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Rank Tests from Partially Ordered Data
Using Importance and MCMC
Sampling Methods
Debashis Mondal and Nina Hinrichs

Abstract. We discuss distribution-free exact rank tests from partially or-
dered data that arise in various biological and other applications where the
primary objective is to conduct testing of significance to assess the linear
dependence or to compare different groups. The tests here are obtained by
treating the usual rank statistics, based on the completely ordered data as
“latent” or missing, and conceptualizing the “latent” p-value as the random
probability under the null hypothesis of a test statistic that is as extreme, or
more extreme, than the latent test statistics based on the completely ordered
data. The latent p-value is then predicted by sampling linear extensions or
the complete orderings that are consistent with the observed partially or-
dered data. The sampling methods explored here include importance sam-
pling methods based on randomized topological sorting algorithms, Gibbs
sampling methods, random-walk based Metropolis–Hasting sampling meth-
ods and random-walk based modern perfect Markov chain Monte Carlo sam-
pling methods. We discuss running times of these sampling methods and their
strength and weaknesses. A simulation experiment and three data examples
are given. The simulation experiment illustrates how the exact rank tests from
partially ordered data work when the desired result is known. The first data
example concerns the light preference behavior of fruit flies and tests whether
heterogeneity observed in average light-preference behavior can be explained
by manipulations in serotonin signaling. The second one is a reanalysis of the
lead absorption data in children of employees who worked in a lead battery
factory and consolidates the results reported in Rosenbaum [Ann. Statist. 19
(1991) 1091–1097]. The third one reexamines the breast cosmesis data from
Finkelstein [Biometrics 42 (1986) 845–854].

Key words and phrases: Exact tests, fuzzy p-values, Gibbs sampling, iter-
val censoring, linear extensions, linear rank statistics, perfect MCMC, pro-
portional hazard model, topological sorting.

1. INTRODUCTION

Classical nonparametric methods based on permuta-
tion tests and linear rank statistics are central to vari-
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ous studies in biological and other sciences in which
the primary objective is to conduct testing of signif-
icance to assess the presence of a trend with the se-
rial order of data, to establish a linear dependence
on some explanatory variables or to compare differ-
ent groups of observations. Extensive work on these
topics can be found in Page (1963), Hájek (1968),
Zar (1972), Cox and Hinkley (1979), Prentice (1978),
Hájek, Šidák and Sen (1999) and in many subsequent
references. Suppose the data comprise a stream of in-
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dependent and identically (i.i.d.) distributed bivariate
observations (y1, z1), . . . , (yn, zn) where the probabil-
ity distribution of a pair (yi, zi) is unknown, and we
wish to test the null hypothesis of no monotonic asso-
ciation between y and z. Then, with monotonic asso-
ciation between y and z as alternative, the Spearman’s
rank correlation statistics ρ and its standardized ver-
sion t1 (after taking the Fisher’s Z-transformation) are
respectively given by

ρ = 1 − 6
n∑

j=1

(ry,j − rz,j )
2/

{
n
(
n2 − 1

)}
,

(1.1)

t1 = 1

2
n

1
2 log

1 + ρ

1 − ρ
,

where ry,j denotes the rank of yj in the y-sequence
y = (y1, . . . , yn) and rz,j is the rank of zj in the z-
sequence z = (z1, . . . , zn). If no monotonic association
between y and z exists, the finite sampling distributions
of ρ and t1 are free of the unknown probability distri-
bution of a pair (yi, zi), and can be evaluated exactly by
enumerating all possible permutations of the data. Let
�n denote the null distribution of t1. Then the exact p-
value for a two-sided test is equal to 2(1 − �n(|t1|)).
If n is moderately large, asymptotic analysis applies
and the sampling distribution of t1 becomes approx-
imately Gaussian with mean 0 and variance 1 and
the asymptotic p-value for a two-sided test comes to
2(1 − �(|t1|)), where � is the cumulative distribution
function of a standard Gaussian random variable.

Similarly, in testing a location shift between two
independent samples of observations, namely, y =
(y1, . . . , yn) and z = (z1, . . . , zn′), the classical Wilcox-
on rank sum statistic takes the form of

(1.2) t2 =
n∑

j=1

w(rx,j ),

where x is the combined sample (y1, . . . , yn, z1, . . . ,

zn′), rx,j , for j = 1,2, . . . , n, is the rank of yj among
y1, . . . , yn, z1, . . . , zn′ and w is a weight function such
that

(1.3) w(j) = −1 + 2j/
(
n + n′ + 1

)
.

If no location shift occurs, the finite sampling distribu-
tion of t2 is also free of the unknown marginal proba-
bility distribution of xi and can be evaluated exactly by
enumerating all possible permutations of the data. Fur-
thermore, it is well known that the standardized version
of t2 is asymptotically Gaussian again providing an
easy way to compute asymptotic p-values when both

n and n′ are moderately large. More generally, linear
rank statistics and other permutation test statistics are
formulated in a fashion similar to t1 or t2 and, in prin-
ciple, it is not just the asymptotic p-values, but also the
exact distributions of the test statistics and the exact
p-values are of interest and can often be obtained by
enumerating all possible permutations of the data.

However, when only partially ordered data are ob-
served, the above mentioned classical test procedures
based on rank statistics fail because of our inability to
compute the test statistics such as t1 or t2 which require
the knowledge of the complete ordering of the data.

As a specific example, consider Figure 1 that pro-
vides a partial order of serotonin signaling in 14 differ-
ent experimental manipulations of fruit flies (Droso-
phila). These serotonin signalings are outcomes of
one of the randomized experiments conducted at The
Evolution of Behavior Group (EBG) in the Row-
land Institute at Harvard University. In this experi-
ment, starting with 8 different elementary manipula-
tions a1, a2, . . . , a8, EBG designed n = 14 different
combinations of manipulation, each of which gives rise
to a variant of fruit flies. We call these combinations
V = {v1, . . . , v14}. The full details of the phototactic
personality behavior data for these flies are displayed
in Table 3 of Section 4.2. The response y is a vector of
measurements of the heterogeneity in light-preference
behavior, which essentially summarize an average run
of individual flies toward light or darkness when star-
tled and are actually determined by the preference of
individual flies in choosing either left or right turns in
branching mazes. The biology here allows us to iden-
tify some of the directions in which each experimen-
tal manipulation is going to affect serotonin signaling.
However, the actual magnitude of the change in sero-
tonin signaling is not known. Thus, 14 different com-
binations of genetic mutations give rise to the set of
partially ordered treatments shown in Figure 1. In par-
ticular, an arrow from i to j implies the serotonin sig-
naling (vi) in the fruit fly type i is less than that (vj ) in
the fruit fly type j . Thus, v4 < v1. However, we do not
know whether v5 < v4. Furthermore, under the null
hypothesis that serotonin has no association with the
phototactic personality, we expect that the rank corre-
lation between yis and vis will be 0. A positive asso-
ciation, however, would imply a different story. Thus,
there is interest in knowing whether the partially or-
dered vis is positively associated with the ordering of
the experimentally observed measurement yis. How-
ever, classical test procedures based on rank statistics
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FIG. 1. Partial order (V,E) of Serotonin signaling in 14 different experimental manipulations of fruit flies.

t1 fails here, as we do not know the complete ordering
of the serotonin signaling.

In this paper, we focus on exact permutation and
other rank tests from partially ordered data. These
exact tests make use of the seminal work of Geyer
and Meeden (2005), and Thompson and Geyer (2007).
However, they differ from the testing approach in
Rosenbaum (1991) which relies on the asymptotic null
distributions of certain statistics or pivotal quantities of
the partially ordered data. Here, we treat the usual test
statistics based on the completely ordered data as la-
tent or missing and conceptualize the latent p-value as
the random probability under the null hypothesis of a
statistic that is as extreme, or more extreme, than the la-
tent test statistics based on the completely ordered data.
We then obtain the exact “fuzzy p-value” or the exact
predictive distribution of the latent p-value as the ex-
act conditional distribution of the latent p-value given
the partially ordered data. If the sample size is large, we
also focus on their asymptotic versions. Thus, consider,
for example, testing no monotonic association between
y and z based on partially ordered data in that we only
know zji

< zki
for certain values of i = 1,2, . . . , l, and

the full rank vector of y-values. Obviously, we cannot
compute t1 because in this situation we do not know all
the rz,j s. Nevertheless, we can respectively conceptu-
alize the latent exact and the latent asymptotic p-values
by

θE(t1) = 2
(
1 − �n

(|t1|)),
(1.4)

θA(t1) = 2
(
1 − �

(|t1|))

and compute the exact and the asymptotic predictive
distributions of the latent p-value using the conditional
distributions

QE(α) = Pr
(
θE(t1) ≤ α | ry, rzji

< rzki
,

(1.5)
i = 1,2, . . . , l

)
and

QA(α) = Pr
(
θA(t1) ≤ α | ry, rzji

< rzki
,

(1.6)
i = 1,2, . . . , l

)
.

Similarly, we can derive the exact and the asymptotic
predictive distributions of the latent p-values based on
the Wilcoxon rank sum statistics from partially ordered
data by making use of the equations (1.2) and (1.3).

There are several advantages of adopting the exact
and the asymptotic predictive distributions of latent p-
values as an inferential tool. As noted in Thompson
and Geyer (2007), these predictive distributions gener-
alize the conventional definition of p-values and derive
their validity from the fact that they as random vari-
ables (i.e., as functions of the data) have uniform(0,1)

distribution under the null hypotheses, and thus, they
achieve their exact nominal significance level like any
other randomized tests. Thus, just like the conventional
setup, the test statistics here are sensitive to certain de-
partures of interest from the null distribution and these
predictive distributions summarize the weight of evi-
dence against the null hypothesis. In particular, just like
a low conventional p-value, a predictive mass func-
tion (or a density function) of the latent p-value that
concentrates largely around a small neighborhood of 0
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provides certain evidence against the null hypothesis.
However, further caution is required regarding how we
quantify these “low values” and interpret the weight
of evidence. For example, if the predictive mass func-
tion of a discrete latent p-value concentrates almost
all of its mass within (0,0.01) [or within (0.1,1)],
we can interpret using the standards of conventional
significance testing that there is evidence against (or
lack of evidence against) the null hypothesis. But, by
the same standards, the weight of evidence is uneven
if the predictive mass function of a discrete latent p-
value concentrates almost all of its mass uniformly
on {0.00,0.01, . . . ,0.15}. In practice, this unevenness
may appear to make the test procedures more conser-
vative, but they actually point to a more enriching col-
lection of evidence where some evidence speak against
the null hypothesis and some does not. They neither
suggest outright rejection of the null hypothesis nor
complete ignorance of the evidence against it. We shall
also see through examples that predictive distributions
of latent p-values can provide very strong and en-
riching evidence against null hypotheses. Finally, it is
worthwhile to point out that most rank test statistics
that we shall consider here are distribution-free mean-
ing their finite sample distributions do not depend on
any nuisance quantity such as the underlying marginal
distributions of the data unit. Thus, there would be
little advantage in pursuing related Bayesian meth-
ods such as computing posterior predictive p-values
(see e.g., Meng, 1994; Gelman, Meng and Stern, 1996
and Bayarri and Berger, 2000, 2004). In fact, such
Bayesian methods would provide the same numerical
answers that we obtain here, no matter what prior we
choose for nuisance quantities.

