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Large, high-dimensional datasets containing different types of variables
are becoming increasingly common. For exploring such data, there is a need
for integrated methods. For example, a single genomic experiment can con-
tain large quantities of different types of data (including clinical data) that
make it a challenge to coherently describe the patterns of variability within
and between the inter-related datasets. Mutual information (MI) is a widely
used information theoretic dependency measure that also can identify non-
linear and nonmonotonic associations. First, we develop a computationally
efficient implementation of MI between a discrete and a continuous variable.
This implementation allows us to apply a coherent approach to all compar-
isons arising from continuous and categorical data. As commonly applied,
MI can have high levels of bias. So we present a novel development of mu-
tual information (MI) that reduces the bias, and that we term bias corrected
mutual information (BCMI). Further, BCMI is useful as an association mea-
sure that can be incorporated in subsequent analyses such as clustering and
visualisation procedures.

To demonstrate our approach, a genomic dataset is re-examined. This
dataset contains single nucleotide polymorphisms (SNPs, a discrete variable),
gene expression levels and clinical data (all continuous variables). Our ap-
proach allows us to integrate these different types of data by exploring asso-
ciations both within and between these types of variables.

1. Introduction. As large and complex datasets become increasingly avail-
able, there is a growing need for exploratory methods that can identify novel as-
sociations between variables. For example, integrative genomic experiments con-
taining diverse types of measurements on the same subjects give rise to multiple
datasets potentially containing many novel interactions. If we knew in sufficient
detail the underlying biological processes, we could design experiments or build
models accordingly. However, there are many cases where experiments are essen-
tially exploratory with data being used to generate further hypotheses.

One such experiment provides a motivation for the methods described in this pa-
per. The liver tissue dataset that we use to demonstrate our approach arose from an
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F2 intercross mouse model of obesity. The data consist of clinical measurements
(continuous variables), gene expression levels (also continuous) and single nu-
cleotide polymorphism genotypes (categorical variables). Our procedure enables
exploration of associations both within and between the continuous and categorical
variables, and is in this sense integrative.

It can be difficult to assess any parametric assumptions that may be made dur-
ing the analysis of large genomic datasets. Often the most effective technique for
doing so, plotting the variables, is infeasible due to the combinatorial explosion
of possible pairwise comparisons. However, when a selection of variables is ex-
amined it often becomes clear that the data are not well described by the most
commonly used parametric models. It is particularly clear that Gaussian assump-
tions are frequently inappropriate due to the presence of skew. It is also often the
case that high leverage points exist that may result in association measures such as
Pearson correlation giving spuriously strong results. Thus we seek an association
measure that is valid for potentially skewed data and is relatively insensitive to the
occasional outlying value.

Mutual information (MI) is an information theoretic measure of dependency
that has been widely used to identify nonlinear associations. MI has been used
as an association measure in bioinformatics and its estimation by kernel density
approaches is well known [e.g., Steuer et al. (2002)]. It is relatively straightforward
to use MI to assess dependency between pairs of continuous variables and pairs of
discrete variables. However, for comparisons between a discrete and a continuous
variable MI has been deemed to pose too many computational problems to be able
to be applied automatically as is required for exploring large datasets [Dawy et al.
(2006)].

Therefore, there is a need for easily implementable methods based on a measure
of association that can accommodate comparisons between all types of variables.
Such methods would enable the researcher to scan through the data, regardless of
whether variables are discrete or continuous, and determine which variables may
be associated. The most common current approaches include either to simply dis-
cretize the continuous variable and calculate a cross-tabulation based score [e.g.,
as done by Dawy et al. (2006)], or to assign numeric coding to the categorical
variables and analyze them as if they were continuous [e.g., Chu et al. (2009)].
Here, we propose an alternative approach that does not require such awkward ma-
nipulation of the data. This involves an implementation of MI using discrete and
continuous variables that is supported by statistical rigor, and that can be applied
automatically with good accuracy.

The accuracy of our association measure is improved by the use of a nonpara-
metric correction for estimation bias using the jackknife. Although the jackknife
has proved poor for the purposes of statistical inference, the original intention of
the jackknife as a bias correction [Quenouille (1956)] remains valid and will be
shown by simulation to work well for our purposes. We refer to the application
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of the jacknife bias correction to MI estimation as Bias Corrected Mutual Infor-
mation (BCMI). In addition, we show that BCMI is less affected by outlying high
leverage points than Pearson correlation.

Scientists are increasingly aware of the need to identify associations within their
data. Our approach is exploratory, with minimal assumptions as well as being ro-
bust compared with other approaches. Further, there is software readily available
that is easy to use so researchers can readily explore the interactions in their data.
Thus BCMI can be useful during the analysis process in a wide range of scenarios,
particularly with large quantities of data.

This paper is organized as follows. Section 2 introduces the liver tissue dataset
which provides a motivating example for our approach. Section 3 presents our
methods by describing the information theoretic concepts used and their nonpara-
metric estimation. In addition, we describe a nonparametric bias correction that can
be shown to reduce error. Section 4 presents simulation studies for comparisons be-
tween continuous and categorical variables. Section 5 describes the application of
BCMI to the liver tissue dataset. Section 6 presents discussion and conclusions.

