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Abstract. We construct a four parameter z, z′, a, b family of Markov dynamics that preserve the z-measures on the boundary of
the branching graph for classical Lie groups of type B,C,D. Our guiding principle is the “method of intertwiners” used previously
in [J. Funct. Anal. 263 (2012) 248–303] to construct Markov processes that preserve the zw-measures.

Résumé. Nous construisons une famille à quatre paramètres, z, z′, a, b, de dynamiques de Markov qui préservent les z-mesures
sur la frontière du graphe branchant pour les groupes de Lie classiques du type B,C,D. L’idée maîtresse est la « méthode des
entrelacements » utilisée précédemment dans [J. Funct. Anal. 263 (2012) 248–303] pour construire un processus de Markov qui
préserve les zw-mesures.
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1. Introduction

In recent years, plenty of works have dealt with probabilistic models which allow a thorough analysis due to their
“integrability”. The word “integrability” in this context means that one can express correlation functions or observ-
ables of the model by explicit algebraic formulas, which can then be analyzed in various limit regimes. Perhaps most
well-known in the integrable probability world are the models arising from Schur and Macdonald processes, see [3,4,
21,25].

The integrability of the probability measures we mentioned above have their roots in classical representation the-
ory. In fact, the first (special cases of) Schur measures in the literature appeared in connection with the problem of
harmonic analysis of the infinite symmetric group S(∞), as posed in [15], and are known as z-measures. Even more
sophisticated objects, the zw-measures arise in connection with the problem of harmonic analysis of the infinite-
dimensional unitary group U(∞). Many aspects of both the z-measures and zw-measures, as well as the probabilistic
models associated to them, have been extensively studied in the last two decades, e.g., see [5–8,22].

All of the theory above comes actually from “type A” representation theory, i.e., the main players are the characters
of the unitary groups (Schur polynomials) and the probability measures are defined on signatures (which parametrize
irreducible representations of unitary groups) or arrays of them. Models whose underlying integrability is based on
“type BC” representation theory have been less popular in the probability and integrable systems literature, though
there are some interesting works showing that models of both types can be studied by similar techniques, but display
interesting and different features, see e.g. [5,11,33]. Our hope is that the theory of integrable models with BC type
integrability yield a wealth of applications to various branches of probability theory and mathematical physics, just
like their counterparts of type A. In the present paper, we link stochastic dynamics to BC representation theory by
constructing a family of Markov processes which preserve probability measures of BC representation theoretic origin.
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Concretely, in this work we deal with probability measures that are the BC analogues of the zw-measures: they
are rooted in the problem of harmonic analysis of the infinite-dimensional groups O(∞), Sp(∞) and the infinite-
dimensional symmetric space U(2∞)/U(∞) × U(∞). These measures will also be called z-measures, because they
depend only on one pair of parameters (z, z′) as in the S(∞) case, instead of two pairs (z, z′), (w,w′), as in the
U(∞) case. The z-measures corresponding to the three infinite-dimensional groups above can be defined over the
same infinite-dimensional space �∞. Interestingly, on such space one can define probability measures that depend on
an extra set of real parameters a, b > −1 that originate from the weight function of the classical Jacobi polynomials.
Therefore we can define z-measures depending on four parameters (z, z′, a, b); these probability measures have a
representation theoretic meaning only for the pairs (a, b) = (0,0), ( 1

2 , 1
2 ), ( 1

2 ,− 1
2 ), (− 1

2 ,− 1
2 ), but their integrability

remains for general a, b.
The main result of this paper is the construction of Markov dynamics on �∞ that have the z-measures as their

unique invariant measures. Importantly in the theory of harmonic analysis of big groups, the z-measures can be viewed
as probability measures on point configurations in R>0 \ {1} with infinitely many particles (see [7] for a deep study
of the zw-measures from this point of view). The author has proved that the resulting point processes for z-measures
are determinantal and their kernels have closed forms in terms of hypergeometric functions, [11]. Thus the dynamics
we construct on point configurations that preserve the determinantal structure is one of many that have been studied
in the literature, mostly within the context of random matrix theory, see the introduction in [9] and further references
therein.

The technique employed to construct our Markov dynamics is based on the “method of intertwiners”, which was
first applied in [9] for the hypergeometric process coming from zw-measures. To apply this method, it is essential
to realize �∞ as the boundary of a (graded) branching graph with formal edge multiplicities that depend on the
parameters (a, b). The goal then becomes to construct “coherent” Markov semigroups on the levels of the graph
that preserve certain pushforwards of the z-measures. We construct the required semigroups on a general level N
by using a Doob h-transformation of N birth-and-death processes. It is worth noting that our construction has many
complications that are not present for the case of zw-measures. One is that our branching graph has edge multiplicities,
unlike its type A analogue, and moreover there is no closed form for the edge multiplicities. Another one is that the
“jumping rates” for our birth-and-death processes mentioned above are related to a family of orthogonal polynomials
on a quadratic lattice, which are expressible in terms of the 4F3 hypergeometric function. In the case of the zw-
measures, the construction depends on similar birth-and-death processes, but the rates in that case are related to a
family of orthogonal polynomials on a linear lattice and they are lower in the hierarchy of orthogonal polynomials.

Let us describe briefly the ingredients of two interesting parts of our plan. First, the argument for the invariance
of certain pushforwards of the z-measures with respect to the semigroups we construct at finite levels of the BC
branching graph makes a clever use of a finite family of orthogonal polynomials of a discrete variable on a quadratic
lattice. These polynomials are eigenfunctions of the infinitesimal generator of the process at level one of the branching
graph; they can be expressed in terms of the classical Wilson polynomials of a continuous variable [34], and they also
appeared more recently in Neretin’s work [18], reason why we will call them Wilson–Neretin polynomials. Second,
the “master relation” which lies at the heart of the method of intertwiners, see (1.5) below, is proved by a brute-force
computation involving a new binomial formula for “shifted” symmetric (Jacobi) polynomials, see Appendix B.

In the rest of this Introduction, we give a more detailed account of our main result only for three of the special pairs
(a, b) mentioned above in order to avoid dealing with more complicated expressions.

1.1. BC branching graph and its boundary

Let (a, b) be one of the pairs ( 1
2 , 1

2 ), ( 1
2 − 1

2 ), (− 1
2 ,− 1

2 ). For each positive integer N , let GT+
N be the set of N -tuples

λ of weakly decreasing nonnegative integers

λ = (λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0).
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Elements of GT+
N are called positive N -signatures; they parametrize the irreducible characters of Sp(2N), SO(2N +

1), as well as certain reducible characters of O(2N).1 Given two positive signatures μ ∈GT+
N,λ ∈ GT+

N+1, we write

λ �BC μ

if there exists ν ∈GT+
N such that the following inequalities hold

λ1 ≥ ν1 ≥ λ2 ≥ · · · ≥ νN ≥ λN+1,

ν1 ≥ μ1 ≥ ν2 ≥ · · · ≥ νN ≥ μN.

It is known that the relation �BC has a representation theoretic meaning. In fact, let G(N) be any one of the rank-N
Lie groups SO(2N + 1), Sp(2N),O(2N), for any N ∈ N. For λ ∈GT+

N+1, denote by χλ = χ
G(N+1)
λ the character of

G(N + 1) parametrized by λ, as described above. By considering the natural embeddings G(N) ↪→ G(N + 1), the re-
stricted character χλ|G(N) decomposes into a sum of characters χμ, μ ∈GT+

N , where χμ appears in the decomposition
with certain multiplicity m(λ,μ). Then it is true that m(λ,μ) > 0 if and only if λ �BC μ.

Next we describe a graph with vertex set GT+ =⊔N≥1 GT+
N , whose vertices are partitioned into levels 1,2,3, . . .,

and where the N th level consists of the vertices GT+
N . The edges of the graph have multiplicities and they connect

only vertices in adjacent levels: there is an edge between μ ∈ GT+
N and λ ∈ GT+

N+1 iff λ �BC μ, and moreover that
edge has multiplicity m(λ,μ). We call the N-graded graph just described the branching graph of classical Lie groups
of type B,C,D, or simply the BC branching graph.

For each μ ∈ GT+
N and (a, b) = ( 1

2 , 1
2 ) (resp. ( 1

2 ,− 1
2 ), (− 1

2 ,− 1
2 )), let χa,b

μ (1) be the character of SO(2N + 1)

(resp. Sp(2N),O(2N)) parametrized by μ and evaluated at the identity matrix. Define χ
a,b
λ (1) similarly, for any

λ ∈ GT+
N+1. We consider the expressions

�N+1
N (λ,μ) =

{
m(λ,μ)χa,b

μ (1)/χ
a,b
λ (1) if λ �BC μ,

0 otherwise,

where m(λ,μ) is the multiplicity of χa,b
μ in the decomposition of χ

a,b
λ |G(N), and G(N) = SO(2N + 1), Sp(2N),

O(2N) when (a, b) = ( 1
2 , 1

2 ), ( 1
2 ,− 1

2 ), (− 1
2 ,− 1

2 ), respectively. For simplicity of notation, we omit a, b from the

notation of �N+1
N .

From the definition above, it is clear that �N+1
N (λ,μ) ≥ 0 and

∑
μ �N+1

N (λ,μ) = 1. Therefore (�N+1
N (λ,μ))λ,μ

is a stochastic matrix of format GT+
N+1 × GT+

N and provides a Markov kernel GT+
N ��� GT+

N+1. By applying the
same reasoning for all N , we obtain a chain of Markov kernels

GT+
1 ���GT+

2 ��� · · · ���GT+
N ���GT+

N+1 ��� · · · (1.1)

We say that a sequence {MN }N=1,2,... of probability measures on the levels {GT+
N }N=1,2,... is a coherent system if the

following consistency condition holds:

MN(μ) =
∑

λ∈GT
+
N+1

MN+1(λ)�N+1
N (λ,μ) ∀N ≥ 1,μ ∈GT+

N.

If we let Mp(GT+
N) be the metric space of probability measures on GT+

N , then (1.1) induces the following chain
of measurable maps

Mp(GT+
1 ) ← Mp(GT+

2 ) ← ·· · ← Mp(GT+
N) ← Mp+1(GT+

N+1) ← ·· ·

1Irreducible characters of SO(2N) are parametrized by N -tuples of integers (λ1, . . . , λN ) satisfying λ1 ≥ · · · ≥ λN−1 ≥ |λN |. The reducible char-

acter of O(2N) that is associated to λ1 ≥ · · · ≥ λN ≥ 0 is the following sum of two irreducible characters: χ
o(2N)
λ1,...,λN

def= χ
so(2N)
λ1,...,λN

+ χ
so(2N)
λ1,...,−λN

.
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The inverse limit lim← Mp(GT+
N) is evidently a convex set, whose elements are coherent systems {MN }N=1,2,... of

probability measures. We define the boundary of the BC branching graph �∞ as the set of extreme points of the
convex set lim← Mp(GT+

N). It is a known result, see e.g. [27, Thm. 9.2], that there is a natural map

Mp(�∞) −→ lim← Mp

(
GT+

N

)
, (1.2)

which is a bijection of sets.
The boundary �∞ of the BC branching graph, as well as the maps �∞

N : Mp(�∞) −→ Mp(GT+
N) coming from

(1.2), can be described fairly explicitly. Consider the space R2∞+1 = R∞ ×R∞ ×R with the product topology, and
its closed subspace �∞ ⊂R2∞+1 of elements (α,β, δ) such that

α = (α1 ≥ α2 ≥ · · · ≥ 0),

β = (1 ≥ β1 ≥ β2 ≥ · · · ≥ 0),

δ ≥
∞∑
i=1

(αi + βi).

The points in �∞ can be thought of as limits of partitions whose lengths go to infinity. In fact, consider a sequence
of partitions {λ(M)}M=1,2,... such that the length of each λ(M) is ≤ M and assume that the limits below exist and are
finite

lim
M→∞

λi(M)

M
= αi, i = 1,2, . . . ,

lim
M→∞

λ′
i (M)

M
= βi, i = 1,2, . . . ,

lim
M→∞

|λ(M)|
M

= δ.

We have denoted by λi(M) the ith part of the partition λ(M), by λ′
i (M) the ith part of the conjugate partition λ′(M)

and by |λ(M)| the size of the partition. Then clearly the resulting “limit point” ω = (α,β, δ) belongs to �∞. It is a
deep theorem of Okounkov and Olshanski, see [24], that the limit

�∞
N (ω,μ) = lim

M→∞
(
�M

M−1�
M−1
M−2 · · ·�N+1

N

)(
λ(M),μ

)
exists and depends only on ω, and not on the sequence {λ(M)}M . In the same paper, the authors prove that �∞, as a
set, is in bijection with the boundary of the BC branching graph. The resulting Markov kernels �∞

N : �∞ ��� GT+
N

induce the coherent maps �∞
N : Mp(�∞) →Mp(GT+

N) from bijection (1.2).
From the description above, the boundary �∞ can be seen as a limit of the discrete spaces GT+

N . On the other
hand, GT+

N parametrizes the irreducible characters of the compact Lie groups SO(2N + 1), Sp(2N) and certain
reducible characters of O(2N). Thus in a sense, though not in any formal way, the boundary �∞ is “dual” to the
inductive limits S(2∞ + 1) = lim→ SO(2N + 1), Sp(2∞) = lim→ Sp(2N) and O(2∞) = lim→ O(2N), which are
infinite-dimensional analogues of classical Lie groups, hence the title of this paper.

1.2. z-measures

The z-measures are certain probability measures on the boundary �∞ of the BC branching graph that are parametrized
by pairs z, z′ of complex numbers satisfying certain constraints, e.g., if z′ = z /∈ R and �(z) > −(1 + b)/2, then the
pair (z, z′) satisfies those constraints. For simplicity, assume z′ = z /∈ R and �(z) > −(1 + b)/2 for the rest of the
Introduction. The z-measures arise naturally in the problem of harmonic analysis for big groups; see Appendix A for
further details and motivation. See also [29] for an in-depth discussion of the problem of harmonic analysis on U(∞),
which corresponds to the type A version of the story.



Markov processes on the duals. . . 1363

Due to the bijection (1.2), giving a probability measure on �∞ is equivalent to giving a sequence of coherent
probability measures on the levels {GT+

N }N=1,2,.... Under this equivalence, the z-measure associated to (z, z′, a, b)

can be defined by the sequence of probability measures {Mz,z′,a,b|N }N≥1 on {GT+
N }N≥1 given by

Mz,z′,a,b|N(λ) = constN
∏

1≤i<j≤N

(l̂i − l̂j )
2 ·

N∏
i=1

WN(li), (1.3)

where li = λi + N − i, l̂i = (li + a+b+1
2 )2, constN is a normalization constant and

WN(x) =
(

x + a + b + 1

2

)
�(x + a + b + 1)�(x + a + 1)

�(x + b + 1)�(x + 1)�(z − x + N)�(z′ − x + N)

× 1

�(z + x + N + a + b + 1)�(z′ + x + N + a + b + 1)
. (1.4)

We call Mz,z′,a,b|N the z-measure at level N associated to (z, z′, a, b). The probability measures Mz,z′,a,b|∞ on
�∞ corresponding to the coherent system {Mz,z′,a,b|N }N via the bijection (1.2) are known as the spectral z-measures,
or simply as z-measures.

1.3. Markov dynamics on positive signatures

Under our assumption on the parameters z, z′, a, b, in particular z′ = z /∈R, the rates

rx→x+1 = (x + 2ε)(x + a + 1)(x − z + N − 1)(x − z′ + N − 1)

(2x + a + b + 1)(2x + a + b + 2)
, x ≥ 0,

rx→x−1 = x(x + b)(x + z + N + a + b)(x + z′ + N + a + b)

(2x + a + b + 1)(2x + a + b)
, x ≥ 1

are strictly positive real numbers and define a continuous-time birth-and-death process on GT+
1 = Z+ which preserves

the z-measures at level 1, i.e., the probability measures given in (1.3) for N = 1. One can prove this fact directly,
but also by showing that the orthogonal polynomials of a discrete variable, with respect to the weight (1.4), have
rx→x+1, rx→x−1 as coefficients in the second-order difference equation that defines them, see Section 6 for details.
The orthogonal polynomials that we need are known as the Wilson–Neretin polynomials.

To construct Markov dynamics on GT+
N that preserve the z-measures at level N , consider a Doob h-transformation

of N independent birth-and-death processes with rates rx→x±1. Explicitly, we consider the matrix of transition rates
on GT+

N whose entries are

r
(N)
λ→ν =

∏
i<j ((ni + ε)2 − (nj + ε)2)∏
i<j ((li + ε)2 − (lj + ε)2)

× (rl1→n1 1{li=ni ,i 
=1} + · · · + rlN→nN
1{li=ni ,i 
=N}) − cN 1{λ=ν},

where li = λi + N − i, ni = νi + N − i, ε = (a + b + 1)/2, and cN is certain normalizing constant (chosen to make
the operator corresponding to the matrix r(N) vanish at the constant functions).

General techniques on continuous-time homogeneous Markov chains allow us to show that the matrices of transi-
tion rates r(N) uniquely define Markov semigroups (PN(t))t≥0 on GT+

N and moreover that they are Feller semigroups.
The important point for us is that the Feller semigroups (PN(t))t≥0 preserve the z-measures at level N , defined above.
The proof of this fact uses again the Wilson–Neretin polynomials, especially the second order difference equation
these orthogonal polynomials satisfy.

Given that (PN(t))t≥0 are Feller semigroups on the levels of the BC branching graph, one could imagine they can
be “pasted together” to obtain a Feller semigroup on the boundary �∞. Such thought indeed comes to fruition; the
main technical statement that we need to prove is the following relation for all N large enough:

PN+1(t)�
N+1
N = �N+1

N PN(t), t ≥ 0. (1.5)
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It is not evident apriori that (1.5) holds. The proof is computational and based on identities for (shifted) symmetric
polynomials. Once the identity above is known, the general method of intertwiners, see Theorem 2.5 below, can be
applied to conclude the existence of a Feller semigroup (P∞(t))t≥0 in �∞ that has the z-measures as unique invariant
probability measures. We are ready to state the main result of this paper. Notice that this Introduction assumed (a, b)

was one of three special pairs, but the following theorem holds for general real parameters a ≥ b ≥ −1/2.

1.4. The main theorem

For pairs (z, z′) ∈C2 as in Definition 6.2, there exist Feller semigroups (P∞(t))t≥0 on the infinite-dimensional space
�∞ that have the z-measures as their unique invariant measures. By general theory on Feller semigroups, it follows
that, given any probability measure ν on �∞, there is a Markov process on �∞ with cadlag sample paths, initial
distribution ν and having (P∞(t))t≥0 as its transition function.

1.5. Conventions

(1) In this paper, we often use two real parameters a, b and from them we define

ε = a + b + 1

2
.

Our main result requires

a ≥ b ≥ −1/2,

which implies ε ≥ 0. However, in parts of the paper, we could assume the less restrictive a, b > −1, which is the
only requirement necessary for the existence of the Jacobi polynomials Pλ(·|a, b). The assumption a ≥ b ≥ −1/2
is required in order to make use of the results from [24,31]. We keep the stronger assumption throughout to make
estimates a little easier.

