
Electronic Journal of Statistics
Vol. 11 (2017) 78–98
ISSN: 1935-7524
DOI: 10.1214/16-EJS1221

Estimation of the global regularity of

a multifractional Brownian motion

Joachim Lebovits and Mark Podolskij
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Abstract: This paper presents a new estimator of the global regularity in-
dex of a multifractional Brownian motion. Our estimation method is based
upon a ratio statistic, which compares the realized global quadratic varia-
tion of a multifractional Brownian motion at two different frequencies. We
show that a logarithmic transformation of this statistic converges in prob-
ability to the minimum of the Hurst functional parameter, which is, under
weak assumptions, identical to the global regularity index of the path.
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1. Introduction

Fractional Brownian motion (fBm) is one of the most prominent Gaussian pro-
cesses in the probabilistic and statistical literature. Popularized by Mandel-
brot and van Ness [MVN68] in 1968, it found various applications in model-
ing stochastic phenomena in physics, biology, telecommunication and finance
among many other fields. Fractional Brownian motion is characterized by its
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self-similarity property, the stationarity of its increments and by its ability to
match any prescribed constant local regularity. Mathematically speaking, for
any H ∈ (0, 1), a fBm with Hurst index H, denoted by BH = (BH

t )t≥0, is a
zero mean Gaussian process with the covariance function given by

E[BH
s BH

t ] =
1

2

(
t2H + s2H − |t− s|2H

)
.

Various representations of fBm can be found in the existing literature; we
refer to [Nua06, Mis08, Nou12, LLVH14] and references therein. The Hurst
parameter H ∈ (0, 1) determines the path properties of the fBm: (i) The process
(BH

t )t≥0 is self-similar with index H, i.e. (aHBH
t )t≥0 = (BH

at)t≥0 in distribution
for any a > 0, (ii) (BH

t )t≥0 has Hölder continuous paths of any order strictly
smaller than H, (iii) fractional Brownian motion has short memory if and only
if H ∈ (0, 1/2]. Moreover, fBm exhibits long range dependance if H belongs
to (1/2, 1). The statistical estimation of the Hurst parameter H in the high
frequency setting, i.e. the setting of mesh converging to 0 while the interval
length remaining fixed, is often performed by using power variation of BH .
Recall that a standard power variation of an auxiliary process (Yt)t≥0 on the
interval [0, T ] is defined by

V (Y, p)nT :=

[nT ]∑
i=0

∣∣∣Y i+1
n

− Y i
n

∣∣∣p .
This type of approach has been investigated in numerous papers; we refer to
e.g. [GL89, IL97] among many others. The fact that most of the properties of
fBm are governed by the single parameter H restricts its application in some
situations. In particular, its Hölder exponent remains the same along all its
trajectories. This does not seem to be adapted to describe adequately natural
terrains as it has been shown in [BELV12], for instance. In addition, long range
dependence requires H > 1/2, and thus imposes paths smoother than the ones
of Brownian motion. Multifractional Brownian motion (mBm) was introduced
to overcome these limitations. Several definitions of a multifractional Brownian
motion exist. The first ones were proposed in [PLV95] and [BJR97]. A more
general approach was introduced in [ST06] while the most recent definition of
mBm (which contains all the previous ones) has been given in [LLVH14]. The
latter definition is both more flexible and retains the essence of this class of
Gaussian processes. Recall first that a fractional Brownian field on R+ × (0, 1)
denoted by B = (B(t,H))(t,H)∈R+×(0,1) is a Gaussian field such that, for any

H, the process (B(t,H))t∈R+
is a fBm with Hurst parameter H. Define for any

(t,H) ∈ R+ × (0, 1)

B1(t,H) :=
1

cH

∫
R

eitu − 1

|u|H+1/2
W̃1(du), (1.1)

B2(t,H) :=

∫
R

(
|t− u|H−1/2 − |u|H−1/2

)
W2(du),
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B3(t,H) :=

∫
R

(
(t− u)

H−1/2
+ − (−u)

H−1/2
+

)
W3(du),

B4(t,H) :=

∫ T

0

1{0≤u<t≤T}(t, u) KH(t, u) W4(du),

where

cH :=

(
2 cos(πH)Γ(2− 2H)

H(1− 2H)

) 1
2

, (1.2)

Γ denotes the standard gamma function, dH :=
( 2HΓ(3/2−H)
Γ(1/2+H)Γ(2−2H)

)1/2
and

KH(t, s) := dH (t− s)
H−1/2

+ cH(1/2−H)

∫ t

s

(u− s)H−3/2
(
1−
(
s
u

)1/2−H)
du,

Here Wi, i = 1, 2, 3, 4, denotes an independently scattered standard Gaussian

measure on R, and W̃1 denotes the complex-valued Gaussian measure which
can be associated in a unique way to W1 (see [ST06, p.203-204] and [ST94,
p.325-326] for more details). It is straightforward to check that all Gaussian
fields (Bi(t,H))(t,H)∈R×(0,1) are fractional Brownian fields. A multifractional
Brownian motion is simply a “path” traced on a fractional Brownian field. More
precisely, it has been defined in [LLVH14, Definition 1.2] as follows:

Definition 1.1. Let h : R+ → (0, 1) be a deterministic function and B :=
(B(t,H))(t,H)∈R+×(0,1) be a fractional Brownian field. A multifractional Brow-

nian motion (mBm) with functional parameter h is the Gaussian process Bh =
(Bh

t )t∈R+
defined by Bh

t := B(t, h(t)), for all t ∈ R+.