2. Liver tissue data. We demonstrate the usefulness of BCMI using a pub-
licly available F2 intercross dataset containing SNPs and gene expression levels in
female mouse liver tissue. We use the same dataset analyzed in Ghazalpour et al.
(2006) and Fuller et al. (2007) containing 135 mice, 3421 genes, 20 clinical mea-
surements and 1065 SNPs. These data are available from http://labs.genetics.ucla.
edu/horvath/CoexpressionNetwork/MouseWeight/. The experiment is described in
detail in Wang et al. (2006), and briefly in Ghazalpour et al. (2006). The F2 inter-
cross is used to create a population with variability in the outcome of interest.
The strains C57BL/6J and C3H/HeJ (both ApoE−/−) are chosen to have pheno-
types compatible with the metabolic syndrome and to be particularly susceptible to
weight-related clinical outcomes. They were fed on a high-fat “western” diet from
8 to 24 weeks of age when they were sacrificed, at which point clinical outcomes
were measured. Genotyping and microarray analysis of gene expression took place
after sacrifice.

The dataset contains clinical outcome variables that are continuous in nature,
categorical SNP data obtained from genotyping, and continuous gene expression
measurements obtained from microarrays. Our approach can consistently measure
associations amongst all of these variables, enabling an overall view of the associ-
ation structure.

3. Method.

3.1. Information measures. Consider a discrete random variable X with
P(X = x) = p(x). In the context of the liver tissue dataset, X might represent
the genotype obtained from the SNP data, taking one of three possible values
depending on whether it is heterozygous (denoted Aa or H ) or one of the two
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possible homozygous types (AA or A, and aa or B). The entropy of X (Shannon’s
entropy) is given by

H(X) = −∑
x

p(x) log
(
p(x)

) = −EX

[
log

(
p(x)

)]
.

Note that we use natural logarithms throughout. All information theoretic quanti-
ties in this section can be applied for continuous variables (such as gene expression
data) by replacing sums with integrals.

For two discrete random variables X and Y with joint probability mass function
P(X = x,Y = y) = p(x, y), the mutual information (MI) is

I (X,Y ) = ∑
x

∑
y

p(x, y) log
(

p(x, y)

p(x)p(y)

)
(3.1)

= E(X,Y )

[
log

(
p(x, y)

p(x)p(y)

)]
.(3.2)

By defining appropriate probability measures, we can apply (3.2) in the case where
one variable is discrete (such as genotype) and the other is continuous (such as
gene expression). This approach is described in the next subsection.

The joint entropy of X and Y is

H(X,Y ) = −∑
x

∑
y

p(x, y) log
(
p(x, y)

)

= −E(X,Y )

[
log

(
p(x, y)

)]
,

and is related to MI by

I (X,Y ) = H(X) + H(Y) − H(X,Y ).

For an example of MI between two continuous variables [Cover and Thomas
(2006)], consider bivariate random normal variables with mean zero, common
variance and correlation ρ. The resulting MI is −1

2 log(1 − ρ2), equivalently,

ρ = ±√
1 − e−2 MI. Note that MI has the same value for positive or negative cor-

relations of the same magnitude. The relationship between MI and correlation for
normal variables is given in Table 1. This can be a useful guide for interpreting the
strength of association indicated by various MI values.

3.2. A mixture distribution model for the relationship between a categorical
variable and a continuous variable. A novel aspect of our approach is the cal-
culation of MI values for comparisons between one discrete and one continuous
variable. We model the distribution of the continuous variable as a mixture (i.e.,
linear combination) of conditional distributions for each level of the categorical
variable, as follows. Let X be a categorical random variable with g possible val-
ues x1, . . . , xg representing g groups, for example, the genotype of a SNP usually
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TABLE 1
MI vs |ρ| for the bivariate normal distribution for selected MI values

MI 0.00005 0.01 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
|ρ| 0.01 0.14 0.31 0.43 0.51 0.57 0.63 0.67 0.71 0.74

MI 0.45 0.50 0.60 0.70 0.80 0.90 1.00 1.10 1.20 1.95
|ρ| 0.77 0.80 0.84 0.87 0.89 0.91 0.93 0.94 0.95 0.99

has g = 3. Write P(X = xi) = pi for i ∈ {1, . . . , g}. Let Y be a continuous ran-
dom variable (such as a gene expression level) with density and distribution func-
tions fY (y) and FY (y) (i.e., Y : �Y → �). The joint distribution of X and Y is
F(X,Y )(x, y) with corresponding density f(X,Y )(x, y). For each xi , we have a con-
ditional distribution for Y |X = xi with continuous density function fY |X=xi

(y).
For example, if X represents genotype, with three possible values, and Y rep-
resents gene expression, we envisage three potentially different distributions for
gene expression, depending on the genotype. For notational simplicity, we shorten
fY |X=xi

(y) to fi(y), and omit subscripts where confusion is unlikely. We assume
all integrals exist. This setup gives rise to the unusual probability space charac-
terized by the joint distribution F(X,Y ) : (�X × �Y ) → (χ × �) where χ is the
discrete set of values taken by X; F(X,Y ) is best thought of as g separate contin-
uous (conditional) distributions.

We write the density of Y as

f (y) =
g∑

i=1

pifi(y).(3.3)

By writing fX(x) = ∑g
i=1 piδxi

(x) and f (y|x) = ∑g
i=1 fi(y)δxi

(x), we express
the joint density as

f (x, y) =
g∑

i=1

pifi(y)δxi
(x),

where δxi
(x) is an indicator function taking value 1 if x = xi and 0 otherwise.