(2 We denote Z+ and N the set of nonnegative and positive integers, respectively. We also write

Zε+
def= {

(n + ε)2 : n ∈ Z+
}

for the quadratic half-lattice. For any x ∈ Z+, we often use the notation

x̂
def= (x + ε)2

for the corresponding element of Zε+.
(3) In Section 3, we define sets GT+

N,�N,�ε
N , that depend on a natural number N , e.g. for N = 1, GT+

1 = �1 =
Z+,�ε

1 = Zε+. There are natural bijections among these sets for general N :

GT+
N ←→ �N ←→ �ε

N,

λ ←→ l ←→ l̂.

Once the bijections are defined in (3.1), they will be used throughout the rest of the paper without further comment,
i.e., if λ is mentioned, we will use l, l̂ to denote the elements of �N,�ε

N associated to λ ∈GT+
N . This convention

will be ubiquitous in the paper.
(4) We often will make estimates to prove a convergence as one variable tends to infinity. In those estimates, we write

const for a positive constant independent of the variable that goes to infinity. The specific value of const may be
a different one each time it appears.
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1.6. Organization of the paper

The present Introduction states the main result of the paper in the special cases (a, b) = ( 1
2 , 1

2 ), ( 1
2 ,− 1

2 ), (− 1
2 ,− 1

2 ). In
Section 2, we describe the general setting of Feller semigroups on graded graphs and their boundaries. Of importance,
Section 2 describes the method of intertwiners, which shows how to construct a Feller semigroup on the boundary of
the graph from coherent Feller semigroups on the levels of the graph, and also gives conditions for proving that the
Feller semigroup on the boundary has a unique invariant measure. Afterwards, we seek to specialize the general setting
for the BC branching graph; such graded graph and its boundary are discussed in Section 3. In Section 4, we construct
Feller semigroups on the levels of the BC branching graph. Later, in Section 5, we show that these semigroups are
coherent, effectively proving the existence of Feller semigroups on the boundary of the BC branching graph. To finish
the proof of the main result, in Section 6 we prove that the z-measures are the unique invariant measures of the Feller
semigroups.

We include three appendices. In Appendix A, we describe the connection between the BC type z-measures and the
representation theory of infinite symmetric spaces. In Appendix B, we prove a coherence relation for shifted symmetric
polynomials that was used in Section 5 for the proof of coherence, and in Appendix C, we finish a technical point in
a proof from Section 4.

2. Generalities on Feller semigroups and graded graphs

2.1. Markov kernels and Markov semigroups

Let X,Y be two measurable spaces. A (Markov) kernel K : X ��� Y is a [0,1]-valued map that takes both an element
x ∈ X and a measurable set A ⊂ Y as arguments and satisfies (a) K(x, ·) is a probability measure on Y and (b) K(·,A)

is a measurable function on X. If K : X ��� Y and L : Y ��� Z are kernels, we can compose them to obtain a kernel
KL : X ��� Z:

KL(x,dz) =
∫

Y

K(x, dy)L(y, dz).

If X and Y are countable discrete spaces, then a Markov kernel K : X ��� Y can be identified with the matrix
M = [M(x,y)]x∈X,y∈Y , M(x,y) = K(x, {y}). We then say that M is a stochastic matrix; it has the property that all
its entries are nonnegative and all row sums equal 1.

We denote by M(X) the set of finite signed measures on X, and by Mp(X) ⊂ M(X) the subset of probability
measures on X. Then M(X) can be made into a Banach space where the total variation of a measure defines its
norm. In particular M(X), and also Mp(X), is a measurable space if equipped with its Borel σ -algebra. If X,Y

are measurable spaces, a kernel K : X ��� Y induces a contraction M(X) → M(Y ) that we denote μ �→ μK and is
given by

(μK)(dy) =
∫

X

μ(dx)K(x, dy).

Evidently, M(X) → M(Y ) maps Mp(X) into Mp(Y ).
If X is a topological space, we denote by C(X) the Banach space of real-valued bounded continuous functions on

X. A kernel K : X ��� Y induces a contraction C(Y ) → C(X) that we denote f �→ Kf and is given by

(Kf )(x) =
∫

Y

f (y)K(x, dy).

If X is a locally compact space, we let C0(X) ⊂ C(X) be the subspace of continuous functions which vanish at
infinity. It is not always the case that C(Y ) → C(X) maps C0(Y ) into C0(X); it is only a Feller kernel that has such
property and we occupy the next section on the basics of their theory.

Lastly, we define Markov semigroups. Let X be a measurable space; a Markov semigroup on X is a R+-indexed
collection of Markov kernels P(t) : X ��� X satisfying the initial condition P(0;x,F ) = 1{x∈F }, for all x ∈ X and all
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F ⊂ X measurable, and the Chapman–Kolmogorov equation

P(t + s) = P(t)P (s), t, s ≥ 0.

If X is a countable space, the kernels P(t) are essentially (infinite) matrices whose rows and columns are
parametrized by X. In this case, we will always require that the semigroup (P (t))t≥0 is standard, meaning we have
the entry-wise limit

lim
t→0+ P(t) = I.

Markov semigroups arise naturally as the transition functions of stochastic processes {X(t)}t≥0 with values on X.
From the previous discussion, the kernels P(t) define natural maps P(t) : M(X) → M(X), which form a semi-

group in M(X). If X is a topological space, then one similarly obtains a semigroup in C(X).

2.2. Feller kernels and Feller semigroups

In this section, assume that all spaces are locally compact, second countable and equipped with their Borel σ -algebra.
A Markov kernel K : X ��� Y is a Feller kernel if the induced map C(Y ) → C(X) sends C0(Y ) into C0(X).

A Markov semigroup (P (t))t≥0 on X is a Feller semigroup if each P(t) : X ��� X is a Feller kernel and if the
semigroup is strongly continuous, i.e., t → P(t)f is a continuous map [0,∞) → C0(X), for each f ∈ C0(X).

If X is countable, the latter condition is automatic provided the entries of P(t) are continuous functions in t (the
latter follows, in fact, from the condition that the semigroup (P (t))t≥0 is standard). Moreover if X is countable, the
Feller condition can be restated as the following limit relation

lim
i→∞P(t; i, j) = 0 for any j ∈ E. (2.1)

The following important theorem can be found in [12, IV.2.7].

Theorem 2.1. Let (P (t))t≥0 be a Feller semigroup on X and ν be an arbitrary probability measure on X. There is a
cadlag stochastic process {X(t)}t≥0 with transition function (P (t))t≥0 and initial distribution ν.

Remark 2.2. Due to Theorem 2.1, we will be only interested in finding Feller semigroups on certain space, since
they will provide us with Markov processes on that space for any given initial probabilty distribution.

2.3. Graded graphs and their boundaries

A graded graph is a graph with countably many vertices, which are partitioned into levels 1,2,3, . . . and such that
edges have multiplicities and can join only vertices at adjacent levels. We allow edge-multiplicities that are not inte-
gers, though all multiplicities must be positive reals. Moreover we impose the condition that any vertex at level N has
at least one edge connecting it to some vertex at level N + 1, for any N ≥ 1, and at least one edge, but not infinitely
many, connecting it to some vertex at level N − 1, for any N ≥ 2.

Let V be the set of vertices of a graded graph and V
def= ⊔

N≥1 VN be its decomposition into levels. From the

structure of the graded graph we are led to define certain Markov kernels KN+1
N : VN+1 ��� VN , N ≥ 1, or equiva-

lently, stochastic matrices of format VN+1 × VN , N ≥ 1. Let m(vN+1, vN) be the multiplicity of the edge between
vN+1 ∈ VN+1 and vN ∈ VN , and set m(vN+1, vN) := 0 if vN+1 and vN are not connected by an edge; then KN+1

N is
given by

KN+1
N (vN+1, vN) = m(vN+1, vN)∑

v∈VN
m(vN+1, v)

, vN+1 ∈ VN+1, vN ∈ VN. (2.2)

The Markov kernels VN ��� VN+1 induce a chain of maps

Mp(V1) ← Mp(V2) ← ·· · ← Mp(VN) ←Mp(VN+1) ← ·· · .
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The inverse limit lim← Mp(VN) is evidently a convex set, whose elements are sequences of probability measures
{MN }N=1,2,... on the sets {GT+

N }N=1,2,... satisfying the natural coherence conditions MN = MN+1K
N+1
N , N ≥ 1, or

equivalently,

MN(vN) =
∑

vN+1∈VN+1

MN+1(vN+1)K
N+1
N (vN+1, vN) for each vN ∈ VN.

Definition 2.3. In the setup above, the set of extreme points V∞ of the convex set lim← Mp(VN) is called the
boundary of the graded graph. The boundary has a natural topology, which is the inherited one from lim← Mp(VN)

with its projective limit topology.
Since the boundary V∞ has a topology, and therefore a Borel σ -algebra, we can define the Banach space Mp(V∞).

A general result, see [27, Thm. 9.2], shows that if V∞ 
=∅, there is a natural map

Mp(V∞) −→ lim← Mp(VN), (2.3)

which is a bijection of sets. In many cases, the bijection (2.3) is an isomorphism of measurable spaces when both sides
of (2.3) are equipped with their natural σ -algebras. If this is the case, we say the boundary V∞ is ordinary.

The bijection (2.3) arises as follows. For each N , consider the natural map

φN : V∞ ⊂ lim← Mp(VN) → Mp(VN),

which is the composition of an inclusion and projection. Then there are natural Markov kernels K∞
N : V∞ ��� VN ,

given by K∞
N (x,A) = φN(x)(A), for all x ∈ V∞ and (Borel) subset A ⊂ VN . The sequence of kernels {K∞

N }N≥1 is
coherent in the sense that

K∞
N+1K

N+1
N = K∞

N for all N ≥ 1. (2.4)

The induced map Mp(V∞) −→ lim← Mp(VN) coming from the coherent maps K∞
N : Mp(V∞) −→ Mp(VN) is

the bijective map in (2.3). Next we make the following definition of a Feller boundary.

Definition 2.4. Let V∞ be the boundary of a graded graph and assume that V∞ 
= ∅. We say that V∞ is a Feller
boundary if

• V∞ is locally compact, equipped with its Borel σ -algebra.
• All the Markov kernels KN+1

N and K∞
N are Feller.

• The bijection (2.3) is an isomorphism of measurable spaces.

2.4. Markov processes on the boundary: Method of intertwiners

For an expanded explanation on the method of intertwiners, see [29]. Here we will be content with stating the following
theorem, which is proved in [9, Prop. 2.4 and Section 2.8].

Theorem 2.5. Let (PN(t))t≥0 be Feller semigroups on the levels VN of the graded graph in the setting above. Assume
moreover that the following master relation

PN+1(t)�
N+1
N = �N+1

N PN(t) (2.5)

holds for all t ≥ 0, N ≥ N0, for some N0 ∈N. Additionally assume that the boundary V∞ is nonempty and is a Feller
boundary. Then there exists a unique Feller semigroup (P∞(t))t≥0 on V∞ satisfying

P∞(t)�∞
N = �∞

N PN(t) ∀t ≥ 0,N ≥ N0. (2.6)
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Moreover, there exists a unique probability measure ν∞ on V∞ invariant with respect to (P∞(t))t≥0 if and only if
there exist unique probability measures νN on VN , for all N ≥ N0, that are invariant with respect to (PN(t))t≥0 and
such that they are coherent, i.e., νN = νN+1�

N+1
N for all N ≥ N0.

For all 1 ≤ K < N0, let νK
def= νN0�

N0
N0−1 · · ·�K+1

K . If the condition above is satisfied, ν∞ corresponds to the
coherent sequence {νN }N=1,2,..., under the bijection in (2.3).

Remark 2.6. In the source cited above, the method of intertwiners is stated only for N0 = 1. However that version
implies the one given above, because the inverse limits lim←N≥1 Mp(VN) and lim←N≥N0 Mp(VN) are canonically
isomorphic, and therefore the boundary �∞ of the original graph also serves as the boundary of the truncated graph
with levels ≥ N0.

3. BC branching graph and its boundary

In this section, we specialize the general setting of Section 2.3 for the BC branching graph, describe its boundary �∞
and prove that �∞ is a Feller boundary.

3.1. BC branching graph

For any integer N ≥ 1, let GT+
N

def= {λ = (λ1 ≥ λ2 ≥ · · · ≥ λN) : λi ∈ Z, λi ≥ 0 ∀i = 1, . . . ,N} be the set of N -

tuples of weakly decreasing nonnegative integers. Also set GT+ def= ⊔
N≥1 GT+

N . Elements of GT+ are called positive
signatures. Note that we do not identify positive signatures which differ by trailing zeroes; for example (4,2,1,0) and
(4,2,1,0,0,0) are distinct elements of GT+, the first one belonging to GT+

4 and the second one belonging to GT+
6 .

Elements of GT+
N are called N -positive signatures.

We shall construct the branching graph of classical Lie groups of type B,C,D (or simply BC branching graph)
as a graded graph with vertex set GT+. The graph will satisfy the property that only vertices in adjacent levels, i.e.,
levels GT+

m and GT+
m+1 for some m ∈ Z+, can be joined by an edge of certain multiplicity. The edges are determined

as follows: an edge connects λ ∈GT+
N+1 and μ ∈ GT+

N (with certain positive multiplicity m(λ,μ) > 0) if and only if
there exists ν ∈GT+

N such that

λ � ν and ν ∪ 0 � μ,

where λ = (λ1, . . . , λN ,λN+1) � ν = (ν1, . . . , νN) means the interlacing

λ1 ≥ ν1 ≥ λ2 ≥ · · · ≥ λN ≥ νN ≥ λN+1.

Similarly, the relation ν ∪ 0 = (ν1, . . . , νN ,0) � μ = (μ1, . . . ,μN) means

ν1 ≥ μ1 ≥ ν2 ≥ · · · ≥ νN ≥ μN ≥ 0.

In combinatorial language, the condition above is equivalent to the existence of ν ∈ GT+
N such that the containment

of Young diagrams μ ⊂ ν ⊂ λ holds and the skew-shapes λ/ν, ν/μ are horizontal strips.
If λ ∈GT+

N+1 and μ ∈GT+
N are joined by an edge in the BC branching graph, we write

λ �BC μ or μ ≺BC λ.

The multiplicities m(λ,μ), λ ∈GT+
N+1, μ ∈ GT+

N , are given explicitly in terms of a family of classical multivariate

orthogonal polynomials, namely m(λ,μ) = C
a,b
N (λ,μ) ·Pμ(1N |a, b), where the Jacobi polynomials Pμ(·|a, b) and

the branching coefficient C
a,b
N are defined below in (3.2) and (3.8), respectively. We shall not make explicit use of the

multiplicities m(λ,μ), but rather of the kernels �N+1
N defined from them as in (2.2). We therefore only give explicit

expressions for �N+1
N in Section 3.3 and forget about the multiplicities m(λ,μ).
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Finally let us define some bijections of GT+
N that will be used in the rest of the paper. Let

�N
def= {

(x1 > x2 > · · · > xN) ∈ ZN+
}

be the set of N -tuples of strictly decreasing nonnegative integers and also let

�ε
N

def= {
(̂x1 > x̂2 > · · · > x̂N) : x̂i ∈ Zε+

}
,

where x̂ = (x + ε)2, for any x ∈ Z+.
There is a clear bijection between the three infinite sets above given by

GT+
N ←→ �N ←→ �ε

N,

λ = (λ1, . . . , λN) ←→ l = (l1, . . . , lN ) ←→ l̂ = (l̂1, . . . , l̂N ),
(3.1)

where

li = λi + N − i, i = 1,2, . . . ,N

l̂i = (li + ε)2, i = 1,2, . . . ,N.

For notation, let us agree that λ ∈ GT+ corresponds to l ∈⊔N≥1 �N and l̂ ∈⊔N≥1 �ε
N . Similarly, let us agree

that μ,ν ∈ GT+ correspond to m,n ∈⊔N≥1 �N and m̂, n̂ ∈⊔N≥1 �ε
N , respectively. This terminology will be in

place throughout the paper.

3.2. Jacobi polynomials

In order to define the kernels �N+1
N :GT+

N+1 ���GT+
N in the next section, we recall here some definitions and results

on the multivariate analogues of classical Jacobi polynomials. In this section, we can work with any parameters
a, b > −1.

Let m(dx) be the measure on [−1,1] which is absolutely continuous with density

(1 − x)a(1 + x)b,

with respect to the Lebesgue measure on [−1,1]. The classical (univariate) Jacobi polynomials {Pk(x|a, b)}k∈Z+ ,
are the elements of the Hilbert space H = L2([−1,1],m(dx)) coming from the orthogonalization of the basis
{1, x, x2, . . .}; in particular, P0 = 1, degPk = k for all k ∈ Z+, and {Pk}k∈Z+ is an orthogonal basis of H .

For any λ ∈ GT+
N , we can define the multivariate Jacobi polynomial

Pλ(x1, . . . , xN |a, b)
def= det1≤i,j≤N [Pλi+N−i (xj |a, b)]

�N(x)
, (3.2)

where �N(x) is the Vandermonde determinant

�N(x) =
∏

1≤i<j≤N

(xi − xj ).

We let HN ⊂ L2([−1,1]N,mN(dx)) be the Hilbert space of symmetric functions on N variables xi ∈ [−1,1], i =
1, . . . ,N , that are square integrable with respect to the measure mN(dx) on [−1,1]N with density

�N(x)2
N∏

i=1

(1 − xi)
a(1 + xi)

b, (3.3)

with respect to the Lebesgue measure on [−1,1]N .
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The Jacobi polynomials {Pλ}λ∈GT
+
N

form an orthogonal basis of HN . They are not homogeneous polynomials; in

fact, Pλ has degree |λ| def= λ1 + · · · + λN and its highest degree homogeneous component is a multiple of the Schur
polynomial parametrized by λ (see [17] for the definition and combinatorial properties of Schur polynomials):

Pλ(x1, . . . , xN |a, b) = c
a,b
λ|Nsλ(x1, . . . , xN) + lower degree terms, c

a,b
λ|N 
= 0.

By virtue of the fact that Schur polynomials sλ(x1, . . . , xN), λ ∈ GT+
N , form a basis of the algebra of symmetric

polynomials in N variables, the polynomials {Pλ}λ∈GT
+
N

also form a basis of the algebra of symmetric polynomials
in the variables x1, . . . , xN .

We also consider the following normalized Jacobi polynomials

�λ(x1, . . . , xN |a, b)
def= Pλ(x1, . . . , xN |a, b)

Pλ(1, . . . ,1|a, b)
, (3.4)

where there are N ones in the denominator. The normalization is such that �λ(1N |a, b) = 1, for any λ ∈ GT+
N .

Definition (3.4) is allowed because the identity

Pλ

(
1N |a, b

)= �N(l̂) ·
N∏

i=1

�(li + a + 1)2−N+i

�(li + 1)�(a + i)�(i)
, (3.5)

shows that the denominator Pλ(1N |a, b) of (3.4) is nonzero. In the formula (3.5), we recall the notation l =
(l1, . . . , lN ), li = λi + N − i and l̂ = (l̂1, . . . , l̂N ), l̂i = (li + ε)2. Identity (3.5) was proved in [31, Prop. 7.1].