However, the above approach of computing exact
predictive distributions of latent p-values using equa-
tions (1.5) and (1.6) presents a new challenge, as such
computations require complete enumeration of the set
of all possible linear extensions (or the complete order-
ings; see Section 3 for their formal definitions) of the
observed finite partial ordering, which is known to be
a very difficult problem with #P computational com-
plexity (Brightwell and Winkler, 1991). For example,
there are approximately 2.75 × 106 linear extensions
for the partial order shown in Figure 1. Thus, enlisting
all possible linear extensions is quite a task even for
such a small example. Instead, we resort to sampling
based methods and explore various schemes for gener-
ating linear extensions of a finite partial order. First, we
explore a novel importance sampling scheme based on
the topological sorting algorithms introduced in Kahn

(1962) and discussed in Cormen et al. (2001). This al-
gorithm generates one random linear extension in lin-
ear time in the total number of observations and the
total number of partial order constraints. We also dis-
cuss modifications to this importance sampling scheme
using various “look ahead” schemes. However, as we
shall see, these importance sampling schemes can fail
when the distribution from which the random linear ex-
tensions are generated gets too far apart from the tar-
get distribution. Thus, we also consider Markov chain
Monte Carlo (MCMC) procedures to generate random
samples of linear extensions and advance rank tests
from partially ordered data. To this end, we derive
novel Gibbs sampling methods that generate uniform
samples of linear extensions of a finite partial order ef-
ficiently and works very well in small to moderately
large sample sizes. Interestingly, there is a substan-
tial, and hitherto unutilized body of literature in prob-
ability and discrete mathematics on generating random
samples of linear extensions of a finite partial order
using the traditional random-walk based MCMC and
the modern perfect MCMC algorithms. These include
Matthews (1991), Karzanov and Khachiyan (1991),
Bubley and Dyer (1999), Wilson (2004), Huber (2006)
and many subsequent references. Thus, we also adapt
the ideas presented by Karzanov and Khachiyan (1991)
and Huber (2006) in deriving random-walk based sam-
pling schemes for generating linear extensions of a
given partial order. It must be emphasized that the ex-
pected running time of the random-walk based perfect
MCMC (and also the mixing time of the random-walk
based MCMC) sampling is O(n3 logn) for n number
of observations. Thus, for small to moderately large
sample sizes, we can apply these MCMC procedures
to compute the exact predictive distributions of latent
p-values with great accuracy, allowing the asymptotic
theory to prevail only for very large data sets.

The rest of the paper is laid out as follows. In Sec-
tion 2, we provide further details of some of the im-
portant rank tests that arise in partially ordered data
and discuss details of approximating the predictive
distribution of the latent p-value using Monte Carlo,
MCMC, and importance sampling methods. In Sec-
tion 3, we introduce the basic topological sorting algo-
rithm to generate linear extensions to the partial order
efficiently. We next develop the importance sampling
scheme to generate linear extensions. We further pro-
vide various “look ahead” schemes that bring the prob-
abilities of generating each linear extension closer to
the uniform distribution. Next, we present Gibbs sam-
pling methods to generate uniform linear extensions to
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the partial order. We then discuss random-walk based
MCMC procedures. At the end of Section 3, we de-
vote attention to the sophisticated random-walk based
perfect MCMC computations. In Section 4, we provide
a simulation experiment and three data examples. The
simulation experiment illustrates how the exact rank
tests from partially ordered data work when the desired
result is known. The first data example examines the
association between the phototactic behavior of fruit
flies and different combinations of serotonin manipu-
lations. The second one reanalyzes the lead absorption
levels in children of workers in a lead battery factory
and provides a new way to look into the results ob-
tained in Rosenbaum (1991, 2002). The third one fo-
cuses on the interval censored breast cosmesis data and
provides a basic comparison test between two groups.
Through these examples, we highlight various strength
and weaknesses of our approach. Finally, in Section 5,
we provide a summary and briefly indicate some future
research directions.

2. FURTHER RANK TESTS AND p-VALUES

2.1 Further Rank Tests from Completely Ordered
Data

In this section, we review additional rank tests that
have proved useful in various statistical applications.
As ranks are maximum invariant under monotonic
transformations of the original data, it needs to be
emphasized that rank tests are particularly appropri-
ate when the scale of measurement is somewhat arbi-
trary and there is a little loss if we restrict ourselves
to just ordering the different response values. In this
regard, we have already seen useful rank tests based
on the Spearman’s rank correlation and the Wilcoxon
rank sum statistic. To consolidate these ideas further
and to derive other possible test statistics, suppose that
we have two sets of data, namely y = (y1, y2, . . . , yn)

and z = (z1, z2, . . . , zn′), with one coming from proba-
bility density f (x − μ) and the other from f (x). Fur-
thermore, we are interested in testing μ = 0 against the
one-sided alternative μ > 0. It then follows that (see
Cox and Hinkley, 1979) the locally most powerful rank
test leads to the test statistic

(2.1) t3 =
n∑

i=1

w(rx,i),

where, as in equation (1.2), x = (y1, . . . , yn, z1, . . . ,

zn′) is the combined sample, rx,i , for i = 1,2, . . . , n,
is the rank of yi among y1, . . . , yn and z1, . . . , zn′ , x(i),

for i = 1,2, . . . , n, equals to the ith smallest value of
the combined sample x and

(2.2) w(i) = −E
[
f ′(x(i))

f (x(i))

]
.

It is well known that, when μ = 0, t3 is asymptotically
Gaussian with

Et3 = n

n + n′
n∑

j=1

w(j) = n

n + n′ w̄,(2.3)

var t3 = nn′

(n + n′)(n + n′ − 1)
(2.4)

·
n∑

j=1

(
w(j) − w̄

)2
.

In general, it may be difficult to compute w(i) in equa-
tions (2.1) and (2.2) exactly, but one can obtain useful
approximations. Typically, the quantity

−f ′{F−1(
i/

(
n + n′ + 1

))}
(2.5)

/f
{
F−1(

i/
(
n + n′ + 1

))}
,

where F is the cumulative distribution function of f ,
provides a good approximation for w(i). Several im-
portant rank tests follow from equations (2.1) to (2.5).
When f represents the logistic distribution, w(i) =
−1 + 2i/(n+n′ + 1) and the corresponding test statis-
tic t3 is the traditional Wilcoxon or Mann–Whitney
statistic in equation (1.2). However, when f is Gaus-
sian, w(i) = Ex(i) and t3 approximates the van der
Waerden test. An extreme minimum value density
f (x) = exp(x − ex) gives the exponential score and
the log rank statistic. Last but not the least, the double
exponential density gives rise to the median test.

The above discussion of rank tests extends to more
complicated problems such as comparing multi-
samples, testing regression relationships and detecting
serial correlations. In such instances, statistical deriva-
tions often lead to a general rank test statistic of the
form

(2.6) t4 =
n∑

i=1

ciw(rx,i),

where the constants c1, c2, . . . , cn and weight function
w(i) depend the null distribution of the specific proba-
bilistic set-up. Among others, Cox and Hinkley (1979)
provide several examples of such test statistic and for-
mulas for their asymptotic distributions. See also the
famous work of Kruskal and Wallis (1952) and the
book by Puri and Sen (1971).
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Furthermore, it must be emphasized that, in certain
applications, nonlinear rank test statistics are used and
are very different than what we have described through
equation (2.6). For example, Gordon (1979a, 1979b)
provides different nonstandard measures of agreement
between two rankings of a set of n objects which lead
to various nonstandard rank tests. One such measure is
the size of the maximal subset of objects that gives rise
to a perfect agreement between the “reduced” rank-
ings. Thus, the corresponding test statistic here is the
length of a longest increasing subsequence, of not nec-
essarily consecutive numbers, in the second sequence
of ranks when the first sequence of ranks is sorted in
the natural order. This test statistic can be computed in
O(n logn) operations using binary searches (see, e.g.,
Schensted, 1961 and Hunt and Szymanski, 1977) and
its asymptotic null distribution can be found using the
well-known Tracy–Widom law (see, e.g., Baik, Deift
and Johansson, 1999).

When only partial information is known, we may not
observe all ranks of the underlying variables, making it
difficult to compute any of the above mentioned rank
test statistics. However, in such instances, we shall use
methods developed in Section 3 to generate the set of
possible full/complete ranks from the observed partial
ranks and pursue statistical inference by computing the
predictive distributions of latent p-values. In Section 4,
we shall see that such rank tests from partially ordered
data arise naturally in many practical applications.

2.2 Rank Tests for Censored Data

Censored data is one area in which both partial or-
derings of observations and various rank tests have had
an important and developing role in statistical infer-
ence. Typically, for censored data ranks are the pos-
sible rank vectors of the underlying uncensored val-
ues. However, as Crowley (1974) points out, the dis-
tribution of the underlying rank vector often depends
in a complicated manner on the censoring mechanism.
Thus, even for the simplest situation of the right cen-
sored data, such complications has led to the devel-
opment of linear rank tests based on the score statis-
tics of the marginal probability of the rank vector of
the observed uncensored values only; see, for example,
Prentice (1978) and Kalbfleisch and Prentice (1980).
These complications and many others may not always
be easily amenable to the approach we have taken in
this paper. Nevertheless, we can still derive rank tests
and compute the predictive distribution of latent p-
values for certain types of censored data. Below we
provide two examples of such rank test procedures.

