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Abstract.

Mark-recapture (MR) methods are commonly used to study

wildlife populations. Taking advantage of modern genetics one can general-
ize from “recapture of self” to “recapture of closely-related kin”. Abundance
and other demographic parameters of adults can then be estimated using, if
necessary, only samples from dead animals (live-release is optional). This
greatly widens the scope of MR, e.g. to commercial fisheries where large-
scale tagging is impractical, and enhances the power of conventional MR
studies where live release and tissue sampling is possible. We give explicit
formulae for kinship (i.e., recapture) probabilities in general and specific
cases. These yield a pseudo-likelihood based on pairwise comparisons of in-
dividuals in the samples. It is shown that the pseudo-likelihood approximates
the full likelihood under sparse sampling of large populations. Experimental
design is addressed via the principle of maximizing the Fisher information
for parameters of interest. Finally, we discuss challenges related to kinship
determination from genetic data, focusing on current limitations and future

possibilities.
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1. INTRODUCTION

Mark-recapture (MR) methods allow population size
and demographic parameters such as mortality rates
to be estimated from an appropriately designed mark-
ing experiment. The modern foundation was laid in
Cormack (1964), Jolly (1965) and Seber (1965), and in
the subsequent 50 years MR methods have been widely
used in wildlife studies, as well as in other fields such
as sociology. The basic premise is that individuals can
be marked by some means, and that the marks will be
recognized if the individual is recaptured at some later
sampling occasion. In the present paper, we focus on
DNA marks, which are becoming increasingly popu-
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lar in wildlife studies (Blouin, 2003, Lukacs and Burn-
ham, 2005). A major advantage of DNA tags is that
they contain additional information about relatedness
among individuals in the sample. Based on this obser-
vation, Skaug (2001) suggested a “single sample” ver-
sion of the Petersen mark-recapture estimator. An indi-
vidual is marked by its presence in the sample, and “re-
captured” if the sample contains one or more close rel-
atives; intuitively, this is less likely to happen in bigger
populations, so the number of “recaptures” provides in-
formation on adult abundance. The recaptures also pro-
vide information on other demographic parameters: for
example, adult survival rate is inversely related to the
average time taken to “recapture” a parent after sam-
pling its offspring. We refer to methods that use in-
formation about relatedness in the sample as close-kin
mark-recapture (CKMR), and in this paper we extend
the classical MR framework by incorporating close-kin
information. Bravington (2015) established an abun-
dance estimate for adult Southern bluefin tuna based
on the detection of 45 parent-offspring pairs in 13,000
samples, constituting the first large scale application of
CKMR.

To clarify the ideas, the simplest version of CKMR is
shown in Figure 1. Each juvenile is an offspring which
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FIG. 1. The simplest form of CKMR. Juveniles are small, adults
are big; parents and offspring are linked by lines; dark means sam-
pled, light means unsampled.

“marks” its two adult parents. We compare the geno-
type of each of the n; juvenile samples to each of the
n4 adult samples, to check if a “mark” is recaptured.
The probability that the adult happens to be one of the
juvenile’s two parents is 2/N 4, where N4 is adult pop-
ulation size. Hence, if the entire set of ny x n4 com-
parisons yields H Parent-Offspring pairs, then adult
abundance can be estimated as N A=2nyns/H. Real
applications to open populations are more complicated
due inter alia to adult mortality in the interval between
birth and sampling, non-random sampling, reproduc-
tive variability, different types of “mark” (i.e., different
kinships) and uncertainty in genotyping, all of which
can affect the probability of recapture.

CK greatly expands the scope of MR, most ob-
viously because all samples can be obtained merely
from dead animals if necessary, thus avoiding the of-
ten expensive or intractable task of live-release. Hence,
CKMR is directly and cheaply applicable to “fully
lethal” settings such as hunting, by-catch and large-
scale commercial fisheries. Much of this paper concen-
trates on large-population settings, which we anticipate
will be the most important arena for CKMR.

From a statistical perspective, extending MR to CK
involves three main challenges:

1. Different demographic equations and extra pa-
rameters (e.g., fecundity-at-age) needed to describe
“recapture” probabilities;

2. A more complicated likelihood because the latent
space of possible histories is much more intricate (in
effect, the genealogy of the entire population);

3. Quantifying the reliability of kinship-determina-
tion from genotype data (loosely analogous to misiden-
tification in photo-ID studies).

We address these points in the rest of this paper,
first presenting motivating examples and setting up the
core assumptions in Section 2. In Section 3, we de-
velop generic equations for prior probability of parent-
offspring and half-sibling pairs in terms of individual-
level covariates, and show examples for specific sce-
narios. Section 4 shows how the prior probabilities
can be combined into a pseudo-likelihood, similar to
Skaug (2001). It also considers the link to Fisher in-
formation, and suggests simple approaches to experi-
mental design, including the crucial question of sam-
ple size. We consider genotyping in Section 5, review-
ing how kin can be identified statistically, and con-
sidering which types of kinship can reliably be deter-
mined with genetic technology available now (parent-
offspring, half-sibling) and in the future. In the dis-
cussion of Section 6, we mention the (many) strengths
and (few) weaknesses of CKMR, and discuss statisti-
cal challenges for future work. The whole field is quite
new, being made possible only by technological ad-
vances from the mid-2000s in cost and reliability of
genotyping, so this paper is as much a preview as a
review. The technological progress shows no sign of
slowing down, so the scope of CKMR applications is
likely to become wider and wider.

2. CLOSE-KIN METHODS
2.1 Motivating Examples

CKMR methods are more varied than standard MR
in the sense that the actual implementation depends
considerably on the biology of the species in question,
especially the reproductive biology. Our own experi-
ence of CKMR currently comprises 7 or 8 projects on
bony fish (teleosts), marine and riverine sharks, and
marine mammals; project status ranges from desk de-
signs to completed exercises. To illustrate something
of the variety and scope, and to provide points-of-
reference for the statistical developments later on, we
briefly describe three real examples: Southern Bluefin
Tuna, White Sharks and Antarctic Blue Whales. Al-
though none are terrestrial, they do vary considerably
with respect to biology and with respect to the covari-
ate information that is available. They illustrate two
clear differences between CKMR and MR: that fecun-
dity is important, and that time-of-marking is unknown
unless age is measured. See Table 1 for abbreviations
of kinship categories.
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TABLE 1
Kinship categories (K) with their identity-by-descent (ibd)
probabilities k (see Section 5). Abbreviation codes are given for
the kinship types that occur frequently in this paper. For
asymmetric kinships, such as parent-offspring, a distinction in the
notation (PO versus OP) is made to indicate which individual is
the parent. The unrelated category (U) will often include all
kinships not explicitly mentioned in a CKMR model, in which case
the ibd probabilities shown will only be approximate

Abbrev. ibd probability

Pairwise kinship K Ko K1 1)
Self, Monozygous twin S 0 0 1
Parent—offspring PO/OP 0 1