PROPOSITION 3.1. The mutual information [based on (3.2)] under this model
is given as

I (X,Y ) =
g∑

i=1

pi

∫
y∈�

fi(y) log
(

fi(y)

f (y)

)
dy.(3.4)

The proof is given in Section S1 of the supplementary material [Pardy, Galbraith
and Wilson (2018)].
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This main result was derived independently by Dawy et al. (2006); equation
(17) of their paper can be shown to be equivalent, although it was arrived at by a
different argument and without making it clear that f (y) is a mixture of the con-
ditional distributions fi(y). In addition, our computational approach solves issues
raised by Dawy et al. (2006) regarding the practical application of these proce-
dures [i.e., the estimation approach we describe in the following can be automated
and potentially difficult numerical integrations are replaced by the application of
the law of large numbers (LLN)]. Equation (3.4) can be interpreted as

I (X,Y ) = D
(
f (x, y)||f (x)f (y)

) =
g∑

i=1

piD
(
fi(y)||f (y)

)
,(3.5)

where

D(fX||fY ) =
∫
�

log
(

fX(u)

fY (u)

)
dFX(u) =

∫ ∞
−∞

fX(u) log
(

fX(u)

fY (u)

)
du

is the Kullback–Leibler divergence from the distribution of random variable X to
the distribution of Y . We note that it is straightforward to extend this result to other
information measures described by Principe (2010), namely (i) Renyi entropy, (ii)
a measure based on the Cauchy–Schwarz inequality, and (iii) a measure based on
Euclidean distances [details are given in Section S2 of the supplementary material;
see Pardy, Galbraith and Wilson (2018)].

3.3. Nonparametric estimation. Kernel density estimation is a nonparametric
approach to the estimation of probability distributions [Wand and Jones (1995)]
that requires the choice of a smoothing parameter (also called the bandwidth). We
use kernel approaches as a basis for calculating MI values, and automate the pro-
cedure by using a data-driven “Direct plug-in” estimator to estimate an optimal
bandwidth [as proposed by Sheather and Jones (1991)]. An evaluation of R’s de-
fault density() function with associated bandwidth estimator bw.SJ() often
resulted in over-smoothing, so we prefer to use the dpik() function from the R
package KernSmooth.

3.4. Comparisons between two continuous variables. Qiu, Gentles and Plevri-
tis (2009) propose a nonparametric Gaussian kernel smoother for comparisons
where both variables are continuous. For a sample z = z1, . . . , zn, where n is the
number of observations in z, the well-known univariate kernel density estimator is

f̂ (z) = 1

n

n∑
j=1

Kh(z − zj ),(3.6)

where Qiu, Gentles and Plevritis (2009) have chosen

Kh(z − zj ) = 1√
2πh2

e
− 1

2h2 (z−zj )
2

,
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which is a Gaussian kernel with smoothing parameter h. In general, a (scaled)
kernel function Kh(y) is a symmetric function such that

∫ ∞
−∞ Kh(y)dy = 1. For

continuous samples x and y of size n, their MI estimator is

Î (X,Y ) = 1

n

n∑
i=1

log
(

n
∑

j Kh1(xi − xj )Kh2(yi − yj )∑
j Kh1(xi − xj )

∑
j Kh2(yi − yj )

)
.(3.7)

Note that the numerator is a bivariate Gaussian “product” kernel evaluated at ob-
served sample values. This formulation makes it clear that we are free to choose
kernels other than the Gaussian used by Qiu, Gentles and Plevritis (2009).

To further improve performance, we use the Epanechnikov kernel, which takes
the form:

Kh(y) = 3

4h

(
1 −

(
y

h

)2)
I{| y

h
|<1},(3.8)

where I{C} denotes an indicator function for condition C. For example, I{| y
h
|<1} = 1

when |y
h
| < 1 and zero otherwise. It can be shown that this kernel is optimal with

respect to asymptotic mean integrated squared error [AMISE; see Wand and Jones
(1995)]. In short, if f̂ (y) is the kernel density estimate of the true density function
f (y) the mean integrated squared error (MISE) is

E

[∫ (
f̂ (y) − f (y)

)2
dy

]
.

The AMISE is the MISE as n → ∞ such that h → 0 and nh → ∞ (so that h → 0
slower than n−1). The use of the Epanechnikov kernel in (3.7) leads to our pre-
ferred estimator for comparisons between continuous variables.

The Epanechnikov kernel provides a number of advantages. Compared to the
normal kernel it has a relative asymptotic efficiency of 1.05 [Wand and Jones
(1995)], which can be thought of as roughly increasing accuracy to the same extent
as a 5% increase in sample size. A particularly important advantage for our in-
tended use in large genomic datasets is the lack of an exponential function in (3.8).
This greatly improves computational efficiency.

3.5. Comparisons between a continuous and a categorical variable. Compar-
isons between a continuous and a categorical variable require us to estimate equa-
tion (3.4). Our first estimate for (3.4) is based on an extension of (3.7). Define nxi

as the number of observations with X = xi , and
∑

j |X=xi
as a sum over these ob-

servations (having nxi
elements). We estimate each integral in (3.4) by taking an

average of sample kernel estimates

ÊY |X=xi

[
log

(
fi(y)

f (y)

)]
= 1

nxi

nxi∑
k=1

log
( 1

nxi

∑
j |X=xi

Kh(yk − yj )

1
n

∑
j Kh(yk − yj )

)
,(3.9)
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since, by the law of large numbers (LLN), ÊY |X=xi
→ EY |X=xi

as n → ∞. This
gives the estimator

Î (X,Y ) =
g∑

i=1

p̂i

1

nxi

nxi∑
k=1

log
(

n
∑

j |X=xi
Kh(yk − yj )

nxi

∑
j Kh(yk − yj )

)
.(3.10)

The LLN is required here as this estimator takes values only at the observed data
points, allowing us to avoid a potentially difficult numerical integration and mak-
ing the estimation straightforward to automate. The p̂i are simply given by the
observed relative frequencies of the xi .