Our first example is on the most powerful local rank
test from interval-censored data which, following Self
and Grossman (1986), have received much attention in
biostatistics literature. The basic set-up is as follows.
We have a regression model

yi = μ + zT
i β + κεi,

where yi is the actual time of occurrence of an event
of interest for the ith individual, zi represents covari-
ate information, β denotes regression coefficients, μ is
the mean parameter, κ is the scale parameter and εi in-
dicates the residual errors. We further assume that f is
the probability density of εi . Since actual data are inter-
val censored, we do not observe yi directly. Instead, we
observe an interval Ii = (y1,i , y2,i] on which the actual
observation yi falls. In addition, we assume that the
censoring mechanism is independent of the response
variable Yi . This assumption implies that the knowl-
edge that an observation yi is censored into a given
interval Ii provides no further information about the
distribution of the response beyond that information
conveyed by knowledge of the interval’s endpoints.
A typical hypothesis of interest here is whether β = 0,
in other words, whether the response is independent of
the covariates. In such a setup, the marginal likelihood
becomes

L(γ ) = ∑
r∈R

∫
A(r)

· · ·
∫ n∏

i=1

f
(
y0,i − zT

i γ
)
dy0,i ,

where y0,i = (yi −μ)/κ , γ = β/κ , R is the set of pos-
sible rank vectors r of ys that are consistent with the
observed interval data Ii , and A(r) is the set of possi-
ble values of y0,i that preserves a ranking vector r. For
testing γ = 0, Self and Grossman (1986) then proposed
the test statistic

(2.7) t5 = ∑
i

zici,

where the constant ci is given by

(2.8) ci = ∑
k

wi(k)E
[

d

dy0,(k)

logf (y0,(k))

]
.

In the above, the summation is over values of k from
minr∈R ri to maxr∈R ri . Furthermore, in the above,
y0,(k) denotes the kth order statistic of y0, and wi(k)

is the proportion of rank vectors in R for which the
rank of individual i equals k. Now note that the cen-
sored data rank scores are weighted averages of un-
censored data rank scores and we can approximate
Ed{logf (y0,(k))}/dy0,(k) as done in equations (2.2)
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and (2.5). Furthermore, we can compute wi(k) by gen-
erating a sample of complete ranks (or linear exten-
sions) from the observed partial ranks using our al-
gorithm developed in Section 3. In principle, we can
thus conduct the test developed by Self and Grossman
(1986). See also Vandal and Gentleman (1998) and
Vandal, Conder and Gentleman (2009) that derive an-
other algorithm, albeit a complicated one, for perform-
ing this test.

The second and perhaps the most important example
is the interval censored data for the proportional hazard
model (Cox, 1972), for which the hazard function takes
the form of

(2.9) λ(t; z) = λ0(t)e
zT
i β .

In the above, λ0 is the baseline hazard and β is the
k × 1 vector of regression coefficients. Assuming that
the censoring mechanism is independent of the failure
times, Kalbfleisch and Prentice (1980) show that the
marginal likelihood of β based on the distribution of
the rank vector r of the failures times is

(2.10) L(β) = Pr(r | β) =
n∏

i=1

ezT
i β

∑
j∈Ti

e
zT
j β

,

where Ti is the set of individuals at risk of failure at
the time of the ith failure. See also Satten (1996) and
Goggins et al. (1998) that made alternative use of this
likelihood for interval-censored data.

Of particular interest here are the tests for covari-
ate effects, for which several asymptotic procedures
have been used in the past. For brevity of discussion,
we only focus on the Wald test for the significance of
the covariate effect. Let β̂ be the value of β that maxi-
mizes the marginal likelihood L(β). Let � be the dis-
persion matrix of β̂ , and �̂ be a consistent estimator
of �. Typically, β̂ is obtained as the solution of the
score equation and �̂ as the inverse of the Hessian ma-
trix of the logarithm of L(β). Then, under the null hy-
pothesis β = 0, the Wald test statistics

(2.11) t6 = β̂
T
�̂

−1
β̂

is asymptotically χ2 with k degrees of freedom, and
the asymptotic p-value is 1−D(t6 | k), where D(x | k)

is the cumulative distribution function of a χ2
k random

variable.
It is worthwhile to point out that, if observations are

exchangeable, under the null hypothesis β = 0 the dis-
tribution of the rank vector r is uniform over all per-
mutations of the ranks. Thus, if observations are ex-
changeable, we can actually pursue an exact test by

computing the exact null distribution Dn of t6 by re-
calculating the test statistic for each of the possible re-
orderings of y with the order of values of z remain-
ing fixed. This permutation test gives the exact p-value
1 − Dn(t6).

However, if observations fall into overlapping inter-
vals, we only know the partial ranks rather than the
complete rank r. The set of complete ranks then is pre-
cisely the set of linear extensions of observed partial
ranks. In that case, we cannot compute t6 and so we
rather treat 1 − Dn(t6) as the latent exact p-value and
1 − D(t6 | k) as latent asymptotic p-value. The predic-
tive distributions of these latent p-values then are given
by the conditional distributions

QE(α) = Pr
(
1 − Dn(t6) ≤ α |

(2.12)
observed partial ranks

)
and

QA(α) = Pr
(
1 − D(t6 | k) ≤ α |

(2.13)
observed partial ranks

)
.

2.3 Exact Predictive Distributions of Latent
p-Values

Let t denote an arbitrary rank test statistic under con-
sideration. Since ranks are discrete random variables,
often t is also a discrete random variable and thus, it
is typical that the exact latent p-value is a discrete ran-
dom variable. One consequence of this is that certain
quantiles of t may not be unique and, therefore, any
testing of significance based on t demands a random-
ized version. Thompson and Geyer (2007) thus define
the exact latent p-value in the following way. Let φ de-
note the critical function for a test based on t . If the test
is two-sided such as the ones discussed in Sections 1
and 2.1, the critical function at the α level of signifi-
cance takes the form of

φ(t, α) =
⎧⎨
⎩

0 if a1 < t < a2,

η if t = a1 or t = a2,

1 if t < a1 or t > a2,

where a1, a2 and η are functions of t and α such that

Eφ(t, α) = α

for all 0 ≤ α ≤ 1. In other words, we can respectively
take a1 and a2 to be any α/2 and 1 − α/2 quantiles of
the null distribution of t and η must satisfy

η Pr(t = a1 or t = a2) = (
α − Pr(t < a1 or t > a2)

)
.

Since α gives the probability that a randomized test re-
jects the null model, the predictive distribution of the
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latent p-value for a discrete test statistic t becomes the
random conditional distribution

(2.14) Q(α) = E
(
φ(t, α) | partially ordered data

)
generalizing equations such as (1.5) or (2.12).

2.4 Monte Carlo and MCMC Approximations

Typically, in most practical situations, it is extremely
difficult to analytically compute the exact predictive
distribution of the latent p-value from equation (2.14).
The same applies to computing asymptotic predictive
distribution of the latent p-value from equations such
as (1.6) and (2.13), and thus their Monte Carlo or
MCMC approximations are desirable. To this end, sup-
pose that G is the cumulative null distribution function
of the test statistics t . Let d1, d2, . . . , dN be a Monte
Carlo sample from the uniform(0,1) distribution and
let t (1), t (2), . . . , t (M) be a Monte Carlo sample from
the conditional distribution of t given the partially or-
dered observed data. Then the numbers

p
(
t (i)

) = 1

N

N∑
j=1

(1{t (i)<G−1(dj /2) or t (i)>G−1(1−dj /2)}

+ η1{t (i)=G−1(dj /2) or G−1(1−dj /2)})

constitute a sample from the predictive distribution of
the latent p-value in equation (2.14). In practice, G or
G−1 may not be known analytically. In such situations,
we need to draw a Monte Carlo sample s1, s2, . . . , sN
from the null distribution of t and approximate G−1

from the empirical distribution of s1, s2, . . . , sN . In
practice, the empirical distribution function of p(t(i)),
box plot or some other empirical summary statistic can
be used to further assess, describe and graphically dis-
play the exact nature of this predictive distribution.

Furthermore, in practice, one would usually adopt a
slightly simpler procedure for obtaining a sample from
the predictive distribution, based on either the asymp-
totic analysis or the fact that the latent p-value is often
the probability of obtaining a test statistic at least as
large as the one that was actually observed. Thus, for
the test based on Spearman’s rank correlation in equa-
tion (1.1), suppose that t

(1)
1 , t

(2)
1 , . . . , t

(M)
1 constitute a

Monte Carlo sample from the conditional distribution
of t1 given the partially ordered observed data. It is then
immediate that the numbers 2(1 − �(|t (1)

1 |)),2(1 −
�(|t (2)

1 |)), . . . ,2(1−�(|t (M)
1 |)) provide a sample from

the predictive distribution of the asymptotic latent p-
value in equation (1.5). Similarly, for testing linear
dependence in the proportional hazard model using

the rank based test in equation (2.11), if we have a
Monte Carlo sample t

(1)
6 , t

(2)
6 , . . . , t

(M)
6 from the condi-

tional distribution of t6 given the partially ordered ob-
served ranks, the numbers 1 − D(t

(1)
6 | k),1 − D(t

(2)
6 |

k), . . . ,1 − D(t
(M)
6 | k) form a sample from the pre-

dictive distribution of the latent p-value in equation
(2.13). When the asymptotic χ2 null distribution is in-
appropriate for (2.11) due to small sample size, we can
alternatively obtain a sample from the exact predictive
distribution in equation (2.12) by computing

p
(
t
(i)
6

) = 1

N

N∑
j=1

1{sj≥t
(i)
6 },

where s1, s2, . . . , sN constitute a random sample from
the null distribution of t6.

In Section 3, we shall discuss standard and sophis-
ticated perfect Markov chain Monte Carlo methods
for sampling linear extensions of a finite partial order.
While any MCMC sample can provide an approxima-
tion to the predictive distribution, it is worthwhile to
point out that there is further benefit if we obtain an
exchangeable sample t (1), t (2), . . . , t (M), by running a
running a Markov chain backward as well as forward
in time as proposed in Besag and Clifford (1989) and
implemented in Besag and Mondal (2013). This is pri-
marily because exchangeable random variables enjoy
certain symmetry and better distributional properties of
the sample quantiles.

