–Fréchet
and antitone couplings which can be considered canonical choices in �(μ,ν) but
typically are not supermartingales. The study undertaken is also a model problem
of optimal transport under inequality constraints. We shall see that the supermartin-
gale transport problem decomposes into unconstrained and equality (martingale)
constrained transport, in multiple and sometimes unexpected ways.
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1.1. Synopsis. The couplings
→
P and

←
P will be characterized in three differ-

ent ways: an order-theoretic minimality property, optimality for a specific class
of transport reward (or cost) functions, and a geometric property of the support
stating that certain paths do or do not intersect.

Let us begin with the order-theoretic characterization. To explain the idea, sup-
pose that μ consists of finitely many atoms at x1, . . . , xn ∈ R, then a coupling of
μ and ν can be defined by specifying a “destination” measure for each atom. We
know from Strassen’s result that the convex-decreasing order plays a special role,
so it is natural to rank all possible destination measures for the first atom (as al-
lowed by the given marginal ν and the supermartingale constraint) according to
that order. A minimal element Sν(μ|x1) called the shadow will be shown to exist;
essentially, it maximizes the barycenter of the destination measure and minimizes
the variance. The procedure can be iterated after subtracting Sν(μ|x1) from ν, and
that determines a supermartingale coupling of μ and ν. Depending on the order in
which the atoms are processed, the coupling will have a very different structure.
Two obvious choices are the increasing and the decreasing order of the xk , and

that gives rise to
→
P and

←
P (the arrows representing the order of processing). In the

general, continuum version of the construction, we instead specify the destination
of μ|(−∞,x] and μ|[x,∞) for each x ∈ R. The following is taken from Theorem 6.6
in the body of the paper; the precise definition of the shadow can be found in
Lemma 6.2.

THEOREM 1.1. There exists a unique measure
→
P on R

2 which transports
μ|(−∞,x] to its shadow Sν(μ|(−∞,x]) for all x ∈ R. Similarly, there exists a unique

measure
←
P which transports μ|[x,∞) to Sν(μ|[x,∞)) for all x ∈ R. Moreover, these

two measures are elements of S(μ, ν).

While the shadow construction illuminates the local order-theoretic nature of
the couplings, it does not reveal the global geometric structure that is apparent in

Figures 1 and 2 (rendered on page 3353). The figures show simulations of
→
P and

←
P for piecewise uniform marginals and discrete marginals; the mass is transported
from the x-axis (top) to the y-axis (bottom).

The Monge–Kantorovich optimal transport problem is a framework that enables
a geometric description for its optimal transports, and thus it is desirable to repre-

sent
→
P and

←
P as corresponding solutions. More precisely, we shall introduce the

supermartingale optimal transport problem

(1.1) sup
P∈S(μ,ν)

P (f ),

where transports are required to be supermartingales, and then
→
P ,

←
P will be opti-

mizers for reward functions f satisfying certain geometric properties. To make the
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FIG. 1. Simulations of the Increasing Supermartingale Transport. We observe an interval of
Left-Curtain kernels (black/continuous) on the left and an interval of antitone kernels (gray/dashed)
on the right. The destinations of the right interval are on both sides of the destinations of the left one.
(The definitions of x∗ and M are given in Sections 3 and 5, resp.)

connection with other texts on optimal transport, notice that P(f ) = EP [f (X,Y )]
in our notation, and that f can be seen as a cost function by a change of sign. We
shall say that f :R2 →R is supermartingale Spence–Mirrlees if

(1.2) f (x2, ·)−f (x1, ·) is strictly decreasing and strictly convex for all x1 < x2.

FIG. 2. Simulations of the Decreasing Supermartingale Transport. We observe an interval of
Right-Curtain kernels on the left, followed by an interval of Hoeffding–Fréchet kernels and another
interval of Right-Curtain kernels. The destinations of these intervals preserve the original order.
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If f is smooth, this can be expressed through the cross-derivatives conditions
fxy < 0 and fxyy > 0; the first one is the negative of the classical Spence–Mirrlees
condition and the second is the so-called martingale Spence–Mirrlees condition.
The following is a slightly simplified statement of Corollary 9.4.

THEOREM 1.2. Let f : R2 → R be Borel, supermartingale Spence–Mirrlees
and suppose that there exist a ∈ L1(μ), b ∈ L1(ν) such that

|f (x, y)| ≤ a(x) + b(y), x, y ∈ R.

Then
→
P is the unique solution of the supermartingale optimal transport prob-

lem (1.1). Similarly,
←
P is the unique solution of infP∈S(μ,ν) P (f ), or equivalently

of (1.1) if instead −f is supermartingale Spence–Mirrlees.

Since
→
P and

←
P correspond to the combinations fxy < 0, fxyy > 0 and fxy >

0, fxyy < 0 of known conditions, it is natural to ask for the remaining two com-
binations, fxy > 0, fxyy > 0 and fxy < 0, fxyy < 0. While the associated optimal
transports also have interesting features, they turn out to depend on the function f

within that class, and hence, cannot be called canonical; cf. Section 10.2.
The third characterization of

→
P and

←
P is through their supports. A point (x, y)

in the support can be thought of as a path that the transport is using, and the con-
ditions are expressed as crossing or no-crossing conditions between the paths of
the transport. While this characterization is an incarnation of the c-cyclical mono-
tonicity of classical transport, the supermartingale constraint requires a novel dis-
tinction of the origins x into a set M of “martingale points” and their complement.
Intuitively, the supermartingale constraint is binding at points of M and absent
elsewhere—this will be made precise later on (Corollary 5.3). Thus, we work with
a Borel set � ∈ B(R2) that should be thought of as a support, and a second set
M ∈ B(R). Consider arbitrary paths (x1, y1), (x2, y2) ∈ � with x1 < x2; then we
call the pair (�,M):

(i) first-order left-monotone if y1 ≤ y2 whenever x2 /∈ M ,
(ii) first-order right-monotone if y2 ≤ y1 whenever x1 /∈ M .

We also need the following properties of � alone: considering three paths
(x, y1), (x, y2), (x

′, y′) ∈ � with y1 < y2, the set � is second-order left-monotone
(right-monotone) if y′ /∈ (y1, y2) whenever x < x′ (x > x′). The latter two proper-
ties are taken from [9] where they are simply called left- and right-monotonicity,
and all four properties are summarized in Figure 3.

The following result is the summary of Theorem 8.1 and Corollary 9.5 in the
body of the paper.
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FIG. 3. Forbidden configurations in the monotonicity properties.

THEOREM 1.3. There exist nondegenerate2 (�,M) ∈ B(R2) × B(R) which

are first-order right-monotone and second-order left-monotone such that
→
P is con-

centrated on � and
→
P |M×R is a martingale. Conversely, if (�,M) have those prop-

erties and P ∈ S(μ, ν) is a transport which is concentrated on � and P |M×R is a

martingale, then P = →
P .

The analogous statement, interchanging left and right, holds for
←
P .

With some additional work, these theorems will allow us to explain the geomet-
ric features apparent in Figures 1 and 2. To that end, let us first recall two pairs of
related couplings.

Our characterizations highlight the analogies between
→
P ,

←
P and the classical

Hoeffding–Fréchet and antitone couplings PHF,PAT ∈ �(μ,ν); see, for example,
[55], Section 3.1. Indeed, the latter have a minimality property similar to Theo-
rem 1.1, but for the first stochastic order instead of the convex-decreasing one.
Moreover, they are optimal transports for reward functions satisfying the classical
Spence–Mirrlees condition fxy > 0 and its reverse, and they are characterized by
what we called the first-order left- and right-monotonicity of their supports � (with
M =R).

The second pair of related couplings is given by the Left- and Right-Curtain
couplings PLC,PRC introduced in [9] where martingale transport is studied; that is,
the given marginals are in convex order and the transports are martingales. Indeed,

these couplings are special cases of
→
P and

←
P that arise when the marginals μ ≤cd ν

have the same barycenter—this corresponds to the fact that a supermartingale with
constant mean is a martingale and vice versa. In that case, the first-order properties
turn out to be irrelevant: in the shadow construction, the barycenter is constant,
and hence only the variance needs to be minimized; the condition for the reward
functions is fxyy > 0 (or < 0), and the second-order monotonicity property of �

alone describes the support. As we shall see, it is the interaction between the first-

2This is a minor notion detailed in Definition 7.5.
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and second-order properties as well as the set M that generates the rich structure

of
→
P and

←
P .

Turning to
→
P in Figure 1, the first observation is that there are only two types

of transport kernels. On the left,
→
P uses martingale kernels of the Left-Curtain

type: each point on the x-axis is mapped to two points on the y-axis, and any
two points x, x′ satisfy the condition of second-order left-monotonicity. On the
right, the transport is of Monge-type (each point x is mapped to a single point y)
and has the structure of an antitone coupling: any two paths intersect, which is
the first-order right-monotonicity property. On the strength of the same property,
points x in the portion to the right (thus not in M) can further be divided into two
groups—the left group is mapped to points y to the right of the destinations of

the martingale points, and vice versa. These facts about
→
P are true not only in our

example, but for arbitrary atomless marginals μ ≤cd ν; see Remark 9.6.

Let us now turn to
←
P in Figure 2. Similarly as before, we observe two types of

paths; the Right-Curtain and the Hoeffding–Fréchet kernels. However, the inter-
vals of martingale and deterministic transport alternate twice—there is no longer
a unique phase transition; in general, there can be countably many transitions. On
the other hand, the order of the intervals is now preserved by the transport—this
corresponds to the combination of the first- and second-order properties. These

two differences show that the geometries of
←
P and

→
P differ fundamentally and

suggest that one cannot obtain one coupling from the other by a transformation of
the marginals. By contrast, it is well known that PAT can be constructed from PHF
via the transformation (x, y) 	→ (x,−y), whereas PRC can be obtained from PLC
via (x, y) 	→ (−x,−y).

One common feature of
→
P and

←
P is that each consists of an optimal martin-

gale transport and an optimal (unconstrained) Monge–Kantorovich transport. That
turns out to be a general fact: a result that we call Extremal Decomposition (Corol-
lary 5.3) states that given an optimal supermartingale transport P for an arbitrary
reward function f , the restriction of P to M ×R is an optimal martingale transport
and the restriction to Mc ×R is an optimal Monge–Kantorovich transport between
its own marginals. (These marginals, however, are not easily determined a priori.)

1.2. Methodology and literature. Most of our results are based on the study of
the optimal transport problem (1.1). We analyze this problem for general, Borel-
measurable reward functions f , formulate a corresponding dual problem and es-
tablish strong duality; that is, absence of a duality gap and existence of dual op-
timizers. A formal application of Lagrange duality suggests to consider triplets
ϕ ∈ L1(μ), ψ ∈ L1(μ), h :R →R+ such that

(1.3) ϕ(x) + ψ(y) + h(x)(y − x) ≥ f (x, y), (x, y) ∈R
2

and define the dual value as inf{μ(ϕ) + ν(ψ)}, where the infimum is taken
over all triplets. Indeed, ϕ and ψ are Lagrange multipliers for the constraints μ
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and ν, whereas h(x)(y − x) with h ≥ 0 represents the supermartingale constraint
EP [Y |X] ≤ X. We refer to [44] for an intuitive discussion of the Lagrangian ap-
proach. While the corresponding duality for standard transport (without h) is valid
by the celebrated result of [48], Section 5, the dual problem for the supermartin-
gale case needs to be relaxed in three ways to avoid a duality gap and ensure dual
existence (Theorem 4.11). Namely, the range of h needs to be widened on parts of
the state space, the integrability of ϕ and ψ needs to be loosened, and the inequal-
ity (1.3) needs to be relaxed on paths (x, y) that are not used by any transport (see
Section 10.1 for pertinent counterexamples). In particular, it is important to clas-
sify all obstructions to supermartingale couplings; that is, “barriers” that cannot
be crossed (Proposition 3.2). Remarkably, there are no barriers beyond a specific
point as soon as the barycenters of the marginals are not identical: the state space
decomposes into one half-plane behaving as in the martingale case and another
half-plane behaving as in classical transport.

For the martingale transport, a related duality theory was provided in [11]. In
that case, the barycenters of the marginals agree and the compactness arguments
underlying the duality focus on controlling the convexity of certain functions.
While we shall greatly benefit from those ideas, the supermartingale case requires
us to control simultaneously first- and second-order properties (slope and convex-
ity) which gives rise to substantial differences on the technical side; in fact, it
turns out that controlling the slope necessitates a nontrivial increment between the
barycenters of μ and ν. The above-mentioned decomposition of the state space is
instrumental here.

Strong duality results in a monotonicity principle (Theorem 5.2) along the lines
of the c-cyclical monotonicity condition of classical transport (e.g., [2], Theo-
rem 2.13): a variational result linking the optimality of a transport to the pointwise

properties of its support. This principle is our main tool to study the couplings
→
P

and
←
P , parallel to the celebrated variational principle for the martingale case in [9]

which has pioneered the idea that concepts similar to cyclical monotonicity can be
developed beyond the classical transport setting. In the supermartingale transport
problem, the monotonicity principle has a novel form describing a pair (�,M) of
sets as in Theorem 1.3 rather than the support � alone. The set M enters the varia-
tional formulation by determining the class of competitors, much like it determines
which paths are subject to the first-order monotonicity condition, and turns out to

be fundamental in determining the geometries of
→
P and

←
P .

As a variational result, the monotonicity principle necessitates knowing a priori
that an optimal transport exists. We show that a supermartingale Spence–Mirrlees
function f is automatically continuous (Proposition 9.2) in a tailor-made topology
that is coarse enough to preserve weak compactness of S(μ, ν), and that yields
the required existence. This result, together with the purely geometric formulation
of the Spence–Mirrlees conditions (Definition 7.1), also improves the literature on
martingale transport [9, 38, 45] where a range of assumptions is imposed on f
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both to ensure existence and to express the Spence–Mirrlees condition in terms of
partial derivatives or a specific functional form; cf. Corollary 9.4. A second gener-
alization is that Theorem 1.2 remains true if the Spence–Mirrlees condition (1.2)
is satisfied in the nonstrict sense, except that the optimizer need not be unique.

With the appropriate notions in place, the proofs of Theorems 1.2 and 1.3 use
the monotonicity principle to analyze the interplay between the geometry of the set
M and the first- and second-order monotonicity and Spence–Mirrlees conditions.

The construction of
→
P and

←
P with the minimality property of Theorem 1.1 rests

on the precise understanding of the shadow of a single atom (Lemma 6.3) and
compactness arguments; a novel phenomenon is that the barycenter of the shadow
needs to be found through an optimization rather than being known a priori as in
the martingale case.

To the best of our knowledge, supermartingale couplings have not been specifi-
cally studied in the extant literature. However, as indicated above, martingale opti-
mal transport has received considerable attention since it was introduced in [6] and
[29]. In particular, [9, 38, 43–45] study optimal martingale transports between two
marginals for specific cost functions; the martingale Spence–Mirrlees condition in
the form fxyy > 0 appears for the first time in [38], generalizing the functional
form used in [9]. The nonstrict condition, as well as the geometric definition, are
novelties of this paper. We also remark that some of the technical developments
in Sections 7–8 provide simplifications with respect to previous works, when spe-
cialized to the martingale case.

While martingale (equality) constraint and classical (unconstrained) case can
occur as special cases of supermartingale transport, the more surprising discovery
is that the latter can be “built” from these two ingredients: the supermartingale
(inequality) constraint is decomposed into two extremal cases. This forms a com-
mon thread in this paper, starting with the analysis of the maximal barrier which
splits the plane into half-planes behaving like in these two cases, and thus allows
us to apply the compactness result of Proposition 4.4. The variational principle
decomposes the domain into points where the supermartingale constraint is felt as
an equality constraint and points where it is not felt at all, and correspondingly,
the Extremal Decomposition shows that any optimal supermartingale transport
can be split into a martingale-optimal one and an optimizer of an unconstrained
problem. Conversely, our study of optimal supermartingale transports for Spence–
Mirrlees reward functions in Sections 7–8 shows how the geometric properties of
Left-Curtain and Fréchet–Hoeffding couplings interact to create the patterns of the
canonical supermartingale couplings.

Martingale optimal transport is motivated by considerations of model uncer-
tainty in financial mathematics. If, in the financial context, dynamic hedging is re-
stricted by a no-shorting constraint, the dual problem is supermartingale transport.
Thus, it can be seen as a special case of the dual problem in [27] where general
portfolio constraints are studied. For background on Monge–Kantorovich trans-
port, we refer to [2, 55, 56, 60, 61]. Recently, a rich literature has emerged around
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martingale transport and model uncertainty; see [41, 53, 59] for surveys and, for
example, [1, 10, 15–18, 23, 27, 30–32, 50, 52, 62] for models in discrete time, [4,
14, 20, 21, 24–26, 36, 37, 40, 49, 51, 57, 58] for continuous time, and [3, 7, 8,
19, 22, 33–35, 39, 42, 46, 54] for related Skorokhod embedding and mimicking
problems.

The remainder of this paper is organized as follows. While Section 2 recalls
basic facts related to the convex-decreasing order, Section 3 contains a complete
description of the barriers to supermartingale couplings and more precisely, the
structure of S(μ, ν)-polar sets. After these preparations, Section 4 presents a com-
plete duality theory for Borel reward functions, and Section 5 formulates the re-

sulting monotonicity principle. Section 6 introduces the couplings
→
P and

←
P via

the shadow construction. In Section 7, we propose the Spence–Mirrlees conditions
for reward functions and show via the monotonicity principle that the associated
optimal transports are supported on sets (�,M) satisfying corresponding mono-
tonicity properties. Section 8 continues the analysis by showing that any coupling

supported on such sets must coincide with
→
P or

←
P , respectively. In Section 9, we

close the circle: Spence–Mirrlees functions are shown to admit optimal transports
and on the strength of the duality theory, that allows us to conclude the existence
of suitable sets (�,M). The main theorems stated in the Introduction then follow.
The concluding Section 10 collects a number of counterexamples.