Substituting the Epanechnikov kernel (3.8) into equation (3.10) leads to our
preferred estimator for (3.4):

(3.11)

Î (X,Y ) =
g∑

i=1

p̂i

1

nxi

×
nxi∑
k=1

log
(n

∑
j |X=xi

(1 − (
yk−yj

h
)2)I{| yk−yj

h
|<1}

nxi

∑
j (1 − (

yk−yj

h
)2)I{| yk−yj

h
|<1}

)
.

3.6. Comparisons between two categorical variables. For comparisons be-
tween two categorical variables, we simply replace probabilities in (3.1) with ob-
served relative frequencies:

I (X,Y ) = ∑
x

∑
y

p̂(x, y) log
(

p̂(x, y)

p̂(x)p̂(y)

)
,(3.12)

where p̂(x, y) = 1
n2

∑
x

∑
y I{X=x,Y=y}, p̂(x) = 1

n

∑
x I{X=x} and p̂(y) = 1

n
×∑

y I{Y=y}.

3.7. Interpretation of MI estimators for mixed comparisons. Our estimators
can measure the degree of association between a continuous variable and a group-
ing factor (which we term a “mixed” comparison). This ability allows us to in-
tegrate diverse types of omics data by measuring associations between all types
of variables observed. For mixed comparisons, we aim for a high MI value when
a continuous variable is clearly separated into groups by the categorical variable,
and for low values when there is no such relationship. An example from a dataset
[Ghazalpour et al. (2006)] that we analyze in detail in Section 5 is used in Fig-
ure 1. Here, we use the approach in Section 3.3. The left figure shows three esti-
mated conditional distributions with little overlap corresponding to a MI value of
0.97. The right figure shows the result of a random permutation of group mem-
bership where the substantial overlap of continuous distributions results in a low
MI value of 0.05. In this way, a high MI value identifies an association such that
a discrete variable can distinguish or separate values of a continuous variable. It
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FIG. 1. Interpretation of high and low MI values. This is an example from the Ghazalpour et al.
(2006) data showing kernel density estimates of Aqr gene expression according to rs3149884 geno-
type. The left figure shows the combined [f (y), solid line; see equation (3.3)] and conditional [fi(y),
dashed lines; see equation (3.3)] densities highlighting the strong observed association; MI = 0.97.
The rug plot and densities show a clear separation of the groups (each group has a different symbol
in the rug plot). The right figure shows a low MI resulting from a random permutation of the grouping
variable; MI = 0.05. This demonstrates how greater Kullback–Leibler divergences (the area between
each dashed line and the black line) correspond to greater MI.

is also notable that permutation of group membership, while a bijective function,
cannot be written in terms of a Jacobian transformation and so does not leave the
MI invariant. Thus we can perform a permutation test for the null hypothesis of no
association.

3.8. Bias correction using the jackknife. Our proposed MI estimator is biased
because it uses kernel density estimation, and kernel density estimators are bi-
ased [Wand and Jones (1995)]. This section describes a bias correction method
based on the jackknife.

The jackknife is a nonparametric statistical procedure than can be thought of
as a computational simplification of the bootstrap [Efron and Gong (1983)]. It
can be used for inference but more importantly also gives a correction for es-
timation bias. As the mean squared error (MSE) of an estimator is defined as
MSE = bias2 +variance, a reduction in bias has the potential to greatly improve
accuracy under this criterion. The jackknife bias correction is based on a Taylor ex-
pansion of the expectation of the estimator [Quenouille (1956), Efron (1982)]. In
short, jackknife estimates can be used to subtract the 1/n term leaving an estimator
with O(1/n2) bias rather than O(1/n).

Consider a sample of size n, Y1, . . . , Yn from an unknown probability dis-
tribution F and a statistic θ that is a function of a realization of this sam-
ple θ(Y1, . . . , Yn). Call θ(i) the ith jackknife replication of this statistic. θ(i) ≡
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θ(Y1, . . . , Yi−1, Yi+1, . . . , Yn), that is, the statistic θ calculated on the dataset ex-
cluding the ith observation. The jackknife procedure is implemented by calculat-
ing all n of the θ(i) which are used as the basis for inference on θ . If the original
estimated value is θ̂ and the estimated jackknife values are θ̂(i), the jackknife bias
corrected estimator is

θ̂(·) = nθ̂ − n − 1

n

n∑
i=1

θ̂(i).

We refer to the application of jackknife bias correction to our MI estimators as
“bias corrected mutual information” (BCMI). Further details are given Section S3
of the supplementary material [Pardy, Galbraith and Wilson (2018)]. A brief simu-
lation study suggested that the asymptotic variance of BCMI goes to zero at a rate
of O(1/n), details are given in the supplementary Section S4 [Pardy, Galbraith
and Wilson (2018)].