2.5 Approximations via Importance Sampling

We have already discussed how to apply Monte
Carlo or MCMC methods to approximate the predic-
tive distribution of the latent p-value. In principle, an
alternative to these methods can be importance sam-
pling methods and they deserve some discussion. In
particular, any importance sampling methods are con-
sidered to have the ability to bridge gaps between
Monte Carlo and MCMC samplings, as they allow us
to approximate Eπg for a distribution π that is close
to another distribution π0 from which we can easily
draw random samples. To consolidate this idea, sup-
pose that we have a discrete random variable X with
possible values X , and a probability mass function π

on X . The expected value of a function g of X, with
respect to the probability function π is

Eπg(X) = ∑
x∈X

g(x)π(x).

Suppose further that it is difficult to sample directly
from the probability distribution π . Instead, we can
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sample from another distribution π0 on X . We can then
calculate Eπg(X) as follows:

Eπg(x) = ∑
x∈X

g(x)
π(x)

π0(x)
π0(x)

(2.15)

≈ 1

M

M∑
i=1

g(xi)
π(xi)

π0(xi)
,

where x1, x2, . . . , xM are M random draws from the
distribution π0.

In most situations, we will only know the distri-
butions π and π0 up to respective normalizing con-
stants. Specifically, we can write π(x) = π∗(x)/� and
π0(x) = π∗

0 (x)/�0, where the height functions π∗(x)

and π∗
0 (x) are known and the normalizing constants �

and �0 are computationally intractable. For example,
if we are interested in generating a sample from the
uniform distribution over all possible linear extensions
of a partial order, we know π(x) up to a normalizing
constant, namely, π(x) = 1/� , where � is the total
number of linear extensions and is intractably complex.
In this case, we can approximate Eπg by adopting the
ratio estimate,

(2.16) Êπg(X) ≈
M∑
i=1

�(xi)g(xi),

where

�(xi) = π∗(xi)/π
∗
0 (xi)∑M

j=1 π∗(xj )/π
∗
0 (xj )

,

which is asymptotically unbiased as M increases to
infinity. Thus, in principle we can apply importance
sampling estimates in equation (2.16) to compute the
predictive distribution of the latent p-values by setting
g(x) = φ(t (x),α). We can also draw a reweighed his-
togram of this predictive distribution by calculating the
expected number of observations in a bin (b, b′) us-
ing the indicator function g(x) = 1t (x)∈(b,b′). Typically,
equation (2.16) provides an useful estimate when there
are no large weights among the �(xi). In practice, the
latter condition holds if π and π0 are not too far apart;
see, for example, Ferrenberg, Landau and Swendsen
(1995), Besag (2004) and Liu (2008).

Finally, it is worth pointing out that one can use
sampling importance-resampling to draw an approx-
imate random sample from the target distribution π .
The basic idea is as follows. Once an independent ran-
dom sample x1, x2, . . . , xM is drawn from π0, we draw
a smaller sample x′

1, x
′
2, . . . , x

′
M ′ with or without re-

placement from {x1, x2, . . . , xM} with probability pro-
portional to weights that can computed from the ratios

π∗(xi)/π
∗
0 (xi), for i = 1,2, . . . ,M ; see, for example,

Rubin (1987), Smith and Gelfand (1992) and Skare,
Bølviken and Holden (2003).

3. SAMPLING LINEAR EXTENSIONS OF A
PARTIAL ORDER

3.1 Posets and Linear Extensions

Let V denote a finite set with elements v1, v2, . . . , vn:
in practice, elements of V might represent, for exam-
ple, bivariate values, open intervals, or more complex
quantities. Additionally, let ≺ denote a partial order
over V . In other words, ≺ describes a binary relation
that is both antisymmetric [(v ≺ v′ and v′ ≺ v) ⇒ v =
v′ for all v, v′ in V] and transitive [(v ≺ v′ and v′ ≺
v′′) ⇒ v ≺ v′′ for all v, v′, v′′ ∈ V]. Typically, we read
v ≺ v′ as “v precedes v′”. It is often convenient to
think of the partial order as a directed acyclic graph
(V,E) such that the vertices of the graph are the el-
ements v1, v2, . . . , vn, and a directed edge (v, v′) ∈ E
indicates v ≺ v′. Next, we denote a linear extension
of the partial order (V,≺) by (V,<). A linear exten-
sion describes a complete order of all elements of V
that is consistent with the original partial order. In other
words, if v ≺ v′ in the partial order, then v < v′ in the
linear extension. Let A be the adjacency matrix of the
graph (V,E). In other words, the (v, v′)th entry of A,
namely, A[v, v′] = 1 if v ≺ v′ and is 0 otherwise.

3.2 A Randomized Topological Sorting Algorithm

A topological sorting of a directed acyclic graph
(V,E) is a complete ordering of its vertices such that
the element v comes before element v′ in the ordering
if there is a direct edge from v to v′ in E . Thus, a topo-
logical sorting of (V,E) is the same thing as a linear ex-
tension of the partial order (V,≺). Various algorithms
are available to obtain a topological sorting of a di-
rected acyclic graph (V,E). These include the sequen-
tial algorithm of Kahn (1962) that picks one element of
V at a time in the same order as the eventual topolog-
ical sort, and the recursive depth first search algorithm
of Tarjan (1976) (see also Cormen et al., 2001) that
provides an eventual topological sort of the elements
of V in the opposite order of their last visit. These al-
gorithms have a running time linear in the number of
elements of V plus the number of edges in E .

Here, following Kahn (1962), we pursue a random-
ized topological sorting algorithm that offers an ef-
ficient way to produce linear extensions of a partial
order. The basic iterative algorithm maintains, in ad-
dition to the current list of vertices V and edges E , a
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list S which contains the subject of V with no incom-
ing edges. At each iteration, the algorithm outputs a
random vertex v from S , removes v from S and V , and
removes all edges (v, v′) from E . The algorithm termi-
nates when S becomes empty.

To efficiently implement the algorithm, we maintain
adjacency lists for each vertex v such that v′ is in the
adjacency list of v exactly when there is an edge from
v to v′. By iterating over the edges, we calculate the
number of incoming edges for each vertex and add to
S those vertices with no incoming edges. When a ver-
tex v is deleted, we simply decrement the number of
incoming edges for all v′ in the adjacency list of v and
add to S those which equal 0.

3.3 Importance Sampling via Randomized
Topological Sorting

The above algorithm, just like the algorithm in
Kahn (1962), generates one random linear extension in
O(|V|+ |E |) running time and eventually generates the
set of linear extensions of the partial order. However,
it does not generate all linear extensions with equal
probability. Nevertheless, once a linear extension has
been generated from the algorithm, it is straightfor-
ward to calculate the probability of having generated
it. Call u1, u2, . . . , un the vertices output in order by
one run of the algorithm. While running the algorithm,
the set of vertices in the list S (i.e., those with no in-
coming edges) depends on the vertices already chosen.
At each iteration of the algorithm, the probability of
selecting a particular vertex from S is 1/|S|. The over-
all probability of generating the final linear extension
is the product of these probabilities. Therefore, denote
by Si,{u1:i} the set of vertices in the list S after selecting
the i vertices u1, u2, . . . , ui . The probability of gener-
ating a specific linear extension u1, u2, . . . , un from the
algorithm is then

(3.1) π0(u) =
n−1∏
i=0

1

|Si,{u1:i}|
.

We now include an illustrative example and also
comment in passing on the limitations of such sim-
ple importance sampling schemes and on certain im-
provements that are possible via further modifications
of randomized topological sorting. As for an illustra-
tive example, suppose that we have a partial order
a ≺ b ≺ c ≺ d ≺ e over the set {a, b, c, d, e, f }. The
list initially is S0,{} = {a,f }. If we output f as the first
element, then the only element left in the list will be
S1,{f } = {a}. If we output a as the first element, then

TABLE 1
Probability computations using equation (3.1) for an illustrative

example

Linear extension
∏n−1

i=0 |Si,{u1:i }|−1 Probability π0(x)

f , a, b, c, d, e 1
2

1
1

1
1

1
1

1
1

1
2

a, f , b, c, d, e 1
2

1
2

1
1

1
1

1
1

1
4

a, b, f , c, d, e 1
2

1
2

1
2

1
1

1
1

1
8

a, b, c, f , d, e 1
2

1
2

1
2

1
2

1
1

1
16

a, b, c, d, f , e 1
2

1
2

1
2

1
2

1
2

1
32

a, b, c, d, e, f 1
2

1
2

1
2

1
2

1
2

1
32

the list will contain S1,{a} = {b,f }. We can thus cal-
culate the probabilities of all the possible linear exten-
sions as shown in Table 1. While every linear extension
can be generated from this algorithm, we see that the
probabilities can be far from the uniform distribution.

3.4 Importance Sampling via Look Ahead
Schemes

The algorithm developed in the previous subsection
can be modified with a “look-ahead” strategy to bring
the probabilities of generating each linear extension
closer to the uniform distribution. When selecting a
vertex from the list S , instead of simply selecting each
vertex uniformly at random, we can try sampling a ver-
tex with probability proportional to the number of lin-
ear extensions possible if we select that vertex. Typ-
ically, computing the number of linear extensions is
a #P -complete counting problem, and so we cannot
solve this exactly. However, when the size of S is large,
there will be more linear extensions on average. Thus,
we can locally look ahead to approximate the number
of the linear extensions based on the size of the list S
at future iterations and use this information in sampling
vertices from S .

In the one-step look ahead scheme, once we have
already selected vertices u1, u2, . . . , ui , we calculate
the size of the queue Si+1,{u1:i ,s}, for each vertex s ∈
Si,{u1:i} and select a vertex with probability propor-
tional to that size. It then follows that the probability of
generating a linear extension u1, u2, . . . , un using the
one-step look ahead scheme is equal to

(3.2) π0(u) =
n−1∏
i=0

|Si+1,{u1:i+1}|∑
s∈Si,{u1:i } |Si+1,{u1:i ,s}|

.

For our illustrative example in Section 3.3, the proba-
bility of selecting a as the first element in a one step
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TABLE 2
Probability computations using equation (3.2) for an illustrative

example

Linear extension Equation (3.2) Probability π0(x)

f , a, b, c, d, e 1
3

1
1

1
1

1
1

1
1

1
3

a, f , b, c, d, e 2
3

1
3

1
1

1
1

1
1

2
9

a, b, f , c, d, e 2
3

2
3

1
3

1
1

1
1

4
27

a, b, c, f , d, e 2
3

2
3

2
3

1
3

1
1

8
81

a, b, c, d, f , e 2
3

2
3

2
3

2
3

1
2

8
81

a, b, c, d, e, f 2
3

2
3

2
3

2
3

1
2

8
81

look ahead scheme is now

|S1,{a}|∑
s∈{a,f } |S1,{s}| = 2

3
.