3.3. Markov kernels GT+
N+1 ���GT+

N

Since all sets GT+
N are countable, a Markov kernel GT+

N+1 ��� GT+
N is given by a stochastic matrix

[�N+1
N (λ,μ)]λ∈GT

+
N+1,μ∈GT

+
N

of format GT+
N+1 × GT+

N . We then define our desired Markov kernel by consider-

ing the coefficients of the following branching of normalized Jacobi polynomials

�λ(x1, . . . , xN ,1|a, b) =
∑

μ∈GT
+
N

�N+1
N (λ,μ)�μ(x1, . . . , xN |a, b), λ ∈GT+

N+1. (3.6)

In more detail, �λ(x1, . . . , xN ,1|a, b) is a symmetric polynomial in the variables x1, . . . , xN , while the poly-
nomials {�μ}μ∈GT

+
N

form a basis of the algebra of symmetric polynomials on those N variables. Therefore
�λ(x1, . . . , xN ,1|a, b) can be expressed as a finite linear combination of the polynomials {�μ}μ∈GT

+
N

; the coeffi-

cients of such unique linear combination determine the matrix [�N+1
N (λ,μ)]. Observe that each row of [�N+1

N (λ,μ)]
has finitely many nonzero entries. The coefficients �N+1

N (λ,μ) generally depend on a, b, but for simplicity we omit
them from the notation.

Let us check that [�N+1
N (λ,μ)] is a stochastic matrix. Setting x1 = · · · = xN = 1 in (3.6) gives

1 =
∑

μ∈GT
+
N

�N+1
N (λ,μ).

The fact that �N+1
N (λ,μ) ≥ 0, for all μ ∈ GT+

N , is shown below, see (3.11). Then [�N+1
N (λ,μ)]λ,μ is indeed a

stochastic matrix and determines a kernel GT+
N ���GT+

N+1.

An explicit expression for �N+1
N (λ,μ) can be extracted from the proof of [24, Prop. 7.5]. Indeed, first observe that

�N+1
N (λ,μ) = Pμ(1N |a, b)

Pλ(1N+1|a, b)
C

a,b
N (λ,μ), (3.7)



Markov processes on the duals. . . 1371

where the coefficients C
a,b
N (λ,μ) are given by the expansion

Pλ(x1, . . . , xN ,1|a, b) =
∑

μ∈GT
+
N

C
a,b
N (λ,μ)Pμ(x1, . . . , xN |a, b). (3.8)

In [24, Section 7], it is found that C
a,b
N (λ,μ) = 0 unless λ �BC μ, in which case

C
a,b
N (λ,μ) =

∏N+1
i=1 Pλi+N+1−i (1|a, b)∏N

i=1 Pμi+N−i (1|a, b)

∑
ν≺λ

μ≺ν∪0

A(ν,μ),

where

A(ν,μ) =
N∏

i=1

B(νi + N − i,μi + N − i),

B(r, s) = (2r + a + b + 2)(2s + a + b + 1)r!
2 · s!

× �(s + a + b + 1)�(r + b + 1)�(s + a + 1)

�(r + a + b + 2)�(s + b + 1)�(r + a + 2)
, s > 0, (3.9)

B(r,0) = (2r + a + b + 2)r! · �(r + b + 1)�(a + 1)�(a + b + 2)

2 · �(r + a + b + 2)�(r + a + 2)�(b + 1)
. (3.10)

Thus, from (3.5), we have

�N+1
N (λ,μ) = 2NN ! · �(N + a + 1)

�(a + 1)

�N(m̂)

�N+1(l̂)
· �̃N+1

N (λ,μ), (3.11)

where

�̃N+1
N (λ,μ) =

∑
ν∈GT

+
N

ν≺λ
μ≺ν∪0

N∏
i=1

B(νi + N − i,μi + N − i), (3.12)

and l̂, m̂ correspond to λ,μ as described in (3.1). The sum in (3.12) vanishes unless μ ≺BC λ (for only in that
case, there exists at least one ν ∈ GT+

N with ν ≺ λ and μ ≺ ν ∪ 0). From the formula (3.11) above, it is clear that
�N+1

N (λ,μ) ≥ 0, for all λ ∈GT+
N+1, μ ∈GT+

N .

3.4. The boundary of the BC branching graph

In this section and the next, we review the explicit description of the boundary of the BC branching graph, follow-
ing [24].

Consider the space R2∞+1 def= R∞ ×R∞ ×R, equipped with its product topology. Let �∞ ⊂R2∞+1 be the subset
of points ω = (α,β, δ) satisfying

α = (α1 ≥ α2 ≥ · · · ≥ 0),

β = (1 ≥ β1 ≥ β2 ≥ · · · ≥ 0),

δ ≥
∞∑
i=1

(αi + βi).
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Then �∞ is a closed subspace of R2∞+1, with the inherited topology from R2∞+1. Moreover, �∞ is a locally
compact space with a countable base. It will be convenient to set

γ = δ −
∞∑
i=1

(αi + βi) ≥ 0. (3.13)

The space �∞ is in bijection with the boundary of the BC branching graph, as in Definition 2.3. Recall that
the boundary of the BC branching graph is the set of extreme points of lim←Mp(GT+

N). If we give the space
lim← Mp(GT+

N) the projective limit topology and its set of extreme points the subspace topology, then the boundary
of the BC branching graph is actually homeomorphic to �∞, with its topology inherited from R2∞+1.

We shall only be interested in the bijection Mp(�∞) −→ lim←Mp(GT+
N), cf. (2.3), so we focus on its descrip-

tion rather than in the description of the bijection between �∞ and the set of extreme points of lim← Mp(GT+
N).

To accomplish it we define, in the next section, Markov kernels �∞
N : �∞ ��� GT+

N which are coherent in the
sense that �∞

N+1�
N+1
N = �∞

N , cf. (2.4).

3.5. Markov kernels �∞ ���GT+
N

For each ω = (α,β, δ) ∈ �∞, define the function

�(x;ω) = eγ (x−1)
∞∏
i=1

1 + βi(2 − βi)(x − 1)/2

1 − αi(2 + αi)(x − 1)/2
, x ∈ [−1,1], (3.14)

where γ is defined from ω as in (3.13). Since the sum
∑∞

i=1 (αi + βi) is convergent, the function �(x;ω) is holomor-
phic in a complex neighborhood of [−1,1], and in particular �(x;ω) is a continuous function on [−1,1]. Moreover
�(1;ω) = 1 and |�(x;ω)| = �(x;ω) ≤ 1,∀x ∈ [−1,1].

In analogy to Section 3.3, we define a kernel of format �∞ ×GT+
N via the following branching equation

�(x1;ω) · · ·�(xN ;ω) =
∑

λ∈GT
+
N

�∞
N (ω,λ)�λ(x1, . . . , xN |a, b), xi ∈ [−1,1]. (3.15)

In more detail, �(x1;ω) · · ·�(xN ;ω) is a continuous function on [−1,1]N and therefore it belongs to the Hilbert
space HN of symmetric functions on [−1,1]N which are square-integrable with respect to mN(dx), the measure with
density (3.3) with respect to the Lebesgue measure on [−1,1]N . The normalized Jacobi polynomials �λ(·|a, b) form
an orthogonal basis of HN , so an expansion like in (3.15) exists and is unique. Just as for the finite kernels �N+1

N

defined previously, we omit a, b from the notation of the kernels �∞
N .

Let us check that the terms �∞
N (ω,λ) indeed define a Markov kernel. By setting x1 = x2 = · · · = xN = 1 in (3.15),

we obtain

1 =
∑

λ∈GT
+
N

�∞
N (ω,λ).

The fact that �∞
N (ω,λ) ≥ 0, for all ω ∈ �∞, λ ∈GT+

N is not obvious, but it can be deduced from the results of [24].
The continuity of �∞

N (ω,λ) as a function of ω can be deduced from the continuity of the map � → C([−1,1]), ω �→
�(·;ω). The continuity of ω �→ �(·;ω) can be proved by mimicking the approach of [27, Proof of Theorem 8.1, Step
1]. Then the expressions �∞

N (ω,λ) yield a Markov kernel �∞ ���GT+
N .

An evident property, based on the definitions (3.6) and (3.15) is the following

�∞
N+1�

N+1
N = �∞

N , N = 1,2, . . . .

Therefore the Markov kernels �∞
N : �∞ ��� GT+

N induce maps �∞
N : Mp(�∞) → Mp(GT+

N), which are also
coherent in the sense that �∞

N+1�
N+1
N = �∞

N . Such coherence allows us to define

Mp(�∞) −→ lim← Mp

(
GT+

N

)
, (3.16)
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which one can prove is a bijection by combining the general results from [24] and [27, Thm. 9.2]. In fact, an argument
similar to the proof of [9, Thm. 3.1] shows that (3.16) is actually an isomorphism of measurable spaces if both spaces
are equipped with their natural σ -algebras, therefore the third item of Definition 2.3 is satisfied. The bijection (3.16)
will be important later to access the definition of z-measures in a very concrete way.

3.6. Feller property of the BC branching graph

We prove that the boundary �∞ is Feller in the sense of Definition 2.4. We have already argued for the first and third
bullets in the definition, and are left to prove the second bullet. It will follow from Propositions 3.1 and 3.2 below.

Proposition 3.1. For each N ≥ 1, the Markov kernels �N+1
N : GT+

N+1 ��� GT+
N defined in Section 3.3 are Feller

kernels.

Proof. We need to prove that the map C(GT+
N) −→ C(GT+

N+1) induced by �N+1
N sends C0(GT+

N) into C0(GT+
N+1).

As the operator C(GT+
N) −→ C(GT+

N+1) is bounded (actually a contraction), C0(·) is a closed subspace of C(·) and

the delta functions span a dense subspace of C0(·), it suffices to prove that �N+1
N δμ ∈ C0(GT+

N+1), for all μ ∈ GT+
N .

Equivalently, we shall prove

�N+1
N δμ(λ) = �N+1

N (λ,μ) −→ 0 as λ −→ ∞, for any μ ∈ GT+
N.

Given λ ∈GT+
N+1, we have from (3.11) and (3.12) that

�N+1
N (λ,μ) = 2NN ! · �(N + a + 1)

�(a + 1)

�N(m̂)

�N+1(l̂)
· �̃N+1

N (λ,μ), (3.17)

where

�̃N+1
N (λ,μ) =

∑
ν∈GT

+
N

ν≺λ
μ≺ν∪0

A(ν,μ) =
∑
n

∑
ν

A(ν,μ)

=
∑
n

(
B(n + N − 1,μ1 + N − 1) ·

∑
ν

N∏
i=2

B(νi + N − i,μi + N − i)

)
.

In the sums above, n ranges over n ∈ Z+, λ1 ≥ n ≥ max{λ2,μ1}, and ν ranges over ν ∈ GT+
N such that ν ≺ λ,

μ ≺ ν ∪ 0 and ν1 = n. Observe that the second sum over ν is finite and the summand does not depend on the first
coordinate ν1.

Well-known estimates of the Gamma function, cf. [2, Cor. 1.4.3], give

r!
�(r + a + 2)

,
�(r + b + 1)

�(r + a + b + 2)
∼ r−a−1, r −→ +∞.

If s 
= 0 is fixed, then by definition (3.9) of B(r, s), and the previous estimate, we obtain

B(r, s) ≤ const · (1 + r−2a−1) ∀r ∈ Z+. (3.18)

Similar reasoning using the definition (3.10) of B(r,0) shows that (3.18) holds also when s = 0 and r → +∞.
Moreover, μ ≺ ν ∪ 0 implies μ1 ≥ ν2 ≥ μ2 ≥ · · · , therefore

∑
ν

N∏
i=2

B(νi + N − i,μi + N − i) ≤ const, (3.19)

where the right-hand side is a constant independent of λ.
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From estimates (3.18), (3.19) above, it follows that �̃N+1
N (λ,μ) is upper-bounded by a constant independent of λ

times

∑
λ1≥n≥max{λ2,μ1}

B(n + N − 1,μ1 + N − 1) ≤ const ·
(

1 +
λ1∑

n=λ2

n−1−2a

)

≤ const · (λ1 − λ2 + 1).

The latter inequality above follows because a ≥ −1/2 implies −1 − 2a ≤ 0, and so n−1−2a ≤ 1 for all n ∈ N. Then∑λ1
n=λ2

n−1−2a ≤∑λ1
n=λ2

1 = λ1 −λ2 +1. Of course, the argument above does not make sense if λ2 = 0. But if λ2 = 0,
the bound is evident too.

On the other hand, we can estimate the Vandermonde determinant as

�N+1(l̂) =
∏
i<j

(l̂i − l̂j ) =
∏
i<j

(li − lj )(li + lj + 2ε)

≥ (λ1 − λ2 + 1)

N+1∏
j=2

(λ1 + λj + 2ε) ≥ (λ1 − λ2 + 1)λN
1 .

From (3.17) and the estimates above, we have

�N+1
N (λ,μ) ≤ const · λ1 − λ2 + 1

λN
1 (λ1 − λ2 + 1)

= const · λ−N
1 . (3.20)

Since λ → ∞ is equivalent to λ1 → ∞, it follows that �N+1
N (λ,μ)

λ→∞−−−→ 0. �

Proposition 3.2. For each N ≥ 1, the Markov kernels �∞
N : �∞ ���GT+

N defined in Section 3.5 are Feller kernels.

Proof. The argument in this proof was proposed by Grigori Olshanski.
Like in the proof of Proposition 3.1, the only difficult part is to show that �∞

N δλ ∈ C0(�∞), for all λ ∈ GT+
N .

Equivalently, we prove

�∞
N δλ(ω) = �∞

N (ω,λ) −→ 0 as ω −→ ∞, for any λ ∈GT+
N.

This is proved in two steps. Our proof follows an idea suggested by G. I. Olshanski.
Step 1. We prove that∣∣�(x;ω)

∣∣ ω→∞−−−→ 0 uniformly on Iε
def= {

x ∈ [−1,1] : �(x) < 1 − ε
}
,

for any ε > 0 sufficiently small. (3.21)

We can write x = (z + z−1)/2, for some complex number z ∈ C, |z| = 1, the claim transforms into:∣∣∣∣�(z + z−1

2
;ω
)∣∣∣∣ ω→∞−−−→ 0 uniformly on Tε

def= {
z ∈C : |z| = 1,�(z) < 1 − ε

}
,

for any ε > 0 sufficiently small. (3.22)

From (3.14), cf. [24, (1.12)], we have∣∣∣∣�(z + z−1

2
;ω
)∣∣∣∣= ∣∣e γ

2 (z+z−1−2)
∣∣ · ∞∏

i=1

|1 + βi

2 (z − 1)||1 + βi

2 (z−1 − 1)|
|1 − αi

2 (z − 1)||1 − αi

2 (z−1 − 1)| . (3.23)
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Let {ω(k)}k∈N, ω(k) = (α(k),β(k), δ(k)) ∈ �∞, be a sequence of points that converges to ∞. Let also γ (k) be
defined from ω(k) as in (3.13).

If a subsequence (km)m=1,2,... is such that limm→∞ α1(km) = ∞, then evidently the corresponding factors |1 −
α1
2 (z − 1)|−1|1 − α1

2 (z−1 − 1)|−1 converge to 0 uniformly on z ∈ Tε . Therefore, we can assume that there exists a
constant A > 0 such that supk∈N α1(k) < A. Let us now make some estimates on the factors that appear in (3.23).

• |e γ
2 (z+z−1−2)| = exp (−γ (1 − �(z))).

• |1 − αi

2 (z − 1)|−1 = (1 + αi(2+αi)
2 (1 − �(z)))−1 ≤ (1 + αi(1 − �(z)))−1 ≤ exp(−const · αi(1 − �(z))), where

const > 0 is a constant depending on A > 0.
• Since �(z−1) = �(z), the estimation above yields also |1 − αi

2 (z−1 − 1)|−1 ≤ exp(−const · αi(1 − �(z))), for the
same positive constant.

• |1 + βi

2 (z − 1)| = 1 − βi(2−βi)
2 (1 − �(z)) ≤ 1 − βi

2 (1 − �(z)) ≤ exp(−βi

2 (1 − �(z))).

• From the point above, since �(z−1) = �(z), |1 + βi

2 (z−1 − 1)| ≤ exp(−βi

2 (1 − �(z))).

The assumption ω(k) → ∞ is equivalent to δ(k) = γ (k)+∑∞
i=1 (αi(k) + βi(k))

k→∞−−−→ ∞. Therefore, for any z ∈ Tε ,

one of the factors in (3.23) converges to 0 as ω −→ ∞. We conclude that |�(z+z−1

2 ;ω)| ω→∞−−−→ 0, uniformly on z ∈ Tε ,
for any small ε > 0.

Step 2. We complete the proof of the Proposition for general N ≥ 1.
By definition,

∏N
i=1 �(xi;ω) =∑λ∈GT

+
N

�∞
N (ω,λ)

Pλ(x1,...,xN |a,b)

Pλ(1N |a,b)
is a basis decomposition in the Hilbert space

HN of symmetric functions on [−1,1]N which are square integrable with respect to the measure with density
�N(x)2∏N

i=1 (1 − xi)
a(1 + xi)

b
∏N

i=1 dxi , with respect to the Lebesgue measure.

The elements {Pλ(·|a, b)}λ∈GT+ form an orthogonal basis of HN , so �∞
N (ω,λ)

ω→∞−−−→ 0 is equivalent to the con-

vergence
∏N

i=1 �(xi;ω(k))
weakly−−−−→ 0 in HN , for any sequence ω(k) → ∞ in �∞. We actually prove strong conver-

gence, rather than weak convergence. By definition of the norm on HN ,

∥∥�(x1;ω(k)
) · · ·�(xN ;ω(k)

)∥∥2
H

=
∫

[−1,1]N

N∏
i=1

∣∣�(xi;ω(k)
)∣∣2�N(x)2

N∏
i=1

(
(1 − xi)

a(1 + xi)
bdxi

)
(3.24)

The estimates of step 1 show that
∏N

i=1 |�(xi;ω(k))| k→∞−−−→ 0 uniformly on (x1, . . . , xN) ∈ [−1,1 − ε]N , for any
sufficiently small ε > 0. By using additionally the uniform boundedness of the integrand with respect to ω (recall that
|�(x;ω)| ≤ 1 for all x ∈ [−1,1] and ω ∈ �∞), the squared norm (3.24) converges to 0 as k → ∞, and the desired
conclusion follows. �

4. Feller semigroups on the BC branching graph

In this section, we construct Feller semigroups (PN(t))t≥0 on the discrete spaces GT+
N .

4.1. Regular jump homogeneous Markov chains

We recall here some useful theory on the transition functions of regular jump homogeneous Markov chains (HMC)
and set our terminology. For a more complete account on regular jump HMCs, see [1, Ch. 1–3], [10, Ch. 8–9].

Let X be an infinite countable space. Given a regular jump HMC {X(t)}t≥0 on X, let (P (t))t≥0 be its transition
function, i.e.,

P(t; i, j) = Prob
{
X(t) = j |X(0) = i

}
, t ≥ 0, i, j ∈ X.

Then (P (t))t≥0 is a Markov semigroup, i.e., P(0) = I and

P(t + s) = P(t)P (s) ∀t, s ≥ 0. (4.1)
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The equations (4.1) above are called the Chapman–Kolmogorov equations. Moreover, the Markov semigroup
(P (t))t≥0 is standard, meaning that we have the following entry-wise limit

lim
t→0+ P(t) = I.

In this section, we assume all Markov semigroups are standard. The entry-wise limit

Q = lim
h↓0

P(h) − I

h

of matrices exists and Q = [qi,j ]i,j∈X is called the q-matrix of the semigroup (P (t))t≥0. We also have qi,j ∈ [0,∞)

whenever i 
= j and qi,i ∈ [−∞,0]. We write qi
def= −qi,i ∈ [0,∞] for all i ∈ X. It can be shown that Q is stable and

conservative, meaning that

qi < ∞, ∀i ∈ X, (4.2)

qi =
∑

j∈X,j 
=i

qi,j , ∀i ∈ X. (4.3)

Importantly, the semigroup satisfies Kolmogorov’s backward and forward differential equations

P ′(t) = QP(t),

P ′(t) = P(t)Q.