It is easy to verify that the process Bh := (Bh
t )t∈R+

defined by

Bh
t =

1

ch(t)

∫
R

exp(itx)− 1

|x|h(t)+1/2
W̃ (dx), (1.3)

where W̃ denotes the complex-valued Gaussian measure is a multifractional
Brownian motion with functional parameter h (which lies on the underlying
fractional field B1, defined in (1.1)). It is straightforward to check that any
multifractional Brownian motion in the sense of [ST06, Def.1.1] is also a mBm
in sense of Definition 1.1. Multifractional Brownian motions (B1(t, h(t)))t∈R+

and (B2(t, h(t)))t∈R+
lead to the so-called harmonizable mBm, first consid-

ered in [BJR97]. (B3(t, h(t)))t∈R+
yields the moving average mBm defined in

[PLV95]. Both are particular cases of mBms in the sense of [ST06]. Finally,
(B4(t, h(t)))t∈R+

corresponds to the Volterra multifractional Gaussian process

studied in [BDM10]. This last process is an mBm in our sense.
Intuitively speaking, the multifractional Brownian motion behaves locally as

fractional Brownian motion, but the functional parameter h is time-varying.
Moreover, it remains linked to local regularity of Bh, but in a less simple way
than in the case of the fBm. More precisely, if we assume that h belongs to the
set Cη([0, 1],R), for some η > 0, and is such that



Estimation of the global regularity of a mBm 81

0 < hmin := min
t∈[0,1]

h(t) ≤ hmax := max
t∈[0,1]

h(t) < min{1, η}, (1.4)

then hmin is the regularity parameter of Bh (see [ACLV00, Corollaries 1,2 and
Proposition 10]). In this setting the functional parameter h needs to be esti-
mated locally in order to get a full understanding of the path properties of the
multifractional Brownian motion Bh. Bardet and Surgailis [BS13] have proposed
to use a local power variation of higher order filters of increments of Bh to esti-
mate the function h. More specifically, they prove the law of large numbers and
a central limit theorem for the local estimator of h (i) based on log-regression of
the local quadratic variation, (ii) based on a ratio of local quadratic variations.

In this paper we are aiming at the estimation of the parameter hmin, which
represents the regularity (or smoothness) of the multifractional Brownian mo-
tion Bh = (Bh

t )t≥0 defined in (1.3). For this particular statistical problem the
local estimation approach investigated in [BS13] appears to be rather inconve-
nient. Instead our method relies on a ratio statistic, which compares the global
quadratic variation at two different frequencies. We remark that in general it
is impossible to find a global rate an such that the normalized power variation
anV (Bh, p)nT converges to a non-trivial limit. However, ratios of global power
variations can very well be useful for statistical inference. Indeed, we will show
that under appropriate conditions on the functional parameter h, the conver-
gence

Sn(B
h) :=

∑n−1
i=0

(
Bh

i+1
n

−Bh
i
n

)2
∑n−2

i=0

(
Bh

i+2
n

−Bh
i
n

)2 −→
n→+∞

2−2hmin , holds almost surely.

Then a simple log transformation gives a strongly consistent estimator of the
global regularity hmin of a mBm.

The paper is structured as follows. Section 2 presents the basic distribution
properties of the multifractional Brownian motion, reviews the estimation meth-
ods from [BS13] and states the main asymptotic results of the paper. Proofs are
given in Section 3.

2. Background and main results

In [BS13] Bardet and Surgailis deal with a little bit more general processes
than multifractional Brownian motions. However, in order not to overload the
notations we will focus in this paper on the normalized multifractional Brownian
motion (i.e. the mBm defined by (1.3)). From now on we will refer to this process
as the multifractional Brownian motion and denote it by Bh = (Bh

t )t≥0.

2.1. Basic properties and local estimation of the functional
parameter h

We start with the basic properties of the mBm Bh with functional parameter
h. Its covariance function is given by the expression
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Rh(t, s) := E[Bh
t B

h
s ] =

c2ht,s

2ch(t)ch(s)

(
|t|2ht,s + |s|2ht,s − |t− s|2ht,s

)
, (2.1)

where ht,s := h(t)+h(s)
2 and cx has been defined in (1.2). It is easy to check

that x �→ cx is a C∞((0, 1))-function. The local behaviour of the multifractional
Brownian motion is best understood via the relationship(

u−h(t)(Bh
t+us −Bh

t )
)
s≥0

f.d.d.−→
(
Bh(t)

s

)
s≥0

as u → 0,

where
f.d.d.−→ denotes the convergence of finite dimensional distributions. Hence,

in the neighbourhood of any t in (0, 1), the mBm Bh behaves as fBm with
Hurst parameter h(t). This observation is essential for the local estimation of
the functional parameter h. In the following we will briefly review the statistical
methods of local inference investigated in Bardet and Surgailis [BS13], which
is based on high frequency observations Bh

0 , B
h
1/n, . . . , B

h
(n−1)/n, B

h
1 . While the

original paper is investigating rather general Gaussian models whose tangent
process is a fractional Brownian motion, we will specialize their asymptotic
results to the framework of multifractional Brownian motion.

Let us introduce the generalized increments of a process Y = (Yt)t≥0. Con-

sider a vector of coefficients a = (a0, . . . , aq) ∈ R
q+1 and a natural number

m ≥ 1 such that
q∑

j=0

jkaj = 0 for k = 0, . . . ,m− 1 and

q∑
j=0

jmaj �= 0.

In this case the vector a ∈ R
q+1 is called a filter of order m. The generalised

increments of Y associated with filter a at stage i/n are defined as

Δn
i,aY :=

q∑
j=0

ajY i+j
n
.

Standard examples are a(1) = (−1, 1), Δn
i,a(1)Y = Y(i+1)/n − Yi/n (first order

differences) and a(2) = (1,−2, 1), Δn
i,a(2)Y = Y(i+2)/n−2Y(i+1)/n+2Yi/n (second

order differences). In both cases we have that q = m. Now, we set ψ(x, y) :=
(|x+ y|)/(|x|+ |y|) and set

Λ(H) := E[ψ(Δn
0,aB

H ,Δn
1,aB

H)], H ∈ (0, 1).

The function Λ does not depend on n and is strictly increasing on the interval
(0, 1). For any α ∈ (0, 1), which determines the local bandwidth, the ratio type
estimator of h(t) is defined as

ĥn,α
t := Λ−1

⎛⎜⎝
∑

i∈�0,n−q−1�: |i/n−t|≤n−α

ψ(Δn
i,aB

h,Δn
i+1,aB

h)

card{i ∈ �0, n− q − 1� : |i/n− t| ≤ n−α}

⎞⎟⎠ .

Here and throughout the paper we denote �p, q� := {p, p+1, p+2, . . . , q} for any

p, q ∈ N with p ≤ q. The authors of [BS13] only investigate the estimator ĥn,α
t
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relative to the filter a = a(2), which we assume in this subsection from now on.
The consistency and asymptotic normality of the estimator ĥn,α

t is summarized
in the following theorem. We remark that the condition for the central limit
theorem crucially depends on the interplay between the bandwidth parameter
α and the Hölder index η of the function h.