Table 2 continues with such calculations and displays
the probabilities of selecting each of the linear exten-
sions according to this one-step look ahead algorithm.
This probabilities are significantly closer to the uni-
form distribution than those displayed in Table 1.

We now discuss implementation details and running
time of the “look ahead” scheme. First, note that, for a
one-step look ahead algorithm, for each element s ∈ S ,
we need to calculate the number of elements in the list
after that element were chosen. In particular, any ele-
ment in the adjacency list of S will be added to S if its
current number of incoming edges is equal to 1. This
requires looking at each edge at most once. Then, in-
stead of picking a vertex from the list at random, we
pick it proportional to the number of vertices in the
list if that vertex were selected. Each edge may now
be processed multiple times in the algorithm, and the
running time will be O(|V| + |E |2). Similarly, if we
look ahead multiple steps, we would need additional
storage to keep track of the different lists at differ-
ent look-aheads, and the running time will be at least
O(|V|+|E |k) for k look aheads. Thus, the running time
for the algorithm grows polynomially with the number
of look-ahead steps. In practice, one would need to bal-
ance the convergence speed up from sampling closer to
the target uniform distribution with the increased run-
ning time of the sampling algorithm.

In general, the maximum number of edges in a di-
rected acyclic graph is the number of forward edges in
the total order, which is O(|V|2). Another way we can
improve the efficiency of the algorithm is by reducing
the number of edges in the partial order. Thus, for large
graphs, we could first build the transitive reduction of

the graph, that is, a graph with as few edges as possible
but that has the same reachability relation as the given
graph. The transitive reduction consists of a minimal
set of edges such that the transitive closure is equal to
the original relation; see, for example, Aho, Garey and
Ullman (1972). For acyclic graphs, the time to build the
transitive reduction is O(|E ||V|), which is larger than
the topological sorting algorithm. The maximum num-
ber of edges in the reduced graph can still be O(|V|2),
but in practice, it will probably be worthwhile to pay an
upfront cost of O(|E ||V|) for the per sample savings.

3.5 Gibbs Sampling Methods

Gibbs sampling (see, e.g., Geman and Geman, 1984;
Besag et al., 1995) is applicable when the joint distri-
bution of a set of random variables is difficult to sam-
ple from directly, but the conditional distributions of
each variable given the others are known and are eas-
ier to sample from. Let U be the set of all linear ex-
tensions u = {u1 < u2 < · · · < un} of the given partial
order (V,≺). Let A denote the adjacency matrix cor-
responding to the given partial order (V,≺). Now, for
each u ∈ U , let ru denote the rank vector of the com-
ponents of u. We then define R to be the set of all
possible rank vectors: {ru : u ∈ U}. The basic idea of
this Gibbs sampling method is as follows. Rather than
sampling the linear extensions from U , we sample ei-
ther the conditional distribution of ranks from R, or the
conditional distribution of each element of a random
vector h = (h1, . . . , hn)

T that has a uniform distribu-
tion on the set

� = {
h : hi ∈ (0,1), hi < hj iff A[i, j ] = 1

}
.

In the later case, it trivially follows that the rank vec-
tors r of h are uniform on R. To see this, note that
any realization of the rank vector r corresponds to the
event {hσ(1) < · · · < hσ(n)}, where {σ(1), . . . , σ (n)}
is a permutation of {1, . . . , n} such that σ(ri) = i for
i = 1, . . . , n. In other words, σ is the inverse permuta-
tion of r. However, since h is uniform on �, the event
{hσ(1) < · · · < hσ(n)} is equally likely for any permis-
sible permutations {σ(1), . . . , σ (n)} of {1, . . . , n}. This
implies

Pr(r) = Pr(hσ(1) < · · · < hσ(n)) = 1/|R|.
The above generalizes the fact that ranks of n i.i.d. uni-
form random variable generate a uniform permutation
of {1, . . . , n}. However, unlike i.i.d. uniform random
variables on (0,1), there is no easy way to draw ran-
dom vectors h uniformly from �. To overcome this
challenge, we now derive the full conditional density
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of hi given hj , j 
= i and develop the following Gibbs
sampling method. First, define

Ii = {
j : j 
= i,A[i, j ] = 1, j = 1,2, . . . , n

}
and

Jj = {
i : i 
= j,A[i, j ] = 1, i = 1,2, . . . , n

}
.

It then follows that

hi < hj if j ∈ Ii , hi > hj if j ∈ Ji .

Thus, it is trivial that

hi | hj , j 
= i ∼ uniform
(
h−

i , h+
i

)
,

where

h+
i = min

{{hj : j ∈ Ii} ∪ {1}},
h−

i = max
{{hj : j ∈ Ji} ∪ {0}}.

We can thus update the values of hi sequentially using
a random permutation to ensure that resulting Gibbs
sample gives rise to a time-reversible Markov chain
with limiting distribution uniform on �.

On the other hand, if the rank vector r is distributed
uniformly over R, it follows trivially that the full con-
ditional distributions are

ri | rj , j 
= i ∼ uniform on
{
r−
i , r−

i + 1, . . . , r+
i

}
,

where

r+
i = min

{{rj : j ∈ Ii} ∪ {n}},
r−
i = max

{{rj : j ∈ Ji} ∪ {1}}.
We can thus update the values of ri sequentially using
a random permutation to ensure that resulting Gibbs
sample gives rise to a time-reversible Markov chain
with limiting distribution uniform on R.

Overall, the above Gibbs sampling methods are very
easy to implement, as samples from the full condi-
tionals can be drawn using i.i.d. uniform random vari-
ables. The computational costs of deriving Ii and Ji

is at most O(max{n, |E |}). Since maxima and min-
ima can be computed efficiently using the binary
search tree, it is not difficult to see that one cycle of
this Gibbs sampling algorithm would require at most
O(max{n logn, |E | log |E |}) steps. The derivation of
mixing time for the above Gibbs sampling will be a
matter of future work.

3.6 Random Walks on Linear Extensions

We now describe specific random walk moves that
can be used in the Metropolis–Hastings algorithm to

generate uniform linear extensions in quick succes-
sion. The primary focus here is to obtain via forward
and backward sampling, an exchangeable random sam-
ple t (1), . . . , t (B) from the conditional distribution of a
test statistic t given the partially observed data. To this
end, we call two linear extensions, namely, u and u′,
of (V,≺) neighbors if u can be obtained by a single
transposition of two consecutive elements in u′. We
can then construct Markov chain sampling by imple-
menting the simple random walk on linear extensions
as follows. When the Markov chain is at a linear ex-
tension u = {u1 < u2 < · · · < un} of the given par-
tial order (V,≺), it chooses an integer i between 1
and 2n − 2 at random. If i ≤ n − 1 and there is no
directed edge from ui to ui+1 in E , then it swaps ui

and ui+1 to move to a new linear extension u′. Other-
wise, it stays at u. Let {Uk} denote this Markov chain
on U . Karzanov and Khachiyan (1991) showed that
Uk is an irreducible, aperiodic time-reversible doubly
stochastic random walk on the set of all linear exten-
sions of (V,≺). Following Wilson (2004), it is well es-
tablished that the above Karzanov–Khachiyan Markov
chain mixes in time O(n3 logn). In fact (4/π2 +
o(1))n3 logn provides an upper bound for the separa-
tion distance in terms of total variation norm.

3.7 Random-Walk Based Perfect MCMC Sampling

We now make use of the above construction of ran-
dom walks on linear extensions and present a perfect
MCMC sampling algorithm to obtain genuine i.i.d.
uniform draws from the set of possible linear exten-
sions. To this end, Propp and Wilson’s (1996) basic
idea of the perfect MCMC sampling is as follows.
In order to sample from the target distribution π(x),
x ∈ X , where X is finite, we first construct an ergodic
Markov chain Xk with state space X transition proba-
bility matrix P, and limiting stationary distribution π .
The construction is done by using a deterministic map-
ping ψ and a stream of i.i.d. random variables ξk or,
equivalently, by an i.i.d. sequence of random mappings
�k such that

Xk+1 = ψ(Xk, ξk+1) = �k+1(Xk).

As for example, if X = {1,2, . . . , n}, we can take ξk to
be uniform(0,1) and

ψ(x, ξk+1) = x′

⇐⇒
x′−1∑
i=1

P[x, i] < ξk+1 ≤
x′∑

i=1

P[x, i].
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The primary advantage of this construction is that it
allows us to mathematically tract the trajectories of the
Markov chain when run from different initial states and
helps us determine when entire state space collapses
to a single state. The perfect sampling algorithm em-
braces running Xk backward in time till coalescence
occurs. Specifically, let

Wk = �0 ◦ �−1 ◦ · · · ◦ �−k,

and let τ denote the backward coalescence time

τ = min{j ≥ 1 : Wj maps X to a single state}.
It then follows that

Pr(τ < ∞) = 1, Wτ ∼ π.

Although the above description of a perfect MCMC
algorithm looks simple and is easy to understand, its
numerical implementation is not so easy. In particu-
lar, if the state space X is large and complex, as is in
our case, checking whether coalescence has occurred
presents an enormous computational challenge. Thus,
further steps such as the construction of monotone cou-
plings or smart bounding chains are required to man-
age computations; see, for example, Propp and Wil-
son (1996) and Huber (2004). Here, we briefly present
the bounding chain methods that detect coalescence
without any condition of monotonicity and that usu-
ally work in general complex spaces. The basic idea is
again very simple. Applying the same stream of ran-
dom variables ξk that were used in Xk , we construct
another Markov chain Bk such that

Bk+1 = �(Bk, ξk+1),

for some deterministic mapping � . Furthermore, the
construction is such that Bk takes values on the subsets
of X , Xk+1 ∈ Bk+1 for all initial states in X whenever
Xk ∈ Bk for all initial states in X , and it is easy to ver-
ify whether Bk has cardinality one. The success of this
method depends on finding a simplified form of � so
that it is easy to run bounding chains Bk than running
Xk from all states and detect coalescence.

