
Electronic Journal of Statistics
Vol. 10 (2016) 1001–1063
ISSN: 1935-7524
DOI: 10.1214/16-EJS1133

Optimal-order bounds on the rate

of convergence to normality

in the multivariate delta method

Iosif Pinelis and Raymond Molzon

Department of Mathematical Sciences
Michigan Technological University
Houghton, Michigan 49931, USA

e-mail: ipinelis@mtu.edu; remolzon@mtu.edu

Abstract: Uniform and nonuniform Berry–Esseen (BE) bounds of opti-
mal orders on the rate of convergence to normality in the delta method for
vector statistics are obtained. The results are applicable almost as widely
as the delta method itself – except that, quite naturally, the order of the
moments needed to be finite is generally 3/2 times as large as that for the
corresponding central limit theorems. Our BE bounds appear new even
for the one-dimensional delta method, that is, for smooth functions of
the sample mean of univariate random variables. Specific applications to
Pearson’s, noncentral Student’s and Hotelling’s statistics, sphericity test
statistics, a regularized canonical correlation, and maximum likelihood es-
timators (MLEs) are given; all these uniform and nonuniform BE bounds
appear to be the first known results of these kinds, except for uniform
BE bounds for MLEs. The new method allows one to obtain bounds with
explicit and rather moderate-size constants. For instance, one has the uni-
form BE bound 3.61E(Y 6

1 + Z6
1 ) (1 + σ−3)/

√
n for the Pearson sample

correlation coefficient based on independent identically distributed ran-
dom pairs (Y1, Z1), . . . , (Yn, Zn) with EY1 = EZ1 = EY1Z1 = 0 and

EY 2
1 = EZ2

1 = 1, where σ :=
√

EY 2
1 Z2

1 .
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1. Introduction

Initially, we were interested in studying certain properties of the Pitman asymp-
totic relative efficiency (ARE) between Pearson’s, Kendall’s, and Spearman’s
correlation coefficients. As is well known (see e.g. [48]), the standard expression
for the Pitman ARE is applicable when the distributions of the corresponding
test statistics are close to normality uniformly over a neighborhood of the null
set of distributions. Such uniform closeness can usually be provided by Berry–
Esseen (BE) type of bounds on the rate of convergence to normality.

BE bounds, especially in the special case of linear statistics, constitute a well-
established area of research, which originated mainly in work by Scandinavian
authors, who were to a large degree concerned with applications in insurance
industry and published many