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RAPID MIXING OF GEODESIC WALKS ON MANIFOLDS WITH
POSITIVE CURVATURE

BY OREN MANGOUBI1 AND AARON SMITH2

École Polytechnique Fédérale de Lausanne (EPFL) and University of Ottawa

We introduce a Markov chain for sampling from the uniform distribution
on a Riemannian manifold M, which we call the geodesic walk. We prove
that the mixing time of this walk on any manifold with positive sectional
curvature Cx(u, v) bounded both above and below by 0 < m2 ≤ Cx(u, v) ≤
M2 < ∞ is O∗(

M2
m2

). In particular, this bound on the mixing time does not
depend explicitly on the dimension of the manifold. In the special case that
M is the boundary of a convex body, we give an explicit and computationally
tractable algorithm for approximating the exact geodesic walk. As a conse-
quence, we obtain an algorithm for sampling uniformly from the surface of a
convex body that has running time bounded solely in terms of the curvature
of the body.

1. Introduction. Sampling from manifolds has applications to areas such as
statistics [6, 11], computer graphics [32], optimization [12] and systems biology
[36]. For a simple example, manifolds with nonnegative curvature appear in statis-
tical applications as the level sets of log-concave, or more generally quasiconcave,
distributions (see Remark 1). Many natural distributions in statistics are quasicon-
cave or log-concave, including the “ridge regression” posterior associated with
Gaussian priors for logistic regression [14, 15]. Existing computer science litera-
ture shows that the problem of sampling from manifolds with nonnegative curva-
ture is tightly linked to the problems of sampling from and computing integrals
of quasiconcave distributions [4, 25, 26, 29]. The recent paper [11] has a broader
survey on this sampling problem in various fields.

In this paper, we study a simple Markov chain, which we call the geodesic walk,
that can sample from the uniform distribution of a general Riemannian manifold
M. Our main result is that this walk mixes quickly when M has positive bounded
curvature. We also give results concerning an efficient implementation of this walk
in the important special case that M is the boundary of a convex set.

Received March 2017; revised October 2017.
1Supported by a Canadian Statistical Sciences Institute (CANSSI) Postdoctoral Fellowship, and

by an NSERC Discovery grant.
2Supported by an NSERC Discovery grant.
MSC2010 subject classifications. Primary 60J05; secondary 68W20, 60J20, 53D25.
Key words and phrases. Markov chain Monte Carlo (MCMC), Hamiltonian Monte Carlo (HMC),

manifolds, convex bodies, positive curvature, momentum.

2501

http://www.imstat.org/aap/
https://doi.org/10.1214/17-AAP1365
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2502 O. MANGOUBI AND A. SMITH

REMARK 1. We give a technical caveat: a level set of a quasiconcave distribu-
tion need not be smooth, and in particular may not have well-defined sectional cur-
vature. However, there is a standard extension of the notion of sectional curvature
to this situation, called the Alexandrov curvature. It turns out that the Alexandrov
curvature of the level set of a quasiconcave distribution is always nonnegative [2].
It is in this sense that we say that the compact level sets of quasiconcave distri-
butions have nonnegative curvature. We now restrict our attention to situations in
which the sectional curvature is well defined, until a brief discussion in Section 9.

1.1. Main results. The geodesic walk, defined precisely in Algorithm 1, is
a Markov chain {Xi}i∈N that is well defined on any Riemannian manifold M.
It evolves by selecting, at each time step i, a random tangent vector Ui in the
tangent space TXi

of M at Xi , and then following the associated geodesic for
some period of time. The geodesic walk is a natural Markov chain on a manifold,
and it is somewhat similar to the well-studied “ball walk” on a manifold (see, e.g.,
[22]). It is well known (see Example 7 of [31]) that the ball walk mixes rapidly on
manifolds with positive curvature. The first main result of this paper, Theorem 7.1,
is that the geodesic walk also mixes rapidly on a manifold with sectional curvature
bounded above and below by two constants 0 < m2 ≤ Cx(u, v) ≤M2 < ∞.

Although the ball walk is easy to define and mixes rapidly, it is generally not
practical to implement a version of the ball walk with the desired stationary distri-
bution on a computer, and so it does not give rise to practical sampling algorithms
(see Example 3C of [11], titled “How not to sample”). In contrast, we show that
the geodesic walk automatically has the correct stationary distribution. Our second
main result (Theorems 4.1 and 6.2) is that, unlike the ball walk, the geodesic walk
has the uniform measure on the manifold as its unique stationary distribution.

The geodesic walk is also much easier to implement than the ball walk. Our
third main result, Theorem 8.1, shows that any reasonably good algorithm for ap-
proximating geodesics can be used to simulate an “approximate” geodesic walk
that mixes quickly and has near-uniform stationary measure. We also show that
Algorithm 2, which is straightforward to implement, gives an efficient “approxi-
mate” geodesic walk in this sense.

We believe our O∗(M2
m2

) bound on the mixing time of the geodesic walk is the
first dimensionless mixing time bound for an implementable Markov chain with
uniform stationary distribution on bounded-positive curvature manifolds in gen-
eral, and convex body boundaries in particular. One reason our bound does not de-
pend on the dimension is that, in contrast to previously-proposed algorithms, the
geodesic walk can take long steps whose length is independent of the dimension.
For comparison, the best existing bound that we know of is given for the “billiards
walk” studied in [12], which is shown to have mixing time of O∗(d2 · M2

m2
) (see

Remark 2). That walk cannot mix quickly in high dimensions, even if M is the
surface of a sphere, because the typical step size is O( 1√

d
).
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In both statistics and computer science, one of the most important and well-
studied special cases occurs when M is the boundary ∂K of a convex body
K ⊂ R

d+1. There are many Markov chains for sampling from the uniform dis-
tribution on the boundary ∂K of a set under various assumptions (see, e.g., [3, 9,
12]), all of which involve a walk that moves inside of K and then reflects off of ∂K.
In Section 8, we explain how our geodesic walk can be well approximated by such
a “reflecting walk,” if the reflecting walk is allowed to have long-term momentum.
Our final main result, Theorem 8.2, shows that this approximate version of the
geodesic walk gives us an algorithm for sampling uniformly from the boundary
∂K of a convex set K with arbitrarily small error ε > 0 in roughly O∗((M2

m2
)3ε−1)

reflections, provided that M has inner and outer radii of curvature bounded be-
low and above by 1√

M2
and 1√

m2
, respectively. We believe the O∗((M2

m2
)3) bound

for the implementation of the geodesic walk is often very pessimistic and can be
greatly improved in some important special cases (see Remark 7 in Section 8.2).
Furthermore, in situations where one has access to better geodesic approximations,
such as when symplectic integrators or exact geodesic integrators are available, our
results imply computational costs that are much closer to the mixing time O∗(M2

m2
)

of the true geodesic walk.

REMARK 2. Note that the bound in [12] is better for chains with a bound on
the diameter of K that is much smaller than 2√

m2
, while our bound is better in

higher dimensions and when the bound on the inner radius of curvature of K is
much smaller than 1√

M2
. Also, a practical implementation of the geodesic walk

requires additional computational costs that depend on the method used to approx-
imate geodesics.

1.2. Proof techniques. The main component of our proof is a coupling argu-
ment, where we couple the initial velocity by parallel transport (Section 5). We
then use comparison theorems from differential geometry [1, 7, 35] to show that
our assumptions of positive curvature bounds imply that the distance between the
two chains contracts in expectation over each step in the Markov chain (Section 6).
This contraction estimate immediately implies a bound on the Wasserstein mixing
time and other relevant quantities [31] (Section 7).

REMARK 3 (Short and long steps). The geodesic walk has an important tun-
ing parameter: the amount of time T to follow the geodesic. If T is very small,
then we can couple two copies {Xi,Yi}i∈N via parallel transport of the momentum
vector Ui used at each step (see Definition 1 for a precise definition) to obtain the
following contraction estimate (see Proposition 6 of [31]):

E
[
d(Xi+1, Yi+1)|Xi,Yi

] ≤
(

1 − m2

8
T 2 + O

(
T 3 + T 2d(Xi, Yi)

))
d(Xi, Yi).
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In other words, for very small step size T , a lower bound on the sectional cur-
vature implies that the geodesic walk contracts. This bound does not (directly)
imply useful bounds for the geodesic walk with T large, since the error term in
this inequality may become very large.

After studying the mixing properties of the geodesic walk, we study a possi-
ble implementation. Using comparison bounds for Markov chains, we show that
one can approximate geodesic trajectories with arbitrary accuracy in a dimension-
independent number of steps provided one has access to an appropriate oracle,
allowing one to generate samples from a stationary distribution that is arbitrar-
ily close to uniform (in Wasserstein transportation distance) in a dimension-
independent number of oracle calls. We also show how to construct such an oracle
in the special case where M is the boundary of a convex body (Section 8). In the
same special case, we explain how to use pre- and post-processing steps to replace
a general manifold M with a manifold M′ with sectional curvature bounded by
O(d2) (Section 9), allowing us to sample efficiently even from “pointy” manifolds
that have very high sectional curvature at some locations.

We mention that [24] obtains a bound on the mixing time of a related (but dif-
ferent) geodesic walk. Although our Markov chains are somewhat similar, our
settings are quite different: their bounds require M to be the boundary of a con-
vex polytope, and are best when the polytope has few faces; our results require
M to have curvature that is bounded away from both 0 and infinity. We also
note that the mixing time bound for the geodesic walk in [24] is not dimension-
independent. A final difference is that the authors of [24] state that their proof
follows the conductance-based approach that is popular for analyzing geometric
random walks [38], while our proof uses a probabilistic coupling argument as in-
troduced in [13]. See recent work such as [30, 31] for more on the relationship
between couplings of Markov chains and curvature, and also work such as [20,
33] for some consequences of the existence of such couplings, including various
concentration inequalities.

1.3. List of sections. The rest of the paper is arranged as follows:

• In Section 2, we go over the assumptions we make about M and Riemannian
geometry preliminaries.

• In Section 3, we define the geodesic walk on the manifold M.
• In Section 4, we prove that the stationary distribution of the geodesic walk is

uniform on M.
• In Section 5, we define a coupling of two copies of the geodesic walk.
• In Section 6, we prove the contraction bound described above.
• In Section 7, we use this contraction bound to prove a bound on the mixing time.
• In Section 8, we show that one can computationally approximate geodesic tra-

jectories to sample the uniform distribution on M to arbitrary accuracy in a
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dimension-independent number of steps if one has access to an appropriate or-
acle (Section 8.1). We construct such an oracle explicitly in the special case
where M is the boundary of a convex body (Section 8.2).

• In Section 9, we discuss some future research directions left open by this paper:
In Section 9.1, we give pre- and post-processing steps that allow us to assume
the target manifold M satisfies M2 = O(d2). This is useful when one wishes
to sample from a convex body K whose boundary does not have bounded cur-
vature, such as the case that K is a convex polytope. In Section 9.3, we discuss
connections between this paper and recent work [27] on the mixing times of the
popular Hamiltonian Monte Carlo algorithm.

2. Assumptions and Riemannian geometry preliminaries. In this section,
we recall results from Riemannian geometry and introduce definitions and assump-
tions that we will use in the rest of the paper.

• Assumptions about our manifold M: Throughout this paper, we will assume
that:

1. (M, g) is a closed, connected, second-order differentiable Riemannian
manifold, with associated inner product g ≡ gx on the tangent space Tx ≡ TxM
at x ∈ M.

2. (M, g) has bounded positive sectional curvature. That is, there exist con-
stants 0 <m2 ≤M2 < ∞ so that, for all x ∈ M and u, v ∈ Tx ,

(2.1) m2 ≤ Cx(u, v) ≤M2,

where Cx(u, v) is the sectional curvature of M at x in the directions u
‖u‖ and

v
‖v‖ .

• Levi–Civita connection: The fundamental theorem of Riemannian geometry
guarantees the existence and uniqueness of a torsion-free affine connection ∇
on (M, g) that induces an isometry of tangent spaces via parallel transport (see
Theorem 6.8 of [17]); this connection is called the Levi–Civita connection.