Mother—offspring MO/OM

Father—offspring FO/OF
Full sibling 1/4 1/2 1/4
Half-sibling HS 1/2 1/2 0
Maternal half-sibling MHS 1/2 1/2 0
Grandparent—grandchild 1/2 1/2 0
Aunt-niece 1/2 1/2 0
Unrelated U 1 0 0

Southern bluefin tuna (Thunnus maccoyi). This
valuable, long-lived fish has been heavily exploited for
decades, with the adult stock reduced to perhaps 5%
of pre-exploitation biomass by the mid 2000s (Hillary
et al., 2015). While slow recovery is now expected un-
der improved management, considerable uncertainty
remains both about the demography and about the re-
liability of underlying data, especially for monitor-
ing adult abundance. To address this, sampling for
CKMR began in 2006, with 3-year-old juveniles from a
nursery-ground fishery, and adults from the spawning-
ground fishery where age, sex and length were also
recorded. By 2012, about 8000 juveniles and 5000
adults had been genotyped at 20-25 hypervariable mi-
crosatellite loci, and 45 PO pairs were found among
the approximately 38,000,000 adult-juvenile compar-
isons. An age-length-sex-structured CKMR model was
built to estimate adult abundance (as a time series),
fecundity-at-size and adult mortality rate (Bravington,
Grewe and Davies, 2014). The results—indicating an
adult stock just under 2,000,000 animals—have been
adopted into management, and CKMR is being ex-
tended to long-term monitoring of the species. In the
future, new genotyping technologies (Section 5.3) will
enable juvenile half-sibling pairs to be identified; this
improves the information per sample, and also allows
relaxation of a biological assumption required by the
PO-only model.

White sharks (Carcharodon carcharias). This is a
late-maturing animal with modest litter sizes, little
growth after maturity and presumed low resilience to
exploitation. The Eastern Australia/New Zealand pop-
ulation was exposed to appreciable human-induced
mortality in the middle of the last century. There is
some public perception that numbers may have in-
creased recently, but no suitable data for construct-
ing any kind of abundance estimate, nor for reliably
monitoring trends in the future. Adult white sharks are
too rarely encountered to be useful in any abundance-
estimation method, but juveniles can be reliably sam-
pled along the eastern Australian coast. A CKMR
study began in 2011, using tissue samples from living
and dead juveniles to identify half- (and full-) siblings,
with age estimated from body length or vertebral ring
counts. So far about 20 HS pairs have been found, and
a preliminary CKMR model has been fitted to estimate
abundance (again, a time-series) and survival.

Antarctic blue whales (Balaenoptera musculus in-
termedia). This subspecies was almost extirpated by
whaling between 1900 and the early 1970s. It is un-
clear how well the population has since recovered; sub-
sequent abundance estimates from line transect surveys
are in the low thousands, but with high CVs because of
low encounter rates. However, with a long-term mark-
recapture project using biopsy sampling (DNA tags), it
may be possible to acoustically locate enough whales
to make a respectable abundance and trend estimate us-
ing classical MR methods (Peel et al., 2013). If the
population is indeed recovering as expected, then PO
pairs would increase the number of “recaptures per
sample” substantially, and a design study has shown
that CVs would be considerably reduced (Bravington,
Grewe and Davies, 2014). Hence, this would constitute
a CKMR application with non-lethal sampling only.
The lack of age information from biopsies (though see
Section 6) complicates the calculation of kinship prob-
abilities (Section 3.5).

2.2 General Framework

In the standard MR literature, the data from each in-
dividual are organized into capture histories (Pollock
et al., 1990). In a close-kin setting, this is difficult for
a number of reasons, such as linked capture histories
of related individuals and potentially because of un-
certainty in kin identification. Instead, we consider a
pseudo-likelihood approach which uses only pairwise
comparisons of sampled individuals. A pairwise com-
parison between individuals i and j gives rise to a kin-
ship category K;; taking values from a discrete set K:
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TABLE 2
Summary of notation (excluding genetics; see Section 5). In the third column “latent” denotes quantities that may be unobserved, but are
needed in model formulation. Note that N and n refer to different quantities, and hence do not conform to the standard upper/lower case
letter convention used in statistics

Term Definition Status

n Sample size (# captured individuals) Observed
Capture probability at given sampling occasion
Quantities related to a captured individual

y Time (year) of birth Latent

X Place of birth or capture Latent/Observed

t Time of capture Observed

z Covariate vector at time of capture Observed

a Age Latent/Observed

L Length Observed
Population dynamics and demography

N Total population size (males and females) Parameter

¢ Individual survival probability Parameter

o Age of maturity Parameter

B Per capita average birth rate, § = E(R) Parameter

R Reproductive output (# offspring) of an individual in a given year Latent

Ry Total reproductive output from all individuals in a given year Latent
General

0 Vector of all model parameters Parameter

K Kinship category (see Table 1) Latent/Observed

for example, K = {PO, HS, U}, where the categories
are explained in Table 1. Depending on the situation,
only certain categories may be relevant: for example,
with lethal sampling, self recapture (S) is impossible;
if only juveniles are caught, then parent—offspring (PO)
is impossible; if too few genetic markers are used, half-
siblings (HS) may be undetectable. The unrelated cat-
egory (U) covers all more distant relationships than
those explicitly modelled.

2.2.1 Population dynamics and demography. To
emphasize the relationship to classical MR, we have
chosen our notation (Table 2) to match that literature
as closely as possible. We treat time ¢ as a discretely
varying quantity, and for simplicity we refer to the unit
of time as a “year”. There are three broad classes of
parameters that determine the population dynamics for
CKMR:

¢ Individual survival probability, which in general
can vary with age and other covariates.

B Per capita birth rate, i.e. the expected number of
offspring an individual produces in a given year. This
parameter may also vary with age and other covariates.
The actual reproductive output of a given individual in
year ¢ is denoted by R(¢), and is a random variable with

E[R(1)] = B.

N; Adult population size in year ¢. Given the pop-
ulation size in some reference year fg, the subsequent
population trajectory will evolve deterministically or
stochastically according to ¢ and 8.

Subscripts are used when the population is stratified;
for example, the number of females aged a in year ¢
is denoted by Ng,,. We do not go into much detail
about the actual form of the population dynamics, as
the CKMR approach does not require any special form.
Complex population dynamics are allowed for, such as
density dependence where both ¢ and 8 may be func-
tions of Ny, and thereby vary with time. N; itself can
be treated either as deterministic or random, with de-
mographic stochasticity handled as latent random vari-
ables on survival and/or incoming recruitments; in our
motivating examples, we ignored stochastic survival (a
reasonable approximation for large populations) and
we allowed for stochastic recruitment only in the case
of tuna, which like many bony fish shows large fluc-
tuations in year-class strength. At the individual level,
on the other hand, demographic stochasticity certainly
plays an important role.