Following Huber (2006), we now present a way to
construct random mappings �k and bounding chains
Bk for the random walk moves Uk on the linear exten-
sions of a given finite partial order. First, note that Uk

can be constructed as

Uk+1 = ψ(Uk, Ik+1, δk+1),

where Ik are i.i.d. Uniform random variables on {1,2,

. . . , n−1}, δk are a Bernoulli process obtained by toss-
ing a fair coin, and

ψ(u, i, δ) =
{

u if δ = 0 or ui ≺ ui+1,

Ei,i+1u otherwise,

where Ei,i′ is the permutation matrix that swaps entries
i and i ′ in a vector of length n.

The construction of the bounding chain for Uk is
more involved. Let Rk denote the rankings of the nodes
in V according to Uk . Furthermore, the nodes of (V,E)

are so arranged that {1, . . . , n} is a valid ranking of
the nodes in V . It is trivial that there is a one-to-one
and onto relationship between Rk and Uk . In particu-
lar, if we can index and sort, we can rank and vice-
versa. However, Huber (2006) noted that it is easier to
bound and bookkeep the ranking vector Rk rather than
the chain Uk . The corresponding bounding chain Bk

takes the form of {B1,k,B2,k}, where B1,k is a cursor
and B2,k is a list of n numbers that maintains the up-
per bounds of the rankings Rk when Uk is run from
all possible initial states [i.e., all possible linear exten-
sions of (V,E)]. The algorithm starts with initial states
B1,0 = 1 and B2,0 = {n,n, . . . , n}. It then updates Bk

using the following probability rules:

Pr(B1,k+1,B2,k+1 | B1,k,B2,k)

= Pr(B2,k+1 | B1,t ,B2,k)Pr(B1,k+1 | B1,k,B2,k+1),

where

B2,k+1 = �(B1,k,B2,k, Ik+1, δk+1)

with

�(l,b, i,1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ej,j ′b
if ∃j, j ′ ≤ l : rj = i, rj ′ = i + 1,

(
j, j ′) /∈ E,

b + ej

if ∃j ≤ l : rj = i,�j ′ ≤ i : rj ′ = i + 1,

b − ej ′
if ∃j ′ ≤ l : rj = i + 1,�j ≤ i : rj = i,

�(l, r, i,0) = r,

and

Pr(B1,k+1 = l + 1 | B1,k = l,B2,k+1 = r) = 1

if rj < n for all j ≤ l.

In the equation involving �(l,b, i,1), the expression
∃j ≤ l : rj = i,�j ′ ≤ i : rj ′ = i + 1 means there exists
a j ≤ l such that rj = i and there does not exist a j ′ ≤ i

such that rj ′ = i + 1 and so on. Furthermore, ej denote
the vector with a 1 in the j th entry and 0’s elsewhere.
The cursor B1,k is such that for all 1 ≤ j, j ′ ≤ B1,k , we
always have

B2,k[j ] 
= B2,k

[
j ′] if j 
= j ′, and

B2,k[j ] < B2,k

[
j ′] if vj ≺ vj ′ .
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Thus, � allows us to bookkeep the upper bounds
of the ranking Rk of each node in V and the cur-
sor B1,k allows us to tighten these upper bounds and
helps us detect coalescence by checking when B1,k be-
comes n. Overall the algorithm is run backward in time
and run until coalescence is detected. Huber (2006)
proved that the expected running time of this per-
fect MCMC algorithm is at most O(n3 logn). In fact,
(16/π2 + o(1))n3 logn provides an upper bound for
this expected running time.

Finally, the above perfect MCMC algorithm also al-
lows us to draw exact uniform sample from �. To
see this, let r be drawn uniformly from R and let
h(1) < h(2) < · · · < h(n) be the order statistics of n i.i.d.
uniform(0,1) random variables. It is then immediate
that the random variables

h′
i = h(ri), i = 1, . . . , n,

are a uniform draw from �. Thus, as a rudimen-
tary MCMC procedure that does not require an ini-
tial “burn-in” part, we can first run the perfect MCMC
sampling and generate one random vector h uniformly
from the set �; subsequently, we can perform Gibbs
sample method discussed in Section 3.5 to draw a valid
MCMC sample of rank vectors from R.

4. A SIMULATION EXPERIMENT AND DATA
EXAMPLES

4.1 A Simulation Experiment

The purpose of this simulation study is to illustrate
how the methods developed in Sections 2 and 3 work in
practice. In particular, we consider simulated partially
ordered data for which the desired result is known in

advance. We then evaluate our methods by construct-
ing an exact rank test and summarizing the results of
the test using the predictive distribution of the latent
p-value. Specifically, we consider testing the mono-
tonic association between two variables y and z. We
take the sample size n = 20. Furthermore, we assume
that we only know a partial ordering of z1, . . . , zn.
This partial ordering is constructed as follows. For each
i = 1,2, . . . , n, we first independently generate two
uniform numbers z1,i and z2,i between 0 and 1. We
then assume that

min{z1,i , z2,i} < zi ≤ max{z1,i , z2,i}.
The above gives rise to a partial ordering on {z1, . . . ,

zn} and the left panel of Figure 2 displays this partial
ordering using a directed acrylic graph. Furthermore,
there are approximately O(1.25 × 1012) linear exten-
sions to this partial order.

Next, we generate the y variable under the null
hypothesis of no monotonic association between two
variables y and z. Specifically, we generate y1, . . . , yn

as independent and identically distributed standard
Gaussian random variables. To derive an exact test,
we next generate M = 10,000 uniform linear exten-
sions u(1), . . . ,u(M) of {z1, . . . , zn} using the sampling
algorithms discussed in Section 3. For each u(i), we
then compute the sample rank correlation ρ(i) between
y and u(i). We also compute its standardized version
t
(i)
1 and latent p-value p(t

(i)
1 ) = 2(1 − �(t

(i)
1 )). Using

p(t
(1)
1 ), . . . , p(t

(M)
1 ), we finally compute the exact em-

pirical cumulative predictive distribution of the latent
p-value.

We repeat the above procedure K = 100 times. The
resulting empirical cumulative predictive distributions

FIG. 2. (a) Partial order of z1, . . . , zn, (b) a random draws of cumulative predictive distributions of latent p-values under a null model and
(c) a random draws of cumulative predictive null distributions of latent p-values under an alternative model.
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are plotted in the middle panel of Figure 2. Since
these simulations are repeated under the null hypoth-
esis, we expect the average of these resulting cumu-
lative predictive distributions to match the cumulative
distribution of a uniform(0,1) random variable. In-
deed, we find that there is an excellent agreement be-
tween the average of the cumulative predictive distri-
butions and the diagonal line y = x. For example, at
x = 0.05,0.25,0.50 and 0.75, these averages are re-
spectively 0.04, 0.23, 0.45 and 0.70, which agree well
with the theoretical average values within the statistical
error. Furthermore, it can be seen that an overwhelm-
ing fraction of these cumulative distributions put al-
most all of their mass within (0.1,1), and only an ex-
tremely small fraction of these cumulative distributions
add some mass within (0,0.01). Thus, these predictive
distributions of the latent p-values are correctly indi-
cating a lack of evidence against the null hypothesis.

Next, we examine how the method works when the
data is generated under an alternative model. To this
end, we generate y1, . . . , yn as independent Gaussian
random variables with mean 1

2ω(z1,i + z2,i − 1)/κ

and variance 1 − ω2, where we set ω = 0.75 and
κ2 = var(z1,i) = 1/12. As in the previous case, we
then generate M = 10,000 uniform linear extensions
of {z1, . . . , zn}, compute the sample rank correlation
between y and generated linear extensions, compute
the corresponding latent p-values and obtain the exact
empirical cumulative predictive distribution of these la-
tent p-values. (This procedure is the repeated K = 100
times.) The resulting empirical cumulative predictive
distributions are then plotted in the right panel of Fig-
ure 2. Here, simulations are repeated under the alter-
native hypothesis. Thus, we expect the resulting cu-
mulative predictive distributions to be stochastically
much smaller than the cumulative distribution of a
uniform(0,1) random variable. Indeed, we see that
about 75% of these cumulative distributions are now
putting, at least, 85% of their mass below 0.05. Thus,
these cumulative predictive distributions are correctly
summarizing the evidence against the null hypothe-
sis. This provides further credence that the exact tests
based on predictive distributions of latent p-values are
credible and reliable.

4.2 Light Preference Behavior in Fruit Flies

We now return to the fruit fly example introduced in
Section 1. The purpose of the fruit flies experiments
(see, e.g., Kain, Stokes and de Bivort, 2012 for further
details) was to study the behavioral variability or the

TABLE 3
Experimental manipulations and measurements on heterogeneity

in light-preference behavior. Here, we have 14 different
combinations of manipulations, with a0 representing a baseline

serotonin signal, and a1, a2, . . . , a8 indicating eight different
elementary manipulations

Type (vi ) Serotonin
manipulations

Measurements on
light-preference

1 a0 − a1 −0.4007
2 a0 − a2 −0.2325
3 a0 − a3 −0.1599
4 a0 − a1 − a2 −0.1341
5 a0 − a1 − a4 −0.3976
6 a0 − a1 + a5 −0.2857
7 a0 − a3 − a4 −0.1105
8 a0 − a3 + a5 −0.0755
9 a0 − a6 −0.3271

10 a0 − a6 − a7 −0.4000
11 a0 + a8 0.0758
12 a0 + a5 0.0073
13 a0 − a4 0.1785
14 a0 0.0000

personality in fruit flies. Typically, fruit flies move to-
ward the light when startled, but different fruit flies also
exhibit variations in their respective mean phototactic
behaviors. These idiosyncrasies are believed to be non-
inheritable, but last the lifetime of the flies, and consti-
tute a form of personality. One specific objective was
to identify and understand the underlying neurobiolog-
ical factors such as serotonin that contribute to these
individual-to-individual noninheritable behavioral dif-
ferences, including those from identically reared, iso-
genic strains.

Here, we focus on analyzing a set of phototactic per-
sonality behavior data displayed in Table 3 and col-
lected at EBG through a randomized experiment. The
first column gives the type (genetic mutation) of fruit
flies. The second column indicates the actual combi-
nations of serotonin manipulations that are done to the
fruit flies. The third column provides the values of the
response variable which summarizes an average run of
individual flies toward light or darkness when startled
and are actually determined by the preference of in-
dividual flies in choosing either left or right turns in
branching mazes. Our objective is to collect empirical
evidence on whether there is a positive association be-
tween the serotonin signaling and the phototactic per-
sonality.