2. Preliminaries. It will be useful to consider finite measures, not necessarily
normalized to be probabilities. Let μ,ν be finite measures on R with finite first mo-
ment. Extending the notation from the Introduction, we write �(μ,ν) for the set of
all couplings; that is, measures P on R

2 such that P ◦ X−1 = μ and P ◦ Y−1 = ν,
where (X,Y ) : R2 → R

2 is the identity. Moreover, S(μ, ν) is the subset of all
P ∈ �(μ,ν) which are supermartingales; that is,

∫
Y1A(X)dP ≤ ∫

X1A(X)dP

for all A ∈ B(R), and finally M(μ, ν) consist of all P ∈ �(μ,ν) satisfying this
condition with equality.

We say that μ and ν are in convex-decreasing order, or second stochastic or-
der, denoted μ ≤cd ν, if μ(φ) ≤ ν(φ) for any convex, nonincreasing function
φ : R → R. It then follows that μ and ν have the same total mass; moreover,
we shall use repeatedly that it suffices to check the inequality for functions φ of
linear growth. An alternative characterization of this order refers to the put (price)
function, defined by

pμ : R→R, pμ(t) :=
∫

(t − s)+μ(ds).

Writing bary(μ) := (
∫

x dμ)/μ(R) for the barycenter [with bary(μ) := 0 if μ = 0]
and ∂±pμ for the right and left derivatives, the following properties are easily
verified:
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(i) pμ is nonnegative, increasing,3 convex and ∂+pμ(t) − ∂−pμ(t) = μ({t}),
(ii) limt→−∞ pμ(t) = 0 and limt→∞ pμ(t) = ∞1μ�=0,

(iii) limt→∞{pμ(t) − μ(R)[t − bary(μ)]} = 0.

In particular, we may extend pμ continuously to R= [−∞,∞]. The following
result is classical; see, for example, [28], Theorem 2.58.

PROPOSITION 2.1. Let μ,ν be finite measures on R with finite first moment
and μ(R) = ν(R). The following are equivalent:

(i) μ ≤cd ν,
(ii) pμ ≤ pν ,

(iii) S(μ, ν) �= ∅,
(iv) there exists a stochastic kernel κ(x, dy) with finite mean such that∫

yκ(x, dy) ≤ x for all x ∈ R and ν = (μ ⊗ κ) ◦ Y−1, where μ ⊗ κ denotes the
product.

In all that follows, the statement μ ≤cd ν implicitly means that μ,ν are finite
measures on R with finite first moment. Moreover, such a pair and the correspond-
ing supermartingale optimal transport problem will be called proper if the barycen-
ters of μ and ν do not coincide. In the improper case, the problem degenerates to a
martingale optimal transport problem because any supermartingale with constant
mean is a martingale. Indeed, let us convene that μ and ν are in convex order, de-
noted μ ≤c ν, if μ(φ) ≤ ν(φ) for any convex function φ : R → R, and introduce
the symmetric potential function uμ : R → R by uμ(t) := ∫ |t − s|μ(ds). Given
μ ≤cd ν, the following are then equivalent: (a) bary(μ) = bary(ν), (b) μ ≤c ν,
(c) uμ ≤ uν , (d) M(μ, ν) �= ∅, (e) the kernel κ in (iv) can be chosen with∫

yκ(x, dy) = x for all x ∈ R.

3. Barriers and polar sets. We fix μ ≤cd ν throughout this section. Our first
aim is to characterize all points x ∈ R which cannot be crossed by any supermartin-
gale transport P ∈ S(μ, ν).

DEFINITION 3.1. A point x ∈R is called a barrier if Y ≤ x P -a.s. on {X ≤ x}
and Y ≥ x P -a.s. on {X ≥ x}, for all P ∈ S(μ, ν).

We may note that ±∞ are always barriers. The following result not only shows
how barriers can be described as points where the put functions touch, but also
introduces a particular barrier x∗ which divides the real line into two parts: To
the left of x∗, the supermartingale transport problem is in fact just a martingale
transport problem. To the right of x∗, we have a proper supermartingale transport

3Throughout this paper, increasing means nondecreasing.
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problem and there are no nontrivial barriers. For example, in Figure 1, the point
x∗ is the left boundary of the support of ν, whereas in Figure 2 it indeed splits the
supports of μ and ν into two parts. The convention sup∅ = −∞ is used.

PROPOSITION 3.2. Define x∗ := sup{x ∈R : pμ(x) = pν(x)} ∈ R. Then:

(i) x∗ is a barrier and pμ(x∗) = pν(x
∗),

(ii) a point x ∈ [−∞, x∗) is a barrier if and only if pμ(x) = pν(x),
(iii) if x ∈ (x∗,∞] is a barrier, then μ(x,∞) = ν(x,∞) = 0.

Moreover, x∗ is the maximal barrier x ∈ R such that P |{X<x} is a martingale
transport for some (and then all) P ∈ S(μ, ν).

The reverse implication in (iii) is almost true: a point x with μ(x,∞) =
ν(x,∞) = 0 is not crossed by any transport. However, if μ has an atom at x,
this mass may be transported to (−∞, x) and then x does not satisfy our definition
of a barrier which is chosen so that any mass at the barrier remains invariant.

Before reporting the proof in Section 3.1, we use the above result to characterize
the polar sets and the irreducible components.

DEFINITION 3.3. The pair μ ≤cd ν is irreducible if the set I = {pμ < pν}
is connected and μ(I) = μ(R). In this situation, let J be the union of I and any
endpoints of I that are atoms of ν; then (I, J ) is the domain of (μ, ν).

This definition coincides with the notion of [9, 11] in the context of martin-
gale transport. More precisely, for x < x∗, we have pμ(x) = pν(x) if and only if
uμ(x) = uν(x).

In the general case, the supermartingale transport problem will be decomposed
into at most countably many irreducible components. We recall that a set is called
polar for a family P of measures if it is P -null for all P ∈ P .

PROPOSITION 3.4. Let μ ≤cd ν, let I0 = (x∗,∞) and let (Ik)1≤k≤N be the
(open) components of {pμ < pν} ∩ (−∞, x∗), where N ∈ {0,1, . . . ,∞}.

(i) Set I−1 = R \ ⋃
k≥0 Ik and μk = μ|Ik

for k ≥ −1, so that μ = ∑
k≥−1 μk .

Then there exists a unique decomposition ν = ∑
k≥−1 νk such that

μ−1 = ν−1 and μ0 ≤cd ν0 and μk ≤c νk for all k ≥ 1.

Moreover, this decomposition satisfies Ik = {pμk
< pνk

} for all k ≥ 0; that is, each
such pair (μk, νk) is irreducible. Finally, any P ∈ S(μ, ν) admits a unique de-
composition P = ∑

k≥−1 Pk such that P0 ∈ S(μ0, ν0) and Pk ∈ M(μk, νk) for all
k �= 0.
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(ii) Let B ⊆ R
2 be a Borel set. Then B is S(μ, ν)-polar if and only if there exist

a μ-nullset Nμ and a ν-nullset Nν such that

B ⊆ (Nμ ×R) ∪ (R× Nν) ∪
(

 ∪ ⋃

k≥0

Ik × Jk

)c

,

where 
 = {(x, x) ∈ R
2 : x ∈ R} is the diagonal and Jk is constructed from Ik as

in Definition 3.3.

3.1. Proofs of Propositions 3.2 and 3.4. We begin with the proof of Proposi-
tion 3.2, stated through a sequence of lemmas. We may assume that μ and ν are
probability measures.

LEMMA 3.5. Let x ∈R. If pμ(x) = pν(x), then x is a barrier and the equality
EP [X1X<x] = EP [Y1X<x] holds for all P ∈ S(μ, ν).

PROOF. Let pμ(x) = pν(x) and let E[·] be the expectation associated
with an arbitrary P ∈ S(μ, ν). Using E[Y |X] ≤ X and Jensen’s inequality,
(x − X)+ ≤ (x − E[Y |X])+ ≤ E[(x − Y)+|X], and since pμ(x) = pν(x) means
that E[(x − X)+] = E[(x − Y)+], it follows that (x − X)+ = E[(x − Y)+|X].

As a first consequence, E[(x − Y)+1X≥x] = E[(x − X)+1X≥x] = 0 and
hence Y ≥ x P -a.s. on {X ≥ x}. A second consequence is E[(x − Y)1X≤x] ≤
E[(x − Y)+1X≤x] = E[(x − X)+1X≤x]. Since E[Y |X] ≤ X implies that
E[(x − Y)1X≤x] ≥ E[(x − X)1X≤x] = E[(x − X)+1X≤x], it follows that
E[(x − Y)1X≤x] = E[(x − Y)+1X≤x], and thus Y ≤ x P -a.s. on {X ≤ x}. This
completes the proof of the barrier property.

The above inequalities also show that E[(x −Y)1X≤x] = E[(x −X)1X≤x], and
hence E[Y1X≤x] = E[X1X≤x]. To infer the second assertion, it remains to note
that the barrier property implies that Y = x P -a.s. on {X = x}. �

COROLLARY 3.6. We have

pμ

(
x∗) = pν

(
x∗)

and EP [X1X<x∗] = EP [Y1X<x∗]
for all P ∈ S(μ, ν).

PROOF. The claim is trivial if x∗ = −∞. Otherwise, the first claim follows
from the fact that pμ and pν are continuous, and then the second claim follows
from Lemma 3.5. �

LEMMA 3.7. Let x ∈ R be a barrier. The following are equivalent:

(i) EP [X1X<x] = EP [Y1X<x] for some (and then all) P ∈ S(μ, ν).
(ii) P |{X<x} is a martingale transport for some (and then all) P ∈ S(μ, ν).

(ii′) P |{X≤x} is a martingale transport for some (and then all) P ∈ S(μ, ν).
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PROOF. If (i) holds for some P ∈ S(μ, ν), then (ii) holds for the same P since
a supermartingale with constant mean is a martingale, and the converse holds as
any martingale has constant mean. We complete the equivalence of (i) and (ii) by
showing that if (i) holds for one P ∈ S(μ, ν), it necessarily holds for all elements
of S(μ, ν). The cases x = ±∞ are clear, so let x ∈ R. Let P ∈ S(μ, ν) and let
ν′ be the second marginal of P ′ := P |{X<x}. As x is a barrier, we have ν′ = ν on
(−∞, x). If P̄ ∈ S(μ, ν) is arbitrary and P̄ ′, ν̄′ are defined analogously, we have
ν̄′ = ν = ν′ on (−∞, x) by the same reasoning. But then also ν′({x}) = ν̄′({x}),
since this is the remaining mass transported from (−∞, x): we have ν′({x}) =
μ(−∞, x) − ν′(−∞, x) = μ(−∞, x) − ν̄′(−∞, x) = ν̄′({x}). As a result, ν̄ ′ = ν′
on (−∞, x], and P̄ ′ satisfies (i) whenever P does. Finally, (ii) implies (ii′) because
x is a barrier, and the reverse is clear. �

LEMMA 3.8. Let x ∈ R be a barrier such that P |{X<x} is a martingale trans-
port for some P ∈ S(μ, ν). Then pμ(x) = pν(x).

PROOF. The cases x = ±∞ are clear, so let x ∈ R. The martingale property
yields that pμ(x) = E[(x − X)1X<x] = E[(x − Y)1X<x]. Since Y ≤ x P -a.s. on
{X < x} and {Y < x} ⊆ {X < x} P -a.s., E[(x − Y)1X<x] = E[(x − Y)+1X<x] ≥
E[(x − Y)+1Y<x] = pν(x). Thus, pμ(x) ≥ pν(x). As the converse inequality is
always true, we deduce that pμ(x) = pν(x). �

The following completes the proof of Proposition 3.2(ii).

COROLLARY 3.9. Let x ∈ [−∞, x∗] be a barrier. Then pμ(x) = pν(x).

PROOF. We may assume that x ∈ R which entails that x∗ > −∞. Lemma 3.5,
Corollary 3.6 and Lemma 3.7 show that the restriction of any P ∈ S(μ, ν) to
{X < x∗} is a martingale transport. As x ≤ x∗, the same holds for the restriction to
{X < x}, and now Lemma 3.8 applies. �

LEMMA 3.10. If x̄ ∈ (x∗,∞] is a barrier, then μ(x̄,∞) = ν(x̄,∞) = 0.

PROOF. The case x̄ = ∞ is clear. Let x̄ ∈ (x∗,∞) be a barrier and suppose
for contradiction that μ(x̄,∞) > 0 or ν(x̄,∞) > 0.

Case 1: ν(x̄,∞) > 0. We contradict the barrier property with an element of
S(μ, ν) transporting mass from (−∞, x̄) to (x̄,∞), and vice versa.

Let P ∈ S(μ, ν) be arbitrary and let P = μ⊗ κ be a disintegration such that for
all x < x̄, we have bary(κ(x)) ≤ x and κ(x, dy) is concentrated on (−∞, x̄] but
not on {x̄}; these choices are possible due to the barrier and the supermartingale
property.

For each x ∈ (−∞, x̄), let ε(x) ∈ [0,1] be the largest number such that

κ ′(x) := (
1 − ε(x)

)
κ(x)

∣∣
(−∞,x̄) + ε̃(x)ν|(x̄,∞) + κ(x)|{x̄}
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satisfies bary(κ ′(x)) ≤ x; here, ε̃(x) is the unique constant such that κ ′(x) is a
probability measure. This defines a stochastic kernel with the properties

κ ′(x){x̄} = κ(x){x̄} for all x,

κ ′(x)[x̄,∞) > κ(x)[x̄,∞) if ε(x) > 0.

Moreover, ε > 0 on a set of positive μ-measure, as otherwise P |{X<x̄} is a martin-
gale transport which would contradict x̄ > x∗ (Lemma 3.8). Let ν2 be the restric-
tion to (x̄,∞) of the second marginal of μ|(−∞,x̄) ⊗ κ ′. By truncating the above
function ε(·) at some positive constant ε̄, we may assume that ν2 ≤ ν while re-
taining the other properties. Thus, we can define a measure μ2 ≤ μ by taking the
preimage of ν2 under P [obtained by disintegrating P = ν(dy) ⊗ κ̂(y, dx) and
taking μ2 to be the first marginal of ν2(dy) ⊗ κ̂(y, dx)]. Moreover, let ν1 be the
restriction to (−∞, x̄) of the second marginal of μ|(−∞,x̄) ⊗ κ − μ|(−∞,x̄) ⊗ κ ′.
Then c := ν1(R) = μ2(R) and by construction,

μ|(−∞,x̄) ⊗ κ ′ + (μ|[x̄,∞) − μ2) ⊗ κ + c−1μ2 ⊗ ν1

is an element of S(μ, ν). Since μ(−∞, x̄) > 0 and ν(x̄,∞) > 0, it transports mass
across x̄, contradicting that x̄ is a barrier.

Case 2: μ(x̄,∞) > 0 and ν(x̄,∞) = 0. Note that in this case, ν|[x̄,∞) is con-
centrated at x̄ and the entire mass μ(x̄,∞) > 0 is transported to that atom by any
P ∈ S(μ, ν), in addition to any mass coming from (−∞, x̄]. We shall contradict
the barrier property by constructing an element of S(μ, ν) which transports mass
from (x̄,∞) to (−∞, x̄); this will be balanced by moving appropriate mass from
(−∞, x̄) to {x̄}.

Let P ∈ S(μ, ν) be arbitrary and let κ be as above. For each x ∈ (−∞, x̄), let
ε(x) ∈ [0,1] be the largest number such that

κ ′(x) := (
1 − ε(x)

)
κ(x)

∣∣
(−∞,x̄) + ε̃(x)ν|{x̄}

satisfies bary(κ ′(x)) ≤ x; again, ε̃(x) is the unique constant such that κ ′(x) is a
probability measure. This defines a stochastic kernel with

κ ′(x){x̄} ≥ κ(x){x̄} for all x, κ ′(x){x̄} > κ(x){x̄} if ε(x) > 0,

and again, ε > 0 on a set of positive μ-measure. Let ν2 be the restriction to {x̄} of
the second marginal of μ|(−∞,x̄) ⊗ κ ′ − μ|(−∞,x̄) ⊗ κ . After truncating ε(·), we
again have ν2 ≤ ν; recall that P transports the mass μ(x̄,∞) > 0 to x̄. Continuing
the construction as above, the latter property shows that μ2(x̄,∞) > 0, and the
barrier property is again contradicted. �

PROOF OF PROPOSITION 3.2. Proposition 3.2 is now a consequence of
Lemma 3.5, Corollary 3.6, Corollary 3.9 and Lemma 3.10. �
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PROOF OF PROPOSITION 3.4(i). According to Proposition 3.2, we face a pure
martingale transport problem on (−∞, x∗]; in particular, we may apply the de-
composition result of [9] on this part of the state space to obtain νk and Pk for
k ≥ 1. Since x∗ is itself a barrier by Proposition 3.2, Theorem 8.4, the only possi-
ble choice for ν0 is ν0 = ν|(x∗,∞) + [μ(x∗,∞) − ν(x∗,∞)]δx∗ , and this measure
satisfies μ0 ≤cd ν0. �

We proceed toward the proof of the second part of Proposition 3.4.

LEMMA 3.11. If μ ≤cd ν is irreducible, the �(μ,ν)-polar sets and the
S(μ, ν)-polar sets coincide.

PROOF. If μ and ν have the same barycenter, then S(μ, ν) = M(μ, ν) and
this is the result of [11], Corollary 3.4. Thus, we may assume that (μ, ν) is proper.
By Proposition 3.2, the associated domain (I, J ) satisfies I = (x∗,∞) for some
x∗ ∈ [−∞,∞), while J = I if ν({x∗}) = 0 (including the case x∗ = −∞) and
J = [x∗,∞) if ν({x∗}) > 0.