• Paths and metrics: Recall that the length of a segment of a smooth path h :
R

+ �→ M is given by

(2.2) length
(
h[a, b]) =

∫ b

a

√
gh(t)

(
h′(t), h′(t)

)
dt.

This gives rise to the metric

(2.3) dist(x, y) = inf
h:h(0)=x,h(1)=y

length
(
h[0,1])

on M.
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• Curvatures: Recall that the Riemann curvature tensor R at a point x ∈ M sends
a pair of vectors u, v ∈ Tx to a map R(u, v) : Tx �→ Tx of the tangent space at x

to itself, which transforms an element w ∈ Tx via the formula

R(u, v)[w] = ∇u∇vw − ∇v∇uw − ∇[u,v]w,

where ∇ is the Levi–Civita connection described above and [·, ·] is the Lie
bracket. This formula allows us to define the sectional curvature R′ : T 2

x �→ R

by

(2.4) R′(u, v) = 〈R(u, v)v,u〉
〈u,u〉〈v, v〉 − 〈u, v〉2 ,

where 〈·, ·〉 = 〈·, ·〉g is the usual inner product on Tx associated with a Rieman-
nian manifold (M, g).

• Uniform measures: We recall two measures, one on the manifold M and the
other on small subsets of the tangent spaces Tx , that we will call the uniform
measures on their associated spaces. First, recall that any Riemannian mani-
fold (M, g) has an associated volume function λ. If λ(M) < ∞, we denote by
Unif(M) the probability measure given by

(2.5) Unif(M)[A] = λ(A)

λ(M)

for A ⊂ M measurable. We refer to this as the uniform measure on M.
Recall that any choice of the basis B of the tangent space Tx of a d-

dimensional manifold M at a point x ∈ M gives a natural isometry ζx = ζx,B :
Tx �→ R

d . Furthermore, the pull-back of the Lebesgue measure from the unit
sphere S

d−1 = {x ∈ R
d : ‖x‖2 = 1} ⊂R

d to the set S(Tx) = ζ−1
x (S) given by ζx

does not depend on the choice of basis B. We denote by Unif(S(Tx)) or μ this
unique pull-back of the Lebesgue measure by ζx , and refer to this measure as
the uniform measure on the unit sphere in Tx .

Throughout the paper, if S1 ⊂ S2 and we have defined a uniform measure on
S2, we define the uniform measure on S1 by

Unif(S1)[A] = Unif(S2)[A]
Unif(S2)[S1] .

• Geodesics: Define the phase space

(2.6) M◦ := {
(x, v) : x ∈ M, v ∈ S(Tx)

}
.

Associated to every element (x, v) ∈ M◦, there is a special path γ(x,v) :
R

+ → M with γ(x,v)(0) = x and γ ′
(x,v)(0) = v that is called the geodesic.

Roughly speaking, this is the path obtained by starting at point x and travel-
ing with velocity v along the manifold. We will use the following properties of
the geodesic [34]:
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1. For all x ∈ M and v ∈ Tx , there exists ε = ε(x, v) > 0 so that

length
(
γ(x,v)[0, t]) = dist

(
γ(x,v)(0), γ(x,v)(t)

)
for all 0 < t < ε (see Section 5 and Exercise 5.9.34 of [34]).

2. Associated to every smooth map τ : R+ �→ M◦, there is an object called
the Jacobi field

(2.7) Jτ (t) := ∂γτ (t)

∂τ

that satisfies the Jacobi second-order ordinary differential equation:

(2.8)
D2

dt2 Jτ (t) + R
(
Jτ (t), γ

′
τ (t)

)
γ ′
τ (t) = 0,

where R denotes the Riemann curvature tensor of M and D is the covariant
derivative with respect to the Levi–Civita connection (see Section 3.2.4 of [34]).

• Diameter: We define D := Diam(M) to be the diameter of M. Since the sec-
tional curvature of M is bounded below by m2, the Myers–Bonnet theorem [28]
implies that

(2.9) D ≤ π√
m2

.

• Existence of a unique parallel transport: Associated with any connection on
a manifold and any finite-length path h : [a, b] �→ M there exists a map from
Th(a) to Th(b), called the parallel transport map.

We now define the only parallel transport maps that we will use in this pa-
per. The Hopf–Rinow theorem [19] implies that between any pair of points
x, y ∈ M there exists at least one unit-speed geodesic ω(t) ≡ ω(t;x, y), t ∈
[0,dist(x, y)] with ω(0;x, y) = x and ω(dist(x, y);x, y) = y with ω(t;x, y) =
ω(dist(x, y) − t;y, x). We choose arbitrarily, via the axiom of choice, a par-
ticular family {ω(·;x, y)}(x,y)∈M×M of such geodesic paths. Finally, we define
φ(t; ·;x, y) : Tx �→ Tω(t;x,y) to be the parallel transport map associated with
the Levi–Civita connection and the path ω(·;x, y). We also write φ(·;x, y) ≡
φ(dist(x, y); ·;x, y) for shorthand.

Finally, fix an arbitrary point x ∈ M and an arbitrary basis {bi} of Tx .
Throughout the paper, we denote by {ζy}y∈M the maps ζy,{φ(bi;x,y)} : Ty �→ R

d

associated with this basis and its parallel transports by φ.
• Wasserstein distance and mixing time: For any distribution η, we write X ∼ η

when the random variable X has distribution η. For two distributions η, ν

on a common measure space (�,A), define 
(η, ν) to be the collection of
all distributions ξ on (�2,A × A) with marginal distributions ξ(·,�) = η(·),
ξ(�, ·) = ν(·). For any k ∈ N, the Wasserstein-k transportation distance W

(k)
d
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between two measures η and ν on a common metric measure space (�,d) is
given by

W
(k)
d (η, ν) =

(
inf

(X,Y ):(X,Y )∈
(η,ν)
E

[(
d(X,Y )

)k]) 1
k
.

Consider a transition kernel K on a metric measure space (�,d), with
unique stationary distribution ξ . We define the Wasserstein-k mixing profile
t
(k)
mix : [0,1] �→ N of K to be

t
(k)
mix(ε) = inf

{
t≥ 0 : sup

x∈�

W
(k)
d

(
K t(x, ·), ξ(·)) < ε

}
.

• Big-O notation: In this paper, we use the “big-O” notation. Specifically, for
any two functions f : R → R and g : R → R, we write “f (z) = O(g(z))” or
“f (z) ≤ O(g(z))” if there exists a constant 0 < C < ∞ and some Z > 0 such
that

f (z) ≤ C · g(z)

for all z > Z. Furthermore, write “f (z) = O∗(g(z))” or “f (z) ≤ O∗(g(z))” if
there exist constants 0 < c′,C′ < ∞ and some Z′ > 0 such that

f (z) ≤ C′ · g(z) log(z)c
′

for all z > Z′, that is, the “big-O∗” notation suppresses the logarithmic terms
that we would otherwise need to take into account when using the “big-O”
notation.

• Angles: For two vectors v1, v2 ∈ R
d , we denote by �(v1, v2) the angle between

the vectors. For any hyperplanes n⊥
1 ,n⊥

2 with normal vectors n1 and n2, respec-
tively, we define

�
(
n⊥

1 ,n⊥
2

) := �(n1,n2).

For a plane P of any dimension and any vector v, the angle �(v,P ) between v

and P is defined as the angle between v and its projection projP v onto P :

�(v,P ) ≡ �(P, v) := �(v,projP v).

For any hyperplane n⊥ with normal vector n, we define the angle between n⊥
and a plane P of any dimension as

�
(
n⊥,P

) ≡ �
(
P,n⊥) := π

2
− �(n,P ).

Finally, we note that since �(v,projP v) = minw∈P �(v,w), we have that

�(v,projP v) ≤ �(v, u)(2.10)

for every vector u ∈ P .
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FIG. 1. The geodesic walk X1,X2, . . . (blue). Given the current point Xi , the next point is gener-
ated by independently sampling a uniform random velocity Ui from the unit sphere on the tangent
space at Xi , and running a geodesic trajectory with initial conditions (Xi,Ui) for a fixed time T .

3. The geodesic walk. The geodesic walk {Xi}i∈N on a manifold (Figure 1),
with a fixed geodesic step size T is defined precisely in Algorithm 1:

That is, the point Xi+1 is generated from Xi by running a geodesic trajectory
with initial conditions (Xi,Ui) for a fixed time T .

We define the transition kernel K of the geodesic walk Markov chain {Xi}i∈N
by

(3.1) K(Q,R) := P
[
Xi+1 ∈ R|Xi ∼ Unif(Q)

]
for all measurable subsets Q,R ⊂ M.

For the geodesic walk x = X1,X2, . . . , we define �i(·) = K
i (x, ·) to be the

distribution of Xi , and � = limi→∞ �i to be the stationary distribution of the
geodesic walk when it exists. In Section 4, we will prove that the uniform measure
on M is a stationary distribution of the geodesic walk (later, we show that this is
the only stationary distribution).

We note that, in every step of Algorithm 1, a random variable Ui was con-
structed. It is straightforward to see that the sequence {(Xi,Ui)}i∈N is a Markov
chain on M◦, which we will call the phase-space Markov chain.

REMARK 4. Although we write down a fixed integration time T , the algo-
rithm still has the correct stationary distribution if i.i.d. random integration times

Algorithm 1 Geodesic walk
parameters: Integration time T , manifold (M, g), number of steps N .
input: X1 ∈M.
output: First N steps {Xi}Ni=1 of the geodesic walk Markov chain on M.

1: for i = 1,2, . . . ,N − 1 do
2: Sample Ui ∈ TXi

from the uniform distribution Unif(S(TXi
)) on the unit

sphere in TXi
.

3: Set Xi+1 = γ(Xi,Ui)(T ).
4: end for
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T1, T2, . . . are sampled at each step (the proof of Theorem 4.1 works essentially
as written). In practice, it may be difficult to choose a specific integration time,
and we suspect that tricks from the literature on Hamiltonian Monte Carlo can be
adapted to this algorithm (see, e.g., [18]).

In referring to the geodesic walk as an “algorithm,” we will assume that we
have an oracle for computing geodesic trajectories γ with perfect accuracy; we
refer to this oracle as an “idealized geodesic integrator.” We drop this assumption
in Section 8, where we discuss a computational implementation of the geodesic
walk.

4. The stationary distribution of the geodesic walk. The aim of this section
is to prove that the transition kernel K defined in equation (3.1) has uniform sta-
tionary distribution. To do so, we will use the fact that the Liouville measure is
invariant under geodesic flow [5, 21, 40].

Recall the definition of the phase space M◦ in equation (2.6). The Liouville
measure L is defined to be the measure on M◦ with density given by the product
of the volume form dλ(x) on the manifold and the volume form dμ(v) on the
unit sphere in the tangent space of the manifold at the point x (i.e., the unit-speed
velocities):

(4.1) L(�) :=
∫
�

dμ(v)dλ(x).

Consider a geodesic trajectory on M with initial position x and initial velocity
v. We define γ(x,v)(t) and ϕ(x,v)(t) := γ ′

(x,v)(t) ∈ Tγ(x,v)(t) to be, respectively, the
position and velocity of this trajectory at time t ∈R

+. Finally, we define

ψ(x,v)(t) := (
γ(x,v)(t), ϕ(x,v)(t)

)
to be the location of our geodesic trajectory in the phase space at time t ∈ R

+.
For notational convenience, we define the map

(4.2) �t(A) := ⋃
(x,v)∈A

ψ(x,v)(t)

for all A ⊂M◦ and t > 0.
We now prove that the volume measure on any closed manifold M is a station-

ary measure of the geodesic walk (Theorem 4.1); this holds even if M does not
have positive curvature. In Theorem 6.2 of Section 6, we prove that the station-
ary distribution is unique under the additional assumption that M has bounded
positive curvature.