Sampling of individuals is performed at discrete time
points. The sampling may be with or without removal
from the population. A typical example of the former
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is lethal “sampling” which is relevant for catch data.
Non-lethal sampling introduces the minor notational
problem that individuals i and j in the sample actu-
ally may refer to the same biological individual. Asso-
ciated with each sampled individual there may be co-
variates, such as date and location of capture, age and
sex. As noted above, the demographic parameters such
as ¢ and B may depend on some of these covariates.
Similarly, the sampling probability p of a given indi-
vidual in the population may depend on its covariates.
This allows for stratified sampling, e.g. if sampling is
done only among juvenile individuals [ p,(adult) = 0]
for certain ¢, as for southern bluefin tuna. We shall de-
note by z the vector of observed covariates. Further as-
sumptions on the sampling scheme are given in Sec-
tion 3.

Throughout much of this manuscript, we assume that
sampling is sparse, i.e. only a small fraction of the pop-
ulation is sampled, by which we mean that the total
sample size is n = O(N'/?), where N is adult popula-
tion size. As will be shown in Section 4.3, this yields
O (1) number of recaptures, and thus O(1) precision
on estimated parameters. Sparse sampling is not a re-
quirement of close-kin methods in general, but when
sampling is not sparse the pseudo-likelihood presented
below may not have the properties expected of a proper
likelihood.

3. KINSHIP PROBABILITIES

We now show how the kinship probability P(K;; =
k|z;i,z;) can be calculated for parent—offspring (k =
PO) and half-sibling (k = HS) relationships. These
probabilities are the building blocks of the pseudo-
likelihood defined later. Our notation indicates that we
are conditioning on the covariate vectors z; and z;,
meaning that we take a stochastic view of the covari-
ates. Recall that z; consists of all the information about
an individual, except its genotype and kinship to other
individuals, that is recorded when the individual is cap-
tured. We include #; in z;, as we will always condition
on the time and fact of capture. A second subscript,
or an argument, on a covariate always refers to time,
and indicates the (unobserved) value of the covariate
at a time other than sampling; thus, ¢; would be i’s
length when sampled at ¢;, and £;;+ or £; (t*) would be
i’s length at some other time #*. Note that there may
also be important covariates that are not measured and
thus not in z, e.g. age in Section 3.1.3.

It is in general necessary to deal separately with ma-
ternal and paternal descent, and the sexes may have

quite different demographics. For simplicity, we con-
centrate here on mother—offspring (MO) and maternal
half-sibling (MHS) kin only, and we assume adult sex
is known; extensions to other cases are straightforward.

3.1 Mother-Offspring

Consider a female i, an offspring j, and the event ““i
is j’s mother”, i.e. K;; = MO. The key to calculating
P[K;; =MO]|z;, z;] is the latent variable R;(x;, y;) or
just R;; for short, namely i’s reproductive output at the
place x; and time y; that j was born. Given R, the
probability that j is i’s offspring is just R;; divided by
Ry (xj,yj), the total reproductive output of all adult
females at that same time and place. Note that x; and
y;j may or may not be uniquely determined by z;, and
that place of birth is irrelevant unless there is some kind
of heritable stock structure; if place does matter, then
the notation allows i to reproduce in more than one
place per year.

The above assumes that z is irrelevant once R is
known, ie. P[K;; = MO|R, z] = P[K;; = MO|R].
For this to hold, “reproductive output” should strictly
speaking be measured in the correct units, namely the
number of surviving “juveniles” at 7; that have z = z;;
and that therefore have the same sampling probabil-
ity as j; hence, R could in principle also have z; as
a third argument. However, it will often be reasonable
to assume that all offspring from the same (x, y) have
equal survival and sampling probabilities, and to work
with a general notion of “fecundity” B (sometimes as
a function of age or other parental covariates) as the
measure of expected reproductive output. For simplic-
ity, we make that assumption throughout, though it can
be relaxed. Two further conditions on covariates are
given at the end of Section 3.1.1.

The notion of kinship probability for MO as ex-
pected relative reproductive output, can then be ex-
pressed directly albeit opaquely as

P[K;j =MOl|z;, z;]

E[R; (X}, Yj)lzl‘]}

3.1)
:Eyj,XjIZj[ E[R+(X;,Y))]

Practical use entails re-expressing this in terms of case-
specific covariates and parameters. We show some ex-
amples below, starting with simple cases for clarity,
and noting connections with our motivating examples.

3.1.1 Base case: Ages known, constant fecundity,
lethal sampling, no stock structure. Since date-of-
capture and age are known, i.e. z = (¢,a), we also
know dates of birth y =t — a. Clearly, i can be j’s
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mother if and only if i was alive and mature at y;
(and not yet sampled, since sampling is lethal). In that
case, thanks to constant fecundity she would be just
as likely as any of the other Ngyj mature females to
be j’s mother, so her expected relative reproductive
output would be 1/Ng,, . Writing « for age-at-maturity
and I[[-] for the indicator function, the composite result
is

E[R; (yj)|yi,» ti]
E[R+(yj)]

Clyita<y; <]

Ney, '

This expression is unaffected by year-to-year fluctu-
ations in the overall survival probability of juvenile
cohorts, because we condition on the fact that j is
alive when sampled. For a similar reason, adult survival
probabilities do not appear explicitly, although they do
indirectly affect NQyj' Adult sampling probabilities p
do not appear either. There is no requirement that all
adults should have the same sampling probability, nor
indeed the same expected reproductive output (though
the latter should not change systematically after matu-
rity: Section 3.1.3).

What does matter, however, is that the event of an
adult’s being sampled should be independent of the
number of its offspring sampled, conditional on co-
variates. As well as z; and z;, there may also be rele-
vant unobserved covariates, which then need to be inte-
grated over as in the examples below. This key require-
ment can be expressed formally as two linked condi-
tions:

P[Kij =MOl|z;, zj] =
(3.2)

1. For the potential mother i, there are no additional
covariates that affect borh the probability of her being
sampled (p) and her expected reproductive output at y;
(R;j). This is analogous to requiring “no unmodelled
heterogeneity of capture probability” in conventional
MR; its failure here would mean that some mothers are
more likely to be “marked” because they have more
offspring, and also more (or less) likely to be “recap-
tured”. A counterexample is suggested at the end of
Section 3.1.4.

2. There are no additional covariates that affect the
sampling and/or survival probabilities of both i and
her offspring. One counterexample would be if blue-
ness is heritable, and blue animals are more catchable,
but colour is mistakenly omitted from the condition-
ing. Another would be if mother-calf pairs are caught
together.

3.1.2 Non-lethal sampling. 1If animals are not killed
by sampling (e.g., if biopsies are used), it is no longer
necessary that #; < y;, because i can continue to
produce offspring after being sampled. However, she
might still die naturally between #; and y;, so her ex-
pected reproductive output at y; must be discounted
accordingly. The kinship probability becomes

P[K,‘j = MO|Zi, Zj]
(3.3)
I[y; +a <yl 1; i >yj,

= —— X
Ng,, {cbi(ti,yj); i <Yj,

where ¢; (#;, y;) is the probability that i survives from
ttoy;.