Theorem 2.1. ([BS13, Proposition 3]) Assume that h belongs to Cη([0, 1]) and
that condition (1.4) is satisfied.

(i) For any t ∈ (0, 1) and α ∈ (0, 1) it holds that

ĥn,α
t

P−→ h(t), as n → ∞.

(ii) When α > max
(

1
1+2min(η,2) , 1− 4(min(η, 2)− supt∈(0,1) h(t))

)
it holds

that √
2n1−α

(
ĥn,α
t − h(t)

)
d−→ N (0, τ2) as n → ∞,

where the asymptotic variance τ2 is defined in [BS13, Eq. (2.17)].

The paper [BS13] contains the asymptotic theory for a variety of other local
estimators of h(t). We dispense with the detailed exposition of these estimators,

since only ĥn,α
t is somewhat related to our estimation method.

Remark 2.1. Nowadays, it is a standard procedure to consider higher order
filters for Gaussian processes to obtain a central limit theorem for the whole
range of Hurst parameters. Let us shortly recall some classical asymptotic re-
sults, which are usually referred to as Breuer-Major central limit theorems. We
consider the scaled power variation of a fractional Brownian motion BH with
Hurst parameter H ∈ (0, 1) based on first order filter a(1) and second order filter
a(2):

V (BH , p; a(1))n := n−1+pH
n−1∑
i=0

|Δn
i,a(1)B

H |p

and

V (BH , p; a(2))n := n−1+pH
n−2∑
i=0

|Δn
i,a(2)B

H |p.

It is well known that, after an appropriate normalization, the statistic
V (BH , p; a(1))n exhibits asymptotic normality for H ∈ (0, 3/4], while it con-
verges to the Rosenblatt distribution for H ∈ (3/4, 1). On the other hand, the
statistic V (BH , p; a(2))n exhibits asymptotic normality for all H ∈ (0, 1). We
refer to [BM83, Taq79] for a detailed exposition.

2.2. Estimation of the global regularity parameter hmin

In this section we will construct a consistent estimator of the global regularity
parameter hmin, which has been defined at (1.4). Our first condition is on the
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set h−1({hmin}), which is necessarily compact since h belongs to Cη([0, 1]). We
assume that this set has the following form

Mh := h−1({hmin}) =
(

q⋃
i=1

[ai, bi]

)⋃ ⎛⎝ m⋃
j=1

{xj}

⎞⎠ , (q,m) ∈ N
2 \ (0, 0),

(2.2)

where N = {0, 1, 2, . . .} and the intervals [ai, bi] are disjoint and such that none

of the xj ’s belongs to
q⋃

i=1

[ai, bi]. Depending on whether q ≥ 1 or q = 0, we will

need an additional assumption. Below, we denote by h
(p)
l (x) (resp. h

(p)
r (x)) the

pth left (resp. right) derivative of h at point x.
(A ) There exist positive integers pj such that function h is pj times contin-

uously left and right differentiable at point xj for j = 1, . . . ,m such that

pj = min{p : h
(p)
l (xj) �= 0} = min{p : h(p)

r (xj) �= 0}.

We remark that since h reaches its minimum at points xj , we necessarily have

that h
(pj)
r (xj) > 0 and that h

(pj)
l (xj) > 0 if pj is even and h

(pj)
l (xj) < 0 if

p is odd. Now, we proceed with the construction of the consistent estimator
of the global regularity parameter hmin based on high frequency observations
Bh

0 , B
h
1/n, . . . , B

h
(n−1)/n, B

h
1 . First of all, let us remark that considering the esti-

mator mint∈[0,1] ĥ
n,α
t , where ĥn,α

t has been introduced in the previous section, is
not a trivial matter since the functional version of Theorem 2.1 is not available.
Instead our statistics relies on the global quadratic variation rather than local
estimates.

For the mBm Bh = (Bh
t )t∈[0,1], we introduce the notations

V (Bh; k)n :=

n−k∑
i=0

(
Bh

i+k
n

−Bh
i
n

)2
, Sn(B

h) :=
V (Bh; 1)n

V (Bh; 2)n
. (2.3)

Our first result determines the limit of E[V (Bh; 1)n]/E[V (Bh; 2)n].

Proposition 2.2. Let h : [0, 1] → (0, 1) be a deterministic Cη([0, 1])-function
satisfying (1.4) and such that the set Mh has the form (2.2). If q = 0 we also
assume that condition (A ) holds. Define

U h
n :=

E[V (Bh; 1)n]

E[V (Bh; 2)n]
.

Then it holds that

lim
n→+∞

U h
n =

(
1

2

)2hmin

. (2.4)

The convergence result of Proposition 2.2 is rather intuitive when q ≥ 1,
which means that the minimum of the function h is reached on a set of positive
Lebesgue measure. In this setting it is quite obvious that the statistic V (Bh; k)n
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is dominated by squared increments (Bh
(i+k)/n − Bh

i/n)
2 for i/n ∈ ∪q

i=1[ai, bi].
Thus, the estimation problem is similar to the estimation of the Hurst parameter
of a fractional Brownian motion (Bhmin

t )t∈∪q
i=1[ai,bi] with Hurst parameter hmin,

for which the convergence at (2.4) is well known. When q = 0, and hence
Leb(Mh) = 0, the proof of Proposition 2.2 becomes much more delicate.

Remark 2.2. Assume for illustration purpose that q = 0, m = 1, x := x1 and
p := p1. Condition (A ) is crucial to determine the precise asymptotic expansion
of the quantity E[V (Bh; k)n]. As a prototypical example let us consider the
simple function

h(t) = c+ dtp, t ∈ [0, 1], (2.5)

where c ∈ (0, 1) and d > 0 such that c+ d < 1. In this case hmin = c and x = 0.
We obtain the following asymptotic decomposition:

E[V (Bh; k)n] ≈
n−k∑
i=0

(
k

n

)2h(i/n)

=

(
k

n

)2c n−k∑
i=0

exp (2d(i/n)p{ln k − lnn}) .