4. Simulation studies. Simulation is used to assess the performance of the
jackknife bias correction and the effect of various choices for the kernel density
estimation parameters. Our approach uses kernel density estimation, and thus has
the smoothing bandwidth as a free parameter. The choice for this parameter can be
considerably narrowed by the use of plug-in bandwidth estimation [Sheather and
Jones (1991)], which reduces the choice to a discrete number of integers corre-
sponding to the number of “levels” of bandwidth estimation used [often between
1 and 5; Wand and Jones (1995) state that 2 is a common choice]. We perform
a simulation study to evaluate the accuracy of our estimators for each choice of
plug-in level with and without jackknife bias correction.

4.1. Mixed comparisons. This section concerns comparisons between a cat-
egorical and a continuous variable. We consider a 3 group categorical variable
denoted {A,H,B} corresponding to the 3 genotypes for SNP data, where H is the
heterozygote.

First conditional on each category, we simulate normally distributed continu-
ous data with varying degrees of separation between groups. The means for the
three simulated genotype categories {A,H,B} are {−5,0,5} for “large separa-
tion”, {−0.5,0,0.5} for “small separation” and {0,0,0} for “no separation”. All
normal distributions have unit variance. There are equal numbers of observations
for each of the 3 genotypes, with a total sample size of either n = 150 or n = 30.
In each case, we perform 10,000 simulation runs. The target MI values are de-
termined by evaluating (3.4) using numerical integration, with estimation accu-
racy measured by MSE. Numerical integration was performed using the R inte-
grate() function, which reported error bounds less than 10−4. The smoothness
of the density functions makes it unlikely that the numerical integration introduces
any systematic bias.
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TABLE 2
Simulation results for normally distributed data. This table shows − log10(MSE) for two sample
sizes (n = 150 and n = 30) with various degrees of separation between groups as described in

Section 4.1. The number of levels chosen for plug-in bandwidth selection was varied, and for each
scenario MI and BCMI were calculated; the use of the bias correction is indicated by bold type and

“b” next to the number of levels

Level

Separation 1 1b 2 2b 3 3b 4 4b 5 5b

n = 150
Large 3.5 3.9 5.2 5.4 5.3 4.5 4.8 4.3 4.7 4.3
Small 3.1 5.5 3.1 5.4 3.0 5.3 3.0 5.2 2.9 5.1
None 2.9 5.0 2.9 5.0 2.9 5.0 2.8 4.9 2.8 4.8

n = 30
Large 1.5 1.7 1.9 2.2 2.6 3.3 3.4 4.1 4.4 3.3
Small 2.1 3.9 2.0 3.8 2.0 3.7 1.9 3.6 1.8 3.4
None 1.9 3.7 1.9 3.6 1.8 3.5 1.8 3.4 1.7 3.2

Due to the small observed MSE values, we present results in terms of
− log10(MSE), higher values indicate greater accuracy. Results are given in Ta-
ble 2. For the large separation scenario with n = 150, the bias correction reduces
MSE for plug-in level 1 and 2 but increases MSE for higher levels. For large
separation with n = 30, the bias correction continues to reduce MSE for levels 1
through 4. For the small separation scenario, the bias correction greatly improves
MSE for all bandwidth levels and both sample sizes. This is also the case for the
no separation scenario. Boxplots of all simulation results are given in Section S5
of the supplementary material [Pardy, Galbraith and Wilson (2018)].

4.2. U-shaped associations. A major advantage of MI-based methods is the
ability to identify nonmonotonic associations. It is common practice to give a
numerical coding to a SNP under the assumption of a linear allelic effect [e.g.,
see Ghazalpour et al. (2006)]. Here, we code the genotype categories as {A →
0,H → 1,B → 2}. If the data are such that a central category gives a baseline
gene expression level with both other groups showing an increase (or both a de-
crease), these correlation estimates will be near zero whereas MI will assign a high
score. Furthermore, MI estimates will not change if the labels (not the data) of the
categorical variables are permuted. If a correlation measure is to be used, a bet-
ter approach is given by the “heterozygote advantage/disadvantage model” [Laird
and Lange (2011)]. For the heterozygote advantage model, we code the genotypes
{A → 0,H → 1,B → 0}. Figure 2 shows boxplots of simulation results where
the continuous distributions are normal with means {5,0,5} and unit variance.
We use 10,000 simulated values for each measure, with n = 150. The target MI
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FIG. 2. Boxplots of simulation results for a U-shaped relationship with categories; see Section 4.2
for details. MI and correlation are both plotted on the same numerical scale. The two boxplots to
the left show MI and BCMI estimates with plug-in level 3. The two boxplots in the middle show
Pearson and Spearman correlation estimates for the (incorrect) linear allelic effect coding and the
two boxplots on the right show Pearson and Spearman correlation estimates for the heterozygote
advantage coding. The target values are given by dashed horizontal lines, namely 0.62 for MI and
BCMI (see text), 0 for Pearson and Spearman correlations with the linear effect coding, and 0.92 for
Pearson correlation with the heterozygote advantage coding.

value of 0.62 was determined by numerical integration of (3.4). For these data, the
linear coding targets a value of zero, whereas the MI-based approach and the het-
erozygote advantage coding both identify a strong association. We choose a single
plug-in level of 3 for this comparison as the difference in MSE due to the choice
of plug-in levels is small compared to the difference in MSE between the MI mea-
sures and the correlation measures. MI is able to identify this association without
having to explicitly choose a model that is designed for this purpose.