A matrix Q with qi,j ≥ 0 for all i 
= j , and moreover satisfying (4.2) and (4.3) will be called a matrix of transition
rates. It is a natural question to ask whether for an X × X matrix of transition rates Q, there exists a regular jump
HMC on X having Q as the q-matrix of its transition function (P (t))t≥0. If so, we can also ask for conditions on Q

that guarantee the uniqueness of (P (t))t≥0. For simplicity in the discussion to follow, we always assume that Q is
essential, i.e., qi > 0 for all i ∈X.

To answer the questions above we begin by constructing, from Q, a family of X × X nonnegative matrices P(t),
t ≥ 0, whose row sums are at most 1 and such that they satisfy the Chapman–Kolmogorov equations and Kolmogorov’s
backward equation. Then in Proposition 4.2 below, we state that if all row sums of the matrices P(t) are exactly 1,
then (P (t))t≥0 is the unique Markov semigroup with q-matrix Q, and moreover there exist regular jump HMCs with
the transition function (P (t))t≥0.

For each n ≥ 0, define the X×X matrices P [n](t), n ∈N, t ≥ 0, via the recurrence

P [n](t; i, j) =
{

e−qi t1{i=j} if n = 0,∫ t

0 e−qi s
∑

k∈Xk 
=i
qi,kP

[n−1](t − s; k, j) ds if n ≥ 1,
(4.4)

for any t ≥ 0 and i, j ∈X. Define also the entry-wise sum of matrices

P (t)
def=

∞∑
n=0

P [n](t). (4.5)

All matrices P (t), t ≥ 0, are substochastic, i.e., P(t; i, j) ≥ 0, i, j ∈ X, and
∑

j∈X P(t; i, j) ≤ 1, i ∈ E. They

satisfy P (0) = I , the Chapman–Kolmogorov equations, P(t)P (s) = P(t + s), and Kolmogorov’s backward equation
d
dt

P (t) = QP(t).

Definition 4.1. For a matrix of transition rates Q, define the semigroup (P (t))t≥0 via equations (4.4) and (4.5) above.
If all the matrices P(t), t ≥ 0, are stochastic, then we say that Q is non-explosive or regular.
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Intuitively, the idea of non-explosion is the following. Starting from a matrix of transition rates Q, it is not difficult
to construct a (not necessarily regular) jump HMC {X(t)}t≥0 with transition function (P (t))t≥0 and Q as its associated
q-matrix, see [10, Ch. 8]. From (4.4), one can argue by induction that P [n](t; i, j) is the probability that the process
moves from i to j in exactly n jumps during [0, t]. Then for any t ≥ 0, i, j ∈ E, P (t; i, j) is the probability that the
process moves from i to j during [0, t], after a finite number of jumps. Thus if Q was non-explosive, we can hope that
{X(t)}t≥0 is a regular jump HMC and therefore its transition function (P (t))t≥0 satisfies Kolmogorov’s backward and
forward equations. This is indeed true, and there is the additional fact that (P (t))t≥0 is uniquely attached to Q. We
summarize our discussion in the next proposition.

Proposition 4.2. If Q is a non-explosive matrix of transition rates on X, then the semigroup (P (t))t≥0 constructed
above is a standard Markov semigroup, and it is the unique solution to Kolmogorov’s backward equation (or to
Kolmogorov’s forward equation). Moreover, (P (t))t≥0 is the unique (standard) Markov semigroup with q-matrix Q.
Finally, for any probability measure on X, there is a regular jump HMC with such measure as its initial distribution
and with the transition function (P (t))t≥0.

4.2. General setup: A Doob h-transformation

Consider a countable state space

E1 = E
def= {e1 < e2 < e3 < · · · } ⊂ R≥0

with no accumulation points (think of E being equal to Z+ or Zε+). We identify E with Z+ for convenience in notation.
We construct continuous-time birth-and-death processes on E1 = E and regular jump HMCs on the spaces

EN
def= {

x = (x1, . . . , xN) ∈ EN : x1 > x2 > · · · > xN

}
, N > 1,

via a Doob h-transformation. Observe that EN can be identified with �N or �ε
N , for N ≥ 1, if E is identified with

Z+ or Zε+, respectively. Instead of focusing on the construction of the stochastic processes themselves, we focus on
the construction of Feller semigroups on E and EN , see Remark 2.2. Propositions 4.3 and 4.7 are the main general
statements we prove. Their specializations to Propositions 4.12 and 4.14, will be the relevant ones to our setting.

4.2.1. Non-explosive birth-and-death matrices on E
A continuous-time birth-and-death process is a regular jump HMC on E such that its q-matrix Q is tridiagonal, i.e.,
the only (possibly) nonzero entries of Q are of the form qx,x+1, qx,x and qx,x−1. A stochastic process having Q as the
q-matrix of its transition function can only jump between neighboring vertices. We shall consider only matrices Q, or
associated birth-and-death processes, such that the entries {qx,x+1}x≥0 and {qx,x−1}x≥1 are all strictly positive.

We are interested in finding sufficient conditions for non-explosiveness of Q. Proposition 4.2 would then guarantee
the uniqueness of a Markov semigroup (P1(t))t≥0 whose q-matrix is Q, as well as the existence of continuous-time
birth-and-death processes with (P1(t))t≥0 as its transition function.

We call a matrix Q of format E × E a birth-and-death matrix if it has the form

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−β0 β0 0 0

δ1 −(β1 + δ1) β1 0
...

0 δ2 −(β2 + δ2) β2
...

0 0 δ3 −(β3 + δ3)

· · · · · · . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(4.6)

and where the birth rates {βn}n≥0 and death rates {δn}n≥1 are all strictly positive. Occasionally we write δ0
def= 0.

There is an important theorem which gives necessary and sufficient conditions for non-explosiveness of Q. It is called
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Reuter’s criterion for birth-and-death generators, see [10, Ch. 8, Thm. 4.5]. In order to state it, we need first to define
the sequence of potential coefficients {πn}n≥0 by

πn =
{

1 if n = 0,
β0β1···βn−1

δ1δ2···δn
if n ≥ 1.

(4.7)

We only need the following obvious implication of Reuter’s critetion: the birth-and-death matrix Q is non-explosive
if ∑

n

1

βnπn

= ∞.

From now on, we assume that Q is a non-explosive birth-and-death matrix. From Proposition 4.2, there exists a
unique Markov semigroup (P1(t))t≥0 with q-matrix Q. A sufficient condition that guarantees the Feller property of
(P1(t))t≥0 is given in [1, Ch. 1, Thm. 5.7]. For the case when its q-matrix Q is a birth-and-death matrix, it states that
(P1(t))t≥0 is a Feller semigroup provided that for any λ > 0, the equation xT (λI − Q) = 0 has a unique solution with∑

i |xi | < ∞: the trivial solution x = (0,0, . . .)T . Without much difficulty, one can show that if a nontrivial solution
existed, then there would also exist a nontrivial solution whose entries are all nonnegative (switch the signs to the
solution x, if necessary). According to [1, Ch. 3, Thm. 2.3], the equation xT (λI − Q) = 0,

∑
i |xi | < ∞, xi ≥ 0,

admits only the trivial solution provided that

∑
n

1

δn

+
∑
n

1

δnπn

∞∑
k=n+1

πk = ∞.

From the discussion above, the following proposition is obtained.

Proposition 4.3. Assume that Q is a birth-and-death matrix as in (4.6). If both sums∑
n

1

βnπn

, (4.8)

∑
n

1

δn

+
∑
n

1

δnπn

∞∑
k=n+1

πk (4.9)

diverge, then Q is non-explosive and the unique Markov semigroup (P1(t))t≥0 with q-matrix Q is a Feller semigroup.

4.2.2. Non-explosive matrices of transition rates on {EN }N>1

We describe a general recipe for constructing non-explosive EN × EN matrices of transition rates Q(N) and their
associated Markov semigroups. Assume we are given the transition function (P1(t))t≥0 of a regular jump HMC on E

and the q-matrix Q of (P1(t))t≥0. In particular, we know Q is non-explosive. Moreover we assume that Q satisfies
the very special Assumption 4.4 below; before stating it, we need some notation.

The q-matrix Q = [qx,y]x,y∈E has an associated difference operator D that acts on functions of a single variable
x ∈ E as follows:

(Df )(x)
def=
∑
y∈E

qx,yf (y), x ∈ E. (4.10)

In general, of course, D is not well-defined on the whole space of single-variable functions, but only on those
functions for which the sum on the right-hand side of (4.10) converges. For i = 1,2, . . . ,N , let D[i] be the operator
that acts on functions f (x1, . . . , xN), xi ∈ E, of N variables as D would act on xi , by treating all other variables
{xj }j 
=i as constants.
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As in most constructions involving a Doob h-transformation, the Vandermonde determinant plays a role:

�N : EN → R+,

�N(x1, . . . , xN) =
∏
i<j

(xi − xj ).

The function �N is antisymmetric, i.e., �N(xσ(1), xσ(2), . . . , xσ(N)) = sgn(σ ) · �N(x1, x2, . . . , xN), for any permu-
tation σ ∈ SN . Moreover, it is positive on EN , i.e., �N(x1, x2, . . . , xN) > 0 whenever x1 > x2 > · · · > xN .

In the rest of this section, we operate under the following assumption on Q.

Assumption 4.4.

• The operator D, associated to Q as shown in (4.10), is well-defined for all polynomial functions f on E. Moreover
D stabilizes the polynomial functions of degree ≤ m, for any m ∈ Z+. In other words, if we let m ∈ Z+ and
f (x) = xm, x ∈ E, then (Df )(x) is a polynomial on x of degree ≤ m.

• The equality

Dfree�N = cN�N, (4.11)

holds for some constant cN > 0, where Dfree is the difference operator

Dfree := D[1] + · · · +D[N ]. (4.12)

For any x = (x1 > · · · > xN),y = (y1 > · · · > yN) ∈ EN , define

q(N)
x,y = Q(N)(x,y)

def= �N(y)

�N(x)
(qx1,y1 1{xi=yi ,i 
=1} + · · · + qxN ,yN

1{xi=yi ,i 
=N}) − cN1{x=y}. (4.13)

As usual, we denote q
(N)
x

def= −q
(N)
x,x . The matrix Q(N) of format EN × EN has an associated difference operator D(N)

that acts on functions of a single variable x ∈ EN as follows:(
D(N)f

)
(x)

def=
∑

y∈EN

q(N)
x,y f (y) for all x ∈ EN.

Under Assumption 4.4, D(N) is well-defined on polynomial functions on N variables, and it stabilizes polynomial
functions of degree ≤ m in each variable, for any m ∈ Z+. The reason why definition (4.13) is vital can be traced to
the following lemma and its corollary.

Lemma 4.5.

D(N) =
(

1

�N

◦Dfree ◦ �N

)
− cN .

Proof. The proof is a simple calculation:(
D(N)f

)
(x) =

∑
y∈EN

q(N)
x,y f (y)

= 1

�N(x)

∑
y∈EN

(
�N(y)(qx1,y1 1{xi=yi ,i 
=1} + · · · + qxN ,yN

1{xi 
=yi ,i 
=N})

− cN�N(x)1{x=y}
)
f (y)
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= 1

�N(x)

{
N∑

i=1

(∑
yi∈E

qxi ,yi
�N(y)f (y)

∣∣∣
yj =xj

j 
=i

)
− cN�N(x)f (x)

}

= 1

�N(x)

N∑
i=1

D[i](�Nf )(x) − cNf (x).

The result follows from the definition (4.12) of Dfree. �

Corollary 4.6. Q(N) is a matrix of transition rates.

Proof. From definition (4.13), it is clear that q
(N)
x,y ≥ 0 whenever x 
= y. Moreover q

(N)
x,x 
= −∞ is evident. The condi-

tion q
(N)
x,x ≤ 0 will follow once we show the only remaining fact that Q(N) has zero row sums.

Applying Lemma 4.5 to f ≡ 1 and the second item of Assumption 4.4, we have∑
y∈EN

q(N)
x,y = (D(N)1

)
(x) = 1

�N(x)

(
Dfree�N

)
(x) − cN = 0.

�

Proposition 4.7. The matrix Q(N) = [q(N)
x,y ]x,y∈EN

of transition rates is non-explosive. The corresponding Markov
semigroup (PN(t))t≥0 is given by

PN(t;x,y) = e−cN t · �N(y)

�N(x)
det

1≤i,j≤n

[
P1(t;xi, yj )

]
, x,y ∈ EN. (4.14)

Proof. For any n ∈ Z+, let P̃
[n]
N (t;x,y) be the probability that a process with N independent particles, each moving

as a regular jump HMC with semigroup (P1(t))t≥0, begin at positions x1 > · · · > xN at time 0, finish at positions
y1 > · · · > yN at time t after n steps, given that the particles are conditioned on not intersecting during [0, t]. We also
let

P̃N (t;x,y) =
∞∑

n=0

P̃
[n]
N (t;x,y), t ≥ 0,x,y ∈ EN

be the probability that the conditional process above begins at time 0 with particles at x1 > x2 > · · · > xN , makes a
finite number of jumps in [0, t] and ends at time t with particles at y1 > y2 > · · · > yN . Since each of the N particles
in the process moves as a regular jump HMC with the non-explosive q-matrix Q, then P̃N (t;x,y) is the probability
that the conditional process above begins with particles x1 > x2 > · · · > xN at time 0 and finishes with particles
y1 > y2 > · · · > yN at time t (we have removed the condition that the number of steps during [0, t] is finite, because
that follows from the non-explosiveness of Q).

For each n ∈ Z+, t ≥ 0, define the matrices

P [n](t;x,y) =
⎧⎨⎩e−q

(N)
x t · 1{x=y} if n = 0,∫ t

0 e−q
(N)
x s ·∑z∈EN z
=x

q
(N)
x,z P [n−1](t − s; z,y) ds if n ≥ 1,

(4.15)

and define also the entry-wise sum of matrices

P (t) =
∞∑

n=0

P [n](t), t ≥ 0.

To prove the non-explosion of Q(N), according to Definition 4.1, we need to show that all matrices P(t), t ≥ 0, are
stochastic, i.e.,∑

y∈EN

P (t;x,y) = 1 for any x ∈ EN, (4.16)
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and for the last statement of the proposition, we need

P(t;x,y) = e−cN t �N(y)

�N(x)
det
i,j

[
P1(t;xi, yj )

]
. (4.17)

It is actually easier to prove (4.17) first. We claim

P N(t;x,y) = e−cN t �N(y)

�N(x)
P̃N (t;x,y). (4.18)

The claim above, together with the formula of Karlin and McGregor P̃N (t;x,y) = deti,j [P1(t;xi, yj )], see [14],
proves (4.17), so we concentrate on the claim (4.18). We shall prove in fact the stronger statement

P
[n]
N (t;x,y) = e−cN t �N(y)

�N(x)
P̃

[n]
N (t;x,y), n ≥ 0. (4.19)

The proof is by induction on n. For the base case n = 0, observe that P̃
[0]
N (t;x,y) is zero if x 
= y and if x = y,

then P̃
[0]
N (t;x,y) is the probability that none of the N independent particles at x1 > x2 > · · · > xN moves during the

interval [0, t]. Therefore

P̃
[0]
N (t;x,y) = 1{x=y}

N∏
i=1

e−tqxi ,

which together with the formula (4.15) for P [0](t;x,y) and q
(N)
x = −qx,x = qx1 + · · · + qxN

+ cN , proves (4.19) for
n = 0.

For the induction step, assume that (4.19) holds for some n − 1 ∈ Z+ and we aim to prove it for n. A typical
one-step analysis on the process of N independent particles shows

P̃
[n]
N (t;x,y) =

∫ t

0

N∏
i=1

e−sqxi

∑
z∈EN

z
=x

S(N)
x,z P̃

[n−1]
N (t − s; z,y) ds, (4.20)

where S
(N)
x,z

def= 1{xj =zj ,j 
=1}qx1,z1 + · · · + 1{xj =zj ,j 
=N}qxN ,zN
. Together with (4.15) and the induction hypothesis, one

easily proves (4.19) for n, thus completing the induction step.
The remaining step is to prove (4.16) which, thanks to the formula (4.17) we already proved, is equivalent to∑

y1>y2>···>yN≥0
y1,...,yN∈E

det
i,j

[
P1(t;xi, yj )

]
�N(y) = ecN t�N(x) for all x ∈ EN, t ≥ 0. (4.21)

From the antisymmetry property of �N , the left-hand side of (4.21) can be written as

∑
y1>y2>···>yN≥0

y1,...,yN∈E

(∑
σ∈SN

sgn(σ )

N∏
i=1

P1(t;xi, yσ(i))

)
�N(y)

=
∑

y1>y2>···>yN≥0
y1,...,yN∈E

∑
σ∈SN

N∏
i=1

P1(t;xi, yσ(i))�N(yσ(1), . . . , yσ(N))

=
∑

y1,...,yN∈E

N∏
i=1

P1(t;xi, yi) · �N(y).
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We point out that in the last sum we added some terms indexed by tuples y = (y1, . . . , yN) with yi = yj for some
i 
= j . No problem arises because �N(y) vanishes whenever y has two equal components. The statement (4.21) that
we need to prove becomes

∑
y1,...,yN∈E

(
N∏

i=1

P1(t;xi, yi)

)
�N(y) = ecN t�N(x). (4.22)

The identity (4.22) is a consequence of Assumption 4.4. The formal derivation is somewhat tedious and left to Ap-
pendix C. �

As a consequence of Propositions 4.2 and 4.7, we obtain the following statement.

Proposition 4.8. If Q is a non-explosive matrix of transition rates on E satisfying Assumption 4.4 and Q(N) is the
EN × EN matrix defined in (4.13), then Q(N) is a non-explosive matrix of transition rates on EN . There exists a
unique Markov semigroup (PN(t))t≥0 with q-matrix Q(N), and is given by

PN(t;x,y) = e−cN t · �N(y)

�N(x)
det

1≤i,j≤n

[
P1(t;xi, yj )

]
, t ≥ 0;x,y ∈ EN,

where (P1(t))t≥0 is the unique Markov semigroup with q-matrix Q.

4.3. Specialization to the BC branching graph

4.3.1. Non-explosive birth-and-death matrices on GT+
1 = Z+

Our construction depends on two complex parameters u,u′ ∈C.

Definition 4.9. We define H◦ as the set of pairs (u,u′) ∈C2 satisfying

(u − k)
(
u′ − k

)
> 0 for any k ∈ Z+,

(u + k + 2ε)
(
u′ + k + 2ε

)
> 0 for any k ∈ N,

u + u′ + b > −1.

Observe that if the pair (u,u′) satisfies either of the first two conditions above, then u + u′ ∈ R and so the third
condition makes sense.

Remark 4.10. Later in Section 6, we define the space H of pairs (z, z′) for which z-measures are defined. It turns
out that H ⊂ H◦, so the construction to come in this section is slightly more general than needed for the main result
of the paper.

