Statistical Science

2016, Vol. 31, No. 4, 495-498

DOI: 10.1214/16-STS561

Main article DOI: 10.1214/16-STS592

© Institute of Mathematical Statistics, 2016

Contextuality of Misspecification and
Data-Dependent Losses

Peter Griinwald

Abstract.

We elaborate on Watson and Holmes’ observation that misspec-

ification is contextual: a model that is wrong can still be adequate in one
prediction context, yet grossly inadequate in another. One can incorporate
such phenomena by adopting a generalized posterior, in which the likelihood
is multiplied by an exponentiated loss. We argue that Watson and Holmes’
characterization of such generalized posteriors does not really explain their
good practical performance, and we provide an alternative explanation which
suggests a further extension of the method.

It is a pleasure to comment on this stimulating pa-
per about decision making under model misspecifica-
tion. I was happy to see that it begins by pointing out
that misspecification is contextual—a point that cannot
be stressed enough, and that has also played a central
part in my own work on Bayesian inconsistency un-
der misspecification (Griinwald and Langford, 2007,
Griinwald and Van Ommen, 2014). I will focus my
comments on this aspect and on the developments in
Section 4, which are the most closely related to my
own work. While I think the paper’s combined Bayes-
minimax approach has substantial merit for the case of
“simple” loss functions of the form L,(6), involving
model parameters and actions (as in the synthetic ex-
ample in their Section 3.5), [ am more skeptical of the
application to losses of the form L, (0, z) or L,(z) that
involve data z as well, as in their Section 4.2. I do see
the merit of the approaches described by the authors for
such losses (indeed I have been advocating them my-
self), yet I do not see how their characterization can
explain their practical success: the proposed formal-
ism is rich enough to incorporate such approaches as
special cases, but it does not really motivate them. Be-
fore elaborating on this in Section 3, below I first in-
troduce data-dependent (DD from now on) losses and
I then show how nicely they illustrate the contextuality
of misspecification. I end by suggesting an extension
to the paper’s approach that may address my concerns.
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1. DD LOSSES

This section recalls some standard Bayesian de-
cision theory (Berger, 1985). It will be useful to
slightly extend the authors’ setup and consider models
{f(y|x;0) : 0 € ®} of conditional densities f(y|x; ),
with a joint outcome denoted as z = (x,y) and x
taking values in some covariate space X'—the au-
thors (WH from now on) only consider the uncon-
ditional case. Now, data-dependent losses come into
play whenever, based on initial data 7" := z1, ..., z,,
one wants to make predictions about one or more fu-
ture data items ZZ:_I = Zn+1, -+ - » Zn+m coming from
the same source. In practice, one often observes x;"ﬂ,
and needs to predict y,", ;, where one predicts y; by
a(x;),and a : X — R is some prediction function. One
measures the quality of such predictions using some
DD loss function such as, for example, the squared
error loss, ng)((x,y)) = - a(x))?, extended to
n outcomes by summing the losses, Léz) (erzn+1) =

" i —alxi)?.

If one’s uncertainty about Y given X is described
by density f(Y|X) and one wants to predict a single
outcome, one should use the Bayes optimal act for the
squared error loss. This is the function a ¢ defined by,
for each x,

ag(x):=argminEf[(Y — y’)le =x],
’ y'eR

which turns out to be given by as(x) = Ef[V|X =
x]. Similarly, if the prediction task of interest is to
make good predictions with respect to the absolute loss

Lf,l)((x, y)) = |y — a(x)|, then the Bayes optimal act


http://www.imstat.org/sts/
http://dx.doi.org/10.1214/16-STS561
http://dx.doi.org/10.1214/16-STS592
http://www.imstat.org
mailto:pdg@cwi.nl

496 P. GRUNWALD

ay that minimizes, for each x, E¢[|Y — VY IIX = x], is
obtained by setting ay(x) to the median of ¥ under
fY X =x).