4.3. Skewed data. Skewed or heteroscedastic data or data with outlying
groups are challenging to analyze. To investigate such data, we sample from
gamma distributions under two scenarios. The distributions are chosen to have
different amounts of skew and variability and are shown in Figure 3. The distribu-
tions in the left plot are chosen to give little separation between groups while being
skewed. Each group is given a different variance. The distributions in the right plot
are chosen to give a higher MI, with two skewed distributions (with the same vari-
ance, but different skew) and a symmetrical group with less variance but a much
larger mean. In both cases, we use n = 150 (50 in each group) with 10,000 simu-
lations runs per estimator. We parameterize the gamma distributions by their mean
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FIG. 3. Distributions for skewed data simulations. The left figure shows the density functions used
to create skewed heteroskedastic data, the right figure shows densities used for skewed data with an
outlying symmetrical group. The solid line is f (y) [equation (3.3)] with the dashed lines representing
each of the fi(y), labelled as Groups 1, 2, and 3. In the left plot the densities of Groups 1, 2 and
3 have means 1, 2, and 3 with variances 1, 2, and 3, respectively. In the right plot the densities of
Groups 1, 2, and 3 have means 2, 3, and 10 with variances 2, 2, and 1, respectively.

and variance to ease comparisons with our previous results. Results are shown in
Table 3. The bias correction increases MSE for plug-in level 1 in the second sce-
nario, but reduces MSE in all other levels and reduces MSE in all levels in the first
scenario. Boxplots of these results are given in Section S5.1 of the supplementary
material [Pardy, Galbraith and Wilson (2018)].

4.4. Further simulation results. Simulation results for comparisons between
pairs of continuous variables are presented in Section S6 of the supplementary

TABLE 3
Simulation results for skewed data. Data are generated following gamma distributions as shown in
Figure 3 with means and variances as given. This table shows − log10(MSE) for various choices of

the level parameter for plug-in bandwidth estimation with bias correction indicated by bold type
and the letter “b”

Level

1 1b 2 2b 3 3b 4 4b 5 5b

n = 150
Means = 1, 2, 3; Vars = 1, 2, 3 3.4 4.2 3.1 4.8 2.9 5.7 2.8 6.4 2.7 5.3

n = 150
Means = 2, 3, 10; Vars = 2, 2, 1 4.5 3.8 4.4 4.9 3.9 6.7 3.7 5.9 3.6 5.4
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material [Pardy, Galbraith and Wilson (2018)]. Simulation results for comparisons
between pairs of categorical variables are given in Section S7 [Pardy, Galbraith
and Wilson (2018)]. A summary of all simulation results is given in Section S8
[Pardy, Galbraith and Wilson (2018)].

5. Analysis of liver tissue data. This section demonstrates the usefulness of
BCMI using the liver tissue dataset introduced in Section 2. The publicly available
data have been normalized and filtered as described in Ghazalpour et al. (2006)
such that the 3421 available genes are among the most variable and most highly
connected (in the sense that the row sums of a correlation matrix between them
has large values). This makes our task easier by removing uninformative variables
and lowering the overall number of comparisons. Note that this filtering biases the
dataset in favor of containing variables with linear associations.

5.1. Associations between continuous and categorical variables. In this sec-
tion, we focus on associations between gene expression measures and SNPs as this
is the most novel aspect of our development of MI. We find that the ability to iden-
tify nonmonotonic associations as discussed in Section 4.2 is borne out in our anal-
ysis of real data. For example, a U-shaped association was observed between the
Car9 gene on chromosome 4 and the rs3702474 SNP on chromosome 16; see Fig-
ure 4. These box and violin plots [Hintze and Nelson (1998)] were produced with
the R package vioplot using the default 1.5 times interquartile range threshold
to determine outliers. For clarity large outlying gene expression values less than
−2 have been removed from the plot; two are in the A group (−7.29 and −4.56),
one is in the H group (−2.94). These plots show boxplots (black rectangles) with
superimposed kernel density estimates. The kernel densities are truncated at the
minimum and maximum observed values within each group. The medians (white
circles) show the general U-shaped nature of this relationship; the kernel densities
indicate the bulk of the data. This degree of overlap results in the moderate BCMI
of 0.23 (0.2 without outliers). Note that our BCMI estimation procedure is able to
handle the bimodality within genotype A.

A common approach for the analysis of SNP data is to assume an additive effect
for each copy of an allele, for example, using the numerical coding {A → 0,H →
1,B → 2} [as done in Ghazalpour et al. (2006)]. We refer to the use of this coding
as the linear allele effect linear model, yi = β0 + xiβ1, where xi ∈ {0,1,2}. The
{0,1,2} SNP coding is also used for the calculation of Pearson and Spearman
correlation values.

Table 4 shows association values and p-values for the relationship between Car9
and rs3702474 with and without the outliers. Association is measured using Pear-
son correlation, Spearman correlation, and BCMI. p-values are given for the linear
allele effect linear model (“Linear”), analysis of variance (“ANOVA”) where the
SNP values are used as a grouping variable, and a BCMI permutation test (“BCMI
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FIG. 4. Box plots for gene expression of Car9 grouped according to rs3702474 genotype, with
large negative-valued outliers removed (see Section 5.1). The width of each boxplot is proportional
to the square root of the sample size in each group.

perm”). The permutation test p-value is the result of 3 million random permuta-
tions of the SNP variable and is defined as the proportion of resulting BCMI values
greater than or equal to the raw observed value. The Pearson correlation is not ro-
bust to outliers, changing from positive to negative due to the influence of just the
outliers. The Spearman correlation is more robust, but misses the nonmonotonic
relationship and instead detects only a small negative association (removal of the
outliers increases the magnitude of the Spearman correlation). BCMI is much more
robust to the effect of the outliers. The linear model is unable to detect any statisti-
cally significant association with or without outliers. ANOVA shows no evidence

TABLE 4
Association measures and p-values for the U-shaped relationship between the Car9 gene and the

rs3702474 SNP; see Section 5.1 for details

Association measures p-values

Pearson Spearman BCMI Linear ANOVA BCMI perm

With outliers 0.14 −0.04 0.23 0.169 0.389 7.3 × 10−6

Without outliers −0.14 −0.10 0.2 0.165 1.1 × 10−4 1.8 × 10−5
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of association at all when outliers are left in the data, but indicates very strong
evidence of a difference between groups when the outliers are removed. The per-
mutation test gives very small p-values both with and without outliers included,
although the p-value is increased when the outliers are removed from the analysis.