For any pair (u,u′) ∈H◦, define the birth and death rates {β(x)}x∈Z+ , {δ(x)}x∈Z+ , by

β(x) = (x + 2ε)(x + a + 1)(x − u)(x − u′)
2(x + ε)(2x + 2ε + 1)

, x ∈ Z+, (4.23)

δ(x) = x(x + b)(x + u + 2ε)(x + u′ + 2ε)

2(x + ε)(2x + 2ε − 1)
, x ∈N, δ(0) = 0. (4.24)
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From the definition of the set H◦, the rates {β(x)}x≥0 and {δ(x)}x≥1 are all strictly positive. Define the birth-and-death
matrix R = [R(x, y)]x,y∈Z+ by

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−β(0) β(0) 0 0

δ(1) −β(1) − δ(1) β(1) 0
...

0 δ(2) −β(2) − δ(2) β(2)
...

0 0 δ(3) −β(3) − δ(3)

· · · · · · . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (4.25)

Remark 4.11. Below we define more general matrices of transition rates R(N) in GT+
N , for N > 1, reason why we

denote R by R(1) sometimes. If we want to be explicit about the pair (u,u′) ∈H◦ used in the definition of R, we write
instead Ru,u′ .

In order to apply Proposition 4.3 in our case, we need to verify that the two sums shown there diverge. Clearly
(4.23), (4.24) give the following expression for the potential coefficients π(n) in terms of Gamma functions:

π(n) = β(0) · · ·β(n − 1)

δ(1) · · · δ(n)
= const · (n + ε) · �(n + 2ε)�(n + a + 1)�(n − u)�(n − u′)

�(n + 1)�(n + b + 1)�(n + u + 2ε + 1)�(n + u′ + 2ε + 1)
,

where const is a constant independent of n. Then

π(n) ∼ n−2(u+u′+b)−3, n −→ ∞. (4.26)

From (4.23), we have β(n) ∼ n2 as n → ∞; thus 1
β(n)π(n)

∼ n2(u+u′+b)+1. By the third condition of Definition 4.9,
u + u′ + b > −1, therefore

∞∑
n=0

1

β(n)π(n)
= ∞.

From (4.26), it follows that the sum
∑

k π(k) converges and moreover
∑∞

k=n+1 π(k) ≥ cn−2(u+u′+b)−2, for some

constant c > 0. Also, from the definition (4.24), 1
δ(n)π(n)

∼ n2(u+u′+b)+1, n → ∞, so the term 1
δ(n)π(n)

∑∞
k=n+1 π(k)

is of order n−1, thus proving

∑
n

1

δ(n)π(n)

∞∑
k=n+1

π(k) = ∞.

We have verified the two conditions on the birth-and-death matrix R from Proposition 4.3 and therefore we have
proven the following.

Proposition 4.12. The birth-and-death matrix R defined by (4.23), (4.24) and (4.25) is non-explosive. It is the q-
matrix of a unique Markov semigroup (P1(t))t≥0, which is a Feller semigroup.

4.3.2. Non-explosive matrices of transition rates on GT+
N

Let N > 1 be an integer, (u,u′) ∈ H◦, and let R = Ru,u′ be the birth-and-death matrix defined above. We aim to
define a matrix [R(N)(λ, ν)]λ,ν∈GT

+
N

of transition rates with rows and columns parametrized by GT+
N . We shall use

the general method of Section 4.2. In order to apply that general construction, we use E = Zε+ = {ε2, (1 + ε)2, (2 +
ε)2, . . .} and EN = �ε

N , N > 1. Therefore we treat R as a matrix with rows and columns parametrized by Zε+, even
though we will use the notation R(x, y), with x, y ∈ Z+, for its entries. Similarly, we treat R(N) as a matrix with rows
and columns parametrized by �ε

N even though we will use the notation R(N)(λ,μ), with λ,μ ∈ GT+
N , for its entries.
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The expression (4.13) specializes to

R(N)(λ, ν) =
∏

i<j (̂ni − n̂j )∏
i<j (l̂i − l̂j )

(
R(l1, n1)1{li=ni ,i 
=1} + R(l2, n2)1{li=ni ,i 
=2}

+ · · · + R(lN ,nN)1{li=ni ,i 
=N}
)− cN1{λ=ν}, λ, ν ∈ GT+

N, (4.27)

where

cN = N(N − 1)(N − 2)

3
− N(N − 1)

2

(
u + u′ + b

)
(4.28)

and (l, n), (l̂, n̂) are associated to (λ, ν) as explained at the end of Section 3.1.
In order to obtain the benefits from Proposition 4.8, we need to verify the two conditions of Assumption 4.4. For

the first condition, let us look at the discrete difference operator D associated to R. Naturally, D is defined as an
operator on functions on Zε+ = {(x + ε)2 : x ∈ Z+}, given by

(Df )(̂x) =
∑

y∈Z+
R(x, y)f (ŷ) = β(x)

(
f (x̂ + 1) − f (̂x)

)+ δ(x)
(
f (x̂ − 1) − f (̂x)

)
, (4.29)

where x̂ = (x + ε)2, x ∈ Z+.

Lemma 4.13. The operator D is well-defined for polynomial functions on Zε+ and it stabilizes them, i.e., if f is a
polynomial, then (Df )(̂x) is a polynomial on x̂. Moreover, for any m ∈ Z+, we have

D
[
(x + ε)2m

]= am(x + ε)2m + lower degree terms in (x + ε)2,

where

am := m(m − 1) − m
(
u + u′ + b

)
.

Consequently, D stabilizes the polynomial functions on Zε+ of degree ≤ m, for any m ∈ Z+.

Proof. The proof is a simple calculation and is left to the reader. �

To verify the second condition of Assumption 4.4, notice that Lemma 4.13 gives

N∑
i=1

D[i]�N(x) =
(

N−1∑
m=1

am

)
�N(x),

where am = m(m − 1) − m(u + u′ + b). The evident equality cN =∑N−1
m=1 am, where cN is defined in (4.28), then

shows

Dfree�N(x) :=
N∑

i=1

D[i]�N(x) = cN�N(x).

The specialization of Proposition 4.8 yields

Proposition 4.14. The matrix of transition rates R(N) defined in (4.27) is non-explosive. Therefore it is the q-matrix
of a unique Markov semigroup on GT+

N , which is a Feller semigroup and will be denoted by (PN(t))t≥0. It is explicitly
given by

PN(t;λ, ν) = e−cN t · �N(̂n)

�N(l̂)
det
i,j

[
P1(t; li , nj )

]
, (4.30)
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where cN is as in (4.28), (P1(t))t≥0 is the unique Markov semigroup with q-matrix R = R(1), and P1(t; l, n), l, n ∈ Z,
are the entries of the stochastic matrix P1(t).

Proof. Most statements above follow from Proposition 4.8. We are only left to show that (PN(t))t≥0 is Feller. The
Feller property of (P1(t))t≥0 given by Proposition 4.12 states

lim
l→∞P1(t; l, n) = 0 for any n ∈ Z+. (4.31)

Evidently �N(l̂) ≥ 1, so 0 ≤ PN(t;λ, ν) ≤ const · deti,j [P1(t; li , nj )]. From (4.31), and because λ −→ ∞ is equiva-

lent to l1 −→ ∞, we have deti,j [P1(t; li , nj )] λ→∞−−−→ 0. Hence

lim
λ→∞PN(t;λ, ν) = 0 for any ν ∈ GT+

N,

which is the Feller property for the semigroup (PN(t))t≥0 on the countable space GT+
N . �

Remark 4.15. The matrix of transition rates R(N) can be described as follows: if λ 
= μ, the nondiagonal entry
R(N)(λ,μ) is nonzero if and only if

∑
i |λi − μi | = 1; in such case

R(N)(λ,μ) =

⎧⎪⎨⎪⎩
β(lk) ·∏j 
=k

(̂lk+1)−l̂j

l̂k−l̂j
if μk = λk + 1,

δ(lk) ·∏j 
=k

(̂lk−1)−l̂j

l̂k−l̂j
if μk = λk − 1.

(4.32)

Thus the generator of the Feller semigroup (PN(t))t≥0 is given by the following partial difference operator, cf [28,
(5.1)],

(
DBC

u,u′a,b|Nf
)
(l̂) =

N∑
k=1

{∏
j 
=k

̂(lk + 1) − l̂j

l̂k − l̂j

(lk + 2ε)(lk + a + 1)(lk − u)(lk − u′)
2(lk + ε)

(
f (l̂ + εk) − f (l̂)

2lk + 2ε + 1

)

+
∏
j 
=k

̂(lk − 1) − l̂j

l̂k − l̂j

(lk + b)lk(lk + u + 2ε)(lk + u′ + 2ε)

2(lk + ε)

(
f (l̂ − εk) − f (l̂)

2lk + 2ε − 1

)}
.

The domain of the generator can be shown to be {f ∈ C0(�
ε
N) : DBC

u,u′,a,b|Nf ∈ C0(�
ε
N)}.

Remark 4.16. If we want to be explicit about the pair (u,u′) ∈ H◦ used in the definition of R(N), we write instead
R

(N)

u,u′ .

5. The master relation

The goal of this section is to prove the coherence between the Markov semigroups from Section 4.3 and the Markov
kernels from Section 3.3. The master relation (2.5) holds when we define the semigroups (PN(t))t≥0 from a pair
(u,u′) ∈H◦ that depends on N . For that reason, we introduce another pair (z, z′) of complex numbers that satisfy

(z − k)
(
z′ − k

)
> 0 for all k ∈ Z,

(z + k + 2ε)
(
z′ + k + 2ε

)
> 0 for all k ∈N, (5.1)

z + z′ > −(1 + b).

The constraints above are the same as those for pairs in H◦, except the first: the condition here requires the inequality to
hold just for k ∈ Z, as opposed to for all k ∈ Z+. Also, if (z, z′) satisfies all inequalities in (5.1), then (z+m,z′ +m) ∈
H◦ for all m ∈ Z+.
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For any N ≥ 1, let (PN(t))t≥0 be the Feller semigroup defined in Section 4.3, with parameters (u,u′) = (z + N −
1, z′ + N − 1). The main goal of this section is to prove

Theorem 5.1. With Markov kernels {�N+1
N }N≥1 as in Section 3.3, and semigroups (PN(t))N≥1 as above, the master

relation

PN+1(t)�
N+1
N = �N+1

N PN(t)

holds for all N ≥ 2, t ≥ 0.

By virtue of the method of intertwiners, see Section 2.4, Theorem 5.1 effectively shows the existence of Feller
semigroups (P∞(t))t≥0 depending on a pair (z, z′) ∈C2 (and also on the pair (a, b)) that satisfies (5.1), and moreover

P∞(t)�∞
N = �∞

N PN(t), N ≥ 2, t ≥ 0.

In Section 6, it will be shown that for pairs (z, z′) in a smaller set H ⊂ H◦, the semigroup (P∞(t))t≥0 has the z-
measure associated to (z, z′, a, b) as its unique invariant measure, thus concluding the proof of the main theorem of
the paper.

5.1. Infinitesimal master relation

We prove a version of the master relation that does not involve the semigroups (PN(t))t≥0, but rather their q-matrices.
Recall that we denote the q-matrix of (PN(t))t≥0 by R

(N)

u,u′ if we wish to be specific about the pair of parameters
(u,u′) ∈H◦ used to define it.

Proposition 5.2. Let N ∈ N and (z, z′) ∈ C2 be a pair that satisfies (5.1). If we set u = z + N − 1, u′ = z′ + N − 1,
then (u,u′), (u + 1, u′ + 1) ∈H◦ and the following relation holds

R
(N+1)

u+1,u′+1�
N+1
N = �N+1

N R
(N)

u,u′ . (5.2)

It is clear from the definitions that (u,u′), (u + 1, u′ + 1) ∈ H◦ if (z, z′) ∈ C2 satisfies the conditions in (5.1), but the
identity (5.2) is far from trivial. Let us begin with the following lemma.

Lemma 5.3. Let [A(λ, ν)] be a GT+
N+1 × GT+

N matrix with finitely many nonzero entries in each row. If for any
symmetric polynomial P(x1, . . . , xN) with real coefficients and any λ ∈GT+

N+1, we have∑
ν∈GT

+
N

A(λ, ν)P (̂n1, . . . , n̂N ) = 0,

then A is the zero matrix.

Proof. For any pairwise distinct ν(1), . . . , ν(k) ∈ GT+
N , let n̂(1), . . . , n̂(k) ∈ �ε

N be defined by n̂
(i)
j = (ν

(i)
j + N − j +

ε)2 ∀1 ≤ i ≤ k,1 ≤ j ≤ N . The key fact is that ε ≥ 0 implies that the orbits of n̂(1), . . . , n̂(k) under the symmetric group
action are pairwise distinct. Then there exists a polynomial P such that P (̂n(1)) 
= 0 and P (̂n(2)) = · · · = P (̂n(k)) = 0.
The remaining details of the proof are left to the reader. �

Lemma 5.3 paves the way to proving Proposition 5.2 indirectly. If we let the difference between the left and right-
hand sides of (5.2) be the matrix A, of format GT+

N+1 ×GT+
N , then we claim that A has finitely many nonzero entries

in each row. In fact, for any fixed λ ∈ GT+
N+1, we have R

(N+1)

u+1,u′+1(λ, κ) 
= 0 if and only if κ ∈ GT+
N+1 differs from

λ in at most one coordinate, see (4.27), and there are finitely many of those positive N -signatures κ . Similarly, for
any fixed λ ∈ GT+

N , there exists finitely many κ ∈ GT+
N such that R

(N)

u,u′(λ, κ) 
= 0. On the other hand, for any fixed
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λ ∈ GT+
N+1, we have �N+1

N (λ, κ) 
= 0 if and only if λ �BC κ , see Section 3.1, and there are finitely many of those
positive N -signatures κ .

Therefore each product of matrices R
(N+1)

u+1,u′+1�
N+1
N and �N+1

N R
(N)

u,u′ has finitely many nonzero entries in each row,
and therefore so does their difference, the matrix A.

From Lemma 5.3, we could conclude that A is the zero matrix if the operator defined by A kills all functions
Ti (̂n1, . . . , n̂N ), where {Ti}i is a basis of the algebra of symmetric polynomials on N variables. Thus we would like
to introduce a choice of such a basis that makes the calculations feasible.

For any sequence a = (a1, a2, . . .) and k ∈ Z+, define

(x|a)k := (x − a1)(x − a2) · · · (x − ak) if k ≥ 1 and (x|a)0 := 1.

For any μ ∈GT+
N , consider the constant

c(N,μ)
def=

∏
(i,j)∈μ

(N + j − i)(N + a + j − i)

=
N∏

i=1

(N − i + 1)μi
(N + a − i + 1)μi

, (5.3)

where the first product is taken over the squares (i, j) inside the Young diagram of partition μ, and the second product
uses the Pochhammer symbols (x)n, x ∈ C, n ∈ Z+, defined by

(x)n
def=
{∏n

i=1 (x + i − 1) if n ≥ 1,

1 if n = 0.

Consider also the sequence

ε = (ε2, (ε + 1)2, (ε + 2)2, . . .
)
.

Finally, for any μ ∈ GT+
N , define the rational function

T ∗
μ|N(x1, . . . , xN) = 1

c(N,μ)

deti,j [(xi |ε)μj +N−j ]
deti,j [(xi |ε)N−j ] . (5.4)

One can show that the denominator det[(xi |ε)N−j ] is in fact the Vandermonde determinant �N(x) =∏i<j (xi − xj ).
Moreover the rational function T ∗

μ|N is in fact a symmetric polynomial on the N variables x1, . . . , xN . The polynomial
T ∗

μ|N has degree |μ| = μ1 + μ2 + · · · + μN , but it is non-homogeneous; its top degree homogeneous part is a nonzero
constant multiple of the Schur polynomial sμ(x1, . . . , xN), see [17].

For the positive N -signature μ, we can also define a polynomial T ∗
μ|K on K variables x1, . . . , xK , for any K ≥

N , by using the positive K-signature μ = (μ1, . . . ,μN,0, . . . ,0) with K − N trailing zeroes instead of μ in the
expression (5.4).

Proposition 5.4. For any λ ∈GT+
N+1 and μ ∈GT+

N , we have

T ∗
μ|N+1(l̂1, l̂2, . . . , l̂N+1)

=
∑

ν∈GT
+
N

�N+1
N (λ, ν)T ∗

μ|N (̂n1, n̂2, . . . , n̂N ).

We leave the proof of Proposition 5.4 to Appendix B.
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Lemma 5.5. For any λ,μ ∈GT+
N , we have∑

ν∈GT
+
N

R
(N)

u,u′(λ, ν)T ∗
μ|N (̂n1, . . . , n̂N )

=
(

N∑
j=1

mj

(
mj − b − u − u′ − 1

)− cN

)
T ∗

μ|N(l̂1, . . . , l̂N )

+
N∑

j=1

(u − mj + 1)
(
u′ − mj + 1

)
1{μj −1≥μj+1}T ∗

μ−ej |N(l̂1, . . . , l̂N ),

where cN is as in (4.28), ej = (0, . . . ,0,1,0, . . . ,0) with 1 in the j th position and zeroes elsewhere, and we set
μN+1 := 0.

Proof. Step 1. Recall the operators D(N) of Section 4.3, which act on polynomial functions on �ε
N and are defined

by

D(N)f (l̂1, . . . , l̂N ) =
∑

ν∈GT
+
N

R
(N)

u,u′(λ, ν)f (̂n1, . . . , n̂N ).

In particular, for N = 1, we have the operator D =D(1) acts on the polynomial functions on Zε+ as

Df (l̂) = β(l) · (f ( ̂l + 1) − f (l̂)
)+ δ(l) · (f ( ̂l − 1) − f (l̂)

)
,

where the birth and death rates β(l), δ(l), are defined from the parameters u,u′.
Then we have

D(N)T ∗
μ|N(l̂1, . . . , l̂N ) =

∑
ν∈GT

+
N

R
(N)

u,u′(λ, ν)T ∗
μ|N (̂n1, . . . , n̂N ). (5.5)

For any 1 ≤ i ≤ N , let D[i] be the operator on the space of polynomial functions on (l̂1, . . . , l̂N ) ∈ �ε
N , which acts

as D on the variable ith variable l̂i , and treats all other variables l̂j , j 
= i, as constants. From Lemma 4.5, it follows
that

D(N)T ∗
μ|N(l̂1, . . . , l̂N ) =

(
1

�N(l̂)
◦

N∑
i=1

D[i] ◦ �N(l̂) − cN

)
T ∗

μ|N(l̂1, . . . , l̂N ). (5.6)

Step 2. Let us find an expression for D[(̂x|ε)m], m ∈ Z+, where D =D(1) acts on R[̂x]. By definition,

(̂x|ε)m = ((x + ε)2|ε)m =
m∏

i=1

(
(x + ε)2 − (ε + i − 1)2)

= (x ↓ m)(x + 2ε ↑ m),

where we have used the notation (y ↓ n) =∏n
i=1 (y − i + 1), (y ↑ n) =∏n

i=1 (y + i − 1) for any y ∈ C, n ∈ N, and
(y ↓ 0) = (y ↑ 0) = 1. Then

(x̂ + 1|ε)m − (̂x|ε)m

= m(2x + 2ε + 1) · (x ↓ (m − 1)
)(

x + 2ε + 1 ↑ (m − 1)
)
,
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from which

D
[
(̂x|ε)m

]= β(x)
(
(x̂ + 1|ε)m − (̂x|ε)m

)− δ(x)
(
(̂x|ε)m − (x̂ − 1|ε)m

)
= m(̂x|ε)m−1

2(x + ε)

{
(x + a + 1)(x − u)

(
x − u′)(x + 2ε + m − 1)

− (x + b)(x + u + 2ε)
(
x + u′ + 2ε

)
(x − m + 1)

}
= m(̂x|ε)m−1{(m − b − u − u′ − 1

)
(x − m + 1)(x + 2ε + m − 1)

+ (a + m)(u − m + 1)
(
u′ − m + 1

)}
.