Aside from their direct use in predictive inference,
data-dependent loss functions also play a central role
in Bayesian decision theory when the goal is to in-
fer structural properties of the domain being modeled.
They are then usually called (proper) scoring rules.
For example, consider a DM (decision-maker) who
represents her uncertainty about a domain by an un-
known conditional density f(Y|X). If one wants her
to quote her true beliefs about the regression function
E¢[Y|X], one may ask her to play a prediction game
in which action a will be scored by the squared error
loss, L@, that is, upon observing Z = (X, Y), she will
be scored LE{Q)(Z) = (Y —a(X))?. Her optimal (Bayes)
response will then be to output the function ay given
by ay(x) :=E¢[Y|X = x]. Yet if, instead, one wants
to entice a DM to quote her beliefs about the median
of Y as a function of X, one should score her using the
absolute loss L1,

2. DD-LOSSES AND CONTEXTUALITY OF
MISSPECIFICATION

The central issue here is that, if under misspecifi-
cation, the Bayes posterior concentrates at all, it will
tend to concentrate on distributions that assign high
(log-) likelihood to the data in expectation. Let me il-
lustrate this from a frequentist point of view, comple-
mentary to, but not in contradiction with, the expla-
nation given by WH: assume that Z; = (X;, Y;) are
1.i.d. under some imagined distribution with joint den-
sity f*—mnote that X; are random as well. Assume
that there exists a unique 6 such that f(-;6) is clos-
est, among all # € ®, to f* in KL divergence. Then
the tendency of the posterior to prefer 6 with high like-
lihood implies, under further (nontrivial) conditions,
that, as more data becomes available, it concentrates on
ever smaller KL neighborhoods of 6—after all, the KL
divergence D(f*| f(-;0)) is just the minus expected
log-likelihood ratio for one outcome.

Now for some combinations of models and loss
functions L,(z), it holds that the smaller the KL di-
vergence D(f*| f(-; 0)), the better the prediction per-
formance E(x y)~ f+[Lg,(Y|X)], if one predicts with
the action ag :=ay(|.) that is Bayes-optimal for 6.
We call a loss function L with this property associ-
ated with the model. For example, consider a standard
Bayesian linear regression model { fy|0 € ®}, which

assumes Gaussian noise of (say) fixed variance o2, pa-
rameterized such that the likelihood for a sample z" is
of the form

’

—__1l_sm _0(x))2
f(yn|xn,9)0<€ 202 Z,;l(yl 0(xi))

that is, 6 represents the regression function correspond-
ing to f(-|-; 8). Now the “best” 6 (closest to f* in the
KL sense) will also be the best 8 for squared error pre-
diction purposes, minimizing the f*-L®-risk (risk =
expected loss). The reason is that, for each fixed o2, the
KL divergence as a function of 6 is an affine function
of the squared error risk achieved by 9:

e o 100 L XIX
D(f*If(6) =Bx.y)~s [10% f(YlX;QJ

1 2

=552 ‘Ex,y)~p+(Y —0(X))" —C,
where the constant C depends on o2 and f*, but not
on 6. So, if the goal is to make good squared-error
predictions, the Bayes posterior—if it concentrates at
all—will concentrate on the squared-error risk-optimal
6 in the model. In the terminology of Griinwald and
Van Ommen (2014), the squared error is associated
with the Gaussian regression model; in WH’s termi-
nology, the Gaussian regression model is suitable in
the context of squared error prediction, even under mis-
specification.