Observing that the map x �→ xp, x ∈ [0, 1], is monotone increasing, we conclude
from the latter

E[V (Bh; k)n] ≈ n

(
k

n

)2c ∫ 1

0

exp (2dxp{ln k − lnn}) dx

= k2c
n1−2c

p(ln(n/k))1/p

∫ ln(n/k)

0

y−1+1/p exp (−2dy) dy

≈ k2c
n1−2c

p(ln(n/k))1/p

∫ ∞

0

y−1+1/p exp (−2dy) dy. (2.6)

From this simple example we learn that the constant p from condition (A )
determines the leading term of E[V (Bh; k)n]. Indeed, a similar argumentation
and the lower and upper bounds in (3.16) and (3.17) in the proof show that

E[V (Bh; k)n] = O

(
n1−2hmin

(lnn)1/p

)
as n → +∞, for k = 1, 2,

in the general setting of Proposition 2.2. Furthermore, in the framework of
(2.5), we may easily determine the bias associated with convergence at (2.4)
using (2.6):

U h
n −

(
1

2

)2hmin

= O

(
1

lnn

)
as n → +∞. (2.7)

The condition min{p : h
(p)
l (x) �= 0} = min{p : h

(p)
r (x) �= 0} of assumption

(A ) is not essential for the proofs. For instance, when min{p : h
(p)
l (x) �= 0} >

min{p : h
(p)
r (x) �= 0} the expectation E[V (Bh; k)n] would be dominated by the

terms in the small neighbourhood on the right hand side of x and the statement
of Proposition 2.2 can be proved in the same manner.

Our main result shows strong consistency of the statistic Sn(B
h).
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Theorem 2.3. Assume that h ∈ C2([0, 1]) and the set Mh has the form (2.2).
If q = 0 we also assume that condition (A ) holds. Then we have the following
result:

Sn(B
h)

a.s.−→
(
1

2

)2hmin

. (2.8)

In particular, the following convergence holds:

ĥmin := − ln(Sn(B
h))

2 ln(2)

a.s.−→ hmin. (2.9)

The asymptotic result of Theorem 2.3 can be extended to more general Gaus-
sian processes than the mere multifractional Brownian motion. As it has been
discussed in [BS13], when a Gaussian process possesses a tangent process Bh(t)

at time t, we may expect Theorem 2.3 to hold under certain assumptions on
its covariance kernel. We refer to assumptions (A)κ and (B)α therein for more
details on sufficient conditions.

When q ≥ 1 we obtain the following weak limit theorem.

Theorem 2.4. Assume that h ∈ C2([0, 1]) and the set Mh has the form (2.2).
If q ≥ 1 and supt∈[0,1] h(t) < 3/4 we obtain the central limit theorem

n−1/2+2hmin

(
n−k∑
i=0

{(
Bh

i+k
n

−Bh
i
n

)2
−E

[(
Bh

i+k
n

−Bh
i
n

)2]})
k=1,2

d−→ N2(0,Σ),

(2.10)

where the matrix Σ ∈ R
2×2 is defined by

Σ11 =2r
∑
j∈Z

ρ211(j), Σ22 =24H+1r
∑
j∈Z

ρ222(j), Σ12 =Σ21 =22H+1r
∑
j∈Z

ρ212(j)

with r =
∑q

j=1(bj − aj) and

ρ11(j) = cov(Bhmin

i −Bhmin

i−1 , Bhmin

i+j −Bhmin

i+j−1),

ρ22(m) = cov(Bhmin

i −Bhmin

i−2 , Bhmin

i+j −Bhmin

i+j−2),

ρ12(m) = cov(Bhmin

i −Bhmin

i−1 , Bhmin

i+j −Bhmin

i+j−2), j ∈ Z,

and Bhmin denotes the fractional Brownian motion with Hurst parameter hmin.

It is well known that |ρkk′(j)| ≤ C|j|2hmin−2 for k, k′ = 1, 2 and thus Σ <
∞ when hmin < 3/4. As stated in Remark 2.1 a central limit theorem can
be obtained without the restriction supt∈[0,1] h(t) < 3/4 when the first order
increments are replaced by second order increments. In the setting q = 0, which
implies that Leb(Mh) = 0, the weak limit theorem seems to be out of reach.

Remark 2.3. The main result (2.10) can be reformulated as follows:

√
n
(
n−1+2hminV (Bh; k)n − En(k)

)
k=1,2

d−→ N2(0,Σ),

where En(k) := n−1+2hminE[V (Bh; k)n].
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Following the arguments of Section 3.1.1 we may conclude that

lim
n→+∞

En(k) = rk2hmin k = 1, 2,

where r =
∑q

j=1(bj−aj). Applying the δ-method to the function f(x, y) = x/y,
we obtain the central limit theorem

√
n

(
V (Bh; 1)n

V (Bh; 2)n
− U h

n

)
d−→ N

(
0, (r−12−2hmin ,−2−2hmin)Σ(r−12−2hmin ,−2−2hmin)�

)
,

where y� denotes the transpose of y, under conditions of Theorem 2.4. However,
the bias associated with Proposition 2.2 has a logarithmic rate. To illustrate
this fact we consider a simple example

h(t) = c1[0,1/2](t) + (c+ d(t− 1/2)p)1(1/2,1](t),

where c ∈ (0, 3/4), d > 0 and c+d/2p < 3/4 (cf. (2.5)). Following the arguments
in (2.6) we deduce the asymptotic expansion

E[V (Bh; k)n] =
1

2
n

(
k

n

)2c(
1 +

C(p, d)

(ln(n/k))1/p

)
+ o
(
n1−2c(lnn)−1/p

)
,

where C(p, d) is a constant that depends on p and d. In this framework we
obviously obtain that

U h
n −

(
1

2

)2hmin

= O

(
1

(lnn)1/p

)
as n → +∞.

Hence, the bias dominates the variance and in this situation the central limit
theorem of (2.10) is of little use.

3. Proofs

Throughout this section we denote all positive constants by C, or Cp if they
depend on an external parameter p, although they may change from line to line.