Hence

D
[
(̂x|ε)m

]= m
(
m − b − u − u′ − 1

)
(̂x|ε)m + (a + m)m(u − m + 1)

(
u′ − m + 1

)
(̂x|ε)m−1. (5.7)

Step 3. From (5.5) and (5.6) of Step 1, and the definition of T ∗
μ|N in (5.4) give

∑
ν∈GT

+
N

R
(N)

u,u′(λ, ν)T ∗
μ|N (̂n1, . . . , n̂N ) = 1

c(N,μ)�N(l̂)
·

N∑
i=1

D[i](det
i,j

[
(l̂i |ε)μj +N−j

])
− cNT ∗

μ|N(l̂1, . . . , l̂N )

From (5.7) of Step 2 and the definition of the polynomials T ∗
μ|N , the desired result follows. Let us make a remark on

the factors 1{μj −1≥μj+1} in the statement of the Lemma. If μj −1 < μj+1, then μj+1 = μj and the formula (5.4), with
μ − ei instead of μ, vanishes (the matrix in the numerator has two identical columns, so its determinant is zero). �

Proof of Proposition 5.2. Let λ ∈ GT+
N+1, ν ∈ GT+

N be arbitrary. By looking at the (λ, ν) entry of (5.2), the identity
to prove is∑

κ∈GT
+
N+1

R
(N+1)

u+1,u′+1(λ, κ)�N+1
N (κ, ν) =

∑
κ∈GT

+
N

�N+1
N (λ, κ)R

(N)

u,u′(κ, ν). (5.8)

For κ ∈ GT+
N , we denote by k, k̂ their associated elements in �N,�ε

N , as described by the bijections in (3.1). For
κ ∈ GT+

N+1, we also denote by k, k̂ the associated elements in �N+1,�
ε
N+1.

Let us apply both sides of (5.8) to T ∗
μ|N (̂n1, . . . , n̂N ), for any μ ∈ GT+

N , i.e., multiply both sides of (5.8) by

T ∗
μ|N (̂n1, . . . , n̂N ) and add over all ν ∈ GT+

N . Thus each side of (5.8) becomes a double sum with finitely many terms,
and we can exchange the order of summation if needed.

By virtue of Proposition 5.4, the left-hand side becomes∑
κ∈GT

+
N+1

R
(N+1)

u+1,u′+1(λ, κ)T ∗
μ|N+1(̂k1, . . . , k̂N+1).

In view of Lemma 5.5, this expression is(
N+1∑
j=1

m̃j

(
m̃j − b − u − u′ − 3

)− c̃N+1

)
T ∗

μ|N+1(l̂1, . . . , l̂N+1)

+
N+1∑
j=1

(u − m̃j + 2)
(
u′ − m̃j + 2

)
1{μj −1≥μj+1}T ∗

μ−ej |N+1(l̂1, . . . , l̂N+1),
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where m̃j = μj +N + 1 − j and c̃N+1 has the same definition as cN+1 except that u,u′ are replaced by u+ 1, u′ + 1,
respectively.

On the other hand, if we apply Lemma 5.5 to the right-hand side, we obtain

∑
κ∈GT

+
N

�N+1
N (λ, κ)

{(
N∑

j=1

mj

(
mj − b − u − u′ − 1

)− cN

)
T ∗

μ|N (̂k1, . . . , k̂N )

+
N∑

j=1

(u − mj + 1)
(
u′ − mj + 1

)
1{μj −1≥μj+1}T ∗

μ−ej |N (̂k1, . . . , k̂N )

}
.

Proposition 5.4 then shows the expressions are equal if

N+1∑
j=1

m̃j

(
m̃j − b − u − u′ − 3

)− c̃N+1 =
N∑

j=1

mj

(
mj − b − u − u′ − 1

)− cN,

(u − m̃j + 2)
(
u′ − m̃j + 2

)= (u − mj + 1)
(
u′ − mj + 1

)
, j = 1,2, . . . ,N,

both of which are easily checked. The proof of Proposition 5.2 is finished, because of Lemma 5.3 and the analysis
above. �

5.2. From q-matrices to semigroups

We finish the proof of Theorem 5.1 by lifting the infinitesimal version shown in Proposition 5.2. The idea of the
proof is to prove the commutativity relation PN+1(t)�

N+1
N = �N+1

N PN(t) as an equality of operators C0(GT+
N) −→

C0(GT+
N+1): for any N ∈ N, N ≥ 2, and any f ∈ C0(GT+

N), we prove

PN+1(t)�
N+1
N f = �N+1

N PN(t)f for all t ≥ 0. (5.9)

Since finitely supported functions on GT+
N span a dense subspace of C0(GT+

N), it will be sufficient to prove (5.9) for
all finitely supported functions f on GT+

N . In order to do that, let A be the operator C0(GT+
N+1) −→ C0(GT+

N+1)

associated to the q-matrix R
(N+1)

z+N,z′+N
(here (z, z′) is any complex pair satisfying the inequalities (5.1)). From Kol-

mogorov’s backward differential equation and the infinitesimal master relation (5.2), one can show that both sides
of the desired equality (5.9) satisfy the following linear ODE with values in the Banach space C0(GT+

N+1) and with
certain initial condition:

F ′(t) = AF(t), t ≥ 0,

F (0) = �N+1
N f.

Finally, one can invoke a general theorem about uniqueness of solutions F(t) to the above Cauchy problem to finish
the proof.

In [9, Sub. 6.3], the reader can find a much more detailed explanation of the idea above, which applies to our
situation. The only unclear point is the statement in the following lemma, which is a technical condition guaranteeing
that we can apply the general result on uniqueness of solutions to a Cauchy problem.

Lemma 5.6. Let N ≥ 2, let f be a finitely supported function on C0(GT+
N), and let A be the operator

C0(GT+
N+1) −→ C0(GT+

N+1) associated to R(N+1) = R
(N+1)

z+N,z′+N
. Then

A
(
�N+1

N f
) ∈ C0

(
GT+

N+1

)
.
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Proof. It is convenient to name the constants u = z + N , u′ = z′ + N . Since �N+1
N and A are linear operators, it is

enough to prove the proposition when f is the delta function δμ, i.e., we show A(�N+1
N δμ) ∈ C0(GT+

N+1), for any
μ ∈ GT+

N . This statement is equivalent to∑
ν∈GT

+
N+1

R(N+1)(λ, ν)�N+1
N (ν,μ)

λ→∞−−−→ 0.

Recall that R(N+1)(λ, ν) 
= 0 iff
∑

k |λk − νk| ∈ {0,1}, or equivalently iff ν = λ or ν = λ ± ek for some k = 1, . . . ,N ,
where ek = (0, . . . ,0,1,0, . . . ,0) has a 1 in the kth position and 0’s elsewhere. Moreover

R(N+1)(λ,λ) = −
∑

ν∈GT
+
N+1

ν 
=λ

R(N+1)(λ, ν).

The limit to prove becomes

N+1∑
k=1

{
1{λk−1≥λk+1}R(N+1)(λ,λ + ek)

(
�N+1

N (λ + ek,μ) − �N+1
N (λ,μ)

)
+ 1{λk−1≥λk+1}R(N+1)(λ,λ − ek)

(
�N+1

N (λ − ek,μ) − �N+1
N (λ,μ)

)} λ→∞−−−→ 0, (5.10)

where we have used the conventions λ0 := +∞, λN+2 := 0.
We claim that

�N+1
N (λ,μ) ≤ const · λ−N−1

1 , (5.11)

where const is a positive constant, independent of λ. Assume for the moment the validity of this estimate. The expres-
sions (4.32) for R(N) show that |R(N)(λ,λ± ek)| ≤ const ·λ2

1, for all k = 1, . . . ,N , where const depends on N but not
on λ. By combining this observation with estimate (5.11), we have that the absolute value of the sum in (5.10) is upper
bounded by const · λ−N+1

1 ≤ const · λ−1
1 , for N ≥ 2. Since λ → ∞ is equivalent to λ1 → ∞, then (5.10) follows.

We are left to prove the estimate (5.11). In (3.20), we proved the weaker estimate �N+1
N (λ,μ) ≤ const · λ−N

1 , but
it can be improved if we use a finer estimate for the Vandermonde �N+1(l̂) when N ≥ 2. We have

�N+1(l̂) =
∏
i<j

(l̂i − l̂j ) =
∏
i<j

(li − lj )(li + lj + 2ε)

≥ (λ1 − λ2 + 1)(λ1 − λ3 + 2)

N+1∏
j=2

(λ1 + λj + 2ε) ≥ const · (λ1 − λ2 + 1)λN+1
1 ,

where we have used that λ �BC μ implies μ1 ≥ λ3 and so λ1 − λ3 + 2 ≥ const · λ1.
By following the same steps as in the proof of (3.20), with the finer estimate on �N+1(l̂), we obtain the desired

�N+1
N (λ,μ) ≤ const · λ−N−1

1 . �

Remark 5.7. We believe Lemma 5.6 holds also for N = 1 (and consequently so would Theorem 5.1). If we consider
(λ1, λ2) ∈GT+

2 , (μ) ∈ GT+
1 , the lemma for N = 1 is equivalent to the convergence of the sum

β(λ1 + 1)
(λ1 + 2 + ε)2 − (λ2 + ε)2

(λ1 + 1 + ε)2 − (λ2 + ε)2

{
�2

1

(
(λ1 + 1, λ2),μ

)− �2
1

(
(λ1, λ2),μ

)}
+ 1{λ1−1≥λ2}δ(λ1 + 1)

(λ1 + ε)2 − (λ2 + ε)2

(λ1 + 1 + ε)2 − (λ2 + ε)2

{
�2

1

(
(λ1 − 1, λ2),μ

)− �2
1

(
(λ1, λ2),μ

)}
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+ 1{λ1≥λ2+1}β(λ2)
(λ1 + 1 + ε)2 − (λ2 + 1 + ε)2

(λ1 + 1 + ε)2 − (λ2 + ε)2

{
�2

1

(
(λ1, λ2 + 1),μ

)− �2
1

(
(λ1, λ2),μ

)}
+ 1{λ2−1≥0}δ(λ2)

(λ1 + 1 + ε)2 − (λ2 − 1 + ε)2

(λ1 + 1 + ε)2 − (λ2 + ε)2

{
�2

1

(
(λ1, λ2 − 1),μ

)− �2
1

(
(λ1, λ2),μ

)}
to 0, as λ −→ ∞. We even have the following explicit expression for the links

�2
1

(
(λ1, λ2), (μ)

)= 2(a + 1)
∑

λ1≥n≥max{μ,λ2} B(n,μ)

(λ1 − λ2 + 1)(λ1 + λ2 + 1 + 2ε)
.

The difficulty is that many cases arise for the sequence {(λ1(k), λ2(k))}k=1,2,... such that λ1(k)
k→∞−−−→ ∞, and we also

need to treat the cases μ 
= 0 and μ = 0 separately. The author has verified the desired convergence when λ1(k) >

λ2(k) > μ > 0 for all k sufficiently large, but the proof is tedious. Since proving the master relation for N = 1 does
not strengthen our main result, we have chosen to leave it out.

6. Invariance of the z-measures

In this section, we use the semigroups (PN(t))t≥0 and matrices of transition rates R(N), which are defined using the
parameters (u,u′) = (z + N − 1, z′ + N − 1), as in Section 5. Here, we restrict even further the space of pairs (z, z′)
that we use: the z-measures exist for pairs (z, z′) in a subset H ⊂H◦, which will be defined shortly.

6.1. Space of parameters (z, z′)

Define the following sets:

Z def= Zprinc �Zcompl �Zdegen,

Zprinc
def= {(

z, z′) ∈ C2 \R2 : z′ = z
}
,

Zcompl
def= {(

z, z′) ∈ R2 : ∃m ∈ Z,m < z, z′ < m + 1
}
,

Zdegen
def=
⊔
m∈N

Zdegen,m,

Zdegen,m
def= {(

z, z′) ∈R2 : z = m,z′ > m − 1 or z′ = m,z > m − 1
}
.

Observe that (z, z′) ∈Z implies that z + z′ ∈R. Moreover we have

Proposition 6.1 ([27], Lemma 7.9). Let (z, z′) ∈C2, then

• (�(z − k)�(z′ − k))−1 ≥ 0 for all k ∈ Z iff (z, z′) ∈ Z .
• (�(z − k)�(z′ − k))−1 > 0 for all k ∈ Z iff (z, z′) ∈Zprinc �Zcompl.
• If (z, z′) ∈Zdegen,m, m ∈ N, then (�(z − k)�(z′ − k))−1 = 0 for k ≥ m and (�(z − k)�(z′ − k))−1 > 0 for k < m.

Definition 6.2. We define H as the space of pairs (z, z′) ∈ C2 such that both (z, z′) and (z + 2ε, z′ + 2ε) belong to
Zprinc �Zcompl and moreover z + z′ + b > −1.

Observe that all pairs (z, z′) ∈ H satisfy the inequalities in (5.1). Consequently the master relation, Theorem 5.1,
holds if we define the Feller semigroups (PN(t))t≥0 using a pair (z, z′) ∈ H, as described in the previous section. The
method of intertwiners, Theorem 2.5, then shows there exists a unique Feller semigroup (P∞(t))t≥0 on �∞ satisfying
the relations (2.6). The Feller semigroups (P∞(t))t≥0 depend on the parameters z, z′, as well as the real parameters
a ≥ b ≥ −1/2; for convenience, we omit such dependence from the notation.
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To finish the proof of the main theorem stated in the Introduction, we define below the z-measures associated to a
tuple (z, z′, a, b), (z, z′) ∈ H, a ≥ b ≥ − 1

2 , and prove that they are the unique invariant measures of the semigroups
(P∞(t))t≥0.

Remark 6.3. Below we define the z-measures for (z, z′) ∈ H, but it is also possible to define them for degenerate
pairs (z, z′) ∈ Zdegen. One can define Markov chains on GT+

N that preserve the pushforwards of the “degenerate”
z-measures. We believe these Markov chains have a limit Markov process (living in a finite-dimensional subspace of
�∞) which is a time-dependent determinantal point process. Techniques from [13] probably can prove this conjecture.
However, we have restricted ourselves to study the more complicated dynamics in the non-degenerate case (z, z′) ∈H.

6.2. z-measures on the BC branching graph

The spectral z-measure (or simply z-measure) associated to (z, z′) ∈ H (and the pair (a ≥ b ≥ −1/2)) is certain
probability measure Mz,z′,a,b|∞ on the boundary �∞ of the BC branching graph. By virtue of the bijection (3.16), we
can define it by giving a coherent system of probability measures {Mz,z′,a,b|N }N=1,2,... on the levels GT+

N of the BC
branching graph. Let us proceed with this approach; for (z, z′) ∈ H, define

Mz,z′,a,b|N(λ) = C−1
z,z′,a,b|N

∏
1≤i<j≤N

(l̂i − l̂j )
2 ·

N∏
i=1

Wz,z′,a,b|N(li), λ ∈GT+
N, (6.1)

where

Wz,z′,a,b|N(x) = (x + ε)
�(x + 2ε)�(x + a + 1)

�(x + b + 1)�(x + 1)

× 1

�(z − x + N)�(z′ − x + N)�(z + x + N + 2ε)�(z′ + x + N + 2ε)
, (6.2)

Cz,z′,a,b|N =
N∏

i=1

�(a + i)�(b + z + z′ + i)�(i)

�(z + i)�(z′ + i)�(z + b + i)�(z′ + b + i)�(z + z′ + N + a + b + i)
. (6.3)

With the restrictions on the parameters z, z′, a, b in place, the expressions Wz,z′,a,b|N(x), x ∈ Z+, C−1
z,z′,a,b|N can

be shown to be well-defined. For example, we can argue that the equality z + b = −1 that would make the formula
for C−1

z,z′,a,b|N ill-defined does not occur. Indeed if z + b = −1, then z < 0 and (z, z′) ∈ Zcompl; consequently z′ < 0
and so z + z′ + b < z + b = −1, a contradiction. Similarly one gets rid of the unwanted scenarios z + b = −n and
z′ + b = −n, for some n ∈ Z+. Therefore Mz,z′,a,b|N(λ) is also well-defined for any λ ∈GT+

N .
Note that the formula above also defines z-measures for all a, b > −1, but the main theorem of this paper requires

a ≥ b ≥ −1/2, so we do not need to consider them in full generality.

Theorem 6.4. The expressions Mz,z′,a,b|N , with (z, z′) ∈ H, define a probability measure on GT+
N , which assigns

strictly positive probabilities to all elements of GT+
N . They are consistent with the kernels �N+1

N in the sense that

Mz,z′,a,b|N(μ) =
∑

λ∈GT
+
N+1

Mz,z′,a,b|N+1(λ)�N+1
N (λ,μ) for any μ ∈GT+

N. (6.4)

Therefore the coherent system {Mz,z′,a,b|N }N≥1 determines a probability measure on �∞, due to (1.2), that we call
the spectral z-measure Mz,z′,a,b|∞ associated to (z, z′, a, b).

Proof. By virtue of Proposition 6.1, we have Mz,z′,a,b|N(λ) > 0 for any λ ∈ GT+
N , whenever (z, z′) ∈ H. Thus the

expression (6.1) defines a probability measure on GT+
N as long as

Cz,z′,a,b|N =
∑

λ∈GT
+
N

M ′
z,z′,a,b|N(λ), (6.5)
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where

M ′
z,z′,a,b|N(λ) =

∏
1≤i<j≤N

(l̂i − l̂j )
2 ·

N∏
i=1

Wz,z′,a,b|N(li).

We actually prove (6.5) for all pairs (z, z′) belonging to the domain U
def= {(z, z′) ∈ C2 : �(z + z′ + b) > −1}. The

equality was proved in [31], for the special case when �z,�z′ > −(1 + b)/2. We extend the equality by analytic
continuation. All we need to show is that both sides of the desired equality (6.5) are analytic for (z, z′) ∈ U . The
expression Cz,z′,a,b|N is clearly analytic on U , so it only remains to prove that the sum in the right-hand side of (6.5)
converges absolutely on U .

Due to Euler’s reflection formula �(z)�(1 − z) = π
sin(πz)

, see [2, Thm 1.2.1], for large x ∈ Z+ we can express
W(x) = Wz,z′,a,b|N(x) as

W(x) = (x + ε) sin(πz) sin(πz′)
π2

· �(x + a + b + 1)�(x + a + 1)

�(x + b + 1)�(x + 1)

× �(x + 1 − z − N)�(x + 1 − z′ − N)

�(x + z + N + 2ε)�(x + z′ + N + 2ε)
.

The well known asymptotics of Gamma functions yield

|W(x)| ≤ const · (1 + x)1−2��−4N, ∀x ∈ Z+, (6.6)

where we denoted � = z + z′ + b. On the other hand, we clearly have∏
1≤i<j≤N

(l̂i − l̂j )
2 ≤ l̂2N−2

1 · · · l̂2
N−1.