THEOREM 4.1. The uniform distribution on M is a stationary distribution of
the geodesic walk Markov chain defined in Algorithm 1.
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PROOF. We begin by defining two transition kernels K
◦
1 and K

◦
2 on M◦. We

define the Markov chain {(X(1)
i , v

(1)
i )}i∈N on M◦ by the deterministic update rule

(
X

(1)
i+1, v

(1)
i+1

) = ψ
(X

(1)
i ,v

(1)
i )

(T )

and define K
◦
1 to be the associated transition kernel. We then define the Markov

chain {(X(2)
i , v

(2)
i )}i∈N on M◦ by the update rule

X
(2)
i+1 = X

(2)
i ,

v
(2)
i+1 ∼ Unif

(
S(T

X
(2)
i+1

)
)

and define K
◦
2 to be the associated transition kernel. We observe that K◦

1 is deter-
ministic, that K◦

2 only ever updates its second coordinate, and finally that

(4.3) K
◦ = K

◦
2K

◦
1.

Since the Liouville measure is invariant under geodesic flow [5, 21, 40], we
have

(4.4) L(A) = L
(
�T (A)

)
for every measurable A ⊂ M◦. This implies that the Liouville measure L is in-
variant under K◦

1:

(4.5) LK◦
1 = L.

It is clear by inspection that

(4.6) LK◦
2 = L.

Thus, by equations (4.3), (4.5) and (4.6),

(4.7) LK◦ = L.

Let {(Xi,Ui)}i≥0 be a Markov chain started at (X1,U1) ∼ L and evolving ac-
cording to K

◦. By the definition of K◦, the marginal process {Xi}i∈N is a Markov
chain evolving according to the transition kernel K. Thus, the marginal distribu-
tion of L on its first coordinate M must be a stationary distribution for K. But this
marginal distribution is exactly Unif(M), completing the proof. �

5. Coupling the geodesic walk. We define a coupling of two copies of the
geodesic walk.

DEFINITION 1 (Coupling of geodesic walk). Fix x, y ∈ M and 0 < T < ∞.
We define a pair of stochastic processes {(Xi, Yi)}i∈N with X1 = x, Y1 = y as
follows:
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FIG. 2. Coupling of the two geodesic walks X1,X2, . . . (blue) and Y1, Y2, . . . (green). The coupling
is achieved by setting the initial trajectory velocity Vi at Yi (black) to be the parallel transport of
the initial trajectory velocity Ui at Xi along a minimum geodesic from Xi to Yi (gray/white dashed
line). Since M has positive curvature, the distance between the Markov chains contracts rapidly at
each step.

Let X1 = x and Y1 = y. For i ∈ N, inductively sample

Ui ∼ Unif
(
S(TXi

)
)

and set

Vi = φ(Ui;Xi,Yi),(5.1)

Xi+1 = γ(Xi,Ui)(T ),(5.2)

Yi+1 = γ(Yi,Vi)(T ).(5.3)

This coupling is illustrated in Figure 2.
This stochastic process is a valid coupling of two copies of the geodesic walk.

THEOREM 5.1. Let {(Xi, Yi)}i∈N be as in Definition 1. Then the marginal
processes {Xi}i∈N and {Yi}i∈N are each Markov chains with transition kernel K.

PROOF. It is straightforward to check that {Xi}i∈N is exactly the Markov chain
defined in Algorithm 1 (even the notation is the same). Thus, it remains only to
check that {Yi}i∈N has the correct distribution.

To see that {Yi}i∈N has the correct distribution, looking at Algorithm 1 it is
enough to check that (conditional on {Yj }j≤i ), Vi has uniform distribution on
S(TYi

).
By the fundamental theorem of Riemannian geometry, parallel transport using

the Levi–Civita connection is an affine transformation. Hence, it preserves the an-
gles between any two vectors u and u′ parallel transported to v = φ(u;Xi,Yi) and
v′ = φ(u′;Xi,Yi), respectively:

(5.4) �
(
u,u′) = �

(
v, v′).
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Therefore, denoting the conditional density of Ui conditioned on Xi by fUi
(u|Xi =

x), and the conditional density of Vi conditioned on Yi by fVi
(v|Yi = y), we have

(5.5) fVi
(v|Yi = y) = fUi

(u|Xi = x) = 1

Vol(Sd−1)

whenever u is a vector on the unit sphere in the tangent plane of x, and v =
φ(u;x, y) is its parallel transport to Yi . Since the Levi–Civita connection also pre-
serves magnitude, the fact that u is on the unit sphere in the tangent plane of x

implies that v is on the unit sphere in the tangent plane of y.
Since Ui is uniformly distributed on the unit sphere in TXi

, this implies that Vi

is uniformly distributed on the unit sphere in TYi
. Therefore, the transition kernel

of the Markov chain {Yi}i∈N must be K as well. �

6. Contraction of coupled geodesics. In this section, we prove a contraction
bound on the coupled geodesic walks X1,X2, . . . and Y1, Y2, . . . using the follow-
ing extension of the Rauch comparison theorem from differential geometry.

LEMMA 1. Let x, y ∈ M, let vx ∈ Tx and let vy = φ(vx;x, y). Define v⊥
x :=

proj(ω′(0;x,y))⊥vx . Then for all 0 ≤ T ≤ π
2
√
M2

, we have

(6.1)

dist
(
γ(x,vx)(T ), γ(y,vy)(T )

) ≤ dist(x, y) ×
√∥∥v⊥

x

∥∥2 cos2(
√
m2T ) + (

1 − ∥∥v⊥
x

∥∥2)
.

REMARK 5. A lower bound for the geodesic distance with ‖v⊥
x ‖ = 1 is proved

in [17]. The authors mention that it is possible to prove an upper bound using
a similar construction, although they do not do so explicitly. For this reason, we
prove Lemma 1 explicitly here, following a similar presentation in Proposition 7.8
of [37].

PROOF. Note that vy = φ(vx;x, y) is continuos in vx , and that γ(x,vx)(T ) and
γ(y,vy)(T ) are continuos in vx and vy , respectively (see, for instance, Proposi-
tion 5.9 in [23]). Therefore, if we can show that Inequality (6.1) holds whenever
‖v⊥

x ‖ > 0, it will also hold whenever ‖v⊥
x ‖ = 0 by continuity in vx . So without

loss of generality, we may assume that ‖v⊥
x ‖ > 0.

Consider the family of geodesics F = {γ(ω(τ ;x,y),φ(τ ;vx;x,y))(t) : τ ∈ [0,

dist(x, y)]}. Let Jτ (t) be the Jacobi field associated with this family. Since Jτ is
a Jacobi field along the geodesic γ(ω(τ ;x,y),φ(τ ;vx;x,y))(t), it is possible to decom-

pose Jτ (t) into two fields Jτ (t) = J⊥
τ (t) + J

‖
τ (t) so that J⊥

τ (t) is perpendicular
to γ ′

(ω(τ ;x,y),φ(τ ;vx;x,y))(t) and J
‖
τ (t) is parallel to γ ′

(ω(τ ;x,y),φ(τ ;vx;x,y))(t) for all
t ≥ 0 (see, for instance, Corollary B.14 in [8] and the proof of Proposition 7.8
in [37]).
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Since M has curvature bounded above by M2 > 0, the Rauch comparison the-
orem (comparing M to a sphere of radius 1√

M2
) [16, 35] gives

∥∥Jτ (t)
⊥∥∥ ≥ cos(

√
M2t) × ∥∥proj(ω′(τ ;x,y))⊥φ(τ ;vx;x, y))

∥∥
for all

t ≤ inf
{
s > 0 : cos(

√
M2s) = 0

} = π

2
√
M2

But ‖proj(ω′(τ ;x,y))⊥φ(τ ;vx;x, y))‖ = ‖proj(ω′(0;x,y))⊥vx‖ = ‖v⊥
x ‖, so

∥∥Jτ (t)
⊥∥∥ ≥ ∥∥v⊥

x

∥∥ cos(
√
M2t) ∀t ≤ π

2
√
M2

.

Thus,

(6.2)
∥∥J⊥

τ (t)
∥∥ > 0

for all 0 ≤ t < T . Therefore, since ‖J⊥
τ (t)‖ has no zeros on [0, T ), applying the

Rauch comparison theorem a second time gives (this time comparing M to a
sphere of radius 1√

m2
)

(6.3)
∥∥J⊥

τ (t)
∥∥ ≤ ∥∥v⊥

x

∥∥ cos(
√
m2t)

for all 0 ≤ t ≤ T .
Define

(6.4) F(τ) := length
({

γ(ω(s;x,y),φ(s;vx;x,y))(T ) : s ∈ [0, τ ]})
for 0 < τ < dist(x, y). Then

(6.5)
dF

dτ
= ∥∥Jτ (T )

∥∥.
Therefore, by the fundamental theorem of calculus,

dist
(
γ(x,vx)(T ), γ(y,vy)(T )

)
= F

(
dist(x, y)

)
=

∫ dist(x,y)

0

dF

dτ
dτ

Eq. (6.5)=
∫ dist(x,y)

0

∥∥Jτ (T )
∥∥ dτ

=
∫ dist(x,y)

0

√∥∥Jτ (T )⊥
∥∥2 + ∥∥Jτ (T )‖

∥∥2 dτ

Eq. (6.3)≤
∫ dist(x,y)

0

√∥∥v⊥
x

∥∥2 cos2(
√
m2T ) + (

1 − ∥∥v⊥
x

∥∥2)
dτ

= dist(x, y) ×
√∥∥v⊥

x

∥∥2 cos2(
√
m2T ) + (

1 − ∥∥v⊥
x

∥∥2)
. �
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THEOREM 6.1. Fix 0 ≤ T ≤ π
2
√
M2

and let {(Xi, Yi)}i≥0 be coupled as in

Definition 1. Then

E
[
dist(Xi+1, Yi+1)|Xi,Yi

] ≤
√
E

[
dist(Xi+1, Yi+1)2|Xi,Yi

]
≤

(
1 − m2

8
T 2

)
× dist(Xi, Yi).

PROOF. Define U⊥
i := projω′⊥(0;Xi,Yi)

Ui . Since Ui is sampled from the uni-
form distribution Unif(S(TXi

)) on the sphere of dimension at least 2, for any
0 ≤ α ≤ 1 we have

E
[
α2∥∥U⊥

i

∥∥2 + (
1 − ∥∥U⊥

i

∥∥2)] = α2
E

[∥∥U⊥
i

∥∥2] + (
1 −E

[∥∥U⊥
i

∥∥2])
(6.6)

≤ 1

2
α2 + 1

2
(6.7)

By Lemma 1,

E
[
dist(Xi+1, Yi+1)

2|Xi,Yi

]
(6.8)

Lemma 1≤ dist(Xi, Yi)
2 ×E

[∥∥U⊥
i

∥∥2 cos2(
√
m2T ) + (

1 − ∥∥U⊥
i

∥∥2)]
(6.9)

Eq. 6.6≤ dist(Xi, Yi)
2 × 1

2

(
cos2(

√
m2T ) + 1

)
.(6.10)

By Jensen’s inequality, we have

E
[
dist(Xi+1, Yi+1)|Xi,Yi

] Jensen≤
√
E

[
dist(Xi+1, Yi+1)2|Xi,Yi

]
Eq. (6.8)≤ dist(Xi, Yi)

1√
2

√
cos2(

√
m2T ) + 1

= dist(Xi, Yi)

√
1 − 1

2
sin2(

√
m2T )

≤ dist(Xi, Yi)

√
1 − m2

4
T 2

≤
(

1 − m2

8
T 2

)
× dist(Xi, Yi)

where the third inequality holds since 0 ≤ T ≤ π
2
√
M2

. �

THEOREM 6.2. The uniform distribution on M is the unique stationary distri-
bution of the geodesic walk Markov chain defined in Algorithm 1 for any parameter
0 < T ≤ π

2
√
M2

.
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PROOF. By Theorem 4.1, the uniform distribution � on M is a stationary
distribution of K. Assume that there is a second stationary distribution �′ �= �.
Since M has finite diameter, this implies 0 < W

(1)
d (�,�′) < ∞. By Theorem 6.1,

however,

W
(1)
d

(
�,�′) = W

(1)
d

(
�K,�′

K
) ≤

(
1 − m2

8
T 2

)
× W

(1)
d

(
�,�′) < W

(1)
d

(
�,�′),

since 0 < W
(1)
d (�,�′) < ∞ and 0 < T ≤ π

2
√
M2

. This is a contradiction, so no

such distribution �′ exists. �

7. Bounding the mixing time. In this section, we bound the mixing time (in
Wasserstein transportation distance) using the approach of [31].