3.1.3 Age-dependent sampling and fecundity; ages
unknown. We now introduce age-dependent sampling
probability p(a), and age-specific fecundity B(a).
Sampling probability does not affect either the lethal
or non-lethal case when age is known. However, age-
specific fecundity does affect reproductive output. For
example, the lethal case (3.2) becomes

P[K;j =MOl|z;, z;]

_ Ilyj <til x Blai — (ti = y)))
Zaza :B(a)NQayj

where the maturity constraint y; + o« < y; has been ab-
sorbed into the argument of B(-). By definition, 8(a) =
0 for a < «, including the case a < 0 to avoid nota-
tional awkwardness in the numerator.

We first extend this so that a; is still observed but
a; is not, by summing the numerator over the possible
ages of i at #;. Her age distribution is conditional on
the fact that she was sampled, so p(a) now becomes
relevant:

]P)[K,'j = MO|Zi, ZJ']

_ Iy; <]
Zuza IB(G)NQayj
Za>0{p(a)NQazj x Bla—(t — yj))}
X .
Za>0 p(a)NQatj

If a; is also unknown, then so is j’s year-of-birth y;,
and a further level of summation is required, again in-
volving p(a) but this time for j. We omit the formula
for brevity.

In our blue whale design study, we considered non-
lethal variants of this case, with p(a) and B(a) constant
for a > « and zero otherwise, and simple deterministic
demography leading to closed-form expressions for the
sums.

(3.4)

9’

(3.5)
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3.1.4 Covariates other than age. Age, whether mea-
sured or not, is crucial to CKMR because it determines
the time of “marking”. However, it may not be the sole
covariate of importance. For example, in many teleost
fish including tuna, growth continues after reaching
age of maturity, and fecundity and sampling probabil-
ity (“selectivity”) are primarily related to body length
rather than age. Assuming both age and length are mea-
sured, writing B(¢) for fecundity-at-length, and let-
ting the density of length-at-age at y; be f({|a,y;),
then the total reproductive output at y; is now a
weighted sum: 3.~ Nog,. [ B(0) f(tla, y;)de. Pro-
vided i was alive and mature at y;, her expected repro-
ductive output then would be determined by her length,
£;(yj). Although we do not observe £;(y;) directly,
we can hindcast it from her measurements at capture,
zi = {¢;, a;, t;}, through an individual-specific growth
curve. This largely matches our tuna example. Under
lethal sampling again, the kinship probability is

P[Ki; =MOl|z;, z,]

_ Iyita <y <til x BEiG))
Zaia NQayj fﬁ(ﬁ)f(ﬁla,yj)dﬁ'

Note that ignoring the dependence on length, e.g. by
naively applying (3.2) instead, would violate the first
assumption in Section 3.1.1. If big fish are more likely
to breed as well as to be caught, this resembles “hetero-
geneity of capture probability” in Jolly—Seber models
which, if overlooked, is a well-known source of bias
in abundance estimates (Pledger, Pollock and Norris,
2010).

3.1.5 Stock structure. Suppose stocks are associ-
ated with discrete locations X, and that x;; or x;(¢)
denotes i’s location in year ¢ so that x; (y;) is j’s stock-
of-birth, and that animals are sampled later somewhere
in X though not necessarily in their original stock. If
sampling location is known, then the relative locations
within kin-pairs carry considerable information about
stock structure (Kanno, Vokoun and Letcher, 2011,
Palsbgll, Peery and Berube, 2010). The modification
to kinship probability is easy to state: we need to sum
over the possible locations where j might have been
born, taking account of the probability that i was there
at the right time. For example, in the base case (3.2) we
have

P[K;; =MOl|z;, z;]

(3.6)

Gn =Y {P[X iy = X120 TPLXiy, = xl2is]
xeX

" My +a <y; <li]}
Noxy;

where Noy, is now the number of female adults in x
at time . A comprehensive treatment would require
a movement model between location-of-birth (and of
breeding) and location-of-sampling, perhaps akin to
Spatially Explicit Capture-Recapture (Borchers and
Efford, 2008). The biological, sampling and statistical
possibilities of CKMR with stock structure are still to
be explored.

3.2 Half-Siblings

Two samples i and j are maternal half-sibs (MHS)
if and only if they share the same mother and have dif-
ferent fathers. For simplicity, we assume that ages are
known, that without loss of generality i was born first
(i.e., y; <yj),and that mating is random in a large pop-
ulation, so that full-sibs (at least from different breed-
ing occasions) are negligibly rare. Since we have no
direct observations on i or j’s mother(s), we need to
sum across all possible mothers d in the set F; of adult
females alive at i’s year-of-birth. Ignoring stock struc-
ture and other partly-heritable covariates, we have

P[K;; = MHS]|y;, y;]

(3.8) = Y {P[i’s mother was d|y;]
deF;

x IP[j’s mother was d|y;]}.

Again, the key is latent variables: the probability that d
is i’s mother is proportional to her (unobserved) repro-
ductive output R;(y;) when i was born. Again writing
R (y) for the total reproductive output at y, (3.8) can
be re-expressed as

P[K;; = MHS]|y;, y;, R]

_ {Rd(yi) Rd(yj)}
di LReGD) Ry )

where R;(y;) = 0if d dies between y; and y;. In prac-
tice, we need expectations of R;(y), which are also de-
termined by fecundity B4(y), and thus may vary with
d and y. Although it is possible to write an explicit
and general formulation of (3.9) incorporating fecun-
dity and mortality, the end result is unenlightening, and
in practice it may be more useful to head for a case-
specific formula. For example, in a base case where
adult fecundity and mortality rates are constant across
age and time, we obtain

3.9

P[K;j =MHS|y;, yj]1 = Noy, X {
(3.10)

1 y ¢(yi’yj)}

Noy, Noy;

_ ¢ (i, yj)
Noy;

’
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where summation over the NV Qy; identical females in F;
has become a multiplication. This is basically what we
have used for white sharks, where we can only sample
juveniles, and female growth after maturity is limited
and litter sizes do not seem strongly linked to female
body size.

If y; = y; in (3.9), then the two multiplicands refer
to the same random variables, and the overall expec-
tation depends not just on the mean across individuals
of R/R but also its variance. This is generally un-
known, but can be very large in animals with big lit-
ters and high early-life-stage mortality, such as many
teleost fish. Problems can be avoided by restricting HS
comparisons to different cohorts, i.e. where y; < y;
strictly.

There are subtle differences between the HS and
PO cases. For instance, (3.9) assumes that actual (as
opposed to expected) reproductive output between
years is uncorrelated. Unmodelled heterogeneity in
fecundity—i.e. consistent over time, variable across
individuals, but not modelled—would lead to bias in
P[K;; = HS] and in the corresponding abundance es-
timate; as an extreme example, infertile adults are in-
visible to an HS-only analysis. With PO CKMR, such
heterogeneity only matters if it is somehow correlated
with sampling probability. Also, with HS it seems even
more important to measure age, at least approximately,
partly because of the same-cohort issue above, partly
because the ability to estimate mortality rates in, for
example, (3.10) depends on knowing y, and partly be-
cause age can be the only way to distinguish HS pairs
from the genetically-similar grandparent—grandchild
pairs (Section 5).