It follows that the sum
∑

λ∈GT
+
N

|M ′
z,z′,a,b|N(λ)| is upper bounded by

const
∑

l1,...,lN∈Z+
l̂2N−2
1 · · · l̂2

N−1

(
(1 + l1) · · · (1 + lN )

)1−2��−4N

≤ const
∑

l1,...,lN∈Z+
l̂2N−2
1 · · · l̂2N−2

N−1

(
(1 + l1) · · · (1 + lN )

)1−2��−4N

= const

(∑
l∈Z+

l̂2N−2(1 + l)1−2��−4N

)N

= const

(∑
l∈Z+

(l + ε)4N−4(1 + l)1−2��−4N

)N

. (6.7)

For large l ∈ Z+, we have l < 1 + l < 2l and l < l + ε < 2l. On the other hand, our assumption �� > −1 implies
the convergence of

∑
l∈Z+ l(4N−4)+(1−2��−4N) = ∑l∈Z+ l−3−2�� . It follows that (6.7) is bounded and therefore∑

λ∈GT
+
N

M ′
z,z′,a,b|N(λ) is absolutely convergent, as desired.

Next, we prove the coherence relation (6.4), for all pairs in the domain (z, z′) ∈ U ′ def= {(z, z′) ∈ C2 : �(z+z′ +b) >

−1} ∩ {z 
= −1,−2, . . . } ∩ {z′ 
= −1,−2, . . . } ∩ {z + b 
= −1,−2, . . . } ∩ {z′ + b 
= −1,−2, . . . }. This is stronger than
the statement we wanted to show because clearly H ⊂ U ′.

In the case that �z,�z′ > − (1+b)
2 , the coherence relation (6.4) is the main result of [31]. By the principle of analytic

continuation, we need to show that both sides of (6.4) are holomorphic on U ′. The left side is clearly holomorphic on
U ′, by inspecting (6.1). As for the right side of (6.4), we need to show that the sum below is absolutely convergent∑

λ∈GT
+
N+1

Mz,z′,a,b|N+1(λ)�N+1
N (λ,μ),

on U ′, for any μ ∈ GT+
N .
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This follows easily from (a) �N+1
N (λ,μ) ∈ [0,1], (b) the analysis in the previous paragraphs which shows that the

sum
∑

λ∈GT
+
N+1

M ′
z,z′,a,b|N+1(λ) is absolutely convergent on U ⊃ U ′, and (c) the fact that C−1

z,z′,a,b|N+1 is holomorphic

on U ′, see the few words after equation (6.3) for a brief explanation. �

6.3. Wilson–Neretin hypergeometric orthogonal polynomials

We review the theory of a family of hypergeometric orthogonal polynomials whose weight has the same form as
Wz,z′,a,b|N . The result below was proved in [18], but we follow the exposition in [8, Section 8].

Take arbitrary complex numbers a1, a2, a3, a4 and α, and consider the function

w(t |a1, a2, a3, a4;α)
def= t + α∏4

j=1 �(aj + α + t)�(aj − α − t)
, t ∈ Z, (6.8)

which is treated as a weight function on the quadratic lattice {. . . , (−1 + α)2, α2, (1 + α)2, . . .}.
Proposition 6.5. The polynomials

Qn

(
(t + α)2)= �(2 − a1 − a2 + n)�(2 − a1 − a3 + n)�(2 − a1 − a4 + n)

�(2 − a1 − a2)�(2 − a1 − a3)�(2 − a1 − a4)

× 4F3

[−n n + 3 − a1 − a2 − a3 − a4 1 − a1 + t + α 1 − a1 − t − α

2 − a1 − a2 2 − a1 − a3 2 − a1 − a4
;1

]
are orthogonal with respect to the weight w(t) in (6.8), i.e.,

∞∑
k=−∞

Qm

(
(k + α)2)Qn

(
(k + α)2)w(k) = 0 for m 
= n.

Remark 6.6. The polynomial Qn has degree n with respect to the variable (t + α)2. Observe that Qn is not monic:
its leading coefficient is

kn = �(2n + 3 − a1 − a2 − a3 − a4)

�(n + 3 − a1 − a2 − a3 − a4)
.

Remark 6.7. The orthogonal polynomials appearing in Proposition 6.5 can be expressed in terms of the well-known
Wilson polynomials; in fact

Qn

(
(t + α)2)= rn

(−(t + α)2;1 − a1,1 − a2,1 − a3,1 − a4
)
, (6.9)

where rn is the degree n Wilson polynomial in the variable (t + α)2, see [16, Ch. 9, Sub. 9.1]. (In [16] and other
sources, the degree n Wilson polynomial is denoted by Wn, but since the letter W is already in use for the weight
function (6.2), we use rn instead.)

In the setting of finite systems of discrete orthogonal polynomials on a quadratic lattice, they appear in a work of
Neretin, see [18]. We will call them the Wilson–Neretin polynomials.

Remark 6.8. Observe that t ranges over Z instead of Z+. However, if some aj equals 1 − α, then the weight w(t)

vanishes for t ∈ Z<0 and the Wilson–Neretin polynomials become a system of orthogonal polynomials in the quadratic
half-lattice {α2, (α + 1)2, (α + 2)2, . . .}.

The system is moreover a finite system of orthogonal polynomials, meaning that only finitely many polynomials
Qn will exist for a choice of parameters α,a1, a2, a3, a4. In fact, one can show w(t) ∼ t5−2

∑
i ai as t → ∞, cf. (6.6)

above. If m = m(a1, a2, a3, a4) is the largest integer that is strictly below 2
∑

i ai − 6, then w(t) has up to m finite
moments and so only the polynomials Q1((t + α)2), . . . ,Qn((t + α)2), n = �(m + 2)/4� exist.2

2This simple observation follows because n is the largest positive integer for which any sum of the form
∑

t∈Z+ w(t)qn((t + α)2)qn−1((t + α)2),
with qn, qn−1 polynomials of degrees n,n − 1, converges.
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6.4. Difference equation for Wilson–Neretin polynomials

We specialize the previous discussion to our case of interest.
We write x̂ = (x + ε)2, for x ∈ Z+, as usual. Let {pn(̂x)}n be the monic orthogonal polynomials coming from the

orthogonalization of (1, x̂, x̂2, . . .) in the Hilbert space L2(Zε+,W · μ), where μ is the counting measure of Zε+ and
we denote W = Wz,z′,a,b|N . In particular, p0 = 1, pn is of degree n in the variable x̂ = (x + ε)2 (therefore of degree
2n as a polynomial on x), and the polynomials satisfy the orthogonality relations∑

x∈Z
pn(̂x)pm(̂x)W(x) = 0, whenever n 
= m.

Observe that upon making the substitutions

�(x + a + 1) = π

sin(π(x + a + 1))�(−x − a)
, �(x + 2ε) = π

sin(π(x + 2ε))�(1 − x − 2ε)

into the formula of Wz,z′,a,b|N , for x ∈ Z+, we have

Wz,z′,a,b|N(x) = w
(
x|1 − ε,−a + ε, z + N + ε, z′ + N + ε; ε)× const,

where

const = π2

sin(πa) sin(π(a + b))
,

and where w(t |a1, a2, a3, a4;α) is defined above in (6.8). Therefore the orthogonal polynomials pn(̂x) must be (up to
constant factors) the Wilson–Neretin polynomials with parameters

α = ε, a1 = 1 − ε, a2 = −a + ε,

a3 = z + N + ε, a4 = z′ + N + ε.
(6.10)

Note also that a1 = 1 − ε puts us in the setting of Remark 6.8, i.e., the polynomials pn form a finite system of
orthogonal polynomials on the quadratic half lattice Zε+. Moreover, since 2

∑
i ai − 6 = 2(z + z′ + b + 2N − 1) and

z + z′ + b > −1, the last statement of Remark 6.8 yields the existence of the polynomials p0,p1, . . . ,pN−1.
Furthermore, from Remarks 6.6 and 6.7, it follows that

pn(̂x) = 1

kn

rn(−x̂),

where kn is the leading coefficient of the Wilson polynomial rn(−x̂; ε,1 + a − ε,1 − z − N − ε,1 − z′ − N − ε). In
particular, they satisfy the following second degree difference equation, characteristic of the Wilson polynomials, see
[16, Section 9, Sub. 9.1]:

n
(
n + 1 − z − z′ − b − 2N

)
pn(̂x) = a+(x)

(
pn(x̂ + 1) − pn(̂x)

)
+ a−(x)

(
pn(x̂ − 1) − pn(̂x)

)
,

where

a+(x) = (x + 2ε)(x + a + 1)(x + 1 − z − N)(x + 1 − z′ − N)

2(x + ε)(2x + 2ε + 1)
,

a−(x) = x(x + b)(x + z + N + a + b)(x + z′ + N + a + b)

2(x + ε)(2x + 2ε − 1)
.

Given the coincidence of the expressions a±(x) above with the entries for the matrix R of transition rates, the
discussion above can be rephrased as
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Proposition 6.9. The Wilson–Neretin polynomials pn(̂x) with parameters (6.10) are eigenfunctions of the operator D
associated to R = R

(1)

z+N−1,z′+N−1 with eigenvalues γn = n(n + 1 − z − z′ − b − 2N):

Dpn(̂x) =
∑

y∈Z+
R(x, y)pn(ŷ) = n

(
n + 1 − z − z′ − b − 2N

)
pn(̂x), x ∈ Z+.

In the next section, we need the following simple statement.

Lemma 6.10. For any λ,μ ∈GT+
N , we have

Mz,z′,a,b|N(λ)R(N)(λ,μ) = Mz,z′,a,b|N(μ)R(N)(μ,λ).

Proof. The statement is evidently true when λ = μ and also when
∑

i |λi − μi | ≥ 2 (in which case both sides of the
desired equality are zero).

Thus, we only need to consider the case in which λ and μ differ in only one coordinate i and μi = λi ± 1. Without
loss of generality, assume μi = λi + 1. In view of the formulas (6.1) and (4.32), the desired equality becomes

W(x)β(x) = W(x + 1)δ(x + 1), (6.11)

where x = li = λi + N − i, W = Wz,z′,a,b|N and β(x), δ(x) are the birth and death rates in (4.23), (4.24). The last
equality is readily checked by using formulas (4.25) and (6.2). �

Remark 6.11. The equality (6.11) is not a coincidence. The expressions for β(x), δ(x) are the coefficients of the
second-order difference equation satisfied by the Wilson–Neretin polynomials. The general theory for orthogonal
hypergeometric polynomials of a single variable, see [20, Ch. 2–3], proves that the polynomial solutions to such a
difference equation are orthogonal with respect to a weight satisfying a relation like that in (6.11).

6.5. Proof of invariance of the z-measures

Theorem 6.12. For any pair (z, z′) ∈ H, the spectral z-measure Mz,z′,a,b|∞ is the unique invariant probability mea-
sure with respect to the semigroup (P∞(t))t≥0.

Proof. Step 1. From the method of intertwiners, see Theorem 2.5, it suffices to prove for any N ≥ 1 that the N th level
z-measure Mz,z′,a,b|N is the unique invariant probability measure with respect to the semigroup (PN(t))t≥0. We will
instead prove the invariance at the infinitesimal level, i.e., we show∑

λ∈GT
+
N

Mz,z′,a,b|N(λ)R
(N)

z+N−1,z′+N−1(λ, ν) = 0 for all ν ∈GT+
N,N ≥ 1. (6.12)

The invariance of Mz,z′,a,b|N with respect to (PN(t))t≥0, as well as the uniqueness of the invariant probability measure,
is a general fact: an irreducible, regular jump HMC with associated q-matrix A has a unique invariant measure if there
exists some probability measure μ on such that μT A = 0 (the infinitesimal version of invariance) and in that case μ

is that invariant measure, see [10, Ch. 8, Thms. 5.1 and 5.3].
Step 2. The desired (6.12), up to a nonzero constant, is equivalent to

∑
l∈�N

(
N∏

i=1

W(li)

)
�N(̂l)

× (R(l1, n1)1{li=ni ,i 
=1} + · · · + R(lN ,nN)1{li=ni ,i 
=N} − cN1{l=n}
)= 0, (6.13)
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where W = Wz,z′,a,b|N and recall cN was defined in (4.28). The proof will use the Wilson–Neretin polynomials pn

with parameters (6.10) introduced previously; in this step, we simply make the observation that

�N(l̂) =
∏

1≤i<j≤N

(l̂i − l̂j ) = det
1≤i,j≤N

[
pN−j (l̂i )

]
, (6.14)

which follows from the fact that each pn(̂x) is a monic polynomial of degree n in x̂.
Step 3. We prove (6.13). We begin by claiming that

N∏
i=1

W(ni)
(
D[1] + · · · +D[N ])det

i,j

[
pN−j (̂ni)

]= N∏
i=1

W(ni)(γ0 + · · · + γN−1)det
i,j

[
pN−j (̂ni)

]
(6.15)

for any l, n ∈ �N , where γj = j (j + 1 − z − z′ − b − 2N) and D[i] is the operator which acts on the polynomial
ring R[̂n1, . . . , n̂N ] as D would act on n̂i = (ni + ε)2, by treating all other variables {̂nj }j 
=i as constants. The equal-
ity above holds because D[1] + · · · + D[N ] acts on all elements of column k of the matrix [pN−j (̂ni)]Ni,j=1, as the
eigenvalue γN−k , see Proposition 6.9.

Due to Lemma 6.10, for any 1 ≤ i, j ≤ N , we have

W(ni) ·D[i]pN−j (̂ni) =
∑

li∈Z+
W(ni)R(ni, li)pN−j (l̂i ) =

∑
li∈Z+

W(li)R(li , ni)pN−j (l̂i ).

Because of (6.14), the identity just given and using again deti,j [pN−j (l̂i )] = �N(l̂), the left-hand side of (6.15) is

∑
l1,...,lN∈Z+

(
N∏

i=1

W(li)

)
�N(l̂)

(
R(l1, n1)1{li=ni ,i 
=1} + · · · + R(lN ,nN)1{li=ni ,i 
=N}

)
. (6.16)

The only terms that contribute to the sum above are those l = (l1, . . . , lN ) for which li ∈ {ni − 1, ni, ni + 1} for some
i and lj = nj for the rest of indices j . Then we can restrict the sum (6.16) to N -tuples l for which l1 ≥ l2 ≥ · · · ≥ lN .
Observe additionally that if li = lj for some i 
= j , then �N(l̂) = 0. Therefore we can further restrict the sum (6.16)
to N -tuples l for which l1 > l2 > · · · > lN , i.e., the sum is now over l ∈ �N . It follows that the left-hand side of (6.15)
equals

∑
l∈�N

(
N∏

i=1

W(li)

)
�N(l̂)

(
R(l1, n1)1{li=ni ,i 
=1} + · · · + R(lN ,nN)1{li=ni ,i 
=N}

)
.

On the other hand, one can easily check cN = γ0 + · · · + γN−1, from which the right-hand side of (6.15) equals
cN(
∏N

i=1 W(ni))det1≤i,j≤N [pN−j (̂ni)] = cN(
∏N

i=1 W(ni))�(̂n). Hence (6.13) is proved. �

Appendix A: z-measures and harmonic analysis on big groups

In this appendix, we explain how the z-measures are related to the representation theory of big groups, thus giving
more motivation to study the coherent probability measures given by the expressions in (1.3). The proofs of all
statements below are found in [19,24,26,27,31].

An infinite symmetric space G/K is an inductive limit of Riemannian symmetric spaces G(n)/K(n) of rank n,
with respect to a natural chain of maps G(1) → G(2) → . . . that are compatible with the inclusions K(n) ⊂ G(n).
Our main examples are

(1) G/K = U(2∞)/U(∞) × U(∞) = lim→ (U(2n)/U(n) × U(n)).
(2) G/K = O(∞) × O(∞)/O(∞) = lim→ (O(̃n) × O(̃n)/O(̃n)).
(3) G/K = Sp(∞) × Sp(∞)/Sp(∞) = lim→ (Sp(n) × Sp(n)/Sp(n)).
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(In (2), ñ indicates that the rank of the Riemannian symmetric space in question is �̃n/2�, so ñ can be 2n or 2n + 1;
either one leads to the same G/K , up to isomorphism.)

We assume that (G,K) is any of the three pairs above. A spherical representation of (G,K) is a pair (T , ξ), where
T is a unitary representation of G, on some Hilbert space H , and ξ ∈ H is a cyclic, K-invariant unit vector. A spherical
function of (G,K) is a K-biinvariant, positive definite and continuous function φ : G →C such that φ(1G) = 1. There
is a bijective correspondence between (equivalence classes of) spherical representations and spherical functions, given
by

(T , ξ) ↔ φ, φ(g) = (T (g)ξ, ξ)H .

Observe that the set of spherical functions of (G,K) has the natural structure of a convex set ϒG/K . The elements of
the set Ex(ϒG/K) of extreme points are called extreme spherical functions. The extreme spherical functions of (G,K)

are in bijective correspondence with irreducible spherical representations of (G,K). The results from [24] show that
the set Ex(ϒG/K) is in bijective correspondence with the boundary �∞ of the BC branching graph, described in
Section 1.1 above. For any ω ∈ �∞, we let φω be the corresponding extreme spherical function of (G,K).

Following the ideas of [27], one can construct a natural family of spherical representations of (G,K) that should
be considered as generalized quasiregular representations of G/K . For each infinite symmetric space G/K above,
the family of representations {(Tz, ξz)}z is parametrized by a complex parameter z ∈ C \ Z subject to the constraint
�z > −(1 + b)/2, where b = 0,− 1

2 , 1
2 , for the spaces (1), (2) and (3), respectively.

There are actually two constructive definitions of the generalized quasiregular representations (Tz, ξz). Working
out in detail either of these constructions goes beyond the scope of this paper, and all the tools needed are already in
the literature, [19,27]. Instead let us give a brief summary of the ideas.

• The representations Tz of G/K can be constructed as inductive limits of a chain of isometries

· · · → HN = L2(G(N)/K(N),μN

)→ HN+1 = L2(G(N + 1)/K(N + 1),μN+1
)→ ·· ·

of the quasiregular representations of the finite dimensional Riemannian symmetric spaces (G(N),K(N)). We
denoted μN to the normalized Haar measure on G(N)/K(N). The corresponding representations Tz live in the
Hilbert space H = lim→ HN and they depend strongly on the choice of embeddings HN → HN+1. For each of
our three pairs (G,K), there corresponds a distinguished family of sequences of embeddings {HN → HN+1}N≥1
and the elements of the family are parametrized by one complex parameter z satisfying �z > −(1 + b)/2. The
spherical vector ξz is the inductive limit lim→ f ′

z|N/‖f ′
z|N‖ of normalizations of the vectors f ′

z|N ∈ HN that are
described below (see (A.1) and the paragraph afterwards). This construction shows why we call {Tz}z the family of
generalized quasiregular representations of G/K .

• There is certain completion G/K ⊃ G/K of the space G/K , which is not a group but has a natural G-action. It can
be constructed by following the ideas of Neretin, [19].

The space G/K admits an analogue of the Haar measure μ. In fact, there exists a one-parameter family of prob-
ability measures {μ(z)}z∈C:�z>−(1+b)/2 that are quasi-invariant, with respect to the action of G. The representations
Tz can be realized in the Hilbert spaces L2(G/K,μ(z)). The corresponding spherical vectors ξz are all equal to the
constant function 1 ∈ L2(G/K,μ(z)) that is identically equal to one.