THEOREM 7.1. For k ∈ {1,2}, the Wasserstein-k mixing profile t
(k)
mix of the

Markov chain with transition kernel K defined in Equation (3.1) of Section 3 and
parameter 0 < T ≤ π

2
√
M2

satisfies

(7.1) t
(k)
mix(ε) ≤

⌈
log(εD−1)

log(1 − m2
8 T 2)

⌉
= O

(
1

m2T 2 · log
(
Dε−1))

.

In particular, for T = π
2
√
M2

, the mixing time is bounded by

(7.2) t
(k)
mix(ε) ≤

⌈
log(εD−1)

log(1 − π2

32
m2
M2

)

⌉
= O

(
M2

m2
· log

(
Dε−1))

.

PROOF. Fix 0 ≤ T ≤ π
2
√
M2

. Let {(Xi, Yi)}i∈N be two copies of the Markov
chain with kernel K, coupled as in Definition 1. Recall that, by Theorem 5.1, this
is a valid coupling. By Theorem 6.1, this chain satisfies the following contraction
inequality for k ∈ {1,2}:
(7.3)

(
E

[
dist(Xi+1, Yi+1)

k|Xi,Yi

]) 1
k ≤ dist(Xi, Yi) ×

(
1 − m2

8
T 2

)
∀i ≥ 0.

Applying this contraction inequality repeatedly, we find

(
E

[
dist(Xj ,Yj )

k]) 1
k ≤ dist(X0, Y0) ×

(
1 − m2

8
T 2

)j

(7.4)

≤ D ×
(

1 − m2

8
T 2

)j

≥ 0.

This bound immediately implies that, for all 0 < ε < 1,

(7.5) t
(k)
mix(ε) ≤

⌈
log(εD−1)

log(1 − m2
8 T 2)

⌉
.
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Algorithm 2 Numerical approximation of geodesic trajectory
parameters: θ > 0, T > 0.
input: Manifold (M, g) with sectional curvature bounded above by M2.
input: Initial point x0 ∈ M, initial velocity v0 ∈ Tx0M.
input: Oracle � returning ψ�

θ;(x,v) and ��
θ;(x,v) for any (x, v) ∈ M◦.

output: γ
†
θ;(x0,v0)

(T ).
1: Set i = 0, �0 = 0.
2: Set x

†
0 = x0 and v

†
0 = v0.

3: while
∑i

j=0 �j ≤ T do

4: Call the oracle � to compute (x
†
i+1, v

†
i+1) = ψ�

θ;(x†
i ,v

†
i )

and �i+1 = ��

θ;(x†
i ,v

†
i )

.

5: Set i = i + 1.
6: end while
7: Set δ = T − ∑i

j=1 �j .

8: Using the bisection method, iteratively call � to find a value θ̂ for which
δ − θk√

M2
≤ ��

θ̂;(x†
i ,v

†
i )

≤ δ. Set �i+1 := ��

θ̂;(x†
i ,v

†
i )

.

9: Call the oracle � to compute x
†
i+1 = γ �

θ̂;(x†
i ,v

†
i )

.

10: Set γ
†
θ;(x0,v0)

(T ) = x
†
i+1.

In particular, for T = π
2
√
M2

, we get:

(7.6) t
(k)
mix(ε) ≤

⌈
log(εD−1)

log(1 − π2

32
m2
M2

)

⌉
.

�

8. Approximating geodesics. In this section, we describe and analyze an
approximation to the geodesic walk, showing that it can be used to approxi-
mately sample from the uniform distribution on M to arbitrary accuracy using
a dimension-independent number of computations.

We begin in Section 8.1 by assuming that we have access to an oracle �, de-
scribed at the beginning of Section 8.1, that can approximate short geodesic paths
with small error. We use this oracle to construct an “approximate” version of the
geodesic walk, given in Algorithm 2. Finally, we prove that, for any fixed error rate
ε > 0, this approximate geodesic walk can give samples that are within ε of the
uniform distribution on M in Wasserstein distance using a dimension-independent
number of oracle calls. In Section 8.2, we construct � explicitly for the special
case where M is the boundary of a convex body, using only the basic convex body
oracles used in [12] (Figure 3).
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FIG. 3. Algorithm for approximating geodesics. In this example, M is the boundary of a convex
body, so one can generate each step in the approximation as a line �i leaving the current approxima-

tion point x
†
i on the boundary at a fixed angle θ . The next approximation point x

†
i+1 is the next point

when �i intersects the boundary. Lemmas 2 and 6 show that the final point x
†
imax+1 = γ

†
θ;(x0,v0)

(T )

(here imax = 2) approximates the final point γ(x0,v0)(T ) of the true geodesic trajectory to arbitrary
accuracy ε in imax(ε) steps, where imax(ε) is independent of the dimension, if θ is appropriately
chosen.

8.1. Approximating geodesics on general positive-curvature manifolds. In Al-
gorithm 2, we compute recursively an approximation γ

†
θ;(x,v)(T ) of γ(x,v)(T ) by

repeatedly calling an oracle � : M◦ × R
+ → M◦ × R

+. We use the following
notation for the oracle �.

DEFINITION 2. An oracle � : M◦ ×R
+ → M◦ ×R

+ is a function that has
inputs (x, v) ∈ M◦, and θ > 0, and outputs ψ�

θ;(x,v) = (γ �
θ;(x,v), ϕ

�
θ;(x,v)) ∈ M◦

and ��
θ;(x,v) ∈ R

+.

The oracle tries to approximate the geodesic trajectory ψ(x,v)(t) at t = ��
θ;(x,v),

where the step size ��
θ;(x,v) is determined by the oracle. The parameter θ > 0

allows the user to adjust the accuracy of the oracle’s approximation.
For every oracle � and every θ > 0, we define

(8.1) ��
θ;min := inf

(x,v)∈M◦ ��
θ;(x,v).

We make the following assumptions about the oracle �.
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ASSUMPTION 1. There exist multivariate polynomials P and Q with the
property that, at every (x, v) ∈ M◦ and every 0 ≤ θ < 1

70
m2
M2

, we have

(8.2)
1√
M2

· P
(
θ,

√
M2√
m2

,

√
m2√
M2

)
≤ ��

θ;(x,v) ≤ 1√
M2

· Q
(
θ,

√
M2√
m2

,

√
m2√
M2

)
.

Also, for any fixed 0 < a,b < ∞, P(θ, a, b) and Q(θ, a, b) are strictly increasing
in θ over the interval 0 < θ < 1

70
m2
M2

, and P(0, a, b) = Q(0, a, b) = 0.

We also assume the following.

ASSUMPTION 2. There exist constants α > 0, β > 0, and k ∈ N such that

(8.3) dist
(
γ(x,v)

(
��

θ;(x,v)

)
, γ �

θ;(x,v)

) ≤ α · θk · ��
θ;(x,v)

and also

(8.4)
∥∥ϕ�

θ;(x,v) − ϕ(x,v)

(
��

θ;(x,v)

)∥∥ ≤ β · √
M2 · θk · ��

θ;(x,v)

for every (x, v) ∈ M◦ and 0 ≤ θ < 1
70

m2
M2

, where ϕ(x,v)(�
�
θ;(x,v)) :=

φ(ϕ(x,v)(�
�
θ;(x,v));γ(x,v)(�

�
θ;(x,v)), γ

�
θ;(x,v)).

For the rest of Section 8.1, we will assume that the oracle � satisfies Assump-
tions 1 and 2.

Using the notation of Algorithm 1, the geodesic walk Markov chain is defined
recursively by

(8.5) Xi+1 := γ(Xi,Ui)(T ) ∀i = 0,1,2, . . . ,

where Ui is uniformly distributed on S(TXi
). For fixed θ > 0, we can use Algo-

rithm 2 to recursively generate an approximate geodesic walk Xθ
1 ,Xθ

2 , . . . coupled
to the geodesic walk X1,X2, . . . , using the following recursion:

Xθ
0 = X0,

(8.6)
Xθ

i+1 = γ
†
θ;(Xθ

i ,U ′
i )
(T ) ∀i = 0,1,2, . . . ,

where U ′
i = φ(Ui;Xi,X

θ
i ). For i ∈ N, we let �θ

i be the distribution of Xθ
i .

The following lemma shows that our approximate geodesic chain remains close
to the actual geodesic chain.

LEMMA 2. For every (x0, v0) ∈ M◦, every 0 ≤ θ < 1
70

m2
M2

, and every 0 ≤ T ≤
π

2
√
M2

, Algorithm 2 makes at most � T
��

θ;min
� + O(log(

√
M2√
m2

×
√
M2
θk )) calls of the

oracle � and returns a point γ
†
θ;(x0,v0)

(T ) such that

(8.7) dist
(
γ(x0,v0)(T ), γ

†
θ;(x0,v0)

(T )
) ≤

[
1 + π

2
α +

(
π

2

)2
β

]
· 1√

M2
· θk.
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PROOF. Counting the number of � oracle calls: Define imax := max{i ∈ N :∑i+1
j=1 �j ≤ T }. The number of � oracle calls required for Step 4 in Algorithm 2

is at most � T
��

θ;min
�, since the largest possible value of i such that

∑i+1
j=1 �j ≤ T

is � T
��

θ;min
�. Assumption 1 implies that the number of � oracle calls the bi-

section method makes in Step 8 of Algorithm 2 to find a value θ̂ for which

�i+1 := ��

θ̂;(x†
i ,v

†
i )

satisfies δ − θk√
M2

≤ �i+1 ≤ δ is at most O(log(
√
M2√
m2

×
√
M2
θk )).

Step 9 makes exactly one call of the oracle �.
Bounding the error: Fix i ∈N and let x

†
i , v

†
i , �i , θ , and θ̂ be as in Algorithm 2.

Define (xi, vi) := ψ
(x

†
i−1,v

†
i−1)

(�i), and v̄i := φ(vi;xi, x
†
i ). By inequality (8.4), we

have ‖v†
i − v̄i‖ ≤ β ·√M2 · θk ·�i . Therefore, comparing to a triangle in a sphere

of radius 1√
M2

by the Toponogov triangle comparison theorem (see Chapter 11 of
[34]), we have

(8.8) dist
(
γ
(x

†
i ,v̄i )

(t), γ
(x

†
i ,v

†
i )

(t)
) ≤ t · ∥∥v†

i − v̄i

∥∥ ≤ t · β · √
M2 · θk · �i

for all 0 ≤ t ≤ π
2
√
M2

.

By inequality (8.3), we have dist(xi, x
†
i ) ≤ α · θk · �i . Therefore, by Lemma 1,

(8.9) dist
(
γ(xi ,vi )(t), γ(x

†
i ,v̄i )

(t)
) ≤ dist

(
xi, x

†
i

) ≤ α · θk · �i

for all 0 ≤ t ≤ π
2
√
M2

.