As mentioned in Section 1, we do not know the ac-
tual magnitude of the change in serotonin signaling, but
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FIG. 3. Left: histogram of Spearman’s rank correlation between heterogeneity in light-preference behavior and the experimental manipu-
lations on serotonin signals. Right: conditional distribution of latent p-values for testing zero Spearman’s rank correlation.

only some of the directions to which each experimen-
tal manipulation affects the serotonin signaling. Fur-
thermore, Figure 1 provides these directions in terms
of a partial order (V,E). As a consequence, we can-
not directly apply the sample rank correlation t1 and
compute a standard a p-value here. Instead, we draw
uniform linear extensions u(1), . . . ,u(M), M = 10,000,
of (V,E) using algorithms discussed in Section 3. For
each u(i), we then compute the sample rank correlation
ρ(i) between y and u(i). We also compute its standard-
ized version t

(i)
1 and the corresponding exact empiri-

cal p-value p(t
(i)
1 ) = 1 − �n(t

(i)
1 ). Figure 3 plots the

histograms of ρ(i) and p(t
(i)
1 ) based on a backward-

forward Karzanov–Khachiyan MCMC sample. Specif-
ically, this MCMC sample is collected as follows. Us-
ing the perfect MCMC method, we draw an initial
state u(1); the Markov chain is then run backward 5000
times to obtain u(0). From u(0), we then separately run
the chain 5000 steps forward in time to obtain u(i),
for i = 2,3, . . . ,M . Since 4n3 logn/π2 ≈ 2935, this
procedure would approximately draw a uniform sam-
ple from U . This sample provides the following statis-

tics. The rank correlation ρ(i)s range from 0.042 to
0.842, with median 0.451, first quartile 0.354 and third
quartile 0.547. Thus, the overall correlation seems to
be strictly positive. However, since the sample size
is here very small (n = 14), this is likely not signifi-
cantly strong evidence to reject the null hypothesis of
no correlation. Indeed, about 47.5% of p(t

(i)
1 ) fall be-

low 0.05, another 25.5% fall between 0.05 and 0.10,
whereas only 14.05% of p(t

(i)
1 ) fall above 0.15. Over-

all, these p-values suggest a weak evidence against the
null hypothesis. In other words, even though these p-
values do not add up to a case for outright rejection,
the weight of evidence against the null hypothesis here
should not be completely ignored either.

Next, we compare the above MCMC latent p-values
with those obtained from the importance sampling,
the Gibbs sampling, and the perfect MCMC sampling
methods. To this end, Table 4 provides summary statis-
tics of p(t

(i)
1 ) obtained from these different sampling

methods. Note that the importance sampling algorithm
does not draw the linear extensions uniformly, but with
probability π0(u) for u ∈ U . Therefore, the calculated

TABLE 4
Summary statistics of the conditional distribution of the latent p-value from the fly data for different sampling methods

Min 1st quartile Median Mean 3rd quartile Max

Importance sampling 0.0001 0.025 0.054 0.076 0.109 0.441
Random-walk MCMC 0.0001 0.022 0.054 0.074 0.105 0.443
Gibbs sampling 0.0000 0.022 0.054 0.074 0.105 0.422
Perfect MCMC 0.0001 0.022 0.049 0.071 0.098 0.451
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p-values based on importance sampling have a corre-
sponding probability distribution associated with them.
We thus apply sampling importance resampling to ob-
tain the quantities of the exact predictive distribution
of the latent p-values. On the other hand, the Gibbs
sampling is implemented as follows. First, we apply
perfect MCMC method to draw a random vector h(1)

uniformly on �. We then run the Gibbs sampling 1000
steps backward in time to obtain h(0). From h(0), we
then separately run the chain 1000 steps forward in
time to obtain h(i), for i = 2,3, . . . ,M . Following that,
we compute ranks and linear extensions based on the
exchangeable sample h(1), . . . ,h(M). Overall, we see
that there is an excellent match among these different
sampling methods. The median p(t

(i)
1 ) from the impor-

tance sampling is 0.054. Random-walk based MCMC
sampling, Gibbs sampling and the perfect MCMC sam-
pling, respectively, put this median at 0.54, 0.054 and
0.049. The first quartiles of p(t

(i)
1 ) obtained from the

importance sampling, the random-walk based MCMC
sampling, the Gibbs sampling and the perfect MCMC
sampling are all equal to 0.022. However, the third
quartiles of p(t

(i)
1 ) obtained from these four methods

are respectively 0.109, 0.105, 0.105 and 0.098. Over-
all, the importance sampling method gave a slightly
thicker right tail in the distribution of p(t

(i)
1 ).

Finally, it is worthwhile to point out that the above
exact test results are remarkable given that the sample
size is so small, the information is so scant and none of
the conventional p-value computations either via cer-
tain statistics or pivotal quantities of the partially or-
dered data would have yielded any better numbers. Al-
though caution is required, these results may be worth
pursuing with further well replicated randomized ex-
periments. Note that such replicated experiment would
also allow us to estimate the contrasts of different treat-
ment effects and help understand the cross effect of dif-
ferent elementary manipulations.

4.3 Lead in Children’s Blood

Rosenbaum (1991, 2002) (see also Morton et al.,
1982) provides statistical analysis of lead levels (y) in
n = 33 children, whose parents were exposed to lead
on the job in a battery factory and transmitted to their
children an unknown quantity of lead through shared
living conditions. They are concerned with the hypoth-
esis that lower lead levels in children’s blood are as-
sociated with lower parental exposures to lead on the
job and higher hygiene standards. In their study, the
parental exposure (z1) is reported into three groups,

namely, low, medium and high, and parental hygiene
(z2), up to leaving the factory, is marked into three
categories, namely, good, moderately good and poor.
The bivariate explanatory variable (z1, z2) offers indi-
rect information on the quality of lead the parents inad-
vertently brought home over a long period of time, and
the statistical problem is to measure the strength of re-
lationship between y and (z1, z2). However, (z1, z2) as-
sumes a partial ordering in that (z1,j z2,j ) ≺ (z1,j ′z2,j ′)
whenever z1,j ≤ z1,j ′ and z2,j ≤ z2,j ′ . Using certain
statistics of the partially ordered data, Rosenbaum
(1991, 2002) first uncovered a strong agreement be-
tween partially ordered samples of y and (z1, z2). In
particular, applying the central limit theorem to these
statistics, he found that an approximate one-sided sig-
nificance level was about 0.0007.

Here, we pursue exact test and predict corresponding
exact latent p-values for an one sided test. We found
that there are approximately 5.67 × 105 linear exten-
sions of (z1, z2). To derive an exact test, we randomly
generate M = 1000 linear extensions u(1), . . . ,u(M)

of (z1, z2) that are consistent with the observed par-
tial order. We then compute the sample Spearman’s
rank correlation ρ(i) between the children’s blood lead
level y and the complete ordering u(i) of (z1, z2).
We also compute its standardized version t

(i)
1 and

the corresponding exact empirical p-value p(t
(i)
1 ) =

1 − �n(t
(i)
1 ). Figure 4 plots the histograms of ρ(i)

and p(t
(i)
1 ) based on a backward-forward Karzanov–

Khachiyan MCMC sample. Here, the MCMC sample
is collected as follows. Using a perfect MCMC sample,
we draw an initial state u(1); the Markov chain is first
run backward 100,000 times to obtain u(0). From u(0),
we then separately run the chain 100,000 steps forward
in time to obtain u(i), for i = 2,3, . . . ,M . Note that the
mixing time here is roughly 4n3 logn/π2 = 50,925.64,
which is the reason we run the chain 100,000 time
steps in forward and backward directions. In this ex-
ample, the rank correlations ρ(i) take values between
0.495 and 0.780, with median 0.644, first quartile
0.615 and third quartile 0.675. The corresponding p-
values p(t

(i)
1 ) range from 10−6 to 0.002, with median

4 × 10−5, first quartile 3 × 10−5 and third quartile
1×10−4. Overall, an overwhelming fraction of p(t

(i)
1 )s

are less than 0.0007. Thus, the exact predictive dis-
tribution of the latent p-value suggests a stronger ev-
idence against the null hypothesis than what was re-
ported by Rosenbaum (1991, 2002).

We also compare random-walk based MCMC latent
p-values with those obtained from the importance sam-
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FIG. 4. Left: histogram of Spearman’s rank correlation between children’s blood lead level and the complete ordering of the categories.
Right: conditional distribution of latent p-values for testing zero Spearman’s rank correlation.

pling, Gibbs sampling and the perfect MCMC sam-
pling methods. In particular, Table 5 has the same for-
mat as Table 4 and it provides summary statistics of
p(t

(i)
1 ) obtained from these different sampling meth-

ods. Overall, we see that there is a good agreement
among the four different sampling methods. The me-
dian p(t

(i)
1 ) from the MCMC sampling is 4 × 10−5.

The importance sampling, the Gibbs sampling and the
perfect MCMC sampling methods respectively give
this median 6 × 10−5, 3 × 10−5 and 6 × 10−5. The
first quartiles of p(t

(i)
1 ) obtained from the importance

sampling, random-walk MCMC, Gibbs and perfect
MCMC sampling are respectively equal to 3 × 10−5,
3 × 10−5, 10−5 and 4 × 10−5. On the other hand,
the third quartiles of p(t

(i)
1 ) obtained from the these

methods are respectively 10−4, 10−4, 8 × 10−5 and
9 × 10−5. Overall, there is excellent agreement among
different sampling methods.

4.4 Breast Cosmesis Study

This dataset, analyzed by Finkelstein (1986) and oth-
ers, records the time until the appearance of breast re-

traction for two groups of early breast cancer patients.
The first group consists of 46 patients who received
radiotherapy alone, whereas the second group with 48
patients received both the radiotherapy and the adju-
vant chemotherapy. Each patient was monitored for the
cosmetic effects of their therapy and underwent medi-
cal follow-ups for breast retraction once in every 4 to
6 months for a period of time. Missed visits and re-
turning with a changed status took place for certain
patients who were monitored weekly or monthly for
a response, but like others, we also assume that the ef-
fect of such missed visits is negligible. The primary
focus is to compare the patients who received adjuvant
chemotherapy to those who did not and to determine
whether chemotherapy affects the rate of deterioration
of the cosmetic state. To this end, we assume that fail-
ure times follow a Cox promotional hazard model (2.9)
with zi = 0 if the ith patient belongs to the first group
and 1 otherwise, and test whether β = 0 against the al-
ternative β > 0.