Let us describe the sequence of vectors {f ′
z|N ∈ HN }N≥1 that give rise to the spherical vector ξz = lim→ f ′

z|N , as
in the first item above. For each of the series in (1), (2), (3) above, there is an isomorphism between the subspace
of K(N)-invariant vectors of L2(G(N)/K(N),μN) and the Hilbert space H

a,b
N of symmetric functions on [−1,1]N

that are square integrable with respect to the measure m
a,b
N whose density (with respect to the Lebesgue measure on

[−1,1]N ) is

∏
1≤i<j≤N

(xi − xj )
2 ·

N∏
k=1

(1 − xk)
a(1 + xk)

b,

and we use the following pairs of real parameters

(1) (a, b) = (0,0).
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(2) (a, b) = (± 1
2 ,− 1

2 ).
(3) (a, b) = ( 1

2 , 1
2 ).

(In (2), a = − 1
2 if ñ = 2n and a = 1

2 if ñ = 2n + 1.)
For any z ∈ C, �z > −(1 + b)/2, and any N ≥ 1, the function

fz|N(x1, . . . , xN) =
N∏

i=1

(1 + xi)
z (A.1)

is an element of the Hilbert space H
a,b
N . Let f ′

z|N be the corresponding K(N)-invariant vector in HN , under the
isomorphism alluded to before. The sequence {f ′

z|N }N≥1 is such that the isometric embedding HN → HN+1 that
gives rise to the representation Tz maps f ′

z|N to f ′
z|N+1, and therefore it maps f ′

z|N/‖f ′
z|N‖ to f ′

z|N+1/‖f ′
z|N+1‖. Thus

there exists an inductive limit ξz = lim→ f ′
z|N/‖f ′

z|N‖ of length 1, which is the desired spherical vector of Tz.
Next, let us explain how the z-measures Mz,z′,a,b|∞ and corresponding sequences of probability measures

{Mz,z′,a,b|N }N≥1 on the spaces {GT+
N }N≥1, given in (1.3), arise from the generalized quasiregular representations

{Tz}z.
Instead of using the language of spherical representations, we use the more convenient language of spherical

functions. Let {φz}z be the family of spherical functions that correspond to the generalized quasiregular representations
{(Tz, ξz)}z. A general statement, due to Olshanski, [27, Thm 9.2], shows that the spherical function φz is a (continual)
convex combination of the extreme spherical functions φω, ω ∈ �∞. This means that there exists a unique probability
measure Mz on �∞ such that

φz =
∫

�∞
φωMz(dω).

The probability measure Mz is the z-measure associated to the generalized quasiregular representation (Tz, ξz).
A z-measure corresponds to a “coherent” sequence of probability measures on the discrete spaces GT+

N , by virtue of
the bijection (1.2).

We can describe explicitly the corresponding sequence of probability measures on the spaces GT+
N , N ≥ 1.

Since G = lim→ G(N), the spherical function φz : G → C is fully determined by its sequence of restrictions
{φz|G(N)}N≥1. Each φz|G(N) is an element of the subspace of K(N)-invariant vectors of the Hilbert space HN =
L2(G(N)/K(N),μN); moreover φz|G(N)(1G(N)) = 1 and φz|G(N) is a positive definite function. Recall that an or-
thogonal basis of the subspace of K(N)-invariant vectors of HN is {χλ : λ ∈ GT+

N }, where GT+
N parametrizes the

irreducible rational representations of G(N) with a K(N)-invariant vector and each χλ is a normalized spherical
function of (G(N),K(N)). For the pairs (2), (3) above, the spherical functions χλ coincide with normalized irre-
ducible characters of the orthogonal and symplectic groups, respectively. Then there is a canonical expansion

φz|G(N) =
∑

λ∈GT
+
N

Mz|N(λ) · χλ, Mz|N(λ) ∈ R. (A.2)

Because the function φz|G(N) is positive definite and normalized at the unit element of G(N), we have Mz|N(λ) ≥ 0
and

∑
λ∈GT

+
N

Mz|N(λ) = 1. Then Mz|N is a probability measure on GT+
N . The sequence {Mz|N }N≥1, in fact, is the one

that corresponds to Mz under the bijection (1.2).
An explicit formula for Mz|N(λ), λ ∈ GT+

N , can be calculated explicitly. Under the isomorphism between the

subspace of K(N)-invariant vectors of HN and H
a,b
N , the image of the basis {χλ}λ is given by the (orthogonal) basis

{P̃λ(x1, . . . , xN |a, b)}λ ⊂ H
a,b
N of normalized and multivariate Jacobi polynomials

P̃λ(x1, . . . , xN |a, b) = Pλ(x1, . . . , xN |a, b)

Pλ(1N |a, b)
,
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see Section 3.2 below. By following the ideas in [27, Section 6], the coefficients Mz|N(λ) can be calculated as follows,
cf. [27, Lemma 6.4],

Mz|N(λ) = |(fz|N, P̃λ)H |2
‖fz|N‖2

H ‖P̃λ‖2
H

, H = H
a,b
N . (A.3)

The calculation of all three terms in (A.3) is carried out in [31], for general parameters a, b > −1 and z ∈ C, �z >

−(1 + b)/2, and the answer is given by the formula (1.3) for z′ = z.
The expression (1.3), with representation-theoretic origin for z′ = z, and the pairs (a, b) ∈ {(0,0), (1/2,1/2),

(±1/2,−1/2)}, suggests to consider an analytic continuation replacing z by z′ and as general real parameters a, b as
possible. Our choice of a ≥ b ≥ −1/2 comes mainly because we need the main result of [24]. The conditions on the
pair (z, z′), that we give in Definition 6.2, are sufficient for all expressions of the form (1.3) to be nonnegative (and in
fact, strictly positive). The result of this paper and others, [8,11,31], suggests that the z-measures with four parameters
z, z′, a, b is the most general object that can be analyzed thoroughly, despite the fact that most quadruples (z, z′, a, b)

do not have any representation theoretic origin. The recent paper [30] indicates that the BC type z-measures admit
further a natural one-parameter θ > 0 degeneration (all papers cited before treat BC z-measures with θ = 1) and it
would be interesting to study them.

Appendix B: Binomial formula and coherence property for Jacobi polynomials

In this appendix, we prove Proposition 5.4. We prove it in the equivalent form of Proposition A.3. First, we show a
“binomial formula” for Jacobi polynomials. The proof below was extracted from the arguments of [23, Proof of Thm.
1.2].

For any partition μ of length �(μ) = K ≤ N , let t∗μ|N be the function on GT+
N defined by

t∗μ|N(λ) := det1≤i,j≤N [(l̂i |ε)μj +N−j ]∏
1≤i<j≤N (l̂i − l̂j )

, λ ∈ GT+
N,

where we set μK+1 = · · · = μN = 0.

Proposition B.1. For any λ ∈ GT+
N , we have

�λ(1 + x1, . . . ,1 + xN |a, b) =
∑

μ∈GT
+
N

t∗μ|N(λ)sμ(x1, . . . , xN)

2|μ|c(N,μ)
, (B.1)

where sμ is the Schur function parametrized by μ and

c(N,μ)
def=

N∏
i=1

(N − i + 1)μi
(N + a − i + 1)μi

. (B.2)

Remark B.2. The sum in the proposition above is finite because one can easily show t∗μ|N(λ) = 0 unless |μ| ≤ |λ|.

Proof. We recall a well-known identity: if fi(x) =∑∞
m=0 a

(i)
m xm, for all 1 ≤ i ≤ N , then

det1≤i,j≤N [fi(xj )]∏
1≤i<j≤N (xi − xj )

=
∑

μ∈GT
+
N

det
1≤i,j≤N

[
a

(i)
μj +N−j

]
sμ(x1, . . . , xN), (B.3)

where sμ(x1, . . . , xN) is the Schur polynomial associated to partition μ. We shall apply this result to the normalized
Jacobi polynomials

�λi+N−i (1 + x|a, b) = Pλi+N−i (1 + x|a, b)

Pλi+N−i (1|a, b)
(B.4)
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for which the following expansion is well-known, see e.g. [32, (4.21.2)],

�k(1 + x|a, b) =
∞∑

m=0

k(k − 1) · · · (k − m + 1)(k + a + b + 1) · · · (k + a + b + m)

2mm!(a + 1)m
xm. (B.5)

From (B.3) and the definition of Pλ(·|a, b), the left-hand side of (B.3) is �λ(1 + x1, . . . ,1 + xN |a, b) ×
Pλ(1N |a,b)∏N

i=1 Pλi+N−i (1|a,b)
. By virtue of (3.5), the latter expression becomes

2− N(N−1)
2 �λ(1 + x1, . . . ,1 + xN |a, b)

N∏
i=1

1

(i − 1)!(a + 1)i−1

∏
i<j

(l̂i − l̂j ).

In view of (B.5), the right side of (B.3) is
∑

μ∈GT
+
N

deti,j [a(i)
μj +N−j ]sμ(x1, . . . , xN), where

a(i)
m = li (li − 1) · · · (li − m + 1)(li + a + b + 1) · · · (li + a + b + m)

2mm!(a + 1)m
.

If we use (li − s)(li + a + b + 1 + s) = (li + ε)2 − (ε + s)2, s = 0,1, . . . ,m − 1, then

det
i,j

[
a

(i)
μj +N−j

]= deti,j [(l̂i |ε)μj +N−j ]Ni,j=1∏N
i=1 2μi+N−i (μi + N − i)!(a + 1)μi+N−i

= t∗μ|N(λ)
∏

i<j (l̂i − l̂j )∏N
i=1 2μi+N−i (μi + N − i)!(a + 1)μi+N−i

.

The result follows readily. �

Proposition B.3. Let N ∈ N be arbitrary and μ ∈ GT+
N , λ ∈GT+

N+1. Then

t∗μ|N+1(λ)

c(N + 1,μ)
=
∑

ν∈GT
+
N

�N+1
N (λ, ν)

t∗μ|N(ν)

c(N,μ)
. (B.6)

Proof. From the definition of the kernels �N+1
N , we have

�λ(1 + x1, . . . ,1 + xN,1|a, b) =
∑

ν∈GT
+
N

�N+1
N (λ, ν)�ν(1 + x1, . . . ,1 + xN |a, b).

Applying Proposition B.1 twice, and interchanging the sums (it is allowed because there are only finitely many nonzero
terms in total), we obtain∑

μ∈GT
+
N+1

t∗μ|N+1(λ)sμ(x1, . . . , xN ,0)

2|μ|c(N + 1,μ)
=

∑
μ∈GT

+
N

sμ(x1, . . . , xN)
∑

ν∈GT
+
N

�N+1
N (λ, ν)

t∗μ|N(ν)

2|μ|c(N,μ)
. (B.7)

By the stability of the Schur functions, see [17, Section I], for any μ ∈ GT+
N+1, we have

sμ(x1, . . . , xN ,0) =
{

sμ(x1, . . . , xN) if μN+1 = 0,

0 if μN+1 > 0.

Because the Schur functions sμ(x1, . . . , xN), μ ∈ GT+
N , are linearly independent in the space of polynomials on

x1, . . . , xN , the coefficient of sμ(x1, . . . , xN) in the left and right-hand sides of (B.7) must be equal. The result fol-
lows. �
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Remark B.4. Proposition 5.4 follows from Proposition B.3 and the equality

T ∗
μ|N(l̂1, . . . , l̂N ) = t∗μ|N(λ)

c(N,μ)
,

for any λ ∈ GT+
N and partitions μ with �(μ) ≤ N . We have used t∗μ|N(λ) is this appendix because for (a, b) =

( 1
2 , 1

2 ), ( 1
2 ,− 1

2 ) and (− 1
2 ,− 1

2 ), the polynomials t∗μ|N arise in the representation theory of the rank N Lie algebras
g(N) of type B,C and D, respectively. To see how, recall the Harish–Chandra isomorphism

Z
(
g(N)

)−→ M∗(N)

between the center Z(g(N)) of the enveloping algebra U(g(N)) and the subalgebra M∗(N) ⊂ C[x1, . . . , xN ] of
polynomials p(x1, . . . , xN) which can be written in the form

p(x1, . . . , xN) = q
(
(x1 + N − 1 + ε)2, . . . , (xN + ε)2),

for some symmetric polynomial q in N variables (M∗(N) is called sometimes an algebra of “shifted” symmetric
polynomials). There are distinguished bases {Tμ|N }μ of the centers Z(g(N)), see [23], the images of which are the
polynomials t∗μ|N .

Theorem 3.1. from [23] was important to us. Its content is the existence of natural averaging operators

Z
(
g(N)

)−→ Z
(
g(N + 1)

)
mapping Tμ|N to a constant factor of Tμ|N+1. Under the Harish–Chandra isomorphism, this statement can be inter-
preted as a coherence formula for the polynomials t∗μ|N , at least for the three special pairs (a, b). Proposition B.3
above is a generalization for all a, b > −1.

Appendix C: End of proof of Proposition 4.7

Fix N ∈N. In this appendix, we prove

∑
y1,...,yN∈E

(
N∏

i=1

P1(t;xi, yi)

)
�N(y) = ecN t�N(x) (C.1)

under Assumption 4.4. We write the two items of the assumptions more concretely; the first item is equivalent to the
existence of real numbers {ai,j }i≥j≥0 such that∑

y∈E

qx,yy
m = am,mxm + am,m−1x

m−1 + · · · + am,0, m ∈ Z+. (C.2)

The second item of Assumption 4.4 is the identity

N∑
i=1

(∑
y∈E

qxi ,y�N(x1, . . . , xi−1, y, xi+1, . . . , xN)

)
= cN�N(x1, . . . , xN). (C.3)

Let XN be the space of polynomial functions on N variables x1, x2, . . . , xN with real coefficients and such that the
degree of each variable xi is at most N − 1. In particular �N ∈XN . We use the notation

[N − 1] def= {0,1,2, . . . ,N − 1}.
Then XN has the linear basis {xk1

1 x
k2
2 · · ·xkN

N }k1,k2,...,kN∈[N−1] and dimXN = NN < ∞.
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C.1. Operator Q : XN −→XN

Define the operator Q by

(Qf )(x1, . . . , xN)
def=

N∑
i=1

(∑
y∈E

qxi ,yf (x1, . . . , xi−1, y, xi+1, . . . , xN)

)
,

where f is any polynomial function. By assumption C.2, Q is well-defined. The operator Q is given by the matrix M

of format EN × EN with entries

M(x,y) = 1{xj =yj ,j 
=1}qx1,y1 + · · · + 1{xj =yj ,j 
=N}qxN ,yN
, x,y ∈ EN.

Then the operator Q can be expressed in terms of M by

(Qf )(x) =
∑

y∈EN

M(x,y)f (y).

C.2. Operators P(t) :XN −→XN , t ≥ 0

Let f be a polynomial function. The action of P(t) is given by

(
P(t)f

)
(x)

def=
∑

y1,...,yN∈E

N∏
i=1

P1(t;xi, yi)f (y).

The operator P(t) can be given by a matrix M(t) of format EN × EN given by

M(t)(x,y) =
N∏

i=1

P1(t;xi, yi).

The operators P(t), t ≥ 0, can also be defined first for polynomial functions of the form f (y1, y2, . . . , yN) =
y

k1
1 y

k2
2 · · ·ykN

N , ki ∈ [N − 1], by

(
P(t)f

)
(x) =

N∏
i=1

(∑
y∈E

P1(t;xi, y)yki

)
, (C.4)

and then extended to XN by linearity. We need to show that (C.4) is a good definition for an operator on XN : we
prove (a) the sum

∑
y∈E P1(t;x, y)yk is convergent for any x ∈ Z+, k ∈ Z+, and (b) Fk(x) =∑y∈E P1(t;x, y)yk is

a polynomial in x of degree ≤ k.
For (a), fix t ≥ 0 and k ∈ Z+. From (C.2), there exists a constant c > 0 such that∑

y∈E

Q(x, y)yk < c
(
1 + xk

)
,

for some constant c > 0 and all x ∈ Z+. We claim∑
y∈E

P1(t;x, y)yk ≤ et(c+qx)xk + et(c+qx), x ∈ Z+, (C.5)

which would prove (a). Since Q is non-explosive, P1(t;x, y) =∑∞
n=0 P

[n]
1 (t;x, y), where

P
[n]
1 (t;x, y) =

{
e−qx t · 1{x=y} if n = 0,∫ t

0 e−qxs ·∑z 
=x qx,zP
[n−1]
1 (t − s; z, y) ds if n ≥ 1.

(C.6)
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The claim (C.5) follows from the stronger claim

∑
y∈E

P
[n]
1 (t;x, y)yk ≤ (c + qx)

ntn

n! xk + (c + qx)
ntn

n! , n ≥ 0,

and the latter claim can be easily proved by induction on n, the recurrence relation (C.6) and the inequality e−tqx ≤ 1,
t ≥ 0.

We now prove (b), i.e., we show that Fk(t, x) =∑y∈E P1(t;x, y)yk is a polynomial of degree ≤ k in x. From
Kolmogorov’s forward equation P ′

1(t) = P1(t)Q and (C.2), we have

∂

∂t
Fk(t;x) =

∑
y∈E

P ′
1(t;x, y)yk =

∑
y∈E

(∑
z∈E

P1(t;x, z)Q(z, y)

)
yk

=
∑
z∈E

P1(t;x, z)

(∑
y∈E

Q(z, y)yk

)
=
∑
z∈E

P1(t;x, z)
(
ak,kz

k + · · · + ak,0
)

= ak,kFk(t;x) + ak,k−1Fk−1(t;x) + · · · + ak,0F0(t;x).

Since P1(0) = 1, we also have Fk(0, x) = xk . One can conclude easily, by induction on k, and by the differential
equation derived above, that Fk(t;x) is indeed a polynomial of degree ≤ k on x. For instance, the ODE ∂tF1(t;x) =
a1,1F1(t;x) + a1,0F0(t;x) with initial condition F1(0, x) = x is solved by F1(t;x) = eta11(x + ∫ t

0 a1,0F0(t;x)dt),
and since F0(t;x) is a constant independent of x, then F1(t;x) is a linear polynomial on x.

C.3. End of argument

Recall Q is realized by the EN × EN matrix M with entries

M(x,y) = 1{xj =yj ,j 
=1}qx1,y1 + · · · + 1{xj =yj ,j 
=N}qxN ,yN
,

while P(t), t ≥ 0, are realized by the EN × EN matrices M(t), t ≥ 0, with entries

M(t)(x,y) =
N∏

i=1

P1(t;xi, yi).

From Kolmogorov’s backward equation P ′
1(t) = QP1(t), it follows that

d

dt
M(t)(x,y) =

N∑
i=1

∏
1≤j≤N

j 
=i

P1(t;xj , yj )P
′
1(t;xi, yi)

=
N∑

i=1

∏
1≤j≤N

j 
=i

P1(t;xj , yj )
∑
y∈E

qxi ,yP1(t;y, yi)

=
∑

z∈EN

(1{xj =zj ,j 
=1}qx1,z1 + · · · + 1{xj =zj ,j 
=N}qxN ,zN
) ·

N∏
i=1

P1(t; zi, yi)

=
∑

z∈EN

M(x, z)M(t)(z,y).
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In matrix notation, we have proved M ′(t) = MM(t). By the initial condition P1(0) = 1, we have also M(0) = 1. In
the language of linear operators on XN , we have proved that P(t), t ≥ 0, solves the Cauchy problem

P′(t) = QP(t),

P(0) = 1.

Since XN is finite dimensional, we conclude that P(t) = etQ. The second assumption C.3 gives Q�N = cN�N . Then
P(t)�N = ecN t�N , for all t ≥ 0, which is precisely the identity (C.1) we wanted to prove.
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