Define the “remaining time after the i’th step” to be Ti := ∑imax+1
j=i+1 �j . Then

dist
(
γ(x0,v0)(T ), γ

†
θ;(x0,v0)

(T )
)

≤ dist
(
γ(x0,v0)(T ), γ(x0,v0)(T0)

)
+ dist

(
γ(x0,v0)(T0), x

†
imax

)
≤ T − T0 + dist

(
γ(x0,v0)(T0), x

†
imax

)

≤ T − T0 +
imax+1∑

i=1

(
dist

(
γ(xi,vi )(Ti), γ(x

†
i ,v̄i )

(Ti)
)

+ dist
(
γ
(x

†
i ,v̄i )

(Ti), γ(x
†
i ,v

†
i )

(Ti)
))

≤ θk

√
M2

+
imax+1∑

i=1

(
αθk · �i + Ti · β√

M2 · θk�i

)

≤ θk

√
M2

+ [
α · θk + T0 · β · √

M2 · θk] imax+1∑
i=0

�i
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FIG. 4. This is an illustration of the proof of Lemma 2. Steps taken by the oracle � [which is

illustrated here as going along a short curved path and then projecting its position x
†
i := γ �

(x
†
i−1,v

†
i−1)

(black dot) and velocity v
†
i := γ �

(x
†
i−1,v

†
i−1)

(black arrow) back onto the phase space] are in black. The

true geodesic paths are blue curves or green dashed curves. Only the geodesic path γ(x0,v0)(t) on the
bottom belongs to the true geodesic walk. We imagine the other geodesic paths to help us bound the

error. The distance between the blue dot xi and black dot x
†
i at each time t = T0 − Ti , and the angle

between the velocities vi and v
†
i , where vi is the velocity at the blue dot and vi := φ(vi , xi , x

†
i ), are

bounded because of our assumptions on the accuracy of the oracle �. The distance from any green
dot at t = T0 to the blue dot directly below it is bounded using Lemma 1. The distance from that
same green dot to the blue dot directly above it is bounded using the Toponogov triangle comparison
theorem.

≤ θk

√
M2

+ [
α · θk + T0 · β · √

M2 · θk] · T0

≤ θk

√
M2

+
[
α + π

2
√
M2

· β · √
M2

]
· π

2
√
M2

· θk,

=
[
1 + π

2
α +

(
π

2

)2
β

]
· 1√

M2
· θk.

The second inequality holds because γ(x0,v0)(t) has unit velocity for every t ∈ R.
The third inequality is the triangle inequality (see Figure 4). The bound on T − T0
in the fourth inequality is a consequence of Step 8 of Algorithm 2, while the bounds
on the other two terms follow from equations (8.8) and (8.9). The last inequality
uses our assumption that T0 ≤ T ≤ π

2
√
M2

. �

We show that the random walk described by Algorithm 2 can be used to sample
approximately uniformly from M. We first need a simple generic bound.

LEMMA 3. Let K be a transition kernel on metric space (�,d) with unique
stationary measure μ. Assume that there exists some contraction coefficient κ > 0
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so that K satisfies

(8.10) W
(1)
d

(
K(x, ·),K(y, ·)) ≤ (1 − κ)d(x, y)

for all x, y ∈ �. Let Q be a transition kernel on (�,d) with stationary measure ν.
Assume that there exists some δ ≥ 0 so that

(8.11) sup
x∈�

W
(1)
d

(
K(x, ·),Q(x, ·)) < δ.

For fixed x ∈ � and Y ∼ μ, define the eccentricity E(x) = E[d(x,Y )] and assume
that E(x) < ∞ for all x ∈ �. Then Q satisfies

(8.12) W
(1)
d

(
Qt(x, ·),μ) ≤ (1 − κ)tE(x) + δ

κ

for all x ∈ � and t ∈ N. Under the further assumption that supx E(x) < ∞, we
also have

(8.13) W
(1)
d (μ, ν) ≤ δ

κ
.

PROOF. Fix a tolerance η > 0 and starting points x, y ∈ �. We begin by con-
structing a coupling of Q(x, ·) and K(y, ·).

By inequality (8.10), it is possible to couple two random variables X′ ∼ K(x, ·)
and Y ′ ∼ K(y, ·) so that

(8.14) E
[
d
(
X′, Y ′)] ≤ (1 − κ)d(x, y) + η.

Furthermore, by inequality (8.11) and the standard gluing lemma (see Chapter 1
of [39]), it is possible to couple X′, Y ′ to the random variable X ∼ Q(x, ·) so that

(8.15) E
[
d
(
X,X′)] ≤ δ + η.

Combining inequalities (8.14) and (8.15), it is possible to couple X ∼ Q(x, ·) and
Y ′ ∼ K(y, ·) so that

E
[
d
(
X,Y ′)] ≤ E

[
d
(
X,X′)] +E

[
d
(
X′, Y ′)]

(8.16)
≤ δ + (1 − κ)d(x, y) + 2η.

We denote by M the kernel on �2 given by this coupling of Q(x, ·) and K(y, ·).
Let x ∈ �, and let Y ∼ μ. Let {(Xt , Yt )}t≥0 be a Markov chain evolving accord-

ing to the kernel M with initial conditions (X0, Y0) = (x,Y ). By inequality (8.16),
we have for all t ∈N that

E
[
d(Xt , Yt )

] ≤ E
[
(1 − κ)E

[
d(Xt−1, Yt−1)

] + δ + 2η
]

≤ (1 − κ)2
E

[
d(Xt−2, Yt−2)

] + (δ + 2η)
(
1 + (1 − κ)

)
≤ · · ·

≤ (1 − κ)tE
[
d(X0, Y0)

] + δ + 2η

κ
.
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Since this holds for arbitrary η > 0 and Yt ∼ μ for all t ∈ N, we have

(8.17) W
(1)
d

(
Qt(x, ·),μ) ≤ (1 − κ)tE(x) + δ

κ
.

This completes the proof of inequality (8.12). Inequality (8.13) follows immedi-
ately from letting t go to infinity. �

We apply this bound.

LEMMA 4. Let ε > 0. Set T = π
2
√
M2

and set

θ(ε) = min
([

ε · √
M2 ·

π2

32
m2
M2

2(1 + π
2 α + (π

2 )2β)

] 1
k

,
1

70

m2

M2

)
,(8.18)

I (ε) =
⌈ log(

ε
√
m2

2π
)

log(1 − π2

32
m2
M2

)

⌉
.(8.19)

Then the distribution �
θ(ε)
i of the i’th step of the chain described in Equation

(8.6) satisfies

(8.20) W
(1)
d

(
�,�

θ(ε)
i

) ≤ ε

for all i > I (ε).

PROOF. We apply Lemma 3, with K = K and Q the kernel of the Markov
chain in equation (8.6) with parameters θ = θ(ε) and T = π

2
√
M2

. We keep the
notation of Lemma 3 and check that the assumptions are satisfied.

By Theorem 6.1, inequality (8.10) is satisfied with

κ = π2

32

m2

M2
.

By Lemma 2, inequality (8.11) is satisfied with

δ = 1 + π
2 α + (π

2 )2β√
M2

· θk.

Finally, by inequality (2.9), the diameter of M satisfies

D ≤ π√
m2

.

Applying Lemma 3 with these values of κ, δ and D completes the proof of this
theorem. �

This immediately gives the following dimension-free bound on the number of
oracle calls required to obtain a sample from the uniform distribution on M with
error less than some fixed ε > 0.
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THEOREM 8.1. Fix ε > 0 and let θ(ε), I (ε) be as in Equation (8.18). Also let
X

θ(ε)
I (ε)+1 be the (I (ε) + 1)’st point generated by Equation (8.6) with parameters

θ = θ(ε), T = π
2
√
M2

.

Then the distribution �
θ(ε)
I (ε)+1 of X

θ(ε)
I (ε)+1 satisfies

(8.21) W
(1)
d

(
�

θ(ε)
I (ε)+1,�

) ≤ ε,

and the number N(ε) of � oracle calls used to generate X
θ(ε)
I (ε)+1 satisfies

N(ε) ≤ log(
ε
√
m2

2π
)

log(1 − π2

32
m2
M2

)

(⌈
π

2
√
M2�

�
θ(ε);min

⌉
(8.22)

+O
(

log
(√

M2√
m2

×
√
M2

θk(ε)

)))

= O∗
(
M2

m2
× 1√

M2�
�
θ(ε);min

)
.(8.23)

PROOF. Inequality (8.21) follows immediately from Lemma 4.
By Lemma 2,

N(ε) ≤ I (ε) ×
(⌈

T

��
θ(ε);min

⌉
+O

(
log

(√
M2√
m2

×
√
M2

θk(ε)

)))

≤ log(
ε
√
m2

2π
)

log(1 − π2

32
m2
M2

)
×

(⌈
π

2
√
M2�

�
θ(ε);min

⌉
+O

(
log

(√
M2√
m2

×
√
M2

θk(ε)

)))
.

This completes the proof of the theorem. �

8.2. Approximating geodesics on convex body boundaries. In this section, we
show how to construct an oracle that satisfies the requirements of Lemma 2 in the
important special case when M = ∂K is the boundary of a convex body K. To
build our oracle � (Algorithm 3), we use only the same basic inclusion-exclusion
oracle and oracle for the normal line to ∂K used in the stochastic billiards algo-
rithm of [12]. In particular, one can construct an intersection oracle that returns
the intersection of any line with ∂K using the bisection method and the inclusion-
exclusion oracle, which we will use to build �.

In the remainder of the paper, for any line segment �a,b ⊂ R
d+1 with endpoints

a, b ∈ R
d+1, we denote its Euclidean length by length(�a,b) := ‖b − a‖. For every

y ∈ M ≡ ∂K, define n(y) to be the unit normal vector to M at y pointing into K,
and denote by “Duw(y)” the directional derivative in the direction u of a vector-
valued function w : M �→R

d+1. We will denote by n⊥(·) the unique codimension-
1 subspace orthogonal to n(·).
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Algorithm 3 An oracle � in the special case where M is the boundary of a convex
body K
input: Intersection oracle for the convex body K.
input: Oracle for the normal vector of M = ∂K.
input: Initial point x ∈ M, initial velocity v ∈ TxM, parameter θ > 0.
output: ��

θ;(x,v), ψ�
θ;(x,v) := (γ �

θ;(x,v), ϕ
�
θ;(x,v)).

1: Generate the unique unit vector u pointing into K at x at an angle θ to the
tangent plane TxM, whose projection ũ onto TxM satisfies �(ũ, v) = 0
(using the normal vector oracle).

2: Let � := {su : s ∈ R} be the line passing through x in the direction u, and let
P be the 2-plane spanned by v and u.

3: Solve for the other intersection point x
†
1 in � ∩M by calling the intersection

oracle.
4: Set ṽ1 to be the projection of u onto the 1-dimensional subspace

Q := n⊥(x
†
1) ∩ P , and set v

†
1 = ṽ1‖ṽ1‖ .

5: Set (γ �
θ;(x,v), ϕ

�
θ;(x,v)) = (x

†
1 , v

†
1).

6: Set ��
θ;(x,v) = ‖x†

1 − x‖.

In this section, we will make a slightly strengthened assumption about the cur-
vature. Toward this end, we define the inner radius of curvature at a point x ∈ ∂K
to be the radius of the largest sphere in R

d+1 that is tangent to ∂K at x and con-
tained in K. Similarly, we define the outer radius of curvature to be radius of the
smallest sphere that is tangent to ∂K at x that contains K.

ASSUMPTION 3. M = ∂K has inner radius of curvature uniformly bounded
below by 1√

M2
and outer radius of curvature uniformly bounded above by 1√

m2
.

In particular, the above assumptions on the inner and outer radii of curvature
imply our previous assumptions that the sectional curvature is bounded above and
below by M2 and m2, respectively, although the converse is not true.

The following lemma (Lemma 5) relates the geodesic distance on a convex body
to the Euclidean distance in the ambient space. We will use Lemma 5 to prove the
main result of this section (Lemma 6).

Before we state Lemma 5, we define distN (x, y) to be the geodesic distance
between two points x, y ∈ N in a manifold N . For every set S = {x, y} consisting
of two distinct points x, y ∈ N , we also define distN (S) := distN (x, y).

LEMMA 5. Let q(1) and q(2) be two points on the boundary ∂K of a convex
body K, with inner and outer radii of curvature bounded below and above by 1√

M2
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FIG. 5. An illustration of the convex geometry in the proof of Lemma 5.

and 1√
m2

, respectively. Then

(8.24) dist∂K
(
q(1), q(2)) ≤ 2π

√
M2√
m2

∥∥q(2) − q(1)
∥∥.