Sibship is also connected with short-term “‘effective
population size” (N,: Crow and Kimura, 1970), and
indeed Wang (2009) uses within-cohort sibship to esti-
mate N,. The difference between N, and true (census)
adult population size is driven by overall variance in
individual reproductive output; our approach here at-
tempts to model or exclude as much as possible of that
variance.

4. PSEUDO LIKELIHOOD AND DESIGN

Let 6 denote the vector of all parameters that govern
the basic quantities N, ¢, 8 and p. In this section, we
deal with estimation of 6, parameter identifiability, and
issues related to design of experiments. We assume for
now that all pairwise kinships K;; can be ascertained
with certainty from the genetics; Section 5 deals with
uncertain kinship.

4.1 Pseudo-Likelihood

The joint distribution of {K;;; 1 <i < j <n} is too
complicated to permit constructing a full likelihood.
Instead, we use a pseudo-likelihood approach (Besag,
1975, Skaug, 2001) which involves only the marginal
probabilities of the Kj;:

@) p@) = ) logP(Kij =kijlzi, 2 0),

I<i<j<n

where k;; denotes the observed kinship, and P(K;; =
kijlzi, zj; ) is one of the probabilities derived in Sec-
tion 3. Each term in (4.1) conditions on z; and z;, but
clearly z itself may contain information about some
parts of 0 (e.g., age composition is highly informative
about mortality). To account for this, one may add the
marginal log likelihood contribution from the z to ob-
tain an alternative pseudo-likelihood

Ip@)= > logP(Kij=kijlzi,zj;0)
I<i<j<n
4.2)

n
+ Zlog P(z;; 0).
i=1
Both (4.1) and (4.2) give rise to unbiased estimating
equations, in the sense that the pseudo-score has zero
expectation; i.e.

0
43)  Ex z[—zpw; K, z>| } o,
’ 89 ezelrue

where 6y denotes the true parameter values under
which the expectation is taken. This unbiasedness is
the condition required for proving consistency of the
maximum pseudo-likelihood estimator é(k, 7) satisfy-
ing [dlp(k, z)/30];5 = 0. The choice between (4.1) and
(4.2) is case-specific. One might generally expect the
marginal distribution of z to be informative, though as
noted below the pseudo-likelihood may not always ap-
proximate the true joint likelihood of all K;;, in which
case simply adding the two terms as in (4.2) may not be
optimal. Sometimes use of (4.2) is essential for identi-
fiability, for example, with length frequency data in our
tuna example. Such issues are beyond the scope of the
present paper.

4.2 Parameter Identifiability and Experimental
Design

The Fisher information matrix / can be used to study
parameter identifiability, as Cole et al. (2012) have
done in MR. More generally, / quantifies the amount
of information about each individual parameter, and



CLOSE-KIN METHODS 267

hence constitutes a key tool when designing a mark-
recapture experiment. In this section, we argue that the
per-pair Fisher information, i.e. that of each individual
term in the pseudo-likelihood (4.1), provides a valuable
tool for certain purposes. Working for simplicity with
(4.1) rather than (4.2), the conditional per-pair Fisher
information is

I1(0]zi,z;)
2

0
=—-Ex [W log P(K |z, zi3 9)}

3% log{P(k|zi, 7,3 0))

=2 962

kel

P(k|zi, zj: 0).

To quantify the information content in a typical obser-
vation pair, it is necessary to also take expectation with
respect to covariates,

(4.4) 10)=—Ez,2;,[10:Zi. Z))].

The latter expectation can be evaluated empirically.
Expression (4.4) is useful for comparing (relative) pre-
cision across different experimental designs. Two ex-
amples where relative precision might suffice are: com-
parison of different sets of kinship K (to see whether
extra genotyping effort is worthwhile); and allocation
of sampling effort across different occasions.

If one seeks absolute precision of estimators, more
elaborate calculations may be called for. However,
the next section gives conditions under which the
pseudo-likelihood is approximately the full likelihood,
in which case (4.4) (together with any information
from marginal likelihoods of z) is adequate for abso-
lute precision, too.

4.3 Large Populations, Sparse Samples, and
Crude Designs

In a short-term study (less than a typical adult lifes-
pan, say), each pairwise comparison has probability
O(N~") of yielding a kin pair, where N denotes av-
erage adult abundance. With a sample size of n, there
are O(n”) comparisons (the precise number depends
on how many kin-types are considered, and on whether
some comparisons are pointless because covariates z
rule out the possibility of kinship). If H is the num-
ber of kin-pairs found, then its expected value A,y is
cn* N1 4+ 0(n2N—1) for some ¢ which depends on
the design and the demographics, but not on n or N.

This suggests setting narget ~ /N earget/C ~ O(Nl/z)
to achieve a reasonably informative dataset with, say,
htarger in the range 50-100. For moderately large N, H

is the sum of many Bernoulli outcomes each with low
expected value, and is approximately Poisson provided
the comparisons are approximately independent (see
below). Thus, an approximate lower bound on the CV

(coefficient of variation) of Nis 1 /+/ Marget, €.8. 15%

for harger = 50. The real CV may of course differ since
N itself may be time-dependent, comparisons are not
strictly independent, and other parameters also must be
estimated, but the lower bound can still be useful for a
crude design. For example, in the single-sample setting
of Figure 1 and with an equal mix of juvenile and adult
samples, ¢ = 1/2 so a 15% CV requires n ~ 10+/N.
In fact, we have found 10+/N to be a useful reference
point for feasibility in several short-term PO-only ap-
plications, but the multiplier 10 is certainly not uni-
versal; any serious design should at least evaluate 4,y
by summing over the expected number of comparisons
and the likely probabilities of kinship.

As to approximate independence: the set of pairwise
comparisons cannot be fully independent, because one
outcome can sometimes predict another. If j’s mother
is already found, she cannot be found again. However,
a heuristic justification can be made provided sampling
is sparse enough for expected kin-triads (within which
the pairwise comparisons are clearly not independent)
to be rare compared to kin-pairs. If n &~ O(N~1/?),
as per the previous paragraph, then the ratio of triads
to pairs is O,(N ~1/2), so sparse sampling amounts
to N being large enough. (In longer-term studies with
substantial turnover of adults, total n can presumably
be larger, because triads will remain rare.) The key
point is that only a small proportion of samples will
be involved in any kin-pair at all. For most compar-
isons between one sample i and another j, there will
be little predictive power even from knowing the out-
comes of all other comparisons involving i and j, since
all those outcomes will usually just be Unrelated, and
thus largely uninformative about i’s relationship to j.
In other words, under sparse sampling the expected
marginal information from a comparison is similar to
its expected conditional information given all other
comparisons, so approximate independence is reason-
able.