... but now consider absolute loss (L) predictions.
If the standard Gaussian regression model is used and
the model is correct, then f*(Y|X) = f(Y|X; é), and,
given enough data, the Bayes predictive distribution
will converge to f*(Y|X), and hence its Bayes-optimal
LM _predictions will converge to the optimal predic-
tions based on the “true” f*, and hence become op-
timal, in expectation, for the LV-loss, under the true
distribution f*. But under misspecification, § may be
quite different from the 6 € ® that gives the optimal
LM _predictions, and hence the Bayesian posterior—
even if it concentrates—may not lead one to adopt
the optimal LD-predictions that are available within
the model. To see this, note that the Bayes act under
f(Y|X;0) under LM-loss is to predict Y again using
0(X) [since, according to the model, 6(X) is indeed
the median of Y| X1, but in reality, even if 6 is the true
regression function, 6 (X) may be very far from the me-
dian if the errors are not really normally distributed. In
our terminology, the LD-error function is not associ-
ated with the Gaussian regression model. In WH’s ter-
minology, under misspecification, the Gaussian regres-
sion model is neither suitable in the context (inference
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goal) of predicting with the L(D-loss function nor in
the context of inferring the true (or at least “a reason-
able”) median of Y as a function of X.

3. DD LOSSES AND MINIMAXITY (OR
MAXIMINITY?)

Section 4 of WH’s paper describes model diagnos-
tics based on a modified posterior distribution, defined
as

(1) m, ¢ =arg sup Ex[Ly(0,Z)],

rwelc
where Z is observed data, and I'c is the KL ball of
radius C around ;7. In most applications including the
ones below, 7y is just the standard posterior based on
prior . WH show that 71’;1’]2 is given by

72 o P (OLa®- D )

(2) Aq(CYL,(O,Z
oc et OLa®.2) £ (7. 0V (0),

where A,(C) is a nonnegative real valued monotone
function of C (essentially a Lagrange multiplier).

The idea of adopting (2) is that 7; may paint an
overly optimistic picture of the loss L = L,(0, Z)—
therefore, one may look for a more robust assessment
by specifying a neighborhood of m; and look at the
7’ that gives the worst-case possible expectation of L
within this neighborhood. Because of a special coher-
ence property of Kullback-Leibler (KL) divergence,
KL balls are the preferred choice for defining such
neighborhoods. This all makes perfect sense—as long
as L does not involve the already observed data. An
example of such an L = L, () is provided by the syn-
thetic example of Section 3.5. But WH also consider
cases in which L does depend on the data, still tak-
ing the 7 achieving the maximum in (1). This seems
strange: if a DM wants to make a robust assessment of
the loss an action makes on data, this should be new, as
yet unseen data—not the data already observed, about
which there is no uncertainty anyway. Both from a
Bayesian and a game-theoretic (robust, minimax) point
of view, adopting a distribution that is minimax for data
already observed seems unnatural to me.

The issue becomes acute when a DM has prior be-
liefs about a set of parameters but does not know how
to specify a likelihood f(z; 6). WH give the example
where z = y and 0 represents the median of an un-
known distribution, which we can extend to the condi-
tional case with z = (x, y) and 6(x) now representing
the conditional median of y given covariate x. The loss

function! whose Bayes act is the empirical median is
given by the LD Joss, Lél)(z”) =) ;lyi —0(x;)|, and
WH suggest to adopt a posterior of the form

3) 7M@) oc e 7 (9),

for some A > 0, which is compatible with previous
approaches from the machine learning literature such
as in prediction with expert advice (Vovk, 2001) and
PAC-Bayesian style inference (Zhang, 2006a, 2006b).
But (3) gives the distribution which minimizes expected
loss among all distributions in a KL neighborhood
of 7, and to make it a special case of their framework,
they have to change the goal, it seems, from a worst-
case approach to a best-case approach [posteriors of
the form (1) always induce a positive multiplier of the
loss; yet here it is negative]. The paper does not really
explain why it would make sense to switch goals in this
case, other than noting that a DM might “wish” to do
this.