PROOF. Let � be the line passing through both q(1) and q(2). Let B and B ′ be
balls tangent to ∂K at q(2) of radius 1√

M2
and 1√

m2
, respectively. By assumption,

(8.25) B ⊆ K ⊆ B ′.

Since B , K and B ′ are all convex, we therefore have that (see Figure 5),

dist∂K(� ∩ ∂K) ≤ dist∂K∩A(� ∩ ∂K)

≤ dist∂B ′
(
� ∩ ∂B ′) + length

(
� ∩ B ′)(8.26)

≤ 2 dist∂B ′
(
� ∩ ∂B ′),

where A is the 2-plane containing the great circle (i.e., the spherical geodesic) in
B ′ that connects the two points in � ∩ ∂B ′.

Since the ratio dist∂B′ (�∩∂B ′)
length(�∩B ′) is maximized when � ∩ B ′ is the diameter of B ′, it

must be true that

(8.27) dist∂B ′
(
� ∩ B ′) ≤ πlength

(
� ∩ B ′).
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Assuming without loss of generality that q(2) is the origin, we note

(8.28) B ′ =
√
M2√
m2

B,

so that

(8.29)

√
M2√
m2

(� ∩ B) = � ∩
(√

M2√
m2

B

)
= � ∩ B ′.

Hence,

length
(
� ∩ B ′)

=
√
M2√
m2

length(� ∩ B) ≤
√
M2√
m2

length(� ∩ ∂K)(8.30)

=
√
M2√
m2

∥∥q(2) − q(1)
∥∥.

Therefore, combining equations (8.26), (8.27) and (8.30), we get:

dist∂K
(
q(1), q(2)) = dist∂K(� ∩ ∂K) ≤ 2 dist∂B ′

(
� ∩ ∂B ′)

≤ 2π length
(
� ∩ B ′) ≤ 2π

√
M2√
m2

∥∥q(2) − q(1)
∥∥. �

LEMMA 6. Let K be a convex body and M = ∂K be its boundary. Set α =
5πM2

m2
and β = 10

√
M2√
m2

. Fix (x, v) ∈ M◦. For 0 < θ < 1
70

m2
M2

that satisfies β ·√
M2 · θ ·��

θ;(x,v) < 1, let ψ�
θ;(x,v) := (γ �

θ;(x,v), ϕ
�
θ;(x,v)) and ��

θ;(x,v) be generated
by Algorithm 3. Then

(8.31) dist
(
γ(x,v)

(
��

θ;(x,v)

)
, γ �

θ;(x,v)

) ≤ α · θ · ��
θ;(x,v)

and

(8.32)
∥∥ϕ�

θ;(x,v) − ϕ(x,v)

(
��

θ;(x,v)

)∥∥ ≤ β · √
M2 · θ · ��

θ;(x,v).

Moreover, the function ��
θ;(x,v) satisfies Assumption 1, with

(8.33)
θ

2
√
M2

≤ ��
θ;(x,v) ≤ θ√

m2

for all (x, v) ∈ M◦.

REMARK 6. The most difficult part of this proof is checking the bound
8.32 on the error in the velocity approximation ϕ�

θ;(x,v), which requires care-
fully relating the intrinsic geometry of ∂K to its embedding in Euclidean
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FIG. 6. An illustration of the planes and vectors used to bound the error in the velocity in the proof
of Lemma 6.

space. We first show that the component of the error orthogonal to a certain
2-plane P is O(θ2), and thus negligible. The component of the error con-
tained in P is dealt with separately via a geometric argument, illustrated in
Figure 6. The chosen 2-plane P is the plane spanned by the vector v and
the normal vector to K at x. These two vectors represent the initial velocity
and acceleration of the geodesic path, and so roughly speaking the plane P

captures the zeroth- and first-order terms in our approximation of the veloc-
ity.

PROOF. We begin by proving inequality (8.33). Let u, P , Q, �, ��
θ;(x,v), and

ψ�
θ;(x,v) be as in Algorithm 3. Recall that Algorithm 3 sets ��

θ;(x,v) = length(� ∩
K). Since the tangent sphere to ∂K at x of radius 1√

M2
is contained in K, and the

tangent sphere to ∂K at x of radius 1√
m2

contains K (Figure 5), and 0 < θ < 1
70 ,

we have

(8.34)
θ

2
√
M2

≤ 1√
M2

sin(θ) ≤ ��
θ;(x,v) ≤ 1√

m2
sin(θ) ≤ θ√

m2
.

Here, we used the fact that

1

2
z ≤ sin(z) for 0 ≤ z ≤ π

2
,(8.35)

a fact we will use again later in this proof. Hence, the function ��
θ;(x,v) satisfies

Assumption 1. This completes the proof of inequality (8.33).
Next, we prove inequality (8.31). Define (x1, v1) := ψ(x,v)(�

�
θ;(x,v)), and (x

†
1 ,

v
†
1) := ψ�

θ;(x,v). By Assumption 3, the principal curvatures of M are bounded

above by
√
M2, so ‖γ ′′

(x,v)(t)‖ ≤ √
M2 for all x, v ∈ M◦ and t ∈ R. Therefore,
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FIG. 7. Bounding the error in the position in the proof of Lemma 6.

since γ(x,v)(t) = x + vt + ∫ t
0

∫ τ
0 γ ′′

(x,v)(s)ds dτ , it must be true that∥∥x + vt − γ(x,v)(t)
∥∥

=
∥∥∥∥x + vt −

(
x + vt +

∫ t

0

∫ τ

0
γ ′′
(x,v)(s)ds dτ

)∥∥∥∥
(8.36)

=
∥∥∥∥
∫ t

0

∫ τ

0
γ ′′
(x,v)(s)ds dτ

∥∥∥∥ ≤
∫ t

0

∫ τ

0

∥∥γ ′′
(x,v)(s)

∥∥ ds dτ

≤
∫ t

0

∫ τ

0

√
M2 ds dτ = 1

2

√
M2 · t2

for every t ≥ 0.
Let �′ be the unique number such that 〈x + v�′ − x

†
1 , v〉 = 0, and let b :=

‖(x + v�′) − x
†
1‖ (Figure 7). Then the line segment connecting (x + v�′) and x

†
1

is orthogonal to v. Then we have

b = sin(θ) × ��
θ;(x,v),

(8.37)
�′ = cos(θ) × ��

θ;(x,v).

Therefore,∥∥x1 − x
†
1

∥∥ ≤ ∥∥x1 − (
x + v��

θ;(x,v)

)∥∥
+ ∥∥(

x + v��
θ;(x,v)

) − (
x + v�′)∥∥ + ∥∥(

x + v�′) − x
†
1

∥∥
= ∥∥x1 − (

x + v��
θ;(x,v)

)∥∥ + ∥∥(
��

θ;(x,v) − �′)v∥∥ + b

Eq. (8.37)= ∥∥γ(x,v)

(
��

θ;(x,v)

) − (
x + v��

θ;(x,v)

)∥∥
+ ∣∣��

θ;(x,v) − cos(θ)��
θ;(x,v)

∣∣ × ‖v‖ + sin(θ)��
θ;(x,v)(8.38)
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Eq. (8.36)≤ 1

2

√
M2 · (

��
θ;(x,v)

)2

+ ��
θ;(x,v) × (

1 − cos(θ)
) × 1 + sin(θ) × ��

θ;(x,v)

= 1

2

√
M2 · (

��
θ;(x,v)

)2 + ��
θ;(x,v) × [

1 − cos(θ) + sin(θ)
]

≤ 1

2

√
M2 · (

��
θ;(x,v)

)2 + ��
θ;(x,v) × 2θ

since 1 − cos(θ) + sin(θ) ≤ 2θ for θ ≥ 0.
Hence,

dist
(
γ(x,v)

(
��

θ;(x,v)

)
, γ �

θ;(x,v)

)

= dist
(
x1, x

†
1

) Lemma 5≤ 2π

√
M2√
m2

∥∥x1 − x
†
1

∥∥
Eq. (8.38)≤ 2π

√
M2√
m2

[
1

2

√
M2 × (

��
θ;(x,v)

)2 + ��
θ;(x,v) × 2θ

]

Eq. (8.34)≤ 2π

√
M2√
m2

[
1

2

√
M2 × ��

θ;(x,v) × θ√
m2

+ ��
θ;(x,v) × 2θ

]

≤ 2π

√
M2√
m2

[
1

2

√
M2√
m2

× ��
θ;(x,v) × θ + 2

√
M2√
m2

× ��
θ;(x,v) × θ

]

= 5π

(√
M2√
m2

)2
× ��

θ;(x,v) × θ = α × ��
θ;(x,v) × θ,

where the last inequality holds since
√
M2√
m2

≥ 1. This completes the proof of in-
equality (8.31).

Finally, we prove inequality (8.32). For (x, v) ∈ M◦, define Hx(v) :=
‖γ ′′

(x,v)(0)‖. By Assumption 3,

√
m2 ≤ Hx(v) ≤ √

M2(8.39)

and ∥∥Dun(y)
∥∥ ≤ √

M2(8.40)

at every (x, v), (y,u) ∈ M◦.
Recall that P is the plane spanned by the vectors n(x) and u [this 2-plane is

also the 2-plane of curvature associated with the curve γ(x,v)(t) at t = 0], and let
P ⊥ be its orthogonal complement. Denote by P and P⊥ the operators on R

d+1

that project a vector onto P and P ⊥, respectively.
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Define (x(t), v(t)) := ψ(x,v)(t). Since P⊥v(0) = 0 and P⊥n(γ(x,v)(0)) =
P⊥n(x) = 0, we have∥∥P⊥v(t)

∥∥
=

∥∥∥∥
∫ t

0
P⊥Hx(τ)

(
v(τ)

)
n
(
γ(x,v)(τ )

)
dτ

∥∥∥∥
Eq. (8.39)≤

∫ t

0

∥∥√
M2P⊥n

(
γ(x,v)(τ )

)∥∥ dτ

(8.41)

= √
M2

∫ t

0

∥∥∥∥
∫ τ

0
Dv(s)P⊥n

(
γ(x,v)(s)

)
ds +P⊥n

(
γ(x,v)(0)

)∥∥∥∥ dτ

≤ √
M2

∫ t

0

∫ τ

0

∥∥Dv(s)P⊥n
(
γ(x,v)(s)

)∥∥ ds dτ

Eq. (8.40)≤ √
M2

∫ t

0

∫ τ

0

√
M2 ds dτ = (

√
M2)

2

2
t2.

Therefore, equation (8.41) gives

(8.42)
∥∥P⊥v1

∥∥ = ∥∥P⊥v
(
��

θ;(x,v)

)∥∥ ≤ (
√
M2)

2

2

(
��

θ;(x,v)

)2
.

Now define v1(t) := φ(t;v1;x1, x
†
1) to be the parallel transport of v1 from x1

to x
†
1 along the distance-minimizing unit-speed geodesic ω(t) ≡ ω(t;x1, x

†
1). Let

t� := dist(x1, x
†
1) and let v1 := v1(t

�). Then

d

dt
v1(t) =

〈
v1(t),

d

dt
n
(
ω(t)

)〉
n
(
ω(t)

)
.