A common use for association measures is to scan through a dataset to iden-
tify the strongest associations. Section S9 of the supplementary material [Pardy,
Galbraith and Wilson (2018)] contains tables of some of the strongest associations
identified. Interestingly, there were several very strong associations between genes
and SNPs lying on different chromosomes (termed “trans” associations). At least
2 U-shaped associations are discovered: the above mentioned association between
Car9 and rs3702474, and another between Olfr599 and rs3674895. Both of these
are obscured by the shape of their associations and the presence of outliers. Some
of the strongest trans associations have nonsignificant ANOVA and linear model p-
values, and would thus have not been identified without using BCMI. Conversely,
the overall highest BCMI values also corresponded to results with strong statisti-
cal significance of ANOVA or linear models, indicating that we did not miss any
obvious strong signals within the data. Section S9 of Pardy, Galbraith and Wilson
(2018) also details how we dealt with linkage disequilibrium (LD) resulting from
the experimental design.

5.2. An exploratory visualization of results. Association measures are rou-
tinely used to infer biochemical networks and functionally related sub-networks
referred to as modules [e.g., Ghazalpour et al. (2006)]. The BCMI values calcu-
lated by our approach are easily imported into network analysis software for this
purpose (e.g., the actively-developed open source software Cytoscape [Shannon
et al. (2003)]; we use version 2.8.3 released in May 2012).

5.3. A permutation criterion for network visualization. We choose to take a
highly conservative approach and visualize the dependency structure as a network
where nodes are connected based on Bonferroni-adjusted statistical significance.
To remain consistent, we would prefer to use a single procedure to assess statistical
significance for all types of comparison. In keeping with the nonparametric focus
of this work, we define our visualization criteria based upon the results of a permu-
tation test. Permutation tests are reliable in the sense that they maintain their nom-
inal level, but are computationally intensive. The number of resamples required
can be very large in multiple testing scenarios with large numbers of comparisons.
The approximation described below works well to overcome the computational
expense. Note that a practical, alternative approach would be to simply choose an
arbitrary cutoff to select only the very strongest identified associations.

5.4. An approximate permutation test. To reduce the computational burden
of calculating a separate permutation null hypothesis distribution for each pair-
wise comparison (i.e., applying the approach used in the single gene/SNP example
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above separately for each comparison), we follow Efron (2010), Section 6.5. This
approach combines all distinct pairwise comparisons to obtain a single approxi-
mate null hypothesis distribution, which is then used for all comparisons.

Full details of the approach are given in Section S10.1 of the supplementary
material [Pardy, Galbraith and Wilson (2018)]. Essentially, combining the com-
parisons allows us to greatly increase the number of draws from the permutation
null hypothesis distribution that can be obtained from a single permutation. The
resulting computational advantage is balanced by the fact that the empirical dis-
tribution of the resamples will be only an approximation to the null hypothesis
distribution for any given comparison.

5.5. Approximate permutation tests for the liver tissue data. As described
fully in Section S10.2 [Pardy, Galbraith and Wilson (2018)], we apply the ap-
proximate permutation test separately for the three different types of compar-
isons generated by the liver tissue data: discrete/discrete, continuous/continuous
and discrete/continuous. Based on the total number of comparisons of all types, a
Bonferroni-adjusted threshold of 4.93×10−9 for the p-values was chosen in order
to control the familywise error rate at α = 0.05. To achieve this level, the numbers
of resamples required were 40, 60, and 400 for the continuous/continuous, dis-
crete/continuous, and discrete/discrete comparisons, respectively.

An example of one of the networks thus discovered is given in Figure 5. In
Figure 5, we can see some of the LD between the SNPs on chromosome 8 with
some subsets of SNPs in higher LD than others (roughly five such groups are
evident, as seen by the darker lines indicating high BCMI, for example, the group
of SNPs at the bottom of the plot). No association between genes reached the
level required to add an edge between them in the plot (BCMI > 0.45). Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway information for the genes
in Figure 5 is given in Table 5.

In addition, Section S11 of the supplementary material [Pardy, Galbraith and
Wilson (2018)] contains network plots of all variables in the liver tissue data. In-
terestingly, we note that the SNPs clustered into groups according to chromosome,
as expected from the high degree LD present in the F2 intercross. Also, strong
mixed-type associations caused groups of SNPs to “attach” to a main group of
associated gene expression variables. We also make a comparison to the original
analysis of these data [Ghazalpour et al. (2006)] and show that the genes within a
group they identify as being associated with mouse weight tend to be near weight
in an association network.