3.1. Proof of Proposition 2.2

For k = 1, 2 we introduce the notation

V (k)
n :=

n−k∑
i=0

(
k

n

)2h(i/n)

, (3.1)

which serves as the first order approximation of the quantity E[V (Bh; k)n].
Applying [BS10, Lemma 1 p.13] we conclude that∣∣∣E[V (Bh; k)n]− V (k)

n

∣∣∣ ≤ C
lnn

nη∧1

n−k∑
i=0

(
i

n

)2h(k/n)

≤ C
lnn

n2hmin−1+η∧1
(3.2)

for any (n, k) ∈ N× {1, 2}. We have the inequality
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n −

(
1

2

)2hmin

∣∣∣∣∣ ≤ |E[V (Bh; 1)n]− V
(1)
n |+ |E[V (Bh; 2)n]− V

(2)
n |

V
(2)
n

+

∣∣∣∣∣V (1)
n

V
(2)
n

−
(
1

2

)2hmin

∣∣∣∣∣ =: μ(1)
n + μ(2)

n . (3.3)

We first show that μ
(1)
n → 0 as n → ∞. When hmin = hmax we trivially have

μ
(1)
n = 0. If hmin < hmax, we fix ε ∈ (0, hmax − hmin). By Leb(A) we denote the

Lebesgue measure of any measurable set A. We have that

Leb
(
h−1([hmin, hmin + ε])

)
> 0.

Thus, there exists n0 ∈ N such that for all n ≥ n0 it holds that

Card{i ∈ �0, n−k�; h(i/n) ∈ [hmin, hmin+ε]} ≥ n Leb
(
h−1([hmin, hmin + ε])

)
/2.

This implies that

V (2)
n ≥

∑
i∈�0,n−k�; h(i/n)∈[hmin,hmin+ε]

(
2

n

)2h(i/n)

≥ Cn1−2(hmin+ε).

Hence, applying Inequality (3.2), we conclude that:

μ(1)
n ≤ C lnn · n2ε−η∧1,

which proves that μ
(1)
n →

n→+∞
0, for any ε small enough.

3.1.1. Convergence of μ
(2)
n in the case q ≥ 1

We first prove that μ
(2)
n → 0 in the case q ≥ 1. Assume again that hmin < hmax.

First, we observe the lower bound

V (k)
n ≥

q∑
l=1

∑
i∈�0,n−k�; i/n∈[al,bl]

(
k

n

)2h(i/n)

≥
(
k

n

)2hmin q∑
l=1

card{i ∈ �0, n− k�; i/n ∈ [al, bl]}

≥ n

(
k

n

)2hmin q∑
l=1

(
bl − al − 2

n

)
. (3.4)

For the upper bound we fix 0 < ε < hmax − hmin and consider the decompo-
sition

V (k)
n =

∑
i∈�0,n−k�; h(i/n)∈[hmin,hmin+ε]

(
k

n

)2h(i/n)
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+
∑

i∈�0,n−k�; h(i/n) 
∈[hmin,hmin+ε]

(
k

n

)2h(i/n)

.

Setting λn(ε) := n−1card{i ∈ �0, n − k�; h(i/n) ∈ [hmin, hmin + ε]}, we deduce
the assertions

λn(ε) → Leb
(
h−1([hmin, hmin + ε])

)
as n → ∞,

Leb
(
h−1([hmin, hmin + ε])

)
→ Leb

(
h−1({hmin})

)
=

q∑
l=1

(bl − al) > 0 as ε → 0.

Now, we conclude that

V (k)
n ≤ nλn(ε)

(
k

n

)2hmin

+ n(1− λn(ε))

(
k

n

)2(hmin+ε)

. (3.5)

Throughout the proofs we write lim for lim inf and lim for lim sup. Applying
inequalities (3.4) and (3.5), we obtain that

lim
n→+∞

n
∑q

l=1(bl − al − 2
n )

nλn(ε) + n(1− λn(ε))
(
2
n

)2ε
≤ lim

n→+∞
22hmin

V
(1)
n

V
(2)
n

≤ lim
n→+∞

22hmin
V

(1)
n

V
(2)
n

≤

lim
n→+∞

nλn(ε) + n(1− λn(ε))
(
1
n

)2ε
n
∑q

l=1(bl − al − 2
n )

.

Hence, we deduce that

2−2hminLeb
(
h−1({hmin})

)
Leb (h−1([hmin, hmin + ε]))

≤ lim
n→+∞

V
(1)
n

V
(2)
n

≤ lim
n→+∞

V
(1)
n

V
(2)
n

≤

2−2hminLeb
(
h−1([hmin, hmin + ε])

)
Leb (h−1({hmin}))

.

By letting ε tend to 0, we readily deduce taht μ
(2)
n → 0 as n → +∞.

3.1.2. Convergence of μ
(2)
n in the case q = 0

Without loss of generality we assume that m = 1 and Mh = h−1({hmin}) = {x}
with x ∈ (0, 1). Recall that in this setting we assume condition (A ) with p := p1.

We let γ be a positive number such that γ < 2−1 min{|h(p)
l (x)|, h(p)

r (x)}. Now,
there exists a ε = ε(γ) > 0 with ε < min{x, 1− x, γ} such that:

∀y > x with 0 < y − x < ε :
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hmin +
1

p!
(y − x)p (h(p)

r (x)− γ) ≤ h(y) ≤ hmin +
1

p!
(y − x)p (h(p)

r (x) + γ),

(3.6)

∀y < x with 0 < x− y < ε :

hmin +
1

p!
(y − x)p (h

(p)
l (x)− (−1)pγ) ≤ h(y) ≤ hmin

+
1

p!
(y − x)p (h

(p)
l (x) + (−1)pγ). (3.7)

We proceed with the derivation of upper and lower bounds for the quantity

μ
(2)
n . We start with the decomposition V

(k)
n = Γ

(1)
n,k(γ, ε)+Γ

(2)
n,k(γ, ε)+Γ

(3)
n,k(γ, ε)

where

Γ
(1)
n,k(γ, ε) :=

∑
i∈�0,n−k�; i/n∈[x,x+ε]

(
k

n

)2h(i/n)

;

Γ
(2)
n,k(γ, ε) :=

∑
i∈�0,n−k�; i/n∈[x−ε,x)

(
k

n

)2h(i/n)

;

Γ
(3)
n,k(γ, ε) :=

∑
i∈�0,n−k�; i/n∈[x−ε,x+ε]c

(
k

n

)2h(i/n)

.

It is clear that Γ
(3)
n,k(γ, ε) ≤ n(k/n)2h(yε), where we have set

yε := argmin{h(u) : u ∈ (x− ε, x+ ε)c ∩ [0, 1]}.