Therefore, by a similar calculation to that in equation (8.41),∥∥P⊥v1 −P⊥v1
∥∥

=
∥∥∥∥
∫ t�

0
P⊥ d

dτ
v1(τ )dτ

∥∥∥∥
=

∫ t�

0

∥∥∥∥P⊥
〈
v1(τ ),

d

dτ
n
(
ω(τ)

)〉
n
(
ω(τ)

)∥∥∥∥ dτ

≤
∫ t�

0

∥∥∥∥ d

dτ
n
(
ω(τ)

)∥∥∥∥ × ∥∥P⊥n
(
ω(τ)

)∥∥ dτ

Eq. (8.40)≤
∫ t�

0

√
M2

∥∥P⊥n
(
ω(τ)

)∥∥ dτ

= √
M2

∫ t�

0

∥∥∥∥
∫ τ

0

d

ds
P⊥n

(
ω(s)

)
ds +P⊥n

(
ω(0)

)∥∥∥∥ dτ(8.43)
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≤ √
M2

∫ t�

0

∥∥∥∥
∫ τ

0

d

ds
P⊥n

(
ω(s)

)
ds

∥∥∥∥ + ∥∥P⊥n(x1)
∥∥ dτ

= √
M2

∫ t�

0

∥∥∥∥
∫ τ

0

d

ds
P⊥n

(
(s)

)
ds

∥∥∥∥
+

∥∥∥∥
∫ ��

θ;(x,v)

0
Dv(s)P⊥n

(
γ(x,v)(s)

)
ds +P⊥n

(
γ(x,v)(0)

)∥∥∥∥ dτ

Eq. (8.40)≤ √
M2

∫ t�

0

∫ τ

0

√
M2 ds +

∫ ��
θ;(x,v)

0

√
M2 ds dτ

= (
√
M2)

2
[

1

2

(
t�

)2 + t� × ��
θ;(x,v)

]
.

Since 0 < θ < 1
70

m2
M2

by assumption, inequality (8.31) implies that

t� ≤ ��
θ;(x,v).(8.44)

Therefore, by equation (8.43),

∥∥P⊥v1 −P⊥v1
∥∥ ≤ 3

2
(
√
M2)

2(
��

θ;(x,v)

)2

(8.45)
≤ 2(

√
M2)

2(
��

θ;(x,v)

)2
.

Hence, equations (8.42) and (8.45) imply that∥∥P⊥v1
∥∥ ≤ ∥∥P⊥v1

∥∥ + ∥∥P⊥v1 −P⊥v1
∥∥

≤ (
√
M2)

2

2
· (

��
θ;(x,v)

)2 + 2(
√
M2)

2 · (
��

θ;(x,v)

)2(8.46)

= 5

2
(
√
M2)

2 · (
��

θ;(x,v)

)2
.

Let b := �(v1,P ). Since b is the angle between a vector and a plane, 0 ≤ b ≤ π
2 ,

so sin(b) ≥ 1
2b by equation (8.35). Thus,

1

2
b ≤ sin(b) = ‖P⊥v1‖

‖v1‖ = ‖P⊥v1‖
1

Eq. (8.46)≤ 5

2
(
√
M2)

2 · (
��

θ;(x,v)

)2
,(8.47)

and so

b ≤ 5(
√
M2)

2 · (
��

θ;(x,v)

)2
.(8.48)

Since θ < 1
70

m2
M2

by assumption, we have

√
M2�

�
θ;(x,v)

Eq. (8.33)≤
√
M2√
m2

θ <
1

70

√
m2√
M2

≤ 1

70
.(8.49)
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Since the radius of curvature of ∂K is uniformly bounded below by 1√
M2

, this
implies

�
(
n⊥(x),n⊥(

x
†
1

)) = �
(
n(x),n

(
x

†
1

)) ≤ √
M2dist

(
x, x

†
1

)
Lemma 5≤ √

M2 × 2π

√
M2√
m2

∥∥x†
1 − x

∥∥(8.50)

= 2π
√
M2

√
M2√
m2

��
θ;(x,v).

Also, since n(x) is contained in the plane P , we have that

�
(
P,n⊥(x)

) = π

2
.(8.51)

Now,

�
(
projP n(x),projP n

(
x

†
1

))
= �

(
n(x),projP n

(
x

†
1

))
(8.52)

≤ �
(
n(x),n

(
x

†
1

)) + �
(
n
(
x

†
1

)
,projP n

(
x

†
1

))
≤ �

(
n(x),n

(
x

†
1

)) + �
(
n
(
x

†
1

)
,n(x)

) = 2�
(
n(x),n

(
x

†
1

))
,

where the first equality is true since n(x) ∈ P implies that projP n(x) = n(x), the
first inequality is the triangle inequality for angles between vectors, and the second
inequality is true by inequality (2.10) and the fact that n(x) ∈ P .

Define c := �(P,n⊥(x
†
1)). Equation (8.52) implies that

�
(
projP n

(
x

†
1

)
,n

(
x

†
1

)) ≤ �
(
projP n

(
x

†
1

)
,projP n(x)

)
+ �

(
projP n(x),n(x)

) + �
(
n(x),n

(
x

†
1

))
(8.53)

Eq. (8.52)≤ 2�
(
n(x),n

(
x

†
1

)) + �
(
projP n(x),n(x)

) + �
(
n(x),n

(
x

†
1

))
= 3�

(
n(x),n

(
x

†
1

)) + �
(
projP n(x),n(x)

) = 3�
(
n(x),n

(
x

†
1

)) + 0,

so

c = �
(
P,n⊥(

x
†
1

)) = π

2
− �

(
projP n

(
x

†
1

)
,n

(
x

†
1

))
Eq. (8.53)≥ π

2
− 3�

(
n(x),n

(
x

†
1

))
(8.54)

Eq. (8.50)≥ π

2
− 3 × 2π

√
M2

√
M2√
m2

��
θ;(x,v)

Eq. (8.49)
>

π

4
.

Therefore, n⊥(x
†
1) does not contain the 2-plane P , so n⊥(x

†
1) ∩ P must be a 1-

dimensional subspace. Define Q and Q⊥ to be the projection operators onto the
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one-dimensional subspace Q := n⊥(x
†
1) ∩ P and its orthogonal complement, re-

spectively. We will now show that �(Qv1, v
†
1) = 0.

∥∥v(t) − v(0)
∥∥ =

∥∥∥∥
∫ t

0
Hx(τ)

(
v(τ)

)
n
(
γ(x,v)(τ )

)
dτ

∥∥∥∥
Eq. (8.39)≤

∫ t

0

∥∥√
M2n

(
γ(x,v)(τ )

)∥∥ dτ(8.55)

=
∫ t

0
‖√

M2‖ × 1 dτ = √
M2t.

Also,

‖v1 − v1‖ =
∥∥∥∥
∫ t�

0

d

dτ
v1(τ )dτ

∥∥∥∥
=

∫ t�

0

∥∥∥∥
〈
v1(τ ),

d

dτ
n
(
ω(τ)

)〉
n
(
ω(τ)

)∥∥∥∥ dτ

(8.56)
Eq. (8.40)≤

∫ t�

0

√
M2

∥∥n
(
ω(τ)

)∥∥ dτ

=
∫ t�

0

√
M2 × 1 dτ = √

M2t
�

Eq. (8.44)≤ √
M2�

�
θ;(x,v).

Hence,

‖v − v1‖ ≤ ‖v − v1‖ + ‖v1 − v1‖
= ∥∥v(0) − v

(
��

θ;(x,v)

)∥∥ + ‖v1 − v1‖
(8.57)

Eq. (8.55), (8.56)≤ √
M2�

�
θ;(x,v) + √

M2�
�
θ;(x,v)

Eq. (8.49)≤ 3

70
.

But ‖v1‖ = ‖v‖ = 1, so v1, v and v − v1 form an isosceles triangle whose height
bisects the angle �(v, v1). Hence,

sin
(

1

2
�(v, v1)

)
= 1

2
‖v − v1‖

Eq. (8.57)≤ 1

2
× 3

70
.(8.58)

Since ‖v − v1‖ ≤ 3
70 < 1 = ‖v1‖ = ‖v‖ = 1, �(v, v1) must be the smallest angle

of this isosceles triangle, so �(v, v1) ≤ π
3 . Therefore, since 0 ≤ �(v, v1) ≤ π

3 ,

1

2
�(v, v1)

Eq. (8.35)≤ 2 sin
(

1

2
�(v, v1)

)
Eq. (8.58)≤ 3

70
.

Hence,

�(v, v1) ≤ 6

70
.(8.59)
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Now, any unit normal vector of the line P ∩ n⊥(·) that is also contained in the
plane P is equal (up to a scalar factor) to projP n(·). Therefore,

�
(
P ∩ n⊥(x),P ∩ n⊥(

x
†
1

)) = �
(
projP n(x),projP n

(
x

†
1

))
Eq. (8.52)≤ 2�

(
n(x),n

(
x

†
1

))
(8.60)

= 2�
(
n⊥(x),n⊥(

x
†
1

))
.

Therefore,

�
(
u,P ∩ n⊥(

x
†
1

))
≤ �

(
u,P ∩ n⊥(x)

) + �
(
P ∩ n⊥(x),P ∩ n⊥(

x
†
1

))
Eq. (8.60)≤ �

(
u,P ∩ n⊥(x)

) + 2�
(
n⊥(x),n⊥(

x
†
1

))
(8.61)

= θ + 2�
(
n⊥(x),n⊥(

x
†
1

))
Eq. (8.50)≤ θ + 2 × 2π

√
M2

√
M2√
m2

��
θ;(x,v)

Eq. (8.49)≤ θ + 2 × 2π

70
.

But v
†
1 is the (normalized) projection of u onto P ∩ n⊥(x

†
1), so �(u, v

†
1) =

�(u,P ∩ n⊥(x
†
1)). Hence,

�
(
v, v

†
1

) ≤ �(v, u) + �
(
u, v

†
1

) = θ + �
(
u,P ∩ n⊥(

x
†
1

))
(8.62)

Eq. (8.61)≤ θ + θ + 2 × 2π

70
≤ 3

10
,

since 0 < θ < 1
70

m2
M2

≤ 1
70 × 1 by assumption. Therefore,

�
(
v1, v

†
1

) ≤ �(v1, v) + �
(
v, v

†
1

) Eqs. (8.59), (8.62)≤ 6

70
+ 3

10
<

π

5
.(8.63)

Now, observe that by equation (8.44),

dist
(
x, x

†
1

) ≤ dist(x, x1) + dist
(
x1, x

†
1

) ≤ ��
θ;(x,v) + t�

Eq. (8.44)≤ 2��
θ;(x,v).

Define a := �(v1,n⊥(x
†
1) ∩ P). Since sin(a) × sin(c) = sin(b) (Figure 6), we

have

sin(a) = sin(b)

sin(c)

Eq. (8.54)≤ sin(b)

sin(π
4 )

Eq. (8.47)≤ √
2 × 5(

√
M2)

2 · (
��

θ;(x,v)

)2
.(8.64)
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Since a is the angle between a vector and a subspace, 0 ≤ a ≤ π
2 , and so

‖Qv1‖
‖v1‖ = cos(a) ≥ 1 − sin2(a)

Eq. (8.64)≥ 1 − (
5
√

2(
√
M2)

2 · (
��

θ;(x,v)

)2)2
.

Since ‖v1‖ = 1, we get that

‖Qv1‖ ≥ 1 − (
5
√

2(
√
M2)

2 · (
��

θ;(x,v)

)2)2
.(8.65)

But v
†
1 ∈ P ∩ n⊥(x

†
1) and Qv1 ∈ P ∩ n⊥(x

†
1), so both v

†
1 and Qv1 lie in the

same 1-dimensional subspace, P ∩ n⊥(x
†
1). Since we have by equation (8.63) that

�(v1, v
†
1) < π

5 and both v
†
1 and Qv1 lie in the same 1-dimensional subspace, it

must be true that

�
(
Qv1, v

†
1

) = 0.(8.66)

Therefore, ∥∥v†
1 −Qv1

∥∥
Eq. (8.66)= ∥∥v†

1

∥∥ − ‖Qv1‖
(8.67)

Eq. (8.65)≤ 1 − (
1 − (

5
√

2(
√
M2)

2 · (
��

θ;(x,v)

)2)2)
= (

5
√

2(
√
M2)

2 · (
��

θ;(x,v)

)2)2
.

Also, by equation (8.64) we have

‖Qv1 − v1‖ = ∥∥Q⊥v1
∥∥ = ‖v1‖ × sin(a)

(8.68)
= 1 × sin(a) ≤ 5

√
2(

√
M2)

2 · (
��

θ;(x,v)

)2
.