I claim that the real motivation for using generalized
posteriors of the form (3), with data-dependent losses,
is quite different: this posterior tends to favor distribu-
tions with small empirical LM Joss, and hence, will
tend to assign high posterior density to those 6 that
will have small L®-loss on future data. In fact, one
can think of (3) as defining a pseudo-likelihood

) Fo(y)x; 0, ) o e MY
so that for each fixed A, the corresponding KL diver-
gence satisfies

o o
D(f*If ('70’)‘))—E(X,y)~f*|:10g fo(Y|X;9,K)]

=A 'E(X,Y)Nf*|Y —9(X)| - C,

where C is a constant depending on A and f* but not
on 6. Thus, under this model the KL divergence of 6 to
f* is an affine function of the L-risk, so that good
performance in terms of KL divergence implies good
performance in terms of L(V-risk (and hence optimal
estimation of the median). This makes the L"-loss an
associated loss (in the sense above) for the model de-
fined by (4). Since the posterior—if it concentrates at

Tam deviating from WH’s notation here: throughout the paper,
actions for a given loss function are written as subscripts and model
parameters (random variables under the posterior) are written as
second argument for the loss function. Yet in the median example,
WH use the notation L(y, ) rather than Ly (y) for |y — 6|. Here, 6
clearly plays the role of an action rather than a parameter though:
it is equal to the action ag that would be Bayes-optimal under dis-
tribution f(y;6). Note that we have ag = 6 because the densities
specified are symmetric around the mean 6.
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all—will tend to concentrate on 6 that is closest in KL
divergence to f*, this is a desirable property if one is
interested in good LV-loss behavior, and so it does
explain why one should have a minus in the exponent
in (3).

I have been advocating the use of pseudo-likelihoods
of the form exp(—AL) with such a motivation ever
since Griinwald (1999). WH suggest some poten-
tially important extensions to this idea—though again,
I think the answers that WH provide need additional
motivation and disambiguation. Consider, for example,
a case in which a probability model, and hence a likeli-
hood are available after all. Suppose one thinks that the
likelihood, while not a perfect description of the world,
is sufficiently reasonable to take it into account when
determining the posterior, and one is once again in-
terested in learning the conditional median. The linear
regression model above is a case in point. The paper’s
original minimax approach suggests to take the final
posterior 7" as 712?2 in (2), which would favor 6 with

large L(D-loss; in contrast, the paper’s later maximin
approach suggests that one might replace the prior
in (3) by the Bayes posterior, which would amount to
adopting 7" again as n;tlg in (2) but now with a nega-
tive multiplier, favoring # with small L(D-loss. What to
do? The motivation of generalized posteriors in terms
of model-associated (“‘contextual”) loss functions sug-
gests a solution: one extends the original model, defin-
ing a likelihood of the form

1 2
(5) ol 0, 0) oce I ooz OO

and determines the n-generalized posterior for some
n>0as

(010, ¥)) o< (f°(v1x5 6, 2))" - (6, 1).

One thus has enlarged the model by an extra LD-term
in the exponent weighted by extra parameter A, which
determines how strong the L"-loss should influence
the standard likelihood. One then adds a second pa-
rameter n when determining the posterior. Griinwald
and Van Ommen (2014) show that such an 7 is differ-
ent from A and o ~2 and cannot be absorbed, in gen-
eral, into the likelihood itself; it needs to be added

since setting n = 1 may cause the posterior never to
converge at all under misspecification. While X is then
determined by standard Bayesian means (it is part of
the prior and posterior), something different is needed
for n: Griinwald and Van Ommen (2014) describe a
data-dependent (“‘Safe Bayesian”) method for finding
it. (5) is a special case of likelihoods of the form
©) e f(y1x:6),

Zy,
where ay is the Bayes act for L under f(-;8) which,
in the case of L equal to the LD loss, is the median
under f(-;6). In the present case, f(y|x; ) is a sym-
metric density for y with mean 6 (x), hence the median
is itself equal to 0 (x), giving rise to (5). It would be in-
teresting to explore whether such generalized Bayesian
procedures based on extended likelihoods perform well
in practice.
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