For the other two quantities, we deduce that Γ
(r)
n,k(γ, ε) ≤ Γ

(r)
n,k(γ, ε) ≤ Γ

(r)

n,k(γ, ε)
with

Γ
(1)
n,k(γ, ε) :=

(
k

n

)2hmin ∑
i∈�0,n−k�: i/n∈[x,x+ε]

(
k

n

)2(p!)−1(i/n−x)p(h(p)
r (x)+γ)

,

Γ
(2)
n,k(γ, ε) :=

(
k

n

)2hmin ∑
i∈�0,n−k�: i/n∈[x−ε,x)

(
k

n

)2(p!)−1(i/n−x)p(h
(p)
l (x)+(−1)pγ)

and Γ
(1)

n,k(γ, ε) := Γ
(1)
n,k(−γ, ε) and Γ

(2)

n,k(γ, ε) := Γ
(2)
n,k(−γ, ε). Using (3.6) and

(3.7), it is easy to see that, for every (k, n) ∈ {1, 2} × N:

μ(2)
n

(γ, ε) ≤ V
(1)
n

V
(2)
n

≤ μ(2)
n (γ, ε), (3.8)

with

μ(2)
n

(γ, ε) :=
Γ
(1)
n,1(γ, ε) + Γ

(2)
n,1(γ, ε)

Γ
(1)

n,2(γ, ε) + Γ
(2)

n,2(γ, ε) + n(2/n)2h(yε)
,
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μ(2)
n (γ, ε) :=

Γ
(1)

n,1(γ, ε) + Γ
(2)

n,1(γ, ε) + n(1/n)2h(yε)

Γ
(1)
n,2(γ, ε) + Γ

(2)
n,2(γ, ε)

.

From (3.8) we obtain that

0 ≤ 22hminμ(2)
n ≤

∣∣∣∣∣22hmin
V

(1)
n

V
(2)
n

− 1

∣∣∣∣∣ ≤ Un(γ, ε) + Un(−γ, ε), (3.9)

where

Un(γ, ε) := |Δn,2(γ, ε)|−1

(
|22hminΔn,1(γ, ε)−Δn,2(γ, ε)|+ 2n1−2h(yε)

)
,

(3.10)

Δn,k(γ, ε) := Γ
(1)
n,k(γ, ε) + Γ

(2)
n,k(γ, ε), Δn,k(γ, ε) := Δn,k(−γ, ε). (3.11)

In view of (3.9) it is sufficient to show that lim
γ→0

lim
n→+∞

Un(γ, ε) = 0. Define

dγ := 2(p!)−1(h(p)
r (x) + γ) and d′γ := 2(p!)−1(h

(p)
l (x) + (−1)pγ).

For any (a, b) in R+ × (R \ {0}), we also set

Sn,k(a, ε) :=
∑

i∈�0,n−k�: i/n∈[x,x+ε]

(
k

n

)a(i/n−x)p

, (3.12)

Tn,k(b, ε) :=
∑

i∈�0,n−k�: i/n∈[x−ε,x)

(
k

n

)b(i/n−x)p

. (3.13)

We deduce the identities Γ
(1)
n,k(γ, ε) = (k/n)2hminSn,k(dγ , ε) and Γ

(2)
n,k(γ, ε) =

(k/n)2hminTn,k(d
′
γ , ε). Note moreover that d′γ > 0 when p is even and d′γ < 0

when p is odd. We therefore assume from now on that b > 0 when p is even and
that b < 0 when p is odd. For any η ∈ R \ {0}, we define

f
(η)
n,k(u) :=

(
k

n

)η(u−x)p

.

Since i �→ f
(a)
n,k(i/n) is decreasing on �[nx] + 1, [n(x+ ε)]� while i �→ f

(b)
n,k(i/n) is

increasing if p even (resp. decreasing if p odd) on �[n(x− ε)] + 1, [nx]�, one can
use an integral test for convergence, which provides us with the following upper
bounds

n
∫ βn(a)

αn(a)
y1/p−1e−y dy

p(a ln(n/k))1/p
≤ Sn,k(a, ε) ≤

n
∫ μn(a)

τn(a)
y1/p−1e−y dy

p(a ln(n/k))1/p
,

(3.14)

n
(∫ β′

n(b)

α′
n(b)

y1/p−1e−y dy − ρ
(b)
n,k(ε)

)
p((−1)pb ln(n/k))1/p

≤ Tn,k(b, ε)



92 J. Lebovits and M. Podolskij

≤
n
(∫ μ′

n(b)

τ ′
n(b)

y1/p−1e−y dy − ρ
(b)
n,k(ε)

)
p((−1)pb ln(n/k))1/p

.

(3.15)

Here we use the notation

αn(a) := a ln(n/k)

(
[nx] + 1

n
− x

)p

, βn(a) := a ln(n/k)

(
[n(x+ ε)] + 1

n
− x

)p

,

τn(a) := a ln(n/k)

(
[nx]

n
− x

)p

, μn(a) := a ln(n/k)

(
[n(x+ ε)]

n
− x

)p

and ρ
(b)
n,k(ε) := f

(b)
n,k(

[n(x−ε)]+1
n ) + f

(b)
n,k(

[nx]
n ). Furthermore,

(α′
n(b), β

′
n(b), τ

′
n(b), μ

′
n(b)) := (z(1)n (b), z(2)n (b), z(3)n (b), z(4)n (b)) if p is even,

(α′
n(b), β

′
n(b), τ

′
n(b), μ

′
n(b)) := (z(3)n (b), z(4)n (b), z(1)n (b), z(2)n (b)) if p is odd,

where we have set

z(1)n (b) := b ln(n/k)

(
[nx]− 2

n
− x

)p

,

z(2)n (b) := b ln(n/k)

(
[n(x− ε)] + 1

n
− x

)p

,

z(3)n (b) := b ln(n/k)

(
[nx]− 1

n
− x

)p

,

z(4)n (b) := b ln(n/k)

(
[n(x− ε)] + 2

n
− x

)p

.

In view of the inequalities (3.14) and (3.15), as well as identities (3.12) and
(3.13), we then deduce that

n1−2hmink2hminun,k,p(dγ)

(ln(n/k))1/p
·
(

1

dγ

)
≤ Γ

(1)
n,k(γ, ε)

≤ n1−2hmink2hminvn,k,p(dγ)

(ln(n/k))1/p
·
(

1

dγ

)
, (3.16)

n1−2hmink2hminu′
n,k,p(d

′
γ)

(ln(n/k))1/p
·
(

1

|d′γ |

)
≤ Γ

(2)
n,k(γ, ε)

≤
n1−2hmink2hminv′n,k,p(d

′
γ)

(ln(n/k))1/p
·
(

1

|d′γ |

)
.