Therefore, by equations (8.67) and (8.68),∥∥v†
1 − v1

∥∥ ≤ ∥∥v†
1 −Qv1

∥∥ + ‖Qv1 − v1‖
≤ (

5
√

2(
√
M2)

2 · (
��

θ;(x,v)

)2)2 + 5
√

2(
√
M2)

2 · (
��

θ;(x,v)

)2(8.69)

≤ 10(
√
M2)

2 · (
��

θ;(x,v)

)2
,

where the last inequality holds since (
√
M2)

2 · (��
θ;(x,v)))

2 < 1
702 by equation

(8.49). Hence,∥∥ϕ�
θ;(x,v) − ϕ(x,v)

(
��

θ;(x,v)

)∥∥
= ∥∥v†

1 − v1
∥∥ Eq. (8.69)≤ 10(

√
M2)

2 · (
��

θ;(x,v)

)2

Eq. (8.34)≤ 10(
√
M2)

2 · θ√
m2

· ��
θ;(x,v) = β · √

M2 · θ · ��
θ;(x,v). �
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We conclude with a bound on the total computational effort that is required to
sample approximately from the uniform distribution on ∂K with error less than
any fixed ε > 0.

THEOREM 8.2. Fix ε > 0, let α,β be defined as in Lemma 6, and let
I (ε), θ(ε) be defined as in equation (8.18). Let {Xθ(ε)

i }i∈N be the Markov chain
defined in equation (8.6), with the oracle � provided by Algorithm 3. Then the
distribution �

θ(ε)
I (ε)+1 of X

θ(ε)
I (ε)+1 satisfies

(8.70) W
(1)
d

(
�

θ(ε)
I (ε)+1,�

) ≤ ε,

and the intersection oracle and normal vector oracle in Algorithm 3 are called no
more than

(8.71) N(ε) = O
((

M2

m2

)3
×

log( 2π
ε
√
m2

)

ε · √M2

)

times.

PROOF. Inequality 8.70 is an application of Lemma 4 (since Assumption 2 is
satisfied by Lemma 6). To prove Inequality 8.71, by Theorem 8.1,

N(ε) ≤ log(
ε
√
m2

2π
)

log(1 − π2

32
m2
M2

)
×

[⌈
2π

√
M2

2
√
M2θ(ε)

⌉
+O

(
log

(
M2

m2
×

√
M2

θ(ε)

))]

= O
( log(

ε
√
m2

2π
)

log(1 − π2

32
m2
M2

)

[
1

ε · √M2 · π2

32
m2
M2

[
1 + π

2
α +

(
π

2

)2
β

]])

= O
( log(

ε
√
m2

2π
)

log(1 − π2

32
m2
M2

)

×
[

1

ε · √M2 · π2

32
m2
M2

×
[
1 + π

2
· 5π

(√
M2√
m2

)2
+

(
π

2

)2
· 10

√
M2√
m2

]])

= O
( log(

ε
√
m2

2π
)

log(1 − π2

32
m2
M2

)
×

1 + π
2 · 5π(

√
M2√
m2

)2 + (π
2 )2 · 10

√
M2√
m2

ε · √M2 · π2

32
m2
M2

)

= O
((

M2

m2

)3
×

log( 2π
ε
√
m2

)

ε · √M2

)
,

where the first inequality is due to inequality (8.22) and Lemma 6, and the remain-
ing lines are obtained by the definitions of θ(ε), α and β . �
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REMARK 7. If the smoothness of the curvature of M is uniformly bounded
below (i.e., if the derivative of the curvature is uniformly bounded above), we can
replace the ratio M2

m2
appearing in Lemmas 5 and 6 by a constant M3 that depends

only on a lower bound on the smoothness of the curvature, not on the curvature
itself, so that we get α = 2πM3 and β = √

M3. The number of intersection and
normal line oracle calls is then O∗((M2

m2
)2 · M3 · (ε√M2)

−1), which is quadratic

in the curvature ratio M2
m2

.

9. Discussion and future work. We give informal discussions of three natu-
ral questions left open by this paper.

9.1. Sampling from convex polytopes with the geodesic walk. In this paper,
we presented the geodesic walk, gave bounds on its mixing properties for general
manifolds M with bounded positive curvature, and analyzed a simple efficient
implementation of the walk in the special case that M = ∂K is the boundary of a
convex set K. However, it is clear that our bounds can be very poor for some natural
manifolds, even in this special case. In this section, we discuss a natural open
question: how strong is the assumption that ∂K has bounded positive curvature,
and how can this assumption be weakened in practice?

We first note that the assumption of nonnegative curvature is very weak. Recall
that the Alexandrov curvature is a generalization of the usual notion of sectional
curvature to more general metric spaces, and that the boundary of a convex body
in R

d always has nonnegative Alexandrov curvature (see, e.g., [2] for a definition
of Alexandrov curvature and survey of relevant results). However, the assumption
that the curvature is bounded is much stronger: it is straightforward to check that
the boundary of any polytope will have Alexandrov curvature that is not bounded
away from either 0 or +∞.

Fortunately, it is possible to obtain efficient samples from the boundaries of
convex bodies that do not satisfy our assumptions by using appropriate pre- and
post-processing steps. We now give an algorithm that allows us to replace the task
of sampling from the boundary of a convex body ∂K with the task of sampling
from a related “rounded” body ∂K′ whose sectional curvature is bounded from
above by O(d2). The construction is based on essentially the same intuition as
the pre- and post-processing described in Section 5 of [38] for sampling from the
interior of a convex set, though the required analysis is slightly more delicate. We
first require some simple definitions.

DEFINITION 3 (ε-thickening and projection). For fixed ε > 0 and convex
body K ⊂ R

d , we define Kε = {x ∈ R
d : infy∈K ‖x − y‖ ≤ ε} and Mε = ∂Kε .

We define the projection-like map fε : Mε �→ M ≡ ∂K by

fε(x) = arg min
y∈M

‖x − y‖.
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Algorithm 4 Simple rejection sampling algorithm
parameters: Convex set K and parameters ε > 0, N ∈N.
output: Samples X1, . . . ,XN from the uniform measure on M ≡ ∂K.

1: for i = 1,2, . . . ,N do
2: Sample Zi ∼ Unif(Mε).
3: Propose Yi = fε(Zi).
4: Accept the sample Yi and set Xi = Yi with probability Hε(Zi). Otherwise,

reject the sample and go back to Step 2.
5: end for

We define Hε(x) to be the magnitude of the determinant of the Hessian of fε at
x, when it exists. We note the following.

LEMMA 7. With notation as above,

0 ≤ Hε(x) ≤ 1

for all x ∈ Mε .

PROOF. This is an immediate consequence of the fact that fε is a contraction;
see [42] for a proof of this fact. �

As a consequence of this lemma, for all ε > 0 the following is a valid rejection-
sampling algorithm for sampling from M if you know how to sample from Mε .

The rejection rate of this algorithm is given by

P[reject] = Area(M)

Area(Mε)
.(9.1)

By Crofton’s formula, for ε = 1
20d

we have

Area(Mε) ≤ Area(M) + 1

2
.(9.2)

Assuming without loss of generality that Area(M) ≥ 1 after appropriate rescal-
ing and choosing ε = 1

20d
, we have by formulas (9.1) and (9.2) that the rejection

probability of Algorithm 4 is uniformly bounded away from 1:

P[reject] ≤ 2

3
.(9.3)

Thus, in order to be able to sample from the uniform distribution on M, it is
enough to be able to sample from the uniform distribution on Mε as long as ε <

1
20d

. We have gained something important in this replacement: while M may have
unbounded sectional curvature, the sectional curvature of Mε is at most ε−2. To
see this last fact, consider a point x ∈ Mε and let y ∈ M satisfy ‖x − y‖ = ε
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(such a nearest point exists by the definition of Mε). Then the ball Bε(y) of radius
ε centered at y is entirely contained in the interior of Mε , and x is on the boundary
of both Bε(y) and Mε . Therefore, the radius of curvature of Mε at x must be at
least ε (recalling that Mε has nonnegative curvature because M is the boundary of
a convex body), and hence the sectional curvature at x must be at most ε−2. Since
this applies for every point x ∈ Mε , we conclude that the sectional curvature of
Mε is at most ε−2.

Inequality (9.3) allows us to conclude that, using Algorithm 4, we can always
transform the problem of sampling uniformly from a manifold M with the prob-
lem of sampling uniformly from a slightly perturbed manifold Mε with bounded
sectional curvature supx∈Mε

supu,v∈TxMε
Cx(u, v) = O(d2).

Further discussion of pre- and post-processing is out of the scope of this paper.
We leave two related questions for future work:

1. Is there another perturbation of the manifold that guarantees an even smaller
upper bound on the sectional curvature?

2. Is there another perturbation of the manifold that guarantees a useful lower
bound on the sectional curvature?

9.2. Sectional or Ricci curvature. Readers familiar with previous work on
mixing for walks on manifolds with “positive curvature,” such as [31], may be
surprised that our main conditions are stated in terms of the sectional curvature
rather than the Ricci curvature. Roughly speaking, a manifold has positive sec-
tional curvature if it is positively curved “in all directions,” while it has positive
Ricci curvature under the weaker condition that it is positively curved “on aver-
age.” It is natural to ask: are the main results of the paper true if we replace our
bound on the sectional curvature with the weaker analogous assumption on the
Ricci curvature?

If we consider Algorithm 1 for very small integration time T , the answer is yes.
Indeed, it is straightforward to check that, in the limit as T goes to 0, Algorithm 1
has the same contraction bound as the ball walk studied in Example 4 of [31].
However, choosing T to be very small will generally result in a very inefficient
algorithm; it would be much more useful if we could obtain a similar result for T

large.
For longer integration times, we do not know the answer to the question in

any generality, but mention that some positive results are possible using existing
(but more advanced) results from differential geometry. For example, we could
find an “averaged” version of the contraction result in Theorem 6.1 if we could
replace references to Rauch’s theorem to an analogue that assumed only a positive
Ricci curvature, rather than the stronger assumption of positive sectional curvature.
There has been substantial research on finding such analogues, under the name of
“comparison geometry” (see the survey [41]). We do not summarize these results
here, except to note that there exist some positive results that would apply to our
algorithm, including those in [10].
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9.3. Faster mixing time bounds for Hamiltonian Monte Carlo. Hamiltonian
Monte Carlo (HMC), a Markov chain algorithm that is in many ways analogous
to the geodesic walk, is popular in applications such as statistics and machine
learning where one wishes to sample from a target distribution π :Rd →R

+. The
HMC Markov chain proceeds on R

d in a similar way as the geodesic walk on a
manifold M, except that the geodesic trajectories are replaced by the trajectory of
a particle moving according to the laws of classical mechanics in a potential well
with potential U = − log(π). When π is a high-dimensional product measure,
most HMC trajectories are closely approximated by a geodesic on one of the level
sets of π , due to the concentration of measure phenomenon. In a similar vein,
the paper [37] uses concentration of measure to approximate HMC with geodesic
trajectories on a related manifold, called the Jacobi manifold.

Using a different approach, the paper [27] obtained the best current mixing time
bound O∗((M2

m2
)2) for HMC on strongly log-concave distributions π , when the

eigenvalues of the Hessian matrix of π are uniformly bounded above and below
by positive constants M2 and m2, respectively. As each level set S of π has sec-
tional curvature ratio M2(S)

m2(S)
≤ M2

m2
, where M2(S) and m2(S) are, respectively, the

maximum and minimum values of the sectional curvature of S, the mixing time
bound O∗((M2

m2
)2) obtained in [27] for HMC on the distribution π is slower than

the mixing time bound of O∗(M2
m2

) we obtained in this paper for the geodesic walk
on any of the level sets S of π .

Since HMC trajectories closely approximate geodesic paths, we conjecture that
one should be able to obtain a stronger mixing time bound of O∗(M2

m2
) for HMC

that matches the mixing time bound we obtained in this paper for the geodesic
walk on any of the level sets S of π . We leave as an open problem whether the
methods used in this paper to bound the mixing time of the geodesic walk can be
extended to obtain the conjectured mixing time bound of O∗(M2

m2
) for HMC.
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