One further caveat on approximate independence is
that the samples should not contain a high proportion
of “littermates” (full- or half-sibs in the same cohort),
since comparisons between two littermates and any
third animal are obviously not independent. This could
be violated even in large sparsely-sampled populations,
if litters are large and show persistent schooling be-
haviour through to the time of a school-based sampling
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process (e.g., larval sampling of some teleost fish).
If this is a realistic concern, then one might need to
check the incidence of within-cohort half-sibs among
the samples. Provided the K;; are sufficiently indepen-
dent, it is easy to show that the pseudo-likelihood obeys
not just the score property (4.4) exactly, but also ap-
proximately the key second-derivative property,

[8921’3(9)‘ }

9 3 \'
- Go) ) |, )
80 89 0="0true

which ensures that it “scales” in the way a true like-
lihood should. These properties are the keystones of
likelihood-based inference, so if (4.5) is satisfied, then
it is reasonable to treat the pseudo-likelihood as a true
likelihood, for instance, when incorporating other data
such as the sampling distributions of z.

If there is concern about the adequacy of (4.5) in
a particular setting, i.e. whether N is big enough and
n small enough for “sparsity” to hold, then it can be
checked by individual-based (not pair-based) simula-
tion using a guess at Oyye. For each simulated sam-
ple of individuals, [p is evaluated, and its first- and
second-order derivatives are obtained using numerical
or automatic differentiation (Griewank and Walther,
2008). The expected values on both sides of (4.5) are
evaluated as averages across simulations. If the ap-
proximation turns out to be poor, then one might con-
sider other approaches to estimating equation infer-
ence, such as the “sandwich method” (Huber, 1967).
Small-population CKMR in general is a topic for fur-
ther work.

5. GENETIC IDENTIFICATION OF
CLOSE-KIN PAIRS

The previous sections have assumed that the kinship
kij between each pair of samples is exactly known;
however, k;; must be inferred from genetic data. In
practice, for a variety of reasons, k;; may not be per-
fectly known or knowable. For example, the genetic
data available may be insufficient to correctly identify
every kin pair without incurring false positives among
the unrelated pairs; or, certain kin categories may be in-
distinguishable given the genetic data, such as OP ver-
sus PO, or HS versus grandparent—grandchild. With an
adequate level of DNA data, however, this uncertainty
is surmountable and can be handled within the pseudo-
likelihood framework. In the next subsection, we re-
view statistical genetic background for developing a

likelihood-ratio kin identification statistic and comput-
ing false positive and negative rates. Following that, we
explain how kinship uncertainty can be accommodated
in the pseudo-likelihood, either via classification with
allowance for error, or via treating true kinship as a
latent variable. Finally, we conclude with a short ap-
praisal of the future prospects for CKMR in today’s
genomic era.

5.1 Inference of Kin Pairs from Genotype Data

The genetic data that can be observed on an individ-
ual are called its genotype. For a diploid organism, the
genotype g is a random vector of discrete-valued pairs

g=1(g1,....8L)

= ((81a+ 811)s (82a+ 82b)+ - - -, (8La» Lb))-

Each pair g; = (gi4, g1p) corresponds to a single lo-
cation (“locus” or “marker”) in the nuclear genome
and the two values (g4, g1p) refer to the two copies
of each marker carried by the individual. Although one
copy is inherited from the mother and the other from
the father, the parental origin of each copy is seldom
known, so the two values within each pair are taken
to be unordered. The values g;, or g;; denote the spe-
cific, detectable variants (“alleles” or “allelic types”™) at
the marker. Multiple alleles may be present in the pop-
ulation, though any individual will carry at most two
of them. Genotypes are often assumed drawn from a
population in Hardy—Weinberg equilibrium and with-
out linkage disequilibrium (LD: Weir, 1996), in which
case the marginal probability of an individual i’s geno-
type is

Plg®P]=[]Plg"]

=1

L
[T (i) (1)) (1 +1gie) # 813]).
I=1

where n(g;é)) is the frequency in the population of
the allele carried at the ath gene copy at the /th lo-

cus within individual i and T[g\" # g'i'] is an indicator

function, taking 1 if g = g\’ and 0 otherwise.

Inference of k;; relies on the joint probability Plg®,
g(j )|kl~ i1, which is influenced by k;; because relatives
can share genes that are either direct descendants of
one another or descendants of the same gene that ex-
isted in a recent common ancestor. Such genes are said
to be “identical-by-descent” or ibd (Thompson, 2013).
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Since gene mutation rates are low enough to be con-
sidered negligible over short time scales, if two gene
copies at a locus within different individuals are ibd
they will be the same allele, and if they are not ibd
the allelic types are independent of one another. Thus,
relatives of a certain type k;; have genotypes that are
similar in predictable ways depending on the fraction
of genome that they share ibd. At two non-inbred in-
dividuals (i.e., where the gene copies at a locus within
either individual are not ibd), at a single locus [, the
joint probability ]P’[gl(’), gl(J ) |ki ;] can be entirely speci-
fied by the expected fraction of loci at which the pair
shares 0, 1, or 2 gene copies ibd, denoted kg, 1, and «2,
respectively, with ko + k1 + k2 = 1 (Cotterman, 1940).
Values of k¥ = (kg, k1, k2) for a few common kinships
(kij’s) appear in Table 1. At locus /, we have

Plg”. " Ikij]
o Pl @R[
=Ko [81 ] [81 ]
+r1P[g”, g\ |kij = PO]
+iaPg " ]1[g"” = ],

where IP’[gl(') , gl(j ) |kij = PO] is the probability of i and
J’s genotypes at locus [, given that i and j share ex-
actly 1 gene copy ibd (as they would if they were a
parent—offspring pair). The value of P[gl(l), g,(J ) kij =
PO] is easily determined from laws of Mendelian in-
heritance (Table 3). If the L markers of the multilocus
genotype are physically unlinked (on different chromo-
somes or chromosome arms) and not in LD, then (5.1)
extends easily:

S.1)

L
52 Plg?, gk =] Ple”, 8 1kij]-
=1

Moreover, in the case of pairs with kinship S, PO/OP,
or U (Table 1), the factorization in (5.2) holds even
if the markers are physically linked, so long as they

TABLE 3
Probabilities of the genotype of individual j given that it is an
offspring of individual i. Ay, Ap, and A denote distinct allelic
types and 1, [short for w(a)], mp, and 7w, are the relative
frequencies of those alleles in the population

Genotype of j
Genotype of i AqAq AgAp AgAc ApAc
AqAq TTq Tp T 0
AgAp %ﬂa %(”a + 7p) %”c %”c

are not in LD (Anderson and Garza, 2006). It is
worth noting that the relationship categories of half-
siblings, grandparent—grandchild, and aunt—niece share
the same value of &, and accordingly cannot be distin-
guished with physically unlinked markers.