(3.17)

Here we have used the notation

un,k,p(a) :=
1

p

∫ βn(a)

αn(a)

y1/p−1e−y dy, vn,k,p(a) :=
1

p

∫ μn(a)

τn(a)

y1/p−1e−y dy,
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u′
n,k,p(b) :=

1

p

∫ β′
n(b)

α′
n(b)

y1/p−1e−y dy −
(
(−1)pb ln(n/k)

)1/p
ρ
(b)
n,k(ε)

pn
,

v′n,k,p(b) :=
1

p

∫ μ′
n(b)

τ ′
n(b)

y1/p−1e−y dy −
(
(−1)pb ln(n/k)

)1/p
ρ
(b)
n,k(ε)

pn
.

Since Γ
(r)
n,k(γ, ε) = Γ

(r)

n,k(−γ, ε), (3.16) and (3.17) also provide us with upper and

lower bounds for Γ
(r)

n,k(γ, ε). Finally, we obtain the following lower and upper
bounds

n1−2hmink2hmin

(ln(n/k))1/p
· Λn,k(γ, ε) ≤ Δn,k(γ, ε) ≤

n1−2hmink2hmin

(ln(n/k))1/p
Λ′
n,k(γ, ε), (3.18)

n1−2hmink2hmin

(ln(n/k))1/p
· Λn,k(−γ, ε) ≤ Δn,k(γ, ε) ≤

n1−2hmink2hmin

(ln(n/k))1/p
Λ′
n,k(−γ, ε), (3.19)

where

Λn,k(γ, ε) :=
1

dγ
· un,k,p(dγ) +

1

|d′γ |
· u′

n,k,p(d
′
γ),

Λ′
n,k(γ, ε) :=

1

dγ
· vn,k,p(dγ) +

1

|d′γ |
· v′n,k,p(d′γ).

Denote cp :=
∫ +∞
0

y1/p−1e−y dy. Recalling the definition of the constants dγ

and d′γ , a straightforward computation shows that, for any (k, k′) ∈ {1, 2}2 with
k �= k′:

lim
n→+∞

Λn,k(γ, ε) = lim
n→+∞

Λ′
n,k(γ, ε) =

cp
p
(1/dγ + 1/|d′γ |), (3.20)

lim
n→+∞

|Λ′
n,k′(γ, ε)− Λn,k(−γ, ε)| ≤ C (2|γ|+ |1/d−γ − 1/dγ + 1/|d′−γ | − 1/|d′γ ||)

dezdzrferferfdzffedzedzedez ≤ C|γ|. (3.21)

Starting from (3.18), and using (3.20) and (3.21), we see that there exists a
positive integer n0 and C > 0 such that for all n ≥ n0

|Δn,k(γ, ε)|−1 ≤ C
(ln(n/k))1/p

n1−2hmink2hmin
. (3.22)

Finally, inequalities (3.20), (3.21) and (3.22) imply that there exists a positive
integer N such that for all n ≥ N :

Un(γ, ε) ≤ C

(
|γ|+ (lnn)1/p

n2(h(yε)−hmin)

)
.

From the previous inequality, lim
n→+∞

Un(γ, ε) ≤ C|γ| and thus we get

lim
γ→0

lim
n→+∞

Un(γ, ε) = 0, which completes the proof.

Remark 3.1. In the previous proof (in the case q = 0), using (3.20), one

can also see that the bias related to the convergence of μ
(2)
n to 0 is of order

1/ lnn.
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3.2. Proof of Theorem 2.3

In the first step we will find an upper bound for the covariance function of the
increments of Bh. We define

rn(i, j) := cov
(
Bh

i+k
n

−Bh
i
n
, Bh

j+k
n

−Bh
j
n

)
, k = 1, 2.

Recalling the notation at (2.1), we conclude the identity

rn(i, j) = Rh

(
i+ k

n
,
j + k

n

)
−Rh

(
i

n
,
j + k

n

)
−Rh

(
i+ k

n
,
j

n

)
+Rh

(
i

n
,
j

n

)
.

Since h ∈ C2([0, 1]) and the function c defined at (1.2) is a C∞((0, 1))-function,
we deduce by an application of Taylor expansion

|rn(i, j)| ≤ n−2
2∑

l,l′=1

|∂ll′Rh(ψ
n
ij)| for |i− j| > 2, (3.23)

where ∂ll′Rh denotes the second order derivative in the direction of xl and xl′ ,
and ψn

ij ∈ (i/n, (i + k)/n) × (j/n, (j + k)/n). Now, we will compute an upper
bound for the right side of (3.23) for i �= j. First, we observe that

Rh(t, s) = F (t, s) G(t, s, h(t) + h(s)),

where

F (t, s) =
c2ht,s

ch(t)ch(s)
, G(t, s,H) =

1

2

(
|t|H + |s|H − |t− s|H

)
.

We remark that G(t, s, 2H) is the covariance kernel of the fractional Brownian
motion with Hurst parameter H ∈ (0, 1).

Since h ∈ C2([0, 1]), c ∈ C∞((0, 1)) and cx �= 0 for x ∈ (0, 1), we conclude
that

|∂lF (t, s)|, |∂ll′F (t, s)| ≤ C, l, l′ = 1, 2, (t, s) ∈ [0, 1]2.

We concentrate on the second order derivative ∂11Rh(ψ
n
ij); the estimates for the

other second order derivatives are obtained similarly. We have that

∂11Rh(t, s)

= ∂11F (t, s) ·G(t, s, h(t) + h(s))

+ 2∂1F (t, s) [∂1G(t, s, h(t) + h(s)) + h′(t) · ∂3G(t, s, h(t) + h(s))]

+ F (t, s) [∂11G(t, s, h(t) + h(s)) + 2h′(t) · ∂13G(t, s, h(t) + h(s)))

+ h′′(t) · ∂3G(t, s, h(t) + h(s)) + (h′(t))
2 · ∂33G(t, s, h(t) + h(s)))

]
.