6. Discussion. We have developed an approach for exploring the dependency
structure of large and complex datasets. Using BCMI as a consistent framework
for quantifying dependency, we can search for strong associations for any type of
variable, continuous or discrete. The generality of this measure makes it possible
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FIG. 5. Network plot for chromosome 8 determined by the permutation-based criterion applied to
all types of association; for details see Sections 5.3 to 5.5. KEGG annotations for the genes in this
plot are given in Table 5. Each gene expression level or SNP corresponds to a node in the network and
is connected by an edge if the corresponding BCMI value is greater than the appropriate cutoff from
Table S3. Genes are shown with circular nodes, SNPs are shown with square nodes. Genes and SNPs
are shaded according to chromosome; in this figure all SNPs and genes are from chromosome 8 with
the exception of the fabp3 gene indicated by lighter shading. The shading of each edge reflects the
corresponding BCMI value, ranging continuously from light-grey (low BCMI) to black (high BCMI).
The electronic version of this plot uses vector graphics and can be enlarged as needed.
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TABLE 5
KEGG pathway annotations for the genes in Figure 5

Gene Chromosome KEGG pathways

Tpm4 8 Cardiovascular diseases; Cardiac muscle contraction; Circulatory
system; Cardiomyopathy

Fabp3 4 Fatty acid-binding protein 3; Muscle and heart; Endocrine System;
PPAR signaling pathway

Lpcat2 8 Glycerophospholipid metabolism; Ether lipid metabolism; Metabolic
pathways

Lrrc25 8 Unknown
D8Wsu49e 8 Unknown

to detect a wide class of associations, which can be used to combine datasets con-
taining different types of variables. Once calculated, BCMI can then be used to
either inform or be directly fed into subsequent analysis. Although this work was
motivated by the need to explore large genomic datasets, other efforts have been
made to detect wide classes of novel associations in other settings [e.g., Reshef
et al. (2011)] and BCMI is also suitable for such settings.

A potential application in genomics is the automated inference of gene ontolo-
gies, which have recently been inferred based on networks built from correlation
measures [Dutkowski et al. (2013)]. Similarly, the network modules identified by
Ghazalpour et al. (2006) are also ultimately based on pairwise Pearson correla-
tion. An obvious first step to improving such procedures is to replace correlation
with a more general measure, for which BCMI is highly suitable. The ability to
include categorical variables allows the possibility of integrating diverse sources
of genomic data, such as copy number variation or methylation status.

We use kernel density estimation to estimate mutual information values. Other
methods, such as those based on sample spacings [Kraskov, Stögbauer and Grass-
berger (2004)], were evaluated but results were found to be highly variable.
Density estimation by a mixture of spline functions [Schellhase and Kauermann
(2012)] is accurate, but extremely computationally expensive.

Our approach is helped by the fact that in order to calculate information mea-
sures, we are essentially estimating E(f (y)) rather than f (y) itself. This quantity
is referred to as the information potential in Principe (2010). The use of the LLN
for estimating information potentials is an interesting aspect of our approach. Re-
call that we estimate E(f (y)) by calculating kernel-based estimates of f̂ for the
observed y values and then taking a sample average of these. Thus if our f̂ values
are inaccurate we add error only once into the procedure rather than twice as we
would if we were to use numerical integration to evaluate E(f (y)).

Several alternative association measures have been proposed for identifying
very general classes of dependency, such as the maximal information coefficient
(MIC) [Reshef et al. (2011)], the Brownian distance covariance (DCOR) [Székely
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and Rizzo (2009)], and generalized correlation (GCOR) [Hall and Miller (2009),
Hall and Miller (2011)]. When comparing pairs of continuous variables in the liver
tissue data, we found that BCMI gave high values to relationships showing a mu-
tually exclusive or “L-shaped” pattern [which is also readily identified by MIC, as
discussed in Reshef et al. (2011)], whereas DCOR and GCOR performed better
for linear associations with performance comparable to Pearson correlation. We
did not make a detailed comparison of these measures with BCMI as they are in-
frequently used, require discrete variables to be given a numerical coding, and are
all more computationally expensive than BCMI.

Computational tractability in particular is is an important feature of any method
that is intended to be applied to large and high-dimensional data. Our approach is
successful in balancing a desire to identify a wide class of possible associations
with the ability to calculate association measures for large numbers of pairwise
comparisons in reasonable time.

We have described a procedure for a bias corrected estimate of MI for all types
of comparisons that can arise from data consisting of discrete and continuous vari-
ables. In ongoing research, we are extending this to other types of data such as or-
dinal or censored (e.g., survival) data. Kernel density estimates for censored data
exist and can potentially be used with very little modification of our estimators
[see, e.g., Padgett and McNichols (1984) and Marron and Padgett (1987)]. The ap-
plication of MI to ordinal data is much less developed in the literature and is likely
to be a difficult problem.

BCMI is a useful tool that can identify some nonmonotonic associations that
can be missed by other correlation measures. It is robust to the presence of outliers
and is fast to compute. Most importantly, it can be applied to all kinds of compar-
isons arising from a collection of continuous and categorical variables. BCMI is
therefore highly suitable for an initial exploration of the dependency structure of
high-dimensional genomic data.

An R package mpmi is available on CRAN at https://cran.r-project.org/
package=mpmi.

SUPPLEMENTARY MATERIAL

Additional material (DOI: 10.1214/17-AOAS1055SUPP; .pdf). Supplemen-
tary material is available and includes the proof of Proposition 3.1, alternative
information measures, simulations and more results for the genomic and clinical
data used in the paper [Pardy, Galbraith and Wilson (2018)].
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