Since S(μ, ν) ⊆ �(μ,ν), it suffices to show that for any π ∈ �(μ,ν) there
exists P ∈ S(μ, ν) such that P � π . Let us show more generally that

for any measure π on R
2 with marginals π1 ≤ μ and π2 ≤ ν

there exists P ∈ S(μ, ν) such that P � π .

While π is necessarily supported by I × J , we prove the claim under the addi-
tional condition that π is concentrated on a compact rectangle K × L ⊂ I × J .
This entails no loss of generality: a general π may be decomposed into a sum
π = ∑

n πn of measures satisfying this condition, and if P n are the corresponding
supermartingales, P = ∑

n 2−nP n satisfies the claim.
The definition of (I, J ) implies that ν assigns positive mass to any neighbor-

hood of the lower endpoint x∗ of J . More precisely, we can find a compact set
B ⊂ J , located entirely to the left of K ⊂ I , such that ν(B) > 0. [If ν({x∗}) > 0 we
can simply take B = {x∗}.] Consider a disintegration π = π1 ⊗ κ where κ(x, dy)

is concentrated on L for all x ∈ K . We introduce another stochastic kernel κ ′ of
the form

κ ′(x, dy) = κ(x, dy) + ε(x)ν(dy)|B
c(x)

.

Here, c(x) ≥ 1 is the normalizing constant such that κ ′(x, dy) is a stochastic
kernel. Moreover, ε(x) := 0 for x such that bary(κ(x)) ≤ x, whereas for x with
bary(κ(x)) > x we let ε(x) be the unique positive number such that bary(κ ′(x)) =
x—this number exists by the intermediate value theorem; note that B is located to
the left of x ∈ K . By construction,

π ′ := ν(B)π1 ⊗ κ ′
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is a supermartingale with π ′ � π and its marginals satisfy π ′
1 ≤ π1 ≤ μ as well as

π ′
2 ≤ ν; the latter is due to π1(R) ≤ μ(R) = 1 and κ ′(x) ≤ ν(B)−1ν|B + κ(x) and

κ(x) being concentrated on Bc. We also note that

(3.1) π ′ is concentrated on a quadrant of the form [k,∞)2

with [k,∞) ⊆ J ; here, k ∈ R is determined by the lower bound of the set B . We
shall complete the proof by constructing P ∈ S(μ, ν) such that P � π ′.

(i) We first consider the case where ν({x∗}) = 0, and hence I = J = (x∗,∞)

and k > x∗. Since pν −pμ is continuous, strictly positive on I and limt→∞ pν(t)−
pμ(t) = μ(R)[bary(ν)− bary(μ)] > 0, we see that pν −pμ is uniformly bounded
away from zero on [k,∞). On the other hand, pπ ′

2
− pπ ′

1
is uniformly bounded on

[k,∞) since

lim
t→∞pπ ′

2
(t) − pπ ′

1
(t) = π ′

1(R)
[
bary

(
π ′

1
) − bary

(
π ′

2
)]

< ∞.

As a result, there exists ε > 0 such that pμ − εpπ ′
1
≤ pν − εpπ ′

2
on [k,∞), but

then also on R because pπ ′
1
= pπ ′

2
= 0 outside of [k,∞) due to (3.1). Noting that

this inequality may also be stated as pμ−επ ′
1
≤ pν−επ ′

2
, Proposition 2.1 shows that

there exists some P ′ ∈ S(μ− επ ′
1, ν − επ ′

2), and we complete the proof by setting
P := P ′ + επ ′

1(R)−1π ′.
(ii) In the case ν({x∗}) > 0, we need to argue differently that there exists ε > 0

such that pμ − εpπ ′
1
≤ pν − εpπ ′

2
on [k,∞). By enlarging [k,∞), we may as-

sume that k = x∗ is the left endpoint of J . As μ(I) = μ(R) = ν(J ), we have
∂+pμ(x∗) = ∂+pμ(x∗) − ∂−pμ(x∗) = μ({x∗}) = 0, and similarly

∂+pπ ′
1

(
x∗) = 0, ∂+pπ ′

2

(
x∗) = π ′

2
({

x∗})
, ∂+pν

(
x∗) = ν

({
x∗})

> 0.

Since ν({x∗}) ≥ π ′
2({x∗}), it then follows that 0 �= ∂+(pν − pμ)(x∗) ≥

∂+(pπ ′
2
− pπ ′

1
)(x∗). The existence of the desired ε > 0 follows and the rest of

the argument is as in (i). �

PROOF OF PROPOSITION 3.4(ii). By the decomposition in Proposition 3.4(i)
and Lemma 3.11, a Borel set B ⊆ R

2 is S(μ, ν)-polar if and only if B ∩ (Ik × Jk)

is �(μk, νk)-polar for all k ≥ 0 and B ∩ 
 is P−1-null. It remains to apply the
result of [5], Proposition 2.1, for each k ≥ 0: a Borel set Bk is �(μk, νk)-polar if
and only if Bk ⊆ (Nμk

×R) ∪ (R× Nνk
) for nullsets Nμk

and Nνk
. �

4. Duality theory. In this section, we introduce and analyze a dual problem
for supermartingale optimal transport. We shall prove that this problem admits an
optimizer and that there is no duality gap.
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4.1. Integration on a proper irreducible component. We first introduce the
notion of integrability that will be used for the dual elements. Let μ ≤cd ν be
proper and irreducible with domain (I, J ), and let χ : J → R be a concave in-
creasing function. Since χ+ has linear growth, μ(χ) and ν(χ) are well defined
in [−∞,∞). In what follows, we give a meaningful definition of the difference
μ(χ)− ν(χ) in cases where both terms are infinite. We write χ ′ for the left deriva-
tive of χ , with the convention that χ ′(∞) := limt→∞ χ ′(t) = inft∈I χ ′(t), and
−χ ′′ for the second derivative measure of the convex function −χ on I . Finally,
recall that I = (x∗,∞). If ν has an atom at x∗, then χ may have a jump at x∗ and
we denote its magnitude by 
χ(x∗) := χ(x∗+) − χ(x∗) ∈ R+.

LEMMA 4.1. Let μ ≤cd ν be proper and irreducible with domain (I, J ), let
χ : J → R be a concave increasing function, and let P = μ ⊗ κ be an arbitrary
element of S(μ, ν). Then

(μ − ν)(χ) :=
∫
I

[
χ(x) −

∫
J

χ(y)κ(x, dy)

]
μ(dx)

= χ ′(∞)
[
bary(μ) − bary(ν)

] +
∫
I
(pμ − pν)dχ ′′ + 
χ

(
x∗)

ν
({

x∗})
.

In particular, the definition of (μ − ν)(χ) ∈ [0,∞] does not depend on P .

The proof follows the lines of [11], Lemma 4.1, and is omitted. Our next aim is
to define expressions of the form μ(ϕ) + ν(ψ) in a situation where the individual
integrals are not necessarily finite. We continue to assume that μ ≤cd ν is proper
and irreducible with domain (I, J ).

DEFINITION 4.2. Let ϕ : I → R and ψ : J → R be Borel functions. If there
exists a concave increasing function χ : J → R such that ϕ − χ ∈ L1(μ) and
ψ + χ ∈ L1(ν), we say that χ is a moderator for (ϕ,ψ) and set

μ(ϕ) + ν(ψ) := μ(ϕ − χ) + ν(ψ + χ) + (μ − ν)(χ) ∈ (−∞,∞].
(This value is independent of the choice of χ by an argument similar to [11],
Remark 4.8.) We denote by Lci(μ, ν) the space of all pairs (ϕ,ψ) which admit a
moderator χ such that (μ − ν)(χ) < ∞.

4.2. Closedness on a proper irreducible component. In this section, we in-
troduce the dual problem for a proper and irreducible pair μ ≤cd ν with domain
(I, J ). It will be convenient to work with a nonnegative reward function f and
alleviate this restriction later on (Remark 4.12).

DEFINITION 4.3. Let f : I × J → [0,∞]. We denote by Dci,pw
μ,ν (f ) the set of

all Borel functions (ϕ,ψ,h) :R→ R×R×R+ with (ϕ,ψ) ∈ Lci(μ, ν) and

ϕ(x) + ψ(y) + h(x)(y − x) ≥ f (x, y), (x, y) ∈ I × J.
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We emphasize that the above inequality is stated in the pointwise (“pw”) sense.
The following is the key result of this section. We stress that its assertion fails if
(μ, ν) is not proper; cf. Section 10.1 for a counterexample.

PROPOSITION 4.4. Given f,fn : I ×J → [0,∞] such that fn → f pointwise
and (ϕn,ψn,hn) ∈ Dci,pw

μ,ν (fn) satisfying supn μ(ϕn) + ν(ψn) < ∞, there exist

(ϕ,ψ,h) ∈ Dci,pw
μ,ν (f ) such that μ(ϕ) + ν(ψ) ≤ lim inf

n
μ(ϕn) + ν(ψn).

For the course of the proof, we abbreviate Dci(f ) := Dci,pw
μ,ν (f ).

LEMMA 4.5. Let (ϕ,ψ,h) ∈ Dci(0). There exists a moderator χ : J → R

for (ϕ,ψ) such that χ ≤ ϕ on I and −χ ≤ ψ on J . In particular, we have
(μ − ν)(χ) ≤ μ(ϕ) + ν(ψ).

PROOF. Let P = μ ⊗ κ be a disintegration of some P ∈ S(μ, ν) and let
(ϕ,ψ,h) ∈ Dci(0). With a careful application of Fubini’s theorem, one can ver-
ify that

(4.1)
∫∫

h(x)(y − x)κ(x, dy)μ(dx) =
∫

h(x)
(
bary

(
κ(x)

) − x
)
μ(dx) > −∞.

[This is quite different from the property that h(X)(Y − X) ∈ L1(P ) which may
fail.] A second application of Fubini’s theorem then yields that

P
[
ϕ(X) + ψ(Y ) + h(X)(Y − X)

]
= μ(ϕ) + ν(ψ) +

∫∫
h(x)(y − x)κ(x, dy)μ(dx) ∈ R.

(4.2)

The concave and increasing function

χ(y) := inf
x∈I

[
ϕ(x) + h(x)(y − x)

]
, y ∈ J

satisfies χ ≤ ϕ on I and −χ ≤ ψ on J , and one can check that χ is finite-valued
as a consequence of (ϕ,ψ) ∈ Lci(μ, ν). Set ϕ̄ := ϕ − χ ≥ 0 and ψ̄ := ψ + χ ≥ 0.
By the first part of the proof, the iterated integral of ϕ(x) + ψ(y) + h(x)(y − x)

with respect to κ and μ is finite. The function

(4.3) ϕ̄(x) + ψ̄(y) + [
χ(x) − χ(y)

] + h(x)(y − x)

is identical to the former; therefore, the iterated integral of (4.3) is again finite. For
fixed x ∈ I , all four terms in (4.3) are bounded from below by linearly growing
functions. It follows that for μ-a.e. x ∈ I , the integral with respect to κ(x, dy) can
be computed term-by-term, which yields

ϕ̄(x) +
∫

ψ̄(y)κ(x, dy) +
∫ [

χ(x) − χ(y)
]
κ(x, dy) + h(x)

(
bary

(
κ(x)

) − x
)
.
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The first three terms are nonnegative, and the last term is known to be μ-integrable
by the first part of the proof. Thus, we may again integrate term-by-term with
respect to μ. In conclusion, the iterated integral of (4.3), which was already deter-
mined to be finite, may also be computed term-by-term. In particular, we deduce
that μ(ϕ̄) < ∞, ν(ψ̄) < ∞ and (μ− ν)(χ) < ∞, showing that (ϕ̄, ψ̄) ∈ Lci(μ̄, ν̄)

with concave moderator χ , and μ(ϕ) + ν(ψ) = μ(ϕ̄) + ν(ψ̄) + (μ − ν)(χ) ≥
(μ − ν)(χ) as desired. �

Our last tool for the proof of Proposition 4.4 is a compactness principle for con-
cave increasing functions. We mention that the conclusion fails if the pair μ ≤cd ν

is not proper (see also Section 10.1): a nontrivial difference between the barycen-
ters is crucial to control the first derivatives.

PROPOSITION 4.6. Let a = bary(μ) and let χn : J → R be concave increas-
ing functions such that χn(a) = 0 and supn≥1(μ − ν)(χn) < ∞. There exists a
subsequence χnk

which converges pointwise on J to a concave increasing function
χ : J →R such that (μ − ν)(χ) ≤ lim infk(μ − ν)(χnk

).

PROOF. By our assumption, (μ − ν)(χn) is bounded uniformly in n. Since
bary(μ) > bary(ν), Lemma 4.1 yields a constant C such that 0 ≤ χ ′

n(∞) ≤ C

and 0 ≤ ∫
I (pμ − pν)dχ ′′

n ≤ C, as well as 0 ≤ 
χn(x
∗) ≤ C in the case where

ν({x∗}) > 0. For a suitable subsequence χnk
, we have

lim
k

χ ′
nk

(∞) = lim inf
n

χ ′
n(∞),(4.4)

and similarly lim
k


χnk

(
x∗) = lim inf

n

χn

(
x∗)

if ν
({

x∗})
> 0.(4.5)

Without loss of generality, we assume that nk = k. Given y0 ∈ I , we recall from
the proof of Lemma 3.11 that pμ − pν is strictly negative and uniformly bounded
away from zero on [y0,∞) ⊆ (x∗,∞) = I , and deduce that 0 ≤ −χ ′′

n [y0,∞) ≤ C′
for a constant C′. Since the (left) derivative χ ′

n is decreasing, it follows that
χ ′

n(y) = −χ ′′
n [y,∞) + χ ′

n(∞) ≤ C′ + C for all y ∈ [y0,∞). Thus, the Lipschitz
constant of χn is bounded on compact subsets of I , uniformly in n. Recalling that
χn(a) = 0, the Arzela–Ascoli theorem then yields a function χ : I → R such that
χn → χ locally uniformly, after passing to a subsequence. Clearly, χ is concave
and increasing, and integration by parts shows that −χ ′′

n converges to the second
derivative measure −χ ′′ associated with χ , in the sense of weak convergence rela-
tive to the compactly supported continuous functions on I . Approximating pμ−pν

from above with compactly supported continuous functions gn, we then see that∫
I (pμ − pν)dχ ′′ = limm limn

∫
I gm dχ ′′

n ≤ lim infn→∞
∫
I (pμ − pν)dχ ′′

n . Using
also (4.4), (4.5) and the representation in Lemma 4.1, we obtain (μ − ν)(χ) ≤
lim infn→∞(μ − ν)(χn) as desired. �
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PROOF OF PROPOSITION 4.4. We may assume that lim infn μ(ϕn)+ ν(ψn) =
lim supn μ(ϕn) + ν(ψn), by passing to a subsequence. Since (ϕn,ψn,hn) ∈
Dci(fn) and fn ≥ 0, we can introduce the associated moderators χn as in
Lemma 4.5. We may assume that χn(a) = 0, where a := bary(μ) ∈ I , by translat-
ing ϕn and ψn appropriately. After passing to a subsequence, Proposition 4.6 then
yields a pointwise limit χ : J → R. Now, (ϕ,ψ,h) ∈ Dci(f ) can be constructed
using Komlos’ lemma and concave-increasing envelopes, following the ideas in
the proof of [11], Proposition 5.2. �

4.3. Duality on a proper irreducible component. Recall that the pair μ ≤cd ν

is proper and irreducible. Next, we define the primal and dual values.

DEFINITION 4.7. Let f :R2 → [0,∞] and write P(f ) for the outer integral.
The primal and dual problems are respectively given by

Sμ,ν(f ) := sup
P∈S(μ,ν)

P (f ), Ipw
μ,ν(f ) := inf

(ϕ,ψ,h)∈Dci,pw
μ,ν (f )

μ(ϕ) + ν(ψ).

A function f : R2 → [0,∞] is upper semianalytic if the sets {f ≥ c} are ana-
lytic for all c ∈ R, where a subset of R2 is called analytic if it is the (forward) image
of a Borel subset of a Polish space under a Borel mapping. Any Borel function is
upper semianalytic; we refer to [13] for further background.

PROPOSITION 4.8. Let μ ≤cd ν be proper and irreducible, f :R2 → [0,∞]:
(i) If f is upper semianalytic, then Sμ,ν(f ) = Ipw

μ,ν(f ) ∈ [0,∞].
(ii) If Ipw

μ,ν(f ) < ∞, there exists a dual optimizer (ϕ,ψ,h) ∈ Dci,pw
μ,ν (f ).

PROOF. The inequality “≤” in (i) follows from (4.1) and (4.2). The converse
inequality as well as (ii) follow from Proposition 4.4, using the Hahn–Banach and
Choquet theorems along the lines of [11], Theorem 6.2. �

4.4. Global duality. In this section, we formulate a global duality result. We
shall be brief since it is little more than the combination of the preceding results
for the proper irreducible case and the known martingale case; however, it requires
some notation.

Let μ ≤cd ν be probability measures and let f : R2 → [0,∞] be Borel. As
in the irreducible case, the primal problem is Sμ,ν(f ) := supP∈S(μ,ν) P (f ). For
the dual problem, we first recall from Proposition 3.4 the decompositions μ =∑

k≥−1 μk and ν = ∑
k≥−1 νk , where μk ≤cd νk is irreducible with domain (Ik, Jk)

for k ≥ 0 and μ−1 = ν−1; moreover, P−1 is the unique element of S(μ−1,μ−1).
So far, we have focused on a proper pair (μ0, ν0) and its dual problem. The pairs
(μk, νk) for k ≥ 1 are in convex order (μk and νk have the same barycenter) and the
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corresponding martingale optimal transport has an analogous duality theory. While
the arguments are different, the preceding results hold true if “convex-increasing”
is replaced by “convex” and the function h is allowed to take values in R instead
of R+; we refer to [11] for the proofs. The spaces corresponding to Lci(μ, ν) and
Dci

μ,ν(f ) are denoted Lc(μ, ν) and Dc
μ,ν(f ), respectively.