For the derivatives of the function G, we deduce the following estimates

|∂1G(t, s, h(t) + h(s))| ≤ C
(
th(t)+h(s)−1 + |t− s|h(t)+h(s)−1

)
,
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|∂3G(t, s, h(t) + h(s))| ≤ C

(
− ln t · th(t)+h(s) − ln s · sh(t)+h(s)

− ln |t− s| · |t− s|h(t)+h(s)

)
|∂11G(t, s, h(t) + h(s))| ≤ C

(
th(t)+h(s)−2 + |t− s|h(t)+h(s)−2

)
|∂13G(t, s, h(t) + h(s))| ≤ C

(
(1− ln t) th(t)+h(s)−1

+ (1− ln |t− s|)|t− s|h(t)+h(s)−1

)
|∂33G(t, s, h(t) + h(s))| ≤ C

(
ln2 t · th(t)+h(s) + ln2 s · sh(t)+h(s)

+ ln2 |t− s| · |t− s|h(t)+h(s)

)
,

which hold for t, s ∈ (0, 1] with t �= s and the third inequality holds whenever
h(t) + h(s) �= 1 (if h(t) + h(s) = 0 we simply have ∂11G(t, s, h(t) + h(s)) = 0).
Similar formulas and bounds are obtained for other second order derivatives of
Rh. Using the boundedness of functions F , h and its derivatives, together with
the above estimates and (3.23) we obtain the inequality

|rn(i, j)| ≤ Cn−h(i/n)−h(j/n)
(
ih(i/n)+h(j/n)−2 + jh(i/n)+h(j/n)−2

+|i− j|h(i/n)+h(j/n)−2
)

(3.24)

≤ Cn−2hmin
(
i2hmin−2 + j2hmin−2 + |i− j|2hmin−2

)
, i, j ≥ 1, |i− j|> 2.

When |i− j| ≤ 2 we deduce from [BS10, Lemma 1 p.13] that

|rn(i, j)| ≤ var
(
Bh

i+k
n

−Bh
i
n

)
+ var

(
Bh

j+k
n

−Bh
j
n

)
≤ Cn−2hmin . (3.25)

We recall the identity cov(Z2
1 , Z

2
2 ) = 2cov(Z1, Z2)

2 for a Gaussian vector
(Z1, Z2). By (3.24) and (3.25) we immediately conclude that

var(V (Bh; k)n) ≤ Cn−4hmin+1
n∑

i=1

i4hmin−4 ≤ C

⎧⎪⎨⎪⎩
n−4hmin+1 hmin ∈ (0, 3/4)

lnn · n−2 hmin = 3/4

n−2 hmin ∈ (3/4, 1)

(3.26)

In view of Proposition 2.2 it is sufficient to show that

V (Bh; k)n)

E[V (Bh; k)n]

a.s.−→ 1, k = 1, 2, (3.27)

to prove Theorem 2.3. We assume again without loss of generality that q = 0,
m = 1 and Mh = h−1{hmin} = {x}. Using the notations from the previous sub-
section together with the inequalities (3.16) and (3.17), we deduce the following
lower bound, for n large enough and for ε small enough:
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E[V (Bh; k)n] ≥ Γ
(1)
n,k(γ, ε) + Γ

(2)
n,k(γ, ε) ≥ Cε

n1−2hmin

(lnn)1/p
. (3.28)

Now, observe that the random variable

Rn(k) =
V (Bh; k)n)

E[V (Bh; k)n]
− 1 = E[V (Bh; k)n]−1

(
V (Bh; k)n)−E[V (Bh; k)n]

)
is an element of the second order Wiener chaos. Thus, for any q ≥ 2 there exists
a constant Cq such that

E[|Rn(k)|q]1/q ≤ CqE[|Rn(k)|2]1/2, (3.29)

which is due to the hypercontractivity property on a Wiener chaos of a fixed
order (see e.g. [NP12, Theorem 2.7.2]). The inequalities (3.26) and (3.28) imply
the existence of a constant r > 0 with E[|Rn(k)|2]1/2 ≤ Cn−r. We conclude
that

E[|Rn(k)|q] ≤ Cqn
−rq.

Choosing q sufficiently large to ensure that qr > 1, we deduce that Rn(k)
a.s.−→ 0

by Borel-Cantelli lemma. This completes the proof of Theorem 2.3.

3.3. Proof of Theorem 2.4

We use the following decomposition:

V (Bh; k)n =
∑

i: i/n∈
q⋃

j=1

[aj ,bj ]

(
Bh

i+k
n

−Bh
i
n

)2
+

∑
i: i/n∈[0,1]\

q⋃
j=1

[aj ,bj ]

(
Bh

i+k
n

−Bh
i
n

)2

=: V1(B
h; k)n + V2(B

h; k)n,

En
1 (k) := E[V1(B

h; k)n], En
2 (k) := E[V2(B

h; k)n].

We recall that h(x) = hmin for all x ∈
q⋃

j=1

[aj , bj ]. Applying classical results

for fractional Brownian motion with Hurst parameter hmin ∈ (0, 3/4) (see e.g.
[IL97]) we obtain the central limit theorem

n−1/2+2hmin
(
V1(B

h; k)n − En
1 (k)

)
k=1,2

d−→ N2(0,Σ),

where the matrix Σ ∈ R
2×2 is defined in Theorem 2.4. We introduce the sets

D(ε) := {x ∈ [0, 1] : h(x) ∈ [hmin, hmin + ε]} \
q⋃

j=1

[aj , bj ] and D′(ε) := {x ∈

[0, 1] : h(x) > hmin + ε} for ε > 0. Due to condition (2.2) we have that

Leb(D(ε)) → 0 as ε → 0.

Observe the decomposition
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V2(B
h; k)n =

∑
i: i/n∈D(ε)

(
Bh

i+k
n

−Bh
i
n

)2
+

∑
i: i/n∈D′(ε)

(
Bh

i+k
n

−Bh
i
n

)2
.

Now, we use the fact that supt∈[0,1] h(t) < 3/4 and inequality (3.26) to conclude
the upper bound

var
(
n−1/2+2hminV2(B

h; k)n
)
≤ C

(
Dn(ε) + n−2ε

)
where we have set Dn(ε) := n−1Card{i ∈ �0, n − k� : i/n ∈ D(ε)}.
Since limn→+∞ Dn(ε) = Leb(D(ε)), for any ε > 0, we deduce that

n−1/2+2hmin
(
V2(B

h; k)n − En
2 (k)

)
k=1,2

P−→ 0, which completes the proof of

Theorem 2.4.
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