From the observed interval data, we first compute
the partial order of the failure times. We found that

TABLE 5
Summary statistics of the conditional distribution of the latent p-value from the lead data for different sampling methods

1st quartile Median 3rd quartile Max

Importance sampling 3 × 10−5 6 × 10−5 1 × 10−4 1.53 × 10−3

Random-walk MCMC 3 × 10−5 4 × 10−5 1 × 10−4 1.93 × 10−3

Gibbs sampling 1 × 10−5 3 × 10−5 8 × 10−5 2.61 × 10−3

Perfect MCMC 4 × 10−5 6 × 10−5 9 × 10−5 1.52 × 10−3
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FIG. 5. Left: histogram of the test statistics t from breast cosmesis data. Right: histogram of the conditional distribution of latent p-values
based on the statistics t .

there are approximately 2.4 × 1092 linear extensions
that are consistent with the observed partial order. Us-
ing MCMC, we then generate M = 10,000 of these
linear extensions to the observed partial order. The
MCMC sample is obtained as follows. First, we apply
the perfect MCMC sampling method to obtain a start-
ing state u(1). In this example, n = 94 and the expected
running time of the perfect MCMC sampling method
is about 16n3 logn/π2 is about 6,117,510 time steps.
We then run the random-walk MCMC starting from
u(1) 100,000 time steps backward to obtain u(0). From
u(0), we then separately run the random walk 100,000
steps forward in time to obtain u(i), for i = 2, . . . ,
M = 10,000. These linear extensions then give rise to
M random full rank vectors r(1), r(2), . . . , r(M) of fail-
ure times. Applying the Survival R Cran package func-
tion “coxph” to the full rank vector r(i), we next maxi-
mize (2.10), obtain the corresponding β̂(i), the standard
error of β̂(i) and finally the value of the test statistic
t (i) = β̂(i)/se(β̂(i)). Figure 5 provides two histograms.
The first one is based on the predicted values of the
test statistics t (i). The second one corresponds to the
histogram of one-sided latent exact p-values p(t(i)).

Following Finkelstein (1986), several approximate
rank test procedures have been developed for this prob-
lem and applied to this particular data set. See, for ex-
ample, Fay and Shaw (2010) who report various two-
sample z-scores and the corresponding p-values for
this set of breast cosmesis data. Most of these z-scores
range between 2.17 to 2.70 resulting in various conven-
tional p-values between 0.03 and 0.007. In the MCMC
run, we found that the test statistics t (i) range from
−0.556 to 4.373 with median 2.231 and the first and

the third quartile respectively equal to 1.772 and 2.703.
The corresponding latent p-values p(t(i)) range from
10−6 to 0.707. Furthermore, the first, second and the
third quartiles of p(t(i)) are respectively 0.003, 0.013
and 0.039. Thus, about 80.34% of the latent p-values
are below 0.05, whereas only 3.87% fall above 0.15.
Overall, these numbers consolidate the evidence ob-
tained by Finkelstein (1986) and others on the effect of
adjuvant chemotherapy on the rate of deterioration of
the cosmetic state of breast cancer patients. At the same
time, we must also recognize that the predictive distri-
bution of the latent p-value here is well spread out and
not concentrated around a point. Thus, it cannot be ap-
proximated by a single number. In other words, in this
example, a conventional p-value based on the asymp-
totic null distribution of a test statistic is not appropri-
ate (and can be misleading) in assessing the strength of
the evidence against the null hypothesis.

As was the case with other examples, different
MCMC sampling methods also provide consistent re-
sults here. These results are summarized in Table 6. It
can be seen that, in the perfect MCMC run, the latent
p-values p(t(i)) ranges from 10−5 to 0.55, with the
first, second and the third quartiles of p(t(i)) being re-
spectively 0.0035, 0.0130 and 0.0393. Furthermore, in
the perfect MCMC run, about 80.04% of the latent p-
values fall below 0.05 and only 3.52% fall above 0.15.
We also get very similar numbers using the Gibbs sam-
pling methods. However, it is useful to mention that
the basic importance sampling algorithms in Section 3
did not work in this example. In particular, every time
we draw an importance sample, we found that one of
the weights is unusually large (i.e., very close to one)
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TABLE 6
Summary statistics of the exact conditional distribution of the latent p-value from the breast cosmoses data using different sampling methods

1st quartile Median Mean 3rd quartile Max

Random-walk MCMC 0.0036 0.0133 0.0327 0.0389 0.7073
Gibbs sampling 0.0037 0.0137 0.0337 0.0405 0.5846
Perfect MCMC 0.0035 0.0130 0.0324 0.0393 0.5487

among the �(u(i)). This problem of few unusually large
weights did not mitigate when we tried to implement
the one-step look ahead scheme. To rectify this situa-
tion, we thus need the sampling distribution π0(u) to be
much closer to the target distribution π(u). It is likely
that a k-steps look ahead scheme would work for some
suitably chosen value of k, but we did not pursue its im-
plementation because of the increase in computational
cost.

5. DISCUSSION

To summarize, we present some rank test procedures
from partially ordered data that arise in various biolog-
ical and environmental applications. The procedures
are distribution-free in that we assume no additional
knowledge on our part regarding the form of the under-
lying probability distribution function of the random
variables. The exact null distributions of these rank
tests often lead to complex combinatorial problems.
However, we present several sampling based methods
that allow us to draw samples from the exact predictive
distributions of latent p-values. The procedures apply
for small to moderately large sample sizes and this
adds practical importance when fewer data are avail-
able, and asymptotic results are inaccurate. Finally, one
simulation study and three examples, two on rank cor-
relations and one on interval censored data demonstrate
the potential use of our methods.

In the above context, we must reiterate the practi-
cal benefits of collecting empirical evidence through
computing predictive distribution of latent p values. In
classical statistics, empirical evidence is often summa-
rized through conventional p-values. These p-values
are probability under the null distribution of obtain-
ing a test statistic that equals to or is more extreme
than what was actually observed. Thus, conventional
p-values are just numbers. In contrast, the predictive
distributions of the latent p-value are probability dis-
tributions. However, in simulations and data examples,
we have seen that the histograms of these predictive

distributions are all well spread out and not concen-
trated around a point. This suggests that we better not
approximate them by single numbers. In other words,
it is important to recognize that there is a qualitative
difference in the answers that we obtained in the sim-
ulations and the data examples through computing the
predictive distributions of the latent p-values. Put an-
other way, in these examples, conventional p-values
are no match for predictive distributions of the latent
p-values. Furthermore, under regularity conditions, as
the sample size increases to infinity, we expect the pre-
dictive distributions of a latent p-value to converge to a
conventional p-value. Thus, had the sample size been
really large, we would be seeing more agreement be-
tween predictive p values and corresponding conven-
tional p-values. However, in many biological and en-
vironmental applications, the sample size may not be
very large and asymptotic results can be inaccurate.
Thus, in a range of applications where the sample size
is small or moderately large, we will greatly benefit by
computing the predictive distributions of the latent p-
values.

As statisticians our rule of computations is simple.
We should pursue exact computations and obtain best
possible answers when possible. When we cannot pur-
sue exact computations directly (e.g., if the sample size
is large or storage requirements are enormous), we can
look for alternatives that will give us answers that are
as good as exact answers. In this regard, we have al-
ready seen that a basic importance sampling can fail in
some instances. Thus, we must focus on MCMC meth-
ods and, whenever possible, we must pursue perfect
MCMC sampling. In cases when we cannot afford to
draw a large sample of linear extensions using the per-
fect MCMC method (because of the computing time or
storage restrictions), we can at least try to use perfect
MCMC algorithm (or run the MCMC longer than the
mixing time) to generate one linear extension and then
use either Gibbs or random walk Metropolis MCMC
and compute the predictive distributions of latent p-
values. We have already seen in simulations and data
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examples that there is a little loss if we draw one linear
extension using the perfect MCMC and then draw the
rest using Gibbs or random walk Metropolis MCMC
methods. However, this will still take O(n3 logn) com-
putations. Note that typically matrix determinant com-
putations take O(n3) time steps, and with modern com-
puting power, we can routinely compute the determi-
nant of a 10,000 × 10,000 matrix. Thus, these MCMC
computations can also be done in a routine way if the
sample size is less than 10,000. In this regard, the pre-
liminary R codes provided in the supplement to the
paper (Mondal and Hinrichs, 2016) can be fine-tuned
using C/C++ language and with distributed systems
to achieve various algorithm efficiency. Finally, if the
sample size is large (say, n � 10,000), we will need
to look for alternatives such as computations based on
asymptotic results.

There are further opportunities to develop and imple-
ment our statistical procedures, particularly when we
are interested in the estimation of regression parame-
ters and statistical inference of interval censored data.
A typical framework is described in Satten (1996) in
that ranks are generated using Gibbs samples and score
equations are computed using stochastic approxima-
tions. Thus, instead of Gibbs sampling, we can adapt
the perfect MCMC sampling scheme and construct ap-
proximations to marginal likelihood score equations
and to the inverse of the Fisher’s information matrix,
without specifying the baseline hazard. These compu-
tations are also extensible for making a statistical infer-
ence from the multivariate interval-censored data; see,
for example Goggins and Finkelstein (2000). The sam-
pling procedures discussed here can also be useful in
many other contexts, as incomplete ranking arises in
many other applications. One context is that of con-
structing the average ranks from partially ordered data
that arise in chemistry and environmental science; see,
for example, Lerche et al. (2002), Patil and Taillie
(2004) and subsequent references. Another context is
the estimation of coherency in observational studies
(see, e.g., Rosenbaum, 2002). Some of the sampling
schemes derived here are also applicable even when
further restrictions are imposed in the partial orders,
for example, in elementary ranking conditions or anti-
matroids in linguistic studies (Riggle, 2009) where we
have directed edges from not just one vertex to another,
but also from certain subsets of vertices to some other
subset of vertices. Finally, development of an R pack-
age with an optimized code will greatly facilitate the
use of our methods to different scientific applications
and will be a matter of future research.
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