Let (ϕ,ψ,h) :R → R×R×R be Borel. Since P−1 is concentrated on the diag-
onal 
, the dual problem associated to (μ−1, ν−1) is trivially solved, for instance,
by setting ϕ(x) = f (x, x) and ψ = h = 0. To simplify the notation below, we set
Lc

μ−1,ν−1
:= {(ϕ,ψ) : ϕ + ψ ∈ L1(μ−1)} and μ−1(ϕ) + ν−1(ψ) := μ−1(ϕ + ψ)

for (ϕ,ψ) ∈ Lc
μ−1,ν−1

. Moreover, Dc,pw
μ−1,ν−1(f ) is the set of all (ϕ,ψ,h) with

(ϕ,ψ) ∈ Lc
μ−1,ν−1

and ϕ(x) + ψ(x) ≥ f (x, x) for all x ∈ I−1. Finally, we set
Sμ−1,ν−1(f ) := P−1(f ) ≡ μ−1(f (X,X)).

We can now introduce the domain for the global dual problem which will be
stated in the quasi-sure sense. A property is said to hold S(μ, ν)-quasi surely, or
S(μ, ν)-q.s. for short, if it holds P -a.s. for all P ∈ S(μ, ν).

DEFINITION 4.9. Let L(μ,ν) be the set of all Borel functions ϕ,ψ : R →
R such that (ϕ,ψ) ∈ Lci(μ0, ν0) and (ϕ,ψ) ∈ Lc(μk, νk) for all k �= 0 and∑

k≥−1 |μk(ϕ) + νk(ψ)| < ∞. For (ϕ,ψ) ∈ L(μ,ν), we define

μ(ϕ) + ν(ψ) := ∑
k≥−1

μk(ϕ) + νk(ψ) < ∞,

and Dμ,ν(f ) is the set of all Borel functions (ϕ,ψ,h) :R→R×R×R such that
(ϕ,ψ) ∈ L(μ,ν), h = 0 on I−1, h ≥ 0 on I0 and

ϕ(X) + ψ(Y ) + h(X)(Y − X) ≥ f (X,Y ) S(μ, ν)-q.s.

Finally, Iμ,ν(f ) := inf(ϕ,ψ,h)∈Dμ,ν(f ) μ(ϕ) + ν(ψ) ∈ [0,∞].

We emphasize that h is required to be nonnegative on I0 but can take arbitrary
real values outside of I0 and I−1. It is shown in Section 10.1 that nonnegativity
cannot be enforced everywhere.

Before making precise the correspondence between this quasi-sure formula-
tion and the individual components, recall that the intervals Jk may overlap at
their endpoints, so we have to avoid counting certain things twice. Indeed, let
(ϕk,ψk,hk) ∈ Dci,pw

μk,νk (f ) for k = 0 and (ϕk,ψk,hk) ∈ Dc,pw
μk,νk (f ) for k ≥ 1; we

claim that ψk can be normalized such that

(4.6) ψk = 0 on Jk \ Ik.

Indeed, if Jk contains one of its endpoints, it is an atom of ν, and hence ψk is finite
on Jk \ Ik . If k ≥ 1, we can translate ψk by an affine function and translate ϕk and
hk accordingly. In the supermartingale case k = 0, we recall from Proposition 3.4
that I0 = (x∗,∞), so that J0 can have at most one endpoint. As a result, we may
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obtain the normalization by translating ψ0 with a constant, which can be com-
pensated by translating ϕ0 alone and thus respecting the requirement that h0 ≥ 0
on I0.

LEMMA 4.10. Let f : R2 → [0,∞] be Borel, let μ ≤cd ν and let μk, νk be as
in Proposition 3.4:

(i) Let (ϕ0,ψ0, h0) ∈ Dci,pw
μ0,ν0(f ) and (ϕk,ψk,hk) ∈ Dc,pw

μk,νk (f ) for k ≥ 1 be
normalized as in (4.6), and let ϕ−1(x) = f (x, x) and ψ−1 = 0. If

∑
k≥−1 μ(ϕk) +

ν(ψk) < ∞, then

ϕ := ∑
k≥−1

ϕk1Ik
, ψ := ∑

k≥0

ψk1Jk
, h := ∑

k≥0

hk1Ik

satisfies (ϕ,ψ,h) ∈ Dμ,ν(f ) and μ(ϕ) + ν(ψ) = ∑
k≥−1 μk(ϕk) + νk(ψk).

(ii) Conversely, let (ϕ,ψ,h) ∈ Dμ,ν(f ). After changing ϕ on a μ-nullset and

ψ on a ν-nullset, we have (ϕ,ψ,h) ∈ Dci,pw
μ0,ν0(f ) and (ϕ,ψ,h) ∈ Dc,pw

μk,νk (f ) for
k �= 0, and

∑
k≥−1 μk(ϕ) + νk(ψ) = μ(ϕ) + ν(ψ) < ∞.

This follows from Proposition 3.4; the details of the proof are analogous to [11],
Lemma 7.2. We can now state the global duality result.

THEOREM 4.11. Let f :R2 → [0,∞] be Borel and let μ ≤cd ν. Then

Sμ,ν(f ) = Iμ,ν(f ) ∈ [0,∞].
If Iμ,ν(f ) < ∞, there exists an optimizer (ϕ,ψ,h) ∈ Dμ,ν(f ) for Iμ,ν(f ).

This is a consequence of Proposition 4.8 and the corresponding result in the
martingale case; the arguments are as in [11], Theorem 7.4.

REMARK 4.12. The lower bound on f in Theorem 4.11 can easily be relaxed.
Indeed, let f :R2 → R be Borel and suppose that there exist a ∈ L1(μ), b ∈ L1(ν)

such that f (x, y) ≥ a(x)+b(y) for all x, y ∈ R. Then we may apply Theorem 4.11
to f̄ := [f (X,Y ) − a(X) − b(Y )]+ and deduce the duality result for f as well.

5. Monotonicity principle. An important consequence of the duality theorem
is a monotonicity principle describing the support of optimal transports; it can be
seen as a substitute for the cyclical monotonicity from classical transport theory.
The following notion will be useful for our study of the canonical couplings.

DEFINITION 5.1. Let π be a finite measure on R
2 with finite first moment

and let M0,M1 ⊆ R be Borel. Denote by π1 its first marginal and by π = π1 ⊗ κ
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a disintegration. A measure π ′ is an (M0,M1)-competitor of π if it has the same
marginals and if its disintegration π ′ = π1 ⊗ κ ′ satisfies

bary
(
κ ′(x)

) ≤ bary
(
κ(x)

)
for π1-a.e. x ∈ M0,

bary
(
κ ′(x)

) = bary
(
κ(x)

)
for π1-a.e. x ∈ M1.

This definition extends a concept of [9] where the barycenters are required to be
equal on the whole real line. In our context, we need to distinguish three regimes
for the applications in the subsequent sections: equality, inequality and no con-
straint on the barycenters. One consequence of the inequality is that the notion of
competitors is no longer symmetric.

Given μ ≤cd ν, we recall from Proposition 3.4 the sets Ik, Jk , where the la-
bels k ≥ 1 correspond to the martingale components, k = 0 is the supermartingale
component, and k = −1 is the complement (where any transport from μ to ν is the
identity). Moreover, any element of S(μ, ν) is necessarily supported by the set

(5.1) � := 
 ∪ ⋃
k≥0

Ik × Jk.

THEOREM 5.2 (Monotonicity principle). Let f : R2 → [0,∞] be Borel, let
μ ≤cd ν be probability measures and suppose that Sμ,ν(f ) < ∞. There exist Borel
sets � ⊆ R

2 and M ⊆R with the following properties:

(i) A measure P ∈ S(μ, ν) is optimal for Sμ,ν(f ) if and only if it is concen-
trated on � and P |M×R is a martingale.

(ii) Let μ̄ ≤cd ν̄ be probabilities on R. If P̄ ∈ S(μ̄, ν̄) is concentrated on � and
P̄ |M×R is a martingale, then P̄ is optimal for Sμ̄,ν̄ (f ).

(iii) Let M0 = M ∩I0 and M1 = M \M0, and let π be a finitely supported prob-
ability on R

2 which is concentrated on �. Then π(f ) ≥ π ′(f ) for any (M0,M1)-
competitor π ′ of π that is concentrated on �.

If (ϕ,ψ,h) ∈ Dμ,ν(f ) is a suitable4 version of the optimizer from Theorem 4.11,
then we can take

M := (
I0 ∩ {h > 0}) ∪

(⋃
k �=0

Ik

)
,

� := {
(x, y) ∈R

2 : ϕ(x) + ψ(y) + h(x)(y − x) = f (x, y)
} ∩ �.

Moreover, the assertion in (iii) remains true if π is not finitely supported, as long
as (ϕ,ψ) ∈ L(π1, π2), where π1 and π2 are the marginals of π .

4Chosen as in Lemma 4.10(ii).
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Before proving the theorem, let us draw a corollary stating that the super-
martingale optimal transport can be decomposed as follows. On M , an optimizer
P ∈ S(μ, ν) is also an optimizer of a martingale optimal transport problem. Thus,
we think of M as the set where the supermartingale constraint is “binding,” and in
fact it acts like the seemingly stronger martingale constraint (thus M as in martin-
gale). Whereas on N := R \ M , the measure P is also an optimizer of a (Monge–
Kantorovich) optimal transport problem with no constraint at all on the dynamics
(N as in no constraint).

COROLLARY 5.3 (Extremal Decomposition). Let f : R2 → [0,∞] be Borel
and let μ ≤cd ν be probability measures such that Sμ,ν(f ) < ∞. There exists a
Borel set M ⊆ R with the following property.

Given an optimizer P ∈ S(μ, ν) for Sμ,ν(f ), let μM = μ|M and let νM be the
image5 of μM under P . Moreover, let μN = μ|R\M and let νN be the image of μN

under P . Then for the same reward function f :

(i) P |M×R is an optimal martingale transport from μM to νM ,
(ii) P |N×R is an optimal Monge–Kantorovich transport from μN to νN .

A word of caution is in order: while the set M is defined without reference to
P , the second marginals νM, νN in the extremal problems do depend on P . In that
sense, the decomposition is nonunique—which, however, is quite natural given
that the optimizer P is nonunique as well, for general f .

REMARK 5.4. The lower bound on f in Theorem 5.2 and Corollary 5.3 can
be relaxed as follows. Instead of f being nonnegative, suppose that there ex-
ist real functions a ∈ L1(μ), b ∈ L1(ν) such that f (x, y) ≥ a(x) + b(y) for all
x, y ∈ R. Then Theorem 5.2(i), (iii) as well as Corollary 5.3 hold as above, using
Remark 4.12 but otherwise the same proofs. Moreover, Theorem 5.2(ii) as well as
the last statement in Theorem 5.2 hold under the condition that a, b are integrable
for μ̄, ν̄ and π1, π2, respectively.

EXAMPLE 5.5. In the context of Corollary 5.3, suppose that μ has no atoms
and that f is smooth, of linear growth, and satisfies the Spence–Mirrlees condi-
tion fxy > 0 and the martingale Spence–Mirrlees condition fxyy > 0 (this is not
one of the canonical cases studied later). Then an optimizer P exists and the corol-
lary implies that P |M×R is the Left-Curtain coupling [9] between its marginals and
P |N×R is the Hoeffding–Fréchet coupling [55], Section 3.1, between its marginals.
In particular, writing P = μ ⊗ κ and using the results of the indicated references,
we immediately deduce the possible forms of the kernel: at almost every x, κ(x)

5If P = μ ⊗ κ , the image of μM under P is defined as the second marginal of μM ⊗ κ .
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is either deterministic (the Hoeffding–Fréchet kernel) or a martingale kernel con-
centrated at two points (the Left–Curtain kernel). In particular, κ(x) is never what
might seem to be the typical case—a truly random process with downward drift.

We mention that the coupling P is nevertheless not canonical in the sense of the
Introduction: even if uniqueness holds, the optimal coupling may change substan-
tially if we replace f by a different function satisfying the same Spence–Mirrlees
conditions; cf. Section 10.2 for a counterexample.

PROOF OF COROLLARY 5.3. Let M and (ϕ,ψ,h) be as in Theorem 5.2, and
note that P(f ) < ∞:

(i) We have PM := P |M×R ∈ M(μM,νM) by (i) of the theorem. Moreover,
setting PN := P |N×R, any P̄M ∈ M(μM,νM) induces an element of S(μ, ν) via
P̄ := P̄M + PN . Thus, P̄M(f ) ≤ PM(f ) by the optimality of P .

(ii) This part is less direct because elements of �(μN,νN) are not supermartin-
gales in general; we shall invoke Theorem 5.2(iii) with π := P . By (i) of the
theorem, π is concentrated on �, and of course (ϕ,ψ) ∈ L(μ,ν) = L(π1, π2).
Moreover, for any π ′

N ∈ �(μN,νN), the measure π ′ = PM + π ′
N is an (M0,M1)-

competitor of π = PM +PN which is concentrated on � as PN is concentrated on
I0 ×J0 ⊆ �; note that N ⊆ I0. Now the extension of (iii) at the end of the theorem
yields π(f ) ≥ π ′(f ), and hence PN(f ) ≥ π ′

N(f ). �

PROOF OF THEOREM 5.2. As Iμ,ν(f ) = Sμ,ν(f ) < ∞, Theorem 4.11 yields
a dual optimizer (ϕ,ψ,h) ∈ Dμ,ν(f ) and we can define � and M as stated:

(i) Let P ∈ S(μ, ν) and let P = μ ⊗ κ be a disintegration. Recalling (4.1)
and (4.2) and the analogous facts for the martingale case [11], we have

P(f ) ≤ P
[
ϕ(X) + ψ(Y ) + h(X)(Y − X)

] ≤ μ(ϕ) + ν(ψ).

Since Sμ,ν(f ) = μ(ϕ) + ν(ψ), P is optimal if and only if both inequalities are
equalities. As P(f ) < ∞, the first inequality is an equality if and only if P is
concentrated on �. Moreover, the second inequality is an equality if and only if∫
(y − x)κ(x, dy) = 0 μ-a.e. on {h > 0}; note that the condition on κ holds auto-

matically on the martingale components Ik , k ≥ 1. In particular, this is equivalent
to P |M×R being a martingale.

(ii) We choose a version of (ϕ,ψ,h) ∈ Dμ,ν(f ) as in Lemma 4.10(ii); more-
over, we may assume that P̄ (f ) < ∞. We need to show that (ϕ,ψ,h) ∈ Dμ̄,ν̄ (f );
once this is established, optimality can be argued as in (i) above.

(a) On the one hand, we need to show that

(5.2) ϕ(X) + ψ(Y ) + h(X)(Y − X) ≥ f (X,Y ) S(μ̄, ν̄)-q.s.

For this, it suffices to prove that the domains of the irreducible components of
μ̄ ≤cd ν̄ are subsets of the ones of μ ≤cd ν; that is, that pμ(x) = pν(x) implies
pμ̄(x) = pν̄(x), for any x ∈ R. Indeed, let pμ(x) = pν(x). Since P̄ is concentrated
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on � ⊆ �, we know that Y ≤ x P̄ -a.s. on {X ≤ x} and Y ≥ x P̄ -a.s. on {X ≥ x}.
Writing E[·] for the expectation under P̄ , it follows that pν̄(x) = E[(x − Y)+] =
E[(x − Y)1X≤x]. Note that pμ(x) = pν(x) implies x ≤ x∗; cf. Proposition 3.2.
Recalling that (−∞, x∗) ⊆ M , our assumption on P̄ then yields that P̄ |{X<x} is a
martingale. Thus, E[(x − Y)1X≤x] = E[(x − X)1X≤x] = E[(x − X)+] = pμ̄(x)

and part (a) is complete.
(b) On the other hand, we need to show that (ϕ,ψ) ∈ L(μ̄, ν̄). By reducing

to the components, we may assume without loss of generality that (μ̄, ν̄) is irre-
ducible with domain (I, J ). Moreover, the argument for the martingale case is con-
tained in the proof of [11], Corollary 7.8, so we shall assume that (μ̄, ν̄) is proper.
Let χ(y) := infx∈I [ϕ(x)+h(x)(y − x)]. As (ϕ,ψ,h) ∈ Dci,pw

μ,ν (f ), the arguments
below (4.2) yield that χ : J → R is concave and increasing, that ϕ̄ := ϕ − χ ≥ 0
and ψ̄ := ψ + χ ≥ 0, and that the expectation P̄ [ϕ(X) + ψ(Y ) + h(X)(Y − X)]
can be computed as the μ̄(dx)-integral of

ϕ̄(x) +
∫

ψ̄(y)κ(x, dy) +
[
χ(x) −

∫
χ(y)κ(x, dy)

]
+ h(x)

(
bary

(
κ(x)

) − x
)
,

where P̄ = μ̄ ⊗ κ for some kernel κ [not necessarily the same as in (i)]. By the
assumption that P̄ |M×R is a martingale and R\M = {h ≤ 0}∩ I0 ⊆ {h = 0}, either
h(x) = 0 or bary(κ(x)) = x, for μ̄-a.e. x ∈ R. Using also that P̄ is concentrated
on �, we deduce that P̄ (f ) = P̄ [ϕ(X)+ψ(Y )+h(X)(Y −X)] = μ̄(ϕ̄)+ ν̄(ψ̄)+
(μ̄ − ν̄)(χ), where the last step is justified by the nonnegativity of the integrands.
As P̄ (f ) < ∞, we conclude that the three (nonnegative) terms on the right-hand
side are finite; that is, (ϕ,ψ) ∈ L(μ̄, ν̄) with moderator χ .