Thompson (1975) used (5.2) to develop a general
likelihood framework for estimating « and inferring
kij of a pair of individuals. Applying that framework
to CKMR requires a modification to allow for geno-
typing errors. A number of models have been proposed
to account for genotyping errors in relationship esti-
mation (Marshall et al., 1998, Sobel, Papp and Lange,
2002, Wang, 2004), and models accounting for allelic
dropout (failure to score an allele present in an individ-
ual) have been used in mark-recapture of individuals
identified from non-invasive genetic samples (Wright
et al., 2009, Barker et al., 2014). However, more gen-
erally, any single-locus model for genotyping error can
be specified in terms of P[g/|g;], the probabilities of
the recorded genotype g;° given the true genotype g,
and then accommodated by using

Plg®*, gV [ki;]

(5.3) — Z {[P)[g(i)*|g(i)]X]P)[g(j)*lg(j)]
g, g0

% P[g(i),g(j)lkij]},

which is easily computed when (5.2) factorizes over
loci, in place of P[g¥), g'/)|k;;]. The genotyping er-
ror rate for each locus can be approximately estimated
by the genotyping concordance rate for multiply-
genotyped individuals, but it is better estimated by us-
ing genotypes from related pairs of individuals (Wang,
2010).

In CKMR, related pairs are sought from amongst a
large number of unrelated pairs, requiring a method
for statistical error control to minimize the rate at
which unrelated pairs are falsely classified as related
(Skaug, Berube and Palsbgll, 2010). In natural popu-
lations (Meagher and Thompson, 1986), the classifica-
tion of pairs to kinship categories is typically done via
the likelihood ratio

Plg™*, | Kij = k]
PLg*]P[g )]

G4 M) =

The distribution of Ag(i, j) when i and j are truly
unrelated, i.e. P[Ax < c|K;; = U] for any c, can be
predicted from allele frequencies and genotyping er-
ror rates, so that the false positive rates expected from
classifying according to a threshold value A} can be
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derived (Anderson and Garza, 2006). In large popula-
tions, the number of unrelated pairs will greatly exceed
the number of true kin-pairs (by a factor of nearly 10°
in our tuna study). Thus, it is essential to use enough
informative markers to limit the overlap between the
distributions of Ay for unrelated pairs and target kin-
pairs. Suppressing false positives—a key part of the
classification-with-error approach in the next section—
may require setting A} so high that some fraction v/,
of true k-type kinpairs will have Ax(i, j) < AJ, thus
becoming false negatives. ¥, can be estimated in ad-
vance from the allele frequencies and genotyping error
rates for any k if markers are unlinked, and for PO/OP
and S pairs even if markers are linked but not in LD
(Anderson and Garza, 2006). False negative rates for
other kinships are harder, because more markers are
needed and the distribution of Ay is then affected by
physical linkage (see 5.3). However, provided enough
definite pairs are present, then the observed distribution
of [Ax|Ax > Aj] may still be used to estimate v, ; this
work is ongoing. As long as ¥, can be estimated, it
can be used analogously to allowing for failure to de-
tect a mark in conventional MR, for example, by fail-
ing to match two photographs of the same animal in a
photo-ID study. We summarize this process in the next
subsection.

The foregoing has focused on nuclear autosomal
markers, but two other types of loci with different
modes of inheritance can also be useful for CKMR.
Mitochondrial DNA (mtDNA) is a small (= 16,000
base-pair), mostly non-recombining, DNA molecule
that is maternally inherited; each individual has only
one copy. Its allelic variants are called “haplotypes”.
Although mtDNA has low power for identifying kin
pairs by its small size and the fact that it is inherited as
a single locus, it can be useful afterward for inferring
the sex of the parent in PO pairs, inferring the sex of the
parent shared by HS pairs, or if sex is known, whether
pairs are PO or OP. The Y chromosome, in organ-
isms with XY sex-determination, is transmitted from
the male parent to male offpring. Markers on the X and
Y chromosomes can be useful for genetically deter-
mining the sex of samples and for identifying whether
male half-sibling pairs have different fathers.

5.2 Kinship Uncertainty in the Pseudo-Likelihood

We have tried two ways to allow for kinship un-
certainty: classification with allowance for error, and
latent-kinship. In the former, we set the threshold for
classification, A}, so that the total number of expected
false positives from U pairs is a small fraction (say,

<1%) of the number of observed pairs with Ay > AJ.
We then estimate the false-negative probability v, ,
and define a modified kinship-category k' based sim-
ply on comparing A (i, j) to Aj. Since false-positives
are negligible, we have

PIK); =121, 25:6)
= (1 =¥ )PIK;j = klzi, 23 0],

so the pseudo-likelihood can easily be adjusted to k’
rather than k. mtDNA can be handled similarly, defin-
ing modified kinships K, . and K}, depending on
whether i and j share a haplotype, and adjusting the
prior probability of the modified kinships based on
haplotype frequencies. In general, there can be sev-
eral possible kinships for each pair (i, j), so we test
sequentially from most- to least-related. Indistinguish-
able kinships, for example, PO as distinct from OP in
the absence of age data (blue whales), are merged to a
new category whose kinship probability is the sum of
the constituent probabilities.

Classification has been effective for our tuna and
shark examples; with good quality DNA and mark-
ers deliberately chosen to ensure good identifiability,
few comparisons have any ambiguity and rates of false-
negatives (where some information is discarded) have
been below 5%. Classification also permits aggregation
of comparisons into classes with equal kinship proba-
bilities, as determined by (z;, z;); the number of pairs
found in each class is a sum of independent Bernoulli
trials, so it follows a Binomial distribution. In our tuna
study, we could compress 38,000,000 comparisons into
about 50,000 classes, leading to a 1000-fold speedup in
subsequently calculating pseudo-likelihoods.

An alternative which makes full use of the genetic
data, is to consider true kinship as a latent variable
(Skaug, 2001). The response variable for each pair be-
comes all the genetic data (g;, g;), including mtDNA
etc., with

Plgi, gjlzi, zj3 0]

(5.5) =Y Plgi, gj|Kij =kl
kel

x P[K;j = k|zi, zj; 01,

where [C is the set of all possible kinships at whatever
level of detail is necessary. The genetic probabilities
are pre-computed as in this section, and the prior kin-
ship probabilities are computed as in Section 3. Latent
kinship avoids any loss of statistical efficiency through
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false negatives, but computational efficiency may suf-
fer since comparisons can no longer be aggregated. La-
tent kinship may be most valuable when DNA quality
is poor, populations are small enough for appreciable
inbreeding, and/or more distant and intrinsically hard-
to-separate kinships are considered.

5.3 CKMR and Emerging Genetic Technologies

To date, mark-recapture using genetic markers has
relied primarily on microsatellite markers (Wright
et al., 2009, Barker et al., 2014, Bravington, Grewe
and Davies, 2014), which are usefully multiallelic, but
labor intensive to score and not easy to standardize be-
tween laboratories. However, within the last five years
there has been a dramatic shift in the capacity to de-
velop genotypes with many loci, even for species with
previously-unstudied genomes (Davey et al., 2011).
These gains have come largely from the ability to assay
many SNP markers, leveraging microarray technology
or recent advances in “next generation sequencing”
(Shendure and Ji, 2008). SNPs usually have just two
allelic types, and thus are individually less informative
about kinship than microsatellites, but this is now out-
weighed by their far lower unit cost. We predict that
SNP-based genotypes will become the predominant
data type for CKMR. In our current experience, reli-
able identification of self-recaptures can be done with
around 40 well-chosen SNPs, PO pairs with several
hundred and HS pairs (subject to a small false neg-
ative rate) with one-to-a-few thousand, though these
numbers do depend somewhat on population size and
sample size. The genotyping cost per individual organ-
ism for any of those kinships can be reduced to tens of
dollars if the best available technology is used.