(iii) Again, we may assume that π(f ) < ∞. Let π ′ be an (M0,M1)-competitor
of π , let μ̄, ν̄ be the common first and second marginals of π,π ′ and let
π = μ̄ ⊗ κ , π ′ = μ̄ ⊗ κ ′. If (ϕ,ψ) ∈ L(μ̄, ν̄), using h ≥ 0 on M0 ⊆ I0 and
R \ M ⊆ {h = 0} and the definition of the competitor yields π(f ) = μ̄(ϕ) +
ν̄(ψ) + ∫

M h(x)(bary(κ(x)) − x)μ̄(dx) ≥ μ̄(ϕ) + ν̄(ψ) + ∫
M h(x)(bary(κ ′(x)) −

x)μ̄(dx) ≥ π ′(f ). Of course, (ϕ,ψ) ∈ L(μ̄, ν̄) holds in particular if π is finitely
supported. �

6. Shadow construction. In this section, we introduce the increasing and
decreasing supermartingale transports via an order-theoretic construction. Let
M1(R) be the set of all finite measures on (R,B(R)) which have a finite first
moment, endowed with the weak convergence induced by the continuous func-
tions of linear growth. We shall mainly use the restriction of this topology to
subsets of measures of equal mass, and then it is equivalent to the Kantorovich
or 1-Wasserstein distance W(ν, ν′) = supf (ν − ν′)(f ), where f ranges over all
1-Lipschitz functions.

DEFINITION 6.1. Let μ,ν ∈ M1(R). We say that μ,ν are in positive-convex-
decreasing order, denoted μ ≤pcd ν, if μ(φ) ≤ ν(φ) for all nonnegative, convex,
decreasing functions φ :R→R.
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We note that μ ≤pcd ν necessarily satisfy μ(R) ≤ ν(R). In fact, the case of
strict inequality is the one of interest: if μ(R) = ν(R), then μ ≤pcd ν is equivalent
to μ ≤cd ν.

LEMMA 6.2. Let μ,ν ∈ M1(R) satisfy μ ≤pcd ν. Then the set6

�μ,ν� := {
θ ∈ M1(R) : μ ≤cd θ ≤ ν

}
is nonempty and contains a unique least element Sν(μ) for the convex-decreasing
order: Sν(μ) ≤cd θ for all θ ∈ �μ,ν�. The measure Sν(μ) is called the shadow of
μ in ν.

PROOF. Without loss of generality, ν is a probability measure.
(i) We first show that �μ,ν� contains some element θ . Let λ be the Lebesgue

measure on R and let Gν be the quantile function of ν; that is, the left-continuous
inverse of the c.d.f. of ν. We define

θ := λ|[0,k] ◦ G−1
ν where k := μ(R) ∈ [0,1].

This implies that θ ∈ M1(R), that θ(R) = k, and that θ ≤ ν. Intuitively speaking,
θ is the “left-most” measure θ ≤ ν of mass k on R; in particular, if ν admits a
density fν , the density of θ is fθ = fν1(−∞,Gν(k)].

Let φ be a convex, decreasing function; we need to show that μ(φ) ≤ θ(φ). To
this end, we may assume that φ(Gν(k)) = 0 by translating φ, and then μ(φ) ≤
μ(φ+) ≤ ν(φ+) = θ(φ+) = θ(φ) since φ+ = φ on Gν([0, k]). As a result, θ ∈
�μ,ν� �= ∅.

(ii) Next, we show that �μ,ν� is directed; that is, given θi ∈ �μ,ν�, i = 1,2
there exists θ ∈ �μ,ν� such that θ ≤cd θi . Indeed, let p : R → R be defined as the
convex hull of the minimum of pθ1 and pθ2 . Then p is convex, and p is increasing
like pθi

. Since the asymptotic slope of the functions pθi
is given by θi(R) = μ(R),

the same is true for p, and finally, pθi
≥ pμ yields p ≥ pμ. These facts imply

that p is the put function associated with a measure θ satisfying μ ≤cd θ ≤cd θi . It
remains to show that θ ≤ ν, which is equivalent to pν − p being convex. Indeed,
the fact that pν − pθi

is convex for i = 1,2 implies this property; cf. the proof of
[9], Lemma 4.6, for a detailed argument.

(iii) The set �μ,ν� ⊆ M1(R) consists of measures with common total mass
μ(R); we show that it is compact. Indeed, closedness is readily established. More-
over, any θ ∈ �μ,ν� satisfies θ ≤ ν. By Prokhorov’s theorem, this immediately
yields tightness in the weak topology induced by bounded continuous functions,
and then using

∫ |x|ν(dx) < ∞ yields relative compactness.
(iv) It follows from (iii) that for any convex, decreasing function φ of linear

growth, the continuous functional θ 	→ θ(φ) has a nonempty compact set �φ ⊆

6We think of the elements of �μ,ν� as lying between μ and ν, as the notation suggests. However,
we caution the reader that μ,ν /∈ �μ,ν� in general.
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�μ,ν� of minimizers. The directedness of �μ,ν� from (ii) implies that a finite
intersection �φ1 ∩ · · · ∩ �φn is still nonempty, and then compactness shows that
θ 	→ θ(φ) has a common minimizer Sν(μ) for all φ. Uniqueness of the minimizer
holds since θ1 ≤cd θ2 and θ2 ≤cd θ1 imply θ1 = θ2. �

LEMMA 6.3. Let μ,ν ∈ M1(R) satisfy μ ≤pcd ν and suppose that μ is con-
centrated at a single point x ∈ R. Then the shadow Sν(μ) is of the form

Sν(μ) = ν|(a,b) + kaδa + kbδb.

Among all measures θ ≤ ν with mass μ(R) of this form, Sν(μ) is determined
by maximizing bary(θ) subject to the constraint bary(θ) ≤ x. Moreover, Sν(μ)

has minimal variance among all measures θ ≤ ν with mass μ(R) and bary(θ) =
bary(Sν(μ)). Finally, a and b can be chosen such that a ≤ x ≤ b.

The map ν 	→ Sν(μ) is continuous when restricted to a set of measures ν ∈
M1(R) of equal total mass satisfying μ ≤pcd ν.

PROOF. We may assume that ν(R) = 1. Then μ = kδx for some k ∈ [0,1],
and we may focus on k ∈ (0,1). Consider the family

θs = λ|[s,s+k] ◦ G−1
ν , s ∈ [0,1 − k].

Similarly as in the proof of Lemma 6.2, we have θs ≤ ν for all s, whereas μ =
kδx ≤cd θs if and only if bary(θs) ≤ x. As μ ≤pcd ν, this inequality holds true in
particular for s = 0. The function

(6.1) s 	→ bary(θs) = 1

k

∫ k

0
Gν(s + t)λ(dt) = 1

k

∫ k

0
Gν(s + t+)λ(dt)

is increasing and continuous: Gν(s) and its right limit Gν(s+) differ only on
a Lebesgue nullset, the fist representation shows left-continuity and the second
shows right-continuity. Thus, we may define s∗ as the largest value in [0,1 − k]
for which bary(θs) ≤ x, and then θ∗ := θs∗ is in �μ,ν�. We claim that θ∗ is the
least element in �μ,ν�.

To show this, let (a, b) = (Gν(s
∗),Gν(s

∗ + k)); then θ∗|(a,b) = ν|(a,b) and θ∗
is concentrated on [a, b]. Now let θ ∈ �μ,ν� be arbitrary. As θ ≤ ν, we see that
θ − (θ∗ ∧ θ) is concentrated on (a, b)c, whereas θ∗ − (θ∗ ∧ θ) is concentrated
on [a, b]. Moreover, we must have bary(θ) ≤ bary(θ∗). Indeed, this is clear if
bary(θ∗) = x. If not, the definition of s∗ implies that ν(b,∞) = 0 and then θ∗
clearly has the largest barycenter among all measures θ ≤ ν with mass μ(R). Thus,
Lemma 6.4 below implies that θ∗ ≤cd θ and as a result, θ∗ is the least element in
�μ,ν�; that is, Sν(μ) = θ∗.

As bary(θ∗) ≤ x, it is clear that a ≤ x. With the above choice of b, it may happen
that b < x. However, by the definition of s∗, this is possible only if θ∗({b}) =
ν({b}) and ν(b,∞) = 0. In that case, we may redefine b := x without invalidating
the other assertions of the lemma, and then we have a ≤ x ≤ b as required.
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Finally, the continuity of ν 	→ Sν(μ) can be shown by using (6.1) and the prop-
erty W(ν, ν′) = ∫ 1

0 |Gν(t) − Gν′(t)|λ(dt) of the 1-Wasserstein distance; we omit
the details. �

LEMMA 6.4. Let μ,ν ∈ M1(R) satisfy μ(R) = ν(R) and bary(μ) ≥ bary(ν).
If there exists an interval I = (a, b) such that μ is concentrated on Ī := [a, b] ∩
R and ν is concentrated on I c, then μ ≤cd ν. The same is true if there exists
an interval I such that μ − (μ ∧ ν) is concentrated on Ī and ν − (μ ∧ ν) is
concentrated on I c.

PROOF. The first claim implies the second, so we may focus on the former.
We need to show that μ(φ) ≤ ν(φ) for any convex decreasing function φ. To
this end, we may assume that the left endpoint a of the interval is finite and
strictly smaller than the right endpoint b, as otherwise we must have μ = ν = 0;
moreover, we may reduce to the case φ(a) = 0. If b is finite as well, we define
ψ(x) := φ(x) − φ(b)

b−a
(x − a) for x ∈ R, whereas ψ := φ if b = ∞. Then ψ ≤ 0

on Ī and ψ ≥ 0 on I c, which yields μ(φ) ≤ μ(ψ+) + φ(b)
b−a

[bary(μ) − a] ≤
ν(ψ+) + φ(b)

b−a
[bary(ν) − a] = ν(φ) as desired. �

The following result is important to apply the shadow in an iterative fashion.
The first assertion intuitively follows from the minimality of the shadow: if we
transport part of a measure μ ≤pcd ν to its shadow in ν, the remaining part μ2 of
μ is still dominated by the remaining part of ν. Moreover, if we then transport μ2
to its shadow in the remainder, the cumulative result is the same as the shadow of
μ in ν.

PROPOSITION 6.5. Let μ1,μ2, ν ∈ M1(R) satisfy μ1 + μ2 ≤pcd ν. Then
μ2 ≤pcd ν − Sν(μ1) and Sν(μ1 + μ2) = Sν(μ1) + Sν−Sν(μ1)(μ2).

PROOF. Using the result of Lemma 6.3, one can first establish the claim when
μ1 is a single atom. Then one can extend to the general case along the lines of [9],
Theorem 4.8; we omit further details. �

Next, we shall use the shadow mapping to construct specific supermartingale
transports. Let μ ≤cd ν and suppose first that μ = ∑n

i=1 kiδxi
is finitely supported.

We may transport μ to ν by first mapping k1δx1 to its shadow in ν, continue by
mapping k2δx2 to its shadow in the “remainder” ν −Sν(k1δx1) of ν, and so on. Pro-
ceeding until i = n, this constructs the kernel κ corresponding to a supermartin-
gale transport μ ⊗ κ ∈ S(μ, ν). In fact, this recipe leads to a whole family of
transports—the labeling of the atoms was arbitrary, and a different order in their
processing will typically give rise to a different transport. There are two choices
that seem canonical: left-to-right (increasing) and right-to-left (decreasing). We
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shall show in the subsequent sections that the corresponding transports
→
P and

←
P

are indeed canonical in several ways.

THEOREM 6.6. Let μ ≤cd ν:

(i) There exists a unique measure
→
P on R×R which transports μ|(−∞,x] to its

shadow Sν(μ|(−∞,x]) for all x ∈ R; that is, the first marginal of
→
P equals μ and

→
P ((−∞, x] × A) = Sν(μ|(−∞,x])(A) for A ∈ B(R).

(ii) Similarly, there exists a unique measure
←
P on R × R which transports

μ|[x,∞) to its shadow Sν(μ|[x,∞)) for all x ∈ R.

Moreover, those two measures are elements of S(μ, ν). We call
→
P and

←
P the in-

creasing and the decreasing supermartingale transport, respectively.

PROOF. The function F(x, y) := Sν(μ|(−∞,x])(−∞, y] is clearly increasing
and right-continuous in y. Moreover, Proposition 6.5 implies that

Sν(μ|(−∞,x2]) − Sν(μ|(−∞,x1]) = Sν−Sν(μ|(−∞,x1])(μ|(x1,x2]) ≥ 0, x1 ≤ x2

which yields the same properties for the variable x; note that the total mass of
the right-hand side equals μ(x1, x2]. Noting also that F has the proper normaliza-

tion for a c.d.f., we conclude that F induces a unique measure
→
P on B(R × R).

It is clear that μ is the first marginal of
→
P . The second marginal is Sν(μ) ≤ ν,

and this is in fact an equality because both measures have the same mass. To

conclude that
→
P ∈ S(μ, ν), it suffices to show that

→
P [Yφ(X)] ≤ →

P [Xφ(X)] for

all φ = 1(x1,x2] with x1 < x2. Indeed, Proposition 6.5 implies that
→
P [Yφ(X)] =∫

y[Sν(μ|(−∞,x2]) − Sν(μ|(−∞,x1])](dy) = bary(Sν−Sν(μ|(−∞,x1])(μ|(x1,x2])) ≤
bary(μ|(x1,x2]) = →

P [Xφ(X)]. The arguments for (ii) are analogous. �

A different construction of
→
P and

←
P could proceed through an approximation

of the marginals by discrete measures, for which the couplings can be defined
explicitly by iterating Lemma 6.3, and a subsequent passage to the limit. We refer
to [45], Remark 2.18, for a sketch of such a construction in the martingale case.

7. Spence–Mirrlees functions and geometry of their optimal transports.
In this section, we relate monotonicity properties of the reward function f to the
geometry of the supports of the corresponding optimal supermartingale transports,
where the support will be described by a pair (�,M) as in Theorem 5.2. We first
introduce the relevant properties of f .

DEFINITION 7.1. A function f :R2 →R is first-order Spence–Mirrlees if

f (x2, ·) − f (x1, ·) is strictly increasing for all x1 < x2.
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Moreover, f is second-order Spence–Mirrlees if

f (x2, ·) − f (x1, ·) is strictly convex for all x1 < x2,

and f is supermartingale Spence–Mirrlees if f is second-order Spence–Mirrlees
and −f is first-order Spence–Mirrlees.

We note that if f is smooth, the first- and second-order Spence–Mirrlees
properties are equivalent to the classical cross-derivative conditions fxy > 0 and
fxyy > 0, respectively. The latter is also called martingale Spence–Mirrlees condi-
tion in the literature on martingale optimal transport—the above terminology will
be more convenient in what follows.

REMARK 7.2. There exist smooth, linearly growing supermartingale Spence–
Mirrlees functions on R

2. Indeed, let ϕ be a smooth, bounded, strictly increas-
ing function on R; for example, ϕ(x) = tanh(x). Let ψ be a smooth, linearly
growing, strictly decreasing, strictly convex function on R; for example, ψ(y) =
(1 + y2)1/2 − y. Then g(x, y) := ϕ(x)ψ(y) satisfies gxy < 0 and gxyy > 0, while
|g(x, y)| ≤ C(1 + |y|) for some C > 0.

Next, we introduce the relevant geometric properties of the support.

DEFINITION 7.3. Let (�,M) ⊆ R
2 × R and consider (x1, y1), (x2, y2) ∈ �

with x1 < x2. The pair (�,M) is:

(i) first-order left-monotone if y1 ≤ y2 whenever x2 /∈ M ,
(ii) first-order right-monotone if y2 ≤ y1 whenever x1 /∈ M .

We will also need the following properties of �; they are taken from [9] where
they are simply called left- and right-monotonicity.

DEFINITION 7.4. Let � ⊆ R
2 and consider (x, y1), (x, y2), (x

′, y′) ∈ � with
y1 < y2. Then � is

(i) second-order left-monotone if y′ /∈ (y1, y2) whenever x < x′,
(ii) second-order right-monotone if y′ /∈ (y1, y2) whenever x′ < x.

For convenience, we shall use the same terminology for a pair (�,M) even
though only � is relevant for the second-order properties. Yet another notion will
be useful; we write �1 = {x ∈ R : (x, y) ∈ � for some y ∈ R} for the projection of
� onto the first coordinate.

DEFINITION 7.5. A pair (�,M) ⊆R
2 ×R is nondegenerate if:

(i) for all x ∈ �1 such that (x, y) ∈ � for some y > x, there exists y′ < x such
that (x, y′) ∈ �,
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(ii) for all x ∈ �1 ∩ M such that (x, y) ∈ � for some y < x, there exists y′ > x

such that (x, y′) ∈ �.

These two conditions imply that:

(i′) for all x ∈ �1 there exists y ≤ x such that (x, y) ∈ �,
(ii′) for all x ∈ �1 ∩ M there exists y ≥ x such that (x, y) ∈ �.

Essentially, nondegeneracy postulates that there is a down-path at every x ∈
�1, and also an up-path if x ∈ M . Thus, it is a natural requirement if we intend
to consider supermartingales supported by � which are martingales on M × R.
For later use, let us record that nondegeneracy can be assumed without loss of
generality in our context.

REMARK 7.6. Let (�,M) ∈ B(R2) × B(R), let μ ≤cd ν be probability mea-
sures and suppose there is P ∈ S(μ, ν) with P(�) = 1 such that P |M×R is a mar-
tingale. Then there exists a Borel subset �′ ⊆ � with P(�′) = 1 such that (�′,M)

is nondegenerate.

PROOF. Let N ′
1 be the set of all x ∈ �1 such that Definition 7.5(i) fails. Then

N ′
1 is universally measurable, and thus we can find a Borel set N1 ⊇ N ′

1 such that
N1 \ N ′

1 is μ-null. The fact that P is a supermartingale implies that �1 := � ∩
{Y > X} ∩ (N1 × R) is P -null. After defining similarly a set N2 for Defini-
tion 7.5(ii), the martingale property of P on M × R shows that �2 := � ∩
{Y < X} ∩ (N2 × R) is P -null as well, and then we can set �′ := � \ (�1 ∪ �2).

�

The first-order properties turn out to be highly asymmetric when combined with
nondegeneracy. The following observation will have far-reaching consequences re-

garding the geometry of the coupling
→
P and has no analogue in the left-monotone

case.

REMARK 7.7. Let (�,M) be first-order right-monotone and nondegenerate.
Then M is a half-line unbounded to the left within �1; that is,

if x1, x2 ∈ �1 satisfy x1 < x2 and x2 ∈ M, then x1 ∈ M .

Indeed, let x1, x2 be as stated; then nondegeneracy yields y1, y2 such that y1 ≤
x1 < x2 ≤ y2 and (xi, yi) ∈ �. If we had x1 /∈ M , this would contradict first-order
right-monotonicity.

With these definitions in place, we can use the monotonicity principle of Theo-
rem 5.2 to infer the geometry of (�,M) from the properties of f .
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PROPOSITION 7.8. Let7 μ ≤cd ν and recall the corresponding intervals Ik, Jk

of Proposition 3.4 and the set � of (5.1). Let (�,M) ∈ B(R2) × B(R) be non-
degenerate, where � ⊆ � and M = M0 ∪ M1 with Borel sets M0 ⊆ I0 and
M1 = ⋃

k �=0 Ik , and let f :R2 →R. Suppose that the assertion of Theorem 5.2(iii)
holds; that is, if π is a finitely supported probability which is concentrated on �,
then π(f ) ≥ π ′(f ) for any (M0,M1)-competitor π ′ of π that is concentrated
on �;

(i) If f is first-order Spence–Mirrlees, (�,M) is first-order left-monotone.
(ii) If −f is first-order Spence–Mirrlees, (�,M) is first-order right-monotone.

(iii) If f is second-order Spence–Mirrlees, � is second-order left-monotone.
(iv) If −f is second-order Spence–Mirrlees, � is second-order right-monotone.

PROOF. (i) Consider (x1, y1), (x2, y2) ∈ � with x1 < x2 and suppose for con-
tradiction that y2 < y1. The measures

π := 1

2
δ(x1,y1) + 1

2
δ(x2,y2), π ′ := 1

2
δ(x1,y2) + 1

2
δ(x2,y1)

have the same first marginal π1 = 1
2δx1 + 1

2δx2 . Let π = π1 ⊗ κ and π ′ = π1 ⊗ κ ′,
then bary(κ ′(x1)) < bary(κ(x1)) and bary(κ ′(x2)) > bary(κ(x2)). Suppose that
x1 /∈ M1 and x2 /∈ M . Then π ′ is an (M0,M1)-competitor of π . Moreover, xi /∈ M1
implies that xi ∈ I0, and thus yi ∈ J0, i = 1,2 which shows that π ′ is sup-
ported on �. Thus, we must have π(f ) ≥ π ′(f ). However, 2(π(f ) − π ′(f )) =
(f (x2, y2) − f (x1, y2)) − (f (x2, y1) − f (x1, y1)) < 0 as f is first-order Spence–
Mirrlees, so we have reached the desired contradiction.

Let x1 ∈ M1 and x2 /∈ M . Recalling that M1 = ⋃
k �=0 Ik = (−∞, x∗], we have

y1 ∈ Jk for some k �= 0, whereas x2 /∈ M implies y2 ∈ J0. Since J0 is located to the
right of Jk for k �= 0, we must have y1 ≤ y2.

(ii) Consider (x1, y1), (x2, y2) ∈ � with x1 < x2 and suppose for contradic-
tion that y1 < y2. We define π,π ′ as in (i); then bary(κ ′(x1)) > bary(κ(x1)) and
bary(κ ′(x2)) < bary(κ(x2)). Let x1 /∈ M . Then x1 ∈ I0 = (x∗,∞) and thus x2 > x1
is in I0 as well. In particular, x2 /∈ M1 and y1, y2 ∈ J0. Thus, π ′ is an (M0,M1)-
competitor of π that is concentrated on � and we reach a contradiction to −f

being first-order Spence–Mirrlees, similarly as in (i).
(iii) Let (x, y1), (x, y2), (x

′, y′) ∈ � satisfy x < x′ and assume for contradiction
that y1 < y′ < y2. Define λ = y′−y1

y2−y1
and

π = λ

2
δ(x,y1) + 1 − λ

2
δ(x,y2) + 1

2
δ(x′,y′),

π ′ = λ

2
δ(x′,y1) + 1 − λ

2
δ(x′,y2) + 1

2
δ(x,y′).

7In fact, this result merely uses the general shape of �, not the specific marginals.



3384 M. NUTZ AND F. STEBEGG

Then π and π ′ have the same first marginal π1 and if π = π1 ⊗κ and π ′ = π1 ⊗κ ′,
then κ(x), κ ′(x), κ(x′), κ ′(x′) all have barycenter y′. Hence, π ′ is an (M0,M1)-
competitor of π , and since the shape of � ⊆ � shows that π ′ is concentrated on �,
we deduce that π(f ) ≥ π ′(f ). However, f being second-order Spence–Mirrlees
implies that π(f ) < π ′(f ).

(iv) The proof is symmetric to (iii). �

8. Geometric characterization of the canonical supermartingale trans-
ports. In this section, we consider fixed probability measures μ ≤cd ν and show

that the associated Increasing and Decreasing Supermartingale Transports
→
P ,

←
P

(cf. Theorem 6.6) are characterized by geometric properties of their supports.

THEOREM 8.1. Let (�,M) ∈ B(R2) × B(R) be nondegenerate and let P ∈
S(μ, ν) be such that P is concentrated on � and P |M×R is a martingale:

(i) If (�,M) is first-order right-monotone and second-order left-monotone,

then P is the Increasing Supermartingale Transport
→
P .

(ii) If (�,M) is first-order left-monotone and second-order right-monotone,

then P is the Decreasing Supermartingale Transport
←
P .

Before stating the proof, we record two auxiliary lemmas. The first one follows
directly from the fact that S(μ, ν) �=∅ by Proposition 2.1.

LEMMA 8.2. Let a ∈ R and μ ≤cd ν. If ν is concentrated on [a,∞), then so
is μ, and moreover ν({a}) ≥ μ({a}). If μ ≤c ν, the same holds for (−∞, a].

LEMMA 8.3 ([9], Lemma 5.4). Let σ be a nontrivial signed measure on R

with σ(R) = 0 and let σ = σ+ − σ− be its Hahn decomposition. There exist a ∈
supp(σ+) and b > a such that

∫
(b − y)+1[a,∞)(y) dσ (y) > 0.

PROOF OF THEOREM 8.1(i). Given x ∈R, we set μx := μ|(−∞,x] and denote
by νP

x the second marginal of P |(−∞,x]×R; that is, the image of μx under the

transport P . Since P is concentrated on � and has the same mass as
→
P , it suffices

to show that

(8.1) νP
x = ν

→
P
x

for all x ∈ �1. In a first step, we will show that (8.1) holds for all x ∈ �1 ∩ M . In
view of Remark 7.7, it then follows that

(8.2) P |M×R = →
P |M×R.

After that we will show that (8.1) holds for all x ∈ �1 if M = ∅, and then the latter
assumption will be removed in a final step.
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Let us first establish an auxiliary result that will be used in Steps 1 and 2. If
(8.1) is violated for some x ∈ �1, then the signed measure

σ := ν
→
P
x − νP

x

is nontrivial and we can find a ∈ supp(σ+) and b > a as in Lemma 8.3. Note
that σ+ ≤ ν − νP

x and that ν − νP
x is the image of μ|(x,∞) under P . Hence, a ∈

supp(ν − νP
x ) and as P(�) = 1, there exists a sequence of points

(8.3) (xn, an) ∈ � with x < xn and an → a.

Step 1: Equality of the martingale parts. We argue by contradiction and assume
that there exists x ∈ �1 ∩ M violating (8.1). We first establish that

(8.4) ν
→
P
x ≤c νP

x and in particular bary
(
ν

→
P
x

) = bary
(
νP
x

)
.

Indeed, in view of x ∈ M , Remark 7.7 shows that (−∞, x] ∩ �1 ⊆ M , and
thus P |(−∞,x]×R is a martingale. Therefore, bary(νP

x ) = bary(μx), and moreover,

bary(μx) ≥ bary(ν
→
P
x ) since

→
P is a supermartingale. Thus, bary(νP

x ) ≥ bary(ν
→
P
x ).

On the other hand, P ∈ S(μ, ν) implies νP
x ∈ �μx, ν�, and hence ν

→
P
x ≤cd νP

x by

the minimality property defining
→
P ; cf. Theorem 6.6. In view of Proposition 2.1,

these two facts imply (8.4). Next, we show that

(8.5) �t ∩ (a,∞) = ∅, t ≤ a ∧ x, where �t := {
y ∈ R : (t, y) ∈ �

}
.

Indeed, let t ≤ a ∧ x and suppose that �t ∩ (a,∞) �= ∅. Then in particular
�t ∩ (t,∞) �= ∅, and thus nondegeneracy, more precisely Definition 7.5(i), yields
that �t ∩ (−∞, t) �= ∅, and hence �t ∩ (−∞, a) �= ∅. But now we obtain a con-
tradiction to the second-order left-monotonicity of � by using (xn, an) from (8.3)
for (x′, y′) and t for x in Definition 7.4, for some large enough n.

Case (a): x ∈ M and x ≤ a. As x ≤ a, (8.5) applies to all t ≤ x and hence
P(�) = 1 implies that νP

x is concentrated on (−∞, a]. In view of (8.4) and

Lemma 8.2, it follows that ν
→
P
x is concentrated on (−∞, a] as well, and νP

x ({a}) ≥
ν

→
P
x ({a}). These three facts imply

∫
(b−y)+1[a,∞)(y)ν

→
P
x (dy) = (b−a)ν

→
P
x ({a}) is

dominated by (b − a)νP
x ({a}) = ∫

(b − y)+1[a,∞)(y)νP
x (dy); that is,

∫
(b − y)+ ×

1[a,∞)(y)σ (dy) ≤ 0. This contradicts the choice of a and b; cf. Lemma 8.3.
Case (b): x ∈ M and a < x. Since a < x, we can argue exactly as below (8.4)

to obtain that

(8.6) ν
→
P
a ≤c νP

a and in particular bary
(
ν

→
P
a

) = bary
(
νP
a

)
.

Moreover, (8.5) and P(�) = 1 now imply that νP
a is concentrated on (−∞, a], and

then Lemma 8.2 shows that

(8.7) νP
a , ν

→
P
a are concentrated on (−∞, a] and ν

→
P
a

({a}) ≤ νP
a

({a}).
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Next, we establish that νP
x − νP

a is concentrated on [a,∞). Let a < t ≤ x be
such that �t �= ∅. Since x ∈ M , Remark 7.7 yields that t ∈ M and now nondegen-
eracy [cf. Definition 7.5(ii′)] shows that �t ∩[t,∞) �= ∅. Then, using (8.3) and the
second-order left-monotonicity of � yield that �t ∩ (−∞, a) = ∅ and, therefore,
νP
x − νP

a is indeed concentrated on [a,∞). We shall prove below that

(8.8) ν
→
P
x − ν

→
P
a ≤cd νP

x − νP
a

and thus Lemma 8.2 shows that ν
→
P
x − ν

→
P
a is concentrated on [a,∞) as well.

Using these facts, (8.7) and that y 	→ (b − y)+1[a,∞)(y) is convex decreas-

ing on [a,∞), yields that
∫
(b − y)+1[a,∞)(y)ν

→
P
x (dy) = ∫

(b − y)+1[a,∞)(y) ×
(ν

→
P
x − ν

→
P
a )(dy) + (b − a)ν

→
P
a ({a}) is dominated by

∫
(b − y)+1[a,∞)(y) ×

(νP
x − νP

a )(dy) + (b − a)νP
a ({a}) = ∫

(b − y)+1[a,∞)(y)νP
x (dy). This again con-

tradicts the choice of a and b; cf. Lemma 8.3.
It remains to show (8.8). Indeed, using again that νP

x − νP
a is concentrated on

[a,∞) as well as (8.7), we have

νP
x − νP

a = (
νP
x − νP

a

)∣∣[a,∞) ≤ (
ν − νP

a

)∣∣[a,∞) ≤ (
ν − ν

→
P
a

)∣∣[a,∞) ≤ ν − ν
→
P
a .

On the other hand, we have μ|(a,x] ≤cd νP
x − νP

a by the supermartingale property,

and thus νP
x − νP

a ∈ �μ|(a,x], ν − ν
→
P
a �. Since ν

→
P
x − ν

→
P
a = Sν−ν

→
P

a (μ|(a,x]) is the

minimal element of the above set by the definition of
→
P and the additivity of the

shadow (Proposition 6.5), we conclude that (8.8) holds, and that completes the
proof of Step 1.

Step 2: M = ∅. Again, suppose there exists x ∈ �1 such that (8.1) is vio-
lated. Define yx := inf�x . If (x′, y) ∈ � and x′ < x, first-order right-monotonicity
implies that y ≥ yx (since M = ∅), and the latter holds trivially for x′ = x.
Conversely, if (x′, y) ∈ � and x < x′, first-order right-monotonicity implies that
y ≤ yx . As a result, P is concentrated on the set (−∞, x] × [yx,∞) ∪ (x,∞) ×
(−∞, yx] and as P ∈ S(μ, ν), this implies that νP

x = ν|(yx,∞) + kδyx where
k := μ((−∞, x]) − ν((yx,∞)). This is the minimal element of �μ|(−∞,x], ν� by

Lemma 6.4, and thus νP
x = ν

→
P
x .

Step 3: M �= ∅. In the general case, let μM = μ|M and let νP
M denote the second

marginal of P |M×R. We note that x /∈ M yields M ⊆ (−∞, x] by Remark 7.7, and
hence μM ≤ μx .

We may apply the result proved in Step 2 to �′ = � ∩ (Mc × R), M ′ = ∅ and
the marginals μ′ = μ − μM , ν′ = ν − νM to deduce that P |Mc×R is the Increasing
Supermartingale Transport from μ′ to ν′. In particular,

(8.9) Sν−νP
M (μx − μM) = νP

x − νP
M.
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Observing that (8.2) implies νP
M = ν

→
P
M = Sν(μM), the additivity of the shadow

(Proposition 6.5) shows that ν
→
P
x = Sν(μx) = νP

M +Sν−νP
M (μx −μM) which equals

νP
x by (8.9). As x /∈ M was arbitrary, the proof is complete. �

PROOF OF THEOREM 8.1(ii). It will be convenient to reverse the notation with
respect to the preceding proof: given x ∈ R, we set μx := μ|[x,∞) and let νP

x be
the second marginal of P |[x,∞)×R. Again, we assume for contradiction that there

exists x ∈ �1 such that νP
x �= ν

←
P
x , so that the signed measure σ := ν

←
P
x − νP

x is
nontrivial and we can find a ∈ supp(σ+) and a < b as in Lemma 8.3. Similarly as
in (8.3), there exist

(8.10) (xn, an) ∈ � with xn < x and an → a.

Moreover, P ∈ S(μ, ν) implies that νP
x ∈ �μx, ν� and hence, by minimality,

(8.11) ν
←
P
x ≤cd νP

x .

Case 1a: x ∈ M and a ≤ x. We first show that

(8.12) νP
x is concentrated on [a,∞).

Indeed, let t ∈ �1 be such that t > x. Suppose that �t ∩ (−∞, a) �= ∅, where
�t := {y ∈ R : (t, y) ∈ �}. If t ∈ M , nondegeneracy yields that �t ∩ [t,∞) �= ∅

and since a ≤ x < t , (8.10) contradicts the second-order right-monotonicity of �.
Hence, t /∈ M . Since x ∈ M , nondegeneracy also yields that �x ∩ [x,∞) �= ∅.
But now �t ∩ (−∞, a) �= ∅ and a ≤ x contradict first-order left-monotonicity as
t /∈ M . As a result, �t ∩ (−∞, a) = ∅. To extend this to t = x, note that in this case
we have t ∈ M . Thus, if �t ∩(−∞, a) �= ∅, the nondegeneracy of Definition 7.5(ii)
and (8.10) contradict second-order right-monotonicity. We have shown that �t ∩
(−∞, a) = ∅ for all t ≥ x, and (8.12) follows. In view of (8.11) and Lemma 8.2,
we conclude that

(8.13) ν
←
P
x is concentrated on [a,∞) and ν

←
P
x

({a}) ≤ νP
x

({a}).
Since (b − y)+ is convex and decreasing, (8.11), (8.12) and (8.13) then yield∫
(b − y)+1[a,∞)(y)ν

←
P
x (dy) ≤ ∫

(b − y)+1[a,∞)(y)νP
x (dy) which contradicts the

choice of a and b; cf. Lemma 8.3.
Case 1b: x ∈ M and x < a. Let t ≥ a and suppose that �t ∩ (−∞, a) �= ∅.

If t ∈ M , nondegeneracy yields that �t ∩ (t,∞) �= ∅ and since x < a ≤ t , (8.10)
contradicts the second-order right-monotonicity of �. Hence, t /∈ M , but then �t ∩
(−∞, a) �= ∅ and (8.10) contradict first-order left-monotonicity. As a result, �t ∩
(−∞, a) = ∅ for all t ≥ a, and hence νP

a is concentrated on [a,∞). Since

(8.14) ν
←
P
a ≤cd νP

a



3388 M. NUTZ AND F. STEBEGG

can be argued as in (8.11), Lemma 8.2 then yields that

(8.15) νP
a , ν

←
P
a are concentrated on [a,∞) and ν

←
P
a

({a}) ≤ νP
a

({a}).
Next, we show that symmetrically,

νP
x − νP

a , ν
←
P
x − ν

←
P
a are concentrated on (−∞, a](8.16)

and
(
ν

←
P
x − ν

←
P
a

)({a}) ≤ (
νP
x − νP

x

)({a}).(8.17)

Indeed, let t ∈ �1 be such that x ≤ t < a and suppose that �t ∩ (a,∞) �= ∅.
Since �t ∩ (−∞, t] �=∅ by nondegeneracy, (8.10) contradicts second-order right-
monotonicity. Thus, �t ∩ (a,∞) = ∅ and νP

x − νP
a is concentrated on (−∞, a].

In order to conclude (8.16) and (8.17) via Lemma 8.2, it remains to show that

ν
←
P
x − ν

←
P
a ≤c νP

x − νP
a . Indeed, let again t ∈ �1 be such that x ≤ t < a. If t /∈ M ,

then �t ∩ (−∞, t] �= ∅ and (8.10) contradict first-order left-monotonicity; thus
t ∈ M . As a result, P |[x,a)×R is a martingale and bary(νP

x − νP
a ) = bary(μx −μa).

Hence, we only have to show that

(8.18) ν
←
P
x − ν

←
P
a ≤cd νP

x − νP
a .

Using that νP
x − νP

a is concentrated on (−∞, a] as well as (8.15), we have

νP
x − νP

a = (νP
x − νP

a )|(−∞,a] ≤ (ν − νP
a )|(−∞,a] ≤ (ν − ν

←
P
a )|[a,∞) ≤ ν − ν

←
P
a .

On the other hand, μ|[x,a) ≤cd νP
x − νP

a by the supermartingale property of P , and

thus (8.18) follows from the minimality of
←
P and Proposition 6.5. This completes

the proof of (8.16) and (8.17).

Finally, we apply (8.14)–(8.17) to find that
∫
(b − y)+1[a,∞)(y)ν

←
P
x (dy) =∫

(b − y)+1[a,∞)(y)(ν
←
P
x − ν

←
P
a )(dy) + ∫

(b − y)+1[a,∞)(y)ν
←
P
a (dy) is equal

to (b − a)(ν
←
P
x − ν

←
P
a )({a}) + ∫

(b − y)+ν
←
P
a (dy) ≤ (b − a)(νP

x − νP
a )({a}) +∫

(b − y)+νP
a (dy) = ∫

(b − y)+1[a,∞)(y)νP
x (dy) which again contradicts the

choice of a and b.
Case 2: x /∈ M . Define again yx = inf�x ; note that yx ≤ x by nondegeneracy.

Let t ∈ �1 be such that t < x. If �t ∩ (yx,∞) �= ∅, then as x /∈ M , the defi-
nition of yx yields a contradiction to first-order left-monotonicity. On the other
hand, let x < t and assume that �t ∩ (−∞, yx) �= ∅. If t /∈ M , the construction
of yx again contradicts first-order left-monotonicity; thus t ∈ M . But then non-
degeneracy shows that �t ∩ [t,∞) �= ∅ and the definition of yx yields a contra-
diction to second-order right-monotonicity. Clearly, �x ⊆ [yx,∞), and we have
established that P must be concentrated on the union of (−∞, x) × (−∞, yx]
and [x,∞) × [yx,∞). Since P ∈ S(μ, ν), this implies that νP

x = ν|(yx,∞) + kδyx ,
where k := μ([x,∞)) − ν((yx,∞)). This is the minimal element of �μ|[x,∞), ν�,

and thus νP
x = ν

←
P
x , completing the proof. We remark that the proof is shorter than

in (i) due to the asymmetry of the supermartingale constraint. �
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9. Regularity of Spence–Mirrlees functions. A supermartingale Spence–
Mirrlees function f need not be (semi)continuous. For instance, if f (x, y) =
ϕ(x)ψ(y) for a strictly increasing function ϕ and a strictly convex and decreas-
ing function ψ , then f is supermartingale Spence–Mirrlees but clearly ϕ need not
be upper or lower semicontinuous. In general, f may have a continuum of various
types of discontinuities.

However, we show in Proposition 9.2 below that a measurable second-order
Spence–Mirrlees function is automatically continuous for a finer topology on R

2,
and this topology will be coarse enough to preserve the weak compactness of
S(μ, ν). Thus, we can still deduce the existence of optimal transports (Lemma 9.3)
for upper semicontinuous reward functions f , and in particular for supermartingale
Spence–Mirrlees functions. That will allow us to apply the monotonicity principle
of Theorem 5.2.

Before stating these results, we introduce a relaxed version of the Spence–
Mirrlees conditions of Definition 7.1, where increase and convexity are required in
the nonstrict sense—we have reserved the shorter name for the object that appears
more frequently.

DEFINITION 9.1. We call f :R2 →R relaxed first-order Spence–Mirrlees if

f (x2, ·) − f (x1, ·) is increasing for all x1 < x2,

relaxed second-order Spence–Mirrlees if

f (x2, ·) − f (x1, ·) is convex for all x1 < x2,

and relaxed supermartingale Spence–Mirrlees if f is relaxed second-order
Spence–Mirrlees and −f is relaxed first-order Spence–Mirrlees.

PROPOSITION 9.2. Let f : R2 → R be Borel and relaxed second-order
Spence–Mirrlees. There is a Polish topology τ on R such that f is τ ⊗ τ -
continuous. Moreover, τ refines the Euclidean topology and induces the same
Borel sets.

PROOF. We begin by constructing the functions fn; the topology will be de-
fined in the last step.

Step 1: Regularity in y. We first suppose that f vanishes along the y-axis,

(9.1) f (0, y) = 0, y ∈ R.

Under this hypothesis, the second-order Spence–Mirrlees condition implies

(9.2)

{
f (x, ·) is convex, x ≥ 0,

f (x, ·) is concave, x ≤ 0.



3390 M. NUTZ AND F. STEBEGG

Therefore, y 	→ f (x, y) admits a finite left derivative ∂yf (x,0) at y = 0. We im-
pose the further hypothesis that

(9.3) ∂yf (x,0) = 0, x ∈R.

Since y 	→ f (x, y) is convex or concave, its restriction to a compact interval
Km = [−m,m] is Lipschitz continuous with some optimal Lipschitz constant
Lip(f (x, ·)|Km) < ∞. More precisely, (9.2) and (9.3) imply that the optimal con-
stant is the supremum of the absolute slopes of the tangents at the endpoints
y = ±m. The second-order Spence–Mirrlees condition implies that the absolute
slopes are increasing in |x|; in particular,

(9.4) sup
x∈Km

Lip
(
f (x, ·)|Km

) = sup
x=±m

Lip
(
f (x, ·)|Km

)
< ∞.

Step 2: Approximation. Fix n ∈ N, let yn
k = 2−nk for k ∈ Z and let fn(x, ·) be

the continuous, piecewise affine approximation to f (x, ·) along this grid; that is,
for yn

k ≤ y < yn
k+1 we define

(9.5) fn(x, y) = λf
(
x, yn

k

) + (1 − λ)f
(
x, yn

k+1
)
, λ := 2n(

yn
k+1 − y

)
.

We then have |fn(x, y) − f (x, y)| ≤ 2−nL for all y ∈ Km if L is a Lipschitz con-
stant for f (x, ·) on Km. In view of (9.4), this shows that

(9.6) fn → f uniformly on Km × Km, for all m ∈ N.

Step 3: Refining the topology. Next, we introduce the topology τ . The basic
idea here is that if ϕ is a real function with a single discontinuity at y0 ∈ R, we can
change the topology on R by declaring y0 an isolated point and then ϕ becomes
continuous. More generally, [47], Theorem 13.11, Lemma 13.3, show that given a
countable family of Borel functions on R, there exists a Polish topology τ ⊆ B(R)

which renders these functions continuous and refines the Euclidean topology. In
particular, we can find τ such that f (·, yn

k ) is τ -continuous for all n, k. As τ refines
the Euclidean topology, it readily follows that the functions fn defined in (9.5) are
τ ⊗τ -continuous. But now (9.6) yields that f is continuous as well (note that since
τ refines the Euclidean topology, any τ ⊗ τ -neighborhood contains a bounded
one).

It remains to remove the hypotheses (9.1) and (9.3). The above shows that the
claim holds for f̃ (x, y) := f (x, y)− f (0, y)− (∂y[f (x, y)− f (0, y)]y=0)y; note
that f̃ is again relaxed second-order Spence–Mirrlees. We can further refine τ such
that the two Borel functions subtracted on the right-hand side are τ -continuous,
and then the result for f follows. �

The preceding result leads to the existence of optimal transports.
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LEMMA 9.3. Let μ ≤cd ν and let τ be a Polish topology on R which refines
the Euclidean topology and induces the same Borel sets. Moreover, let f :R2 → R

be upper semicontinuous for the product topology τ ⊗ τ and suppose that f + is
S(μ, ν)-uniformly integrable; that is,

(9.7) lim
N→∞ sup

P∈S(μ,ν)

P
(
f +1f +>N

) = 0.

Then, Sμ,ν(f ) < ∞ and there exists an optimal P ∈ S(μ, ν) for Sμ,ν(f ).
Condition (9.7) is satisfied in particular if f (x, y) ≤ a(x)+b(y) for some func-

tions a ∈ L1(μ) and b ∈ L1(ν).

PROOF. Standard arguments show that S(μ, ν) is compact in the usual topol-
ogy of weak convergence as induced by the Euclidean metric. However, the weak
topology on S(μ, ν) induced by τ ⊗ τ does not depend on the choice of the Pol-
ish topology τ as long as σ(τ) = B(R); this follows from [12], Lemma 2.3. Thus,
S(μ, ν) is still weakly compact relative to τ ⊗ τ .

Under the additional condition that f is bounded from above, the mapping P 	→
P(f ) is upper semicontinuous by [61], Lemma 4.3. Applying this result to f ∧ N

and using (9.7), the same extends to f as in the lemma, and the claim follows. �

We remark that compactness of S(μ, ν) may fail if nonproduct topologies are
considered on R

2, so that the use of τ ⊗ τ is crucial. The following corollary also
improves the existing results in the martingale transport case that occurs when
μ ≤c ν, so we state that case separately.

COROLLARY 9.4. Let μ ≤cd ν be probability measures and let f : R2 → R

be Borel and relaxed supermartingale Spence–Mirrlees. Suppose that there exist
a ∈ L1(μ), b ∈ L1(ν) such that f (x, y) ≥ a(x) + b(y) for all x, y ∈ R and that

f + is S(μ, ν)-uniformly integrable; cf. (9.7). Then Sμ,ν(f ) < ∞ and
→
P ∈ S(μ, ν)

is an optimizer. If f is supermartingale Spence–Mirrlees, the optimizer is unique.

The analogue holds for
←
P if instead −f is (relaxed) supermartingale Spence–

Mirrlees.
If μ ≤c ν, the same result holds with supermartingale Spence–Mirrlees replaced

by second-order Spence–Mirrlees, and then
→
P (resp.,

←
P ) coincides with the Left-

Curtain (Right-Curtain) coupling of [9].

PROOF. Let f be supermartingale Spence–Mirrlees (in the strict sense). Un-
der the stated integrability condition, Proposition 9.2 and Lemma 9.3 show that
Sμ,ν(f ) < ∞ and that an optimizer P ∈ S(μ, ν) exists. Now, the monotonicity
principle of Theorem 5.2 and Remark 5.4 provide sets (�,M) ∈ B(R2) × B(R)

such that P is concentrated on �, P |M×R is a martingale and the assertion of The-
orem 5.2(iii) holds. In view of Remark 7.6, we may assume that � is nondegener-
ate by passing to a subset of full P -measure. Proposition 7.8 implies that (�,M) is
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first-order right monotone and second-order left-monotone, and then Theorem 8.1

yields that P = →
P .

If f is relaxed supermartingale Spence–Mirrlees, let g be as in Remark 7.2 and
note that for each n ∈ N, the function fn = f + (1/n)g is supermartingale Spence–
Mirrlees in the strict sense. Since fn satisfies the stated integrability conditions,

the above shows that
→
P is the unique optimizer for fn. Suppose that there exists

P∗ ∈ S(μ, ν) such that P∗(f ) >
→
P (f ). Then, as monotone convergence yields

P∗(fn) → P∗(f ) and
→
P (fn) → →

P (f ), it follows that P∗(fn) >
→
P (fn) for n large

enough, contradicting the optimality of
→
P .

The argument for
←
P is similar. The proofs for the martingale case are the same:

when M =R, the first-order monotonicity condition is vacuous. �

Finally, we also have the converse of Theorem 8.1 which completes the proofs
for the main results as stated in the Introduction.

COROLLARY 9.5. Let μ ≤cd ν be probability measures and let
→
P be the as-

sociated Increasing Supermartingale Transport. There exists a nondegenerate pair
(�,M) ∈ B(R2)×B(R) which is first-order right-monotone and second-order left-

monotone such that
→
P is concentrated on � and

→
P |M×R is a martingale. The ana-

logue, exchanging left and right, holds for
←
P .

PROOF. Let g be a supermartingale Spence–Mirrlees function as in Re-

mark 7.2. We know from Corollary 9.4 that
→
P is the unique optimal transport

for g, and the existence of (�,M) follows as in the proof of Corollary 9.4. �

REMARK 9.6. Corollary 9.5 shows, in particular, that the no-crossing proper-

ties of
→
P and

←
P as stated in the Introduction are true for general marginals. The

preservation of order mentioned in Figure 2 follows from the two monotonicity
properties and nondegeneracy, and together with Remark 7.7, the corollary also

yields that
→
P has at most one transition from martingale kernels to proper super-

martingale ones.
A martingale transport with second-order left-monotone support is the Left-

Curtain coupling of its marginals and if the first marginal has no atoms, each kernel
of this transport is concentrated on two points [9]. Moreover, an arbitrary transport
with first-order right-monotone support is the antitone coupling and if the first
marginal has no atoms, its kernels are deterministic [55], Section 3.1. As a result,
if μ is diffuse:

(i)
→
P |Mc×R is of Monge-type,

(ii)
→
P |M×R is concentrated on the union of two graphs.
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The analogue holds for
←
P , with the Right-Curtain and Hoeffding–Fréchet cou-

plings.

10. Counterexamples.

10.1. Duality theory. In the Introduction and the body of the text, we have
claimed that certain relaxations cannot be avoided. In [11], we have already stated
several examples related to the duality theory for the case of martingale transport.
Bearing in mind that this is a special case of the supermartingale transport problem
at hand, these examples still apply: If the inequality defining the dual elements
is stated in the classical sense as ϕ(x) + ψ(y) + h(x)(y − x) ≥ f (x, y) for all
(x, y) ∈ R

2 rather than the quasi-sure sense, a duality gap may occur; cf. [11],
Example 8.1. A duality gap may also occur if integrability of dual elements is
required in the usual sense; that is, ϕ ∈ L1(μ), or if f has no lower bound, see
[11], Examples 8.4, 8.5.

Next, let us substantiate two claims made in the body of the text. Recall that
the set Dci,pw

μ,ν (f ) was defined with nonnegative functions h, whereas for Dμ,ν(f )

nonnegativity is required only on the proper portion of the state space (Defini-
tions 4.3 and 4.9). We shall show below that this is necessary:

(i) The requirement that the dual elements (ϕ,ψ,h) satisfy h ≥ 0 would pre-
clude existence of dual optimizers.

Second, we have claimed that the restriction to proper pairs μ ≤cd ν in Sec-
tion 4.2 is necessary. While we have already seen that the proof of Proposition 4.4
crucially uses a nontrivial difference of the barycenters of μ and ν in order to
control the slope of χ , we still owe an argument that this is indeed unavoidable.

(ii) The closedness property of Dci,pw
μ,ν (f ) asserted in Proposition 4.4 fails if the

(irreducible) pair μ ≤cd ν is not proper,

and this remains true even if, in view of (i), we were to alleviate the requirement
that h ≥ 0.

Indeed, let ci = i−3C, i ≥ 1, where C > 0 is such that
∑

ci = 1, and define
μ := ∑

i≥1 ciδi and ν := 1
3

∑
i≥1 ci(δi−1 + δi + δi+1). Moreover, let f (x, y) =

1x �=y . Following [11], Examples 8.4, 8.5, we find that μ ≤cd ν is irreducible and

P := ∑
i≥1

ciδi ⊗ 1

3
(δi−1 + δi + δi+1) ∈ S(μ, ν)

is a primal optimizer. Clearly, bary(μ) = bary(ν); that is, the pair is not proper. Let
(ϕ,ψ,h) be a dual optimizer. Even if we are flexible about the precise definition
of the dual domain, a minimal requirement to avoid a duality gap is that ϕ(x) +
ψ(y) + h(x)(y − x) = f (x, y) P -a.s., and hence

ϕ(x) + ψ(y) + h(x)(y − x) = f (x, y),

(x, y) ∈ N×N0, y ∈ {x − 1, x, x + 1}.
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FIG. 4. The optimal transports from Example 10.1.

It follows that ϕ(x) + ψ(x − 1) − h(x) = 1 and ϕ(x) + ψ(x + 1) + h(x) = 1 and
ϕ(x) + ψ(x) = 0 for x ∈ N, and all solutions of this system satisfy

ϕ(x) = −x2 + bx + c, ψ(x) = x2 − bx − c, h(x) = −2x + b

for x ∈ N, where b, c ∈ R are arbitrary constants. While any such triplet defines a
dual optimizer in the sense of the body of the paper, we see that there is no solution
satisfying h ≥ 0, which was our claim in (i).

To argue (ii), suppose for contradiction that the closedness property of
Dci,pw

μ,ν (f ) asserted in Proposition 4.4 were true even though μ ≤cd ν is not proper.
Then, following the proofs in the body of the paper shows that the analogue of
Proposition 4.8 would hold as well; that is, there is no duality gap and there exists
a dual optimizer in Dci,pw

μ,ν (f ). We have seen that this is not the case with the re-
quirement that h ≥ 0, but it fails even if this is dropped. Indeed, consider again a
triplet (ϕ,ψ,h) satisfying the above system of equations. If (ϕ,ψ,h) ∈ Dci,pw

μ,ν (f ),
then in particular there exists a concave and increasing moderator χ such that
ϕ − χ ∈ L1(μ). Noting that μ has an infinite second moment and that ϕ−(x) has
quadratic growth as x → ∞ along the integers, it follows that χ−(x) must have
superlinear growth as x → ∞. But then χ can certainly not be increasing, and we
have reached the desired contradiction.

10.2. Two couplings that are not canonical. As mentioned in the Introduc-
tion, it is natural to ask if reward functions f that are first- and second-order
Spence-Mirrlees are also maximized by a common supermartingale transport, that
is, fxy > 0, fxyy > 0 if f is smooth, rather than the mixed signs that were consid-
ered in the preceding sections (see also Example 5.5). However, it turns out that
two functions f 1, f 2 satisfying these Spence–Mirrlees conditions may have differ-
ent optimizers, even if the optimizer is unique for each f i . This is shown in Exam-
ple 10.1. The same is true when −f i are first- and second-order Spence–Mirrlees,
as shown by Example 10.2; we confine ourselves to numerical counterexamples.

EXAMPLE 10.1. Let μ and ν be uniformly distributed on {−1,0,1} and
{−4,−2.5,2}, respectively; then μ ≤cd ν. We consider the reward functions
f 1(x, y) = exey and f 2(x, y) = exey + 4xy which satisfy f i

xy > 0 and f i
xyy > 0.

The corresponding optimal transports can be obtained with an LP-solver; they are
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FIG. 5. The optimal transports from Example 10.2.

unique and given by

π1 = 5

18
δ(−1,−4) + 1

18
δ(−1,−2.5) + 5

18
δ(0,−2.5) + 1

18
δ(0,2) + 1

18
δ(1,−4) + 5

18
δ(1,2),

π2 = 1

3
δ(−1,−4) + 7

27
δ(0,−2.5) + 2

27
δ(0,2) + 2

27
δ(1,−2.5) + 7

27
δ(1,2).

Their supports are shown in Figure 4. The transports are first- and second-order
left-monotone with M = {1}, but the supports are different.

EXAMPLE 10.2. Let μ and ν be uniformly distributed on {−1,0,1} and
{−4,−2.5,0.5}, respectively; then again μ ≤cd ν. We consider the reward func-
tions f 1(x, y) = −exey and f 2(x, y) = −exey − 4xy which are the negatives of
the functions in Example 10.1; they satisfy f i

xy < 0 and f i
xyy < 0. The correspond-

ing (unique) optimal transports are given by

π1 = 1

9
δ(−1,−4) + 2

9
δ(−1,0.5) + 2

9
δ(0,−2.5) + 1

9
δ(0,0.5) + 2

9
δ(1,−4) + 1

9
δ(1,−2.5),

π2 = 1

6
δ(−1,−2.5) + 1

6
δ(−1,0.5) + 1

6
δ(0,−2.5) + 1

6
δ(0,0.5) + 1

3
δ(1,−4).

Their supports are shown in Figure 5. The transports are first- and second-order
right-monotone with M = {−1}, but the supports are different.

Acknowledgments. The authors would like to thank Mathias Beiglböck,
Nicolas Juillet, Jan Obłój, Nizar Touzi and an anonymous referee for encourage-
ment and advice.

REFERENCES

[1] ACCIAIO, B., BEIGLBÖCK, M., PENKNER, F. and SCHACHERMAYER, W. (2016). A model-
free version of the fundamental theorem of asset pricing and the super-replication theo-
rem. Math. Finance 26 233–251. MR3481303

[2] AMBROSIO, L. and GIGLI, N. (2013). A user’s guide to optimal transport. In Modelling and
Optimisation of Flows on Networks. Lecture Notes in Math. 2062 1–155. Springer, Hei-
delberg. MR3050280

[3] BEIGLBÖCK, M., COX, A. M. G. and HUESMANN, M. (2017). Optimal transport and Sko-
rokhod embedding. Invent. Math. 208 327–400. MR3639595

http://www.ams.org/mathscinet-getitem?mr=3481303
http://www.ams.org/mathscinet-getitem?mr=3050280
http://www.ams.org/mathscinet-getitem?mr=3639595


3396 M. NUTZ AND F. STEBEGG

[4] BEIGLBÖCK, M., COX, A. M. G., HUESMANN, M., PERKOWSKI, N. and PRÖMEL, D. J.
(2017). Pathwise superreplication via Vovk’s outer measure. Finance Stoch. 21 1141–
1166. MR3723384

[5] BEIGLBÖCK, M., GOLDSTERN, M., MARESCH, G. and SCHACHERMAYER, W. (2009). Op-
timal and better transport plans. J. Funct. Anal. 256 1907–1927. MR2498564

[6] BEIGLBÖCK, M., HENRY-LABORDÈRE, P. and PENKNER, F. (2013). Model-independent
bounds for option prices: A mass transport approach. Finance Stoch. 17 477–501.

[7] BEIGLBÖCK, M., HENRY-LABORDÈRE, P. and TOUZI, N. (2017). Monotone martingale
transport plans and Skorokhod embedding. Stochastic Process. Appl. 127 3005–3013.

[8] BEIGLBÖCK, M., HUESMANN, M. and STEBEGG, F. (2016). Root to Kellerer. In Séminaire
de Probabilités XLVIII. Lecture Notes in Math. 2168 1–12. Springer, Berlin.

[9] BEIGLBÖCK, M. and JUILLET, N. (2016). On a problem of optimal transport under marginal
martingale constraints. Ann. Probab. 44 42–106. MR3456332

[10] BEIGLBÖCK, M. and NUTZ, M. (2014). Martingale inequalities and deterministic counter-
parts. Electron. J. Probab. 19 1–15.

[11] BEIGLBÖCK, M., NUTZ, M. and TOUZI, N. (2017). Complete duality for martingale optimal
transport on the line. Ann. Probab. 45 3038–3074. MR3706738

[12] BEIGLBÖCK, M. and PRATELLI, A. (2012). Duality for rectified cost functions. Calc. Var.
Partial Differential Equations 45 27–41.

[13] BERTSEKAS, D. P. and SHREVE, S. E. (1978). Stochastic Optimal Control. The Discrete-Time
Case. Academic Press, New York.

[14] BIAGINI, S., BOUCHARD, B., KARDARAS, C. and NUTZ, M. (2017). Robust fundamental
theorem for continuous processes. Math. Finance 27 963–987.

[15] BOUCHARD, B. and NUTZ, M. (2015). Arbitrage and duality in nondominated discrete-time
models. Ann. Appl. Probab. 25 823–859. MR3313756

[16] BURZONI, M., FRITTELLI, M. and MAGGIS, M. (2017). Model-free superhedging duality.
Ann. Appl. Probab. 27 1452–1477. MR3678476

[17] CAMPI, L., LAACHIR, I. and MARTINI, C. (2017). Change of numeraire in the two-marginals
martingale transport problem. Finance Stoch. 21 471–486.

[18] CHERIDITO, P., KUPPER, M. and TANGPI, L. (2015). Representation of increasing convex
functionals with countably additive measures. Preprint. Available at arXiv:1502.05763v1.

[19] COX, A. M. G. (2008). Extending Chacon–Walsh: Minimality and generalised starting dis-
tributions. In Séminaire de Probabilités XLI. Lecture Notes in Math. 1934 233–264.
Springer, Berlin.

[20] COX, A. M. G., HOU, Z. and OBŁÓJ, J. (2016). Robust pricing and hedging under trading
restrictions and the emergence of local martingale models. Finance Stoch. 20 669–704.

[21] COX, A. M. G. and OBŁÓJ, J. (2011). Robust pricing and hedging of double no-touch options.
Finance Stoch. 15 573–605.

[22] COX, A. M. G., OBŁÓJ, J. and TOUZI, N. (2015). The Root solution to the multi-marginal
embedding problem: An optimal stopping and time-reversal approach. Preprint. Available
at arXiv:1505.03169v1.

[23] DE MARCO, S. and HENRY-LABORDÈRE, P. (2015). Linking vanillas and VIX options: A con-
strained martingale optimal transport problem. SIAM J. Financial Math. 6 1171–1194.

[24] DOLINSKY, Y. and NEUFELD, A. (2015). Super-replication in extremely incomplete markets.
Math. Finance. To appear.

[25] DOLINSKY, Y. and SONER, H. M. (2014). Martingale optimal transport and robust hedging in
continuous time. Probab. Theory Related Fields 160 391–427. MR3256817

[26] DOLINSKY, Y. and SONER, H. M. (2015). Martingale optimal transport in the Skorokhod
space. Stochastic Process. Appl. 125 3893–3931.

[27] FAHIM, A. and HUANG, Y.-J. (2016). Model-independent superhedging under portfolio con-
straints. Finance Stoch. 20 51–81.

http://www.ams.org/mathscinet-getitem?mr=3723384
http://www.ams.org/mathscinet-getitem?mr=2498564
http://www.ams.org/mathscinet-getitem?mr=3456332
http://www.ams.org/mathscinet-getitem?mr=3706738
http://www.ams.org/mathscinet-getitem?mr=3313756
http://www.ams.org/mathscinet-getitem?mr=3678476
http://arxiv.org/abs/arXiv:1502.05763v1
http://arxiv.org/abs/arXiv:1505.03169v1
http://www.ams.org/mathscinet-getitem?mr=3256817


CANONICAL SUPERMARTINGALE COUPLINGS 3397

[28] FÖLLMER, H. and SCHIED, A. (2011). Stochastic Finance: An Introduction in Discrete Time,
3rd ed. de Gruyter, Berlin. MR2779313

[29] GALICHON, A., HENRY-LABORDÈRE, P. and TOUZI, N. (2014). A stochastic control ap-
proach to no-arbitrage bounds given marginals, with an application to lookback options.
Ann. Appl. Probab. 24 312–336. MR3161649

[30] GHOUSSOUB, N., KIM, Y.-H. and LIM, T. (2015). Structure of optimal martingale transport
in general dimensions. Preprint. Available at arXiv:1508.01806v1.

[31] GOZLAN, N., ROBERTO, C., SAMSON, P.-M. and TETALI, P. (2017). Kantorovich duality for
general transport costs and applications. J. Funct. Anal. 273 3327–3405. MR3706606

[32] GRIESSLER, C. (2016). An extended footnote on finitely minimal martingale measures.
Preprint. Available at arXiv:1606.03106v1.

[33] GUO, G., TAN, X. and TOUZI, N. (2016). On the monotonicity principle of optimal Skorokhod
embedding problem. SIAM J. Control Optim. 54 2478–2489.

[34] GUO, G., TAN, X. and TOUZI, N. (2016). Optimal Skorokhod embedding under finitely many
marginal constraints. SIAM J. Control Optim. 54 2174–2201.

[35] GUO, G., TAN, X. and TOUZI, N. (2017). Tightness and duality of martingale transport on the
Skorokhod space. Stochastic Process. Appl. 127 927–956. MR3605716

[36] HENRY-LABORDÈRE, P., OBŁÓJ, J., SPOIDA, P. and TOUZI, N. (2016). Maximum maximum
of martingales given marginals. Ann. Appl. Probab. 26 1–44. MR3449312

[37] HENRY-LABORDÈRE, P., TAN, X. and TOUZI, N. (2016). An explicit version of the one-
dimensional Brenier’s theorem with full marginals constraint. Stochastic Process. Appl.
126 2800–2834.

[38] HENRY-LABORDÈRE, P. and TOUZI, N. (2016). An explicit martingale version of the one-
dimensional Brenier theorem. Finance Stoch. 20 635–668. MR3519164

[39] HIRSCH, F., PROFETA, C., ROYNETTE, B. and YOR, M. (2011). Peacocks and Associated
Martingales, with Explicit Constructions. Bocconi & Springer Series 3. Springer, Milan;
Bocconi Univ. Press, Milan. MR2808243

[40] HOBSON, D. (1998). Robust hedging of the lookback option. Finance Stoch. 2 329–347.
[41] HOBSON, D. (2011). The Skorokhod embedding problem and model-independent bounds for

option prices. In Paris–Princeton Lectures on Mathematical Finance 2010. Lecture Notes
in Math. 2003 267–318. Springer, Berlin.

[42] HOBSON, D. (2016). Mimicking martingales. Ann. Appl. Probab. 26 2273–2303.
[43] HOBSON, D. and KLIMMEK, M. (2015). Robust price bounds for the forward starting straddle.

Finance Stoch. 19 189–214.
[44] HOBSON, D. and NEUBERGER, A. (2012). Robust bounds for forward start options. Math.

Finance 22 31–56.
[45] JUILLET, N. (2016). Stability of the shadow projection and the left-curtain coupling. Ann. Inst.

Henri Poincaré Probab. Stat. 52 1823–1843. MR3573297
[46] KÄLLBLAD, S., TAN, X. and TOUZI, N. (2017). Optimal Skorokhod embedding given full

marginals and Azéma–Yor peacocks. Ann. Appl. Probab. 27 686–719.
[47] KECHRIS, A. S. (1995). Classical Descriptive Set Theory. Graduate Texts in Mathematics 156.

Springer, New York. MR1321597
[48] KELLERER, H. G. (1984). Duality theorems for marginal problems. Z. Wahrsch. Verw. Gebiete

67 399–432.
[49] NEUFELD, A. and NUTZ, M. (2013). Superreplication under volatility uncertainty for measur-

able claims. Electron. J. Probab. 18 1–14.
[50] NUTZ, M. (2014). Superreplication under model uncertainty in discrete time. Finance Stoch.

18 791–803.
[51] NUTZ, M. (2015). Robust superhedging with jumps and diffusion. Stochastic Process. Appl.

125 4543–4555.

http://www.ams.org/mathscinet-getitem?mr=2779313
http://www.ams.org/mathscinet-getitem?mr=3161649
http://arxiv.org/abs/arXiv:1508.01806v1
http://www.ams.org/mathscinet-getitem?mr=3706606
http://arxiv.org/abs/arXiv:1606.03106v1
http://www.ams.org/mathscinet-getitem?mr=3605716
http://www.ams.org/mathscinet-getitem?mr=3449312
http://www.ams.org/mathscinet-getitem?mr=3519164
http://www.ams.org/mathscinet-getitem?mr=2808243
http://www.ams.org/mathscinet-getitem?mr=3573297
http://www.ams.org/mathscinet-getitem?mr=1321597


3398 M. NUTZ AND F. STEBEGG

[52] NUTZ, M., STEBEGG, F. and TAN, X. (2017). Multiperiod martingale transport. Preprint.
Available at arXiv:1703.10588v1.

[53] OBŁÓJ, J. (2004). The Skorokhod embedding problem and its offspring. Probab. Surv. 1 321–
390.

[54] OBŁÓJ, J. and SPOIDA, P. (2017). An iterated Azéma–Yor type embedding for finitely many
marginals. Ann. Probab. 45 2210–2247. MR3693961

[55] RACHEV, S. T. and RÜSCHENDORF, L. (1998). Mass Transportation Problems, Vol. I: Theory.
Springer, New York.

[56] RACHEV, S. T. and RÜSCHENDORF, L. (1998). Mass Transportation Problems, Vol. II: Appli-
cations. Springer, New York.

[57] STEBEGG, F. (2014). Model-independent pricing of Asian options via optimal martingale
transport. Preprint. Available at arXiv:1412.1429v1.

[58] TAN, X. and TOUZI, N. (2013). Optimal transportation under controlled stochastic dynamics.
Ann. Probab. 41 3201–3240. MR3127880

[59] TOUZI, N. (2014). Martingale inequalities, optimal martingale transport, and robust superhedg-
ing. In Congrès SMAI 2013. ESAIM Proc. Surveys 45 32–47. EDP Sci., Les Ulis.

[60] VILLANI, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58.
Amer. Math. Soc., Providence, RI. MR1964483

[61] VILLANI, C. (2009). Optimal Transport: Old and New. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences] 338. Springer, Berlin.
MR2459454

[62] ZAEV, D. (2015). On the Monge–Kantorovich problem with additional linear constraints.
Math. Notes 98 725–741.

DEPARTMENT OF STATISTICS

COLUMBIA UNIVERSITY

1255 AMSTERDAM AVENUE

NEW YORK, NEW YORK 10025
USA
E-MAIL: mnutz@columbia.edu

florian.stebegg@columbia.edu

http://arxiv.org/abs/arXiv:1703.10588v1
http://www.ams.org/mathscinet-getitem?mr=3693961
http://arxiv.org/abs/arXiv:1412.1429v1
http://www.ams.org/mathscinet-getitem?mr=3127880
http://www.ams.org/mathscinet-getitem?mr=1964483
http://www.ams.org/mathscinet-getitem?mr=2459454
mailto:mnutz@columbia.edu
mailto:florian.stebegg@columbia.edu

	Introduction
	Synopsis
	Methodology and literature

	Preliminaries
	Barriers and polar sets
	Proofs of Propositions 3.2 and 3.4

	Duality theory
	Integration on a proper irreducible component
	Closedness on a proper irreducible component
	Duality on a proper irreducible component
	Global duality

	Monotonicity principle
	Shadow construction
	Spence-Mirrlees functions and geometry of their optimal transports
	Geometric characterization of the canonical supermartingale transports
	Regularity of Spence-Mirrlees functions
	Counterexamples
	Duality theory
	Two couplings that are not canonical

	Acknowledgments
	References
	Author's Addresses