The addition of many markers is not without some
complications. Notably, when there are many mark-
ers per chromosome, it is no longer acceptable to as-
sume that they are unlinked (i.e., inherited indepen-
dently). Rather, nearby markers are inherited upon
large, physically-linked chunks of genome, with two
important consequences. First, there is a limit to how
much power can be achieved by adding more markers,
and thus a limit to how distantly-related the types of
kinship used for CKMR can be; and second, because
the state of being ibd is no longer independent be-
tween markers, the factorization of (5.1) across loci is
not valid. In human genetics, algorithms are available
to compute genotype probabilities of kin with dense
marker data (Lander and Green, 1987), and these have
been considered for kinship inference (Skare, Sheehan
and Egeland, 2009). One advantage of using linked

markers is that some kinship categories which have
identical genotype probabilities with unlinked markers
(half-sibling, grandparent—grandchild, aunt-niece) can
be resolved with linked markers. However, account-
ing fully for physical linkage requires knowledge of
the physical ordering of the markers along the chromo-
somes, and of the recombination rates between them.

Developing an accurate linkage map of a genome is
still (in 2016) a costly and difficult undertaking, and it
is unlikely that such maps will be developed quickly
for many species to which CKMR might be applied.
Fortunately, as already stated, for both unrelated and
PO pairs, the joint probability (5.1) is correct regard-
less of physical linkage (at least in the absence of LD,
which is usually reasonable if no more than a few thou-
sand markers are used). For other kinships, we note that
although exact calculation of P[g®*, g()*|k; ;1 is un-
likely to be possible without information on linkage,
it is possible to compute Ak (7, j) assuming the mark-
ers are unlinked. Conveniently, the distribution of A
calculated thus is unaffected by physical linkage if the
true relationship is Unrelated, so pairwise false positive
rates from U-pairs can still be calculated for any thresh-
old A7, and false negative rates may be estimated em-
pirically as mentioned earlier. In our experience, most
half-siblings can be reliably inferred if enough SNPs
are used, even without linkage information.

6. DISCUSSION

CKMR is a very new area made possible only by
improvements in genetic technology in the last 5—
10 years. There are many open methodological chal-
lenges, and the field may evolve considerably as
CKMR is applied to more species. Even at this early
stage, CKMR has a number of attractive features, in-
cluding:

e Only needing samples from dead animals (though
live biopsies are fine), so no expense or difficulty of
live-release. This opens up applications in bycatch,
roadkill, hunting and many commercial fisheries.

e Half-sibling methods permit the study of adults
without ever catching them.

e No confounding from tag-reporting rate, since the
presence/absence of a “tag” can be checked in and
only in the lab (also true for standard MR with DNA-
based marks). The experiment is hence “blinded”
with respect to data collection.

e Less susceptibility to bias from “unmodelled het-
erogeneity of capture probability” because no self-
recapture is involved and no recaptures are needed.

3



272 M. V. BRAVINGTON, H. J. SKAUG AND E. C. ANDERSON

e CV is inverse to sample size not its square root
(Section 4.3), so precision improves rapidly as sam-
ples accumulate. Often, samples can be collected
cheaply, and only enough need be genotyped subse-
quently (the main expense) to obtain an informative
number of kin-pairs.

The most fundamental limitation is that CKMR only
informs directly about adults, regardless of whether ju-
veniles are sampled. Of course, this may sometimes be
resolved with other data and demographic modelling.
The other limiting factor is the need to collect adequate
covariates, adequate sample sizes, and adequate quality
DNA—and to pay for genotyping which, while nowa-
days cheap (tens of US dollars per sample), is not free.

In addition, there are some species for which CKMR
will presumably never work:

Parthenogenetic (virgin-birth, self-cloning) species
such as whiptail lizards: for obvious reasons.

Armadillos (of genus Dasypus) which bear identical
quadruplets: mothers are genetically indistinguishable
from aunts.

Semelparous (breed-once-then-die) species that
cannot be sampled as adults, such as eels and squid:
inference is limited to successfully-breeding adults in
previous generations, which is confounded with ran-
dom reproductive variability (Section 3.2).

Some organisms, while not technically impossible,
seem unlikely candidates for CKMR:

Super-abundant species, such as krill: the sample
SiZ€ Niarger Tequired to find a useful number of kin is
economically daunting, even though e iS propor-
tional to ~/N rather than to N itself (Section 4.3). As
genotyping continues to drop in cost, though, more
species will become affordable.

Very long-lived species which cannot be sampled
young, such as orange roughy: since estimates are
back-dated to juvenile birth, the results may not be use-
ful.

Rarely-seen species, such as pygmy right whales:
an impractically high fraction of the population might
need sampling to yield a useful number of kin-pairs.

CKMR does require substantial biological insight, and
sometimes extensive covariate data. Qualitatively, per-
haps the ideal CKMR scenario is to sample adults
across their lifespan as well as juveniles, to collect
age/size and other relevant individual covariates, and
to know enough about the basic biology to correctly
assemble (3.1) and (3.9). Where this is impossible,

less-ideal scenarios can often still work, but some pop-
ulations may be ruled out through lack of data: e.g. es-
sential covariates, background biological information
or samples from important life-stages. The statistical
manifestation is that a properly-formulated model be-
comes unidentifiable, but that a simplistic model may
be biased (Skaug, 2001). For example, a juvenile-only
entirely-HS study of teleost fish would not yield reli-
able adult abundance estimates because of confound-
ing between abundance and lifetime changes in fe-
cundity, though it could work for many mammals or
sharks. Case-by-case consideration of (3.1) and (3.9),
followed if necessary by examination of the Hessian
for a trial design (Section 4.3), should provide the
necessary insight; experimental design for CKMR is
a topic of great practical importance requiring further
work.

Age data is always helpful and in some cases essen-
tial; it can sometimes be obtained from otoliths, teeth
or other hard-parts, and at other times an approximate
inference from length might be adequate. In the future,
though, age may come from the genetic samples them-
selves. Polanowski et al. (2014) successfully used epi-
genetic (DNA-methylation) signatures to estimate age
in humpback whales, and advancing technology should
improve accuracy (Jarman et al., 2015). In our blue
whale design study, we showed that even low-accuracy
epigenetic age data from biopsies, enough to tell which
of a PO pair is the parent, would substantially improve
precision.

We envisage that the main statistical challenges will
be:

e Experimental design.

e Identification and use of more distant kin, as geno-
typing continues to improve.

e Extensions to spatial settings.

o Efficient adaptation to small populations and non-
sparse sampling, where something closer to a full
likelihood might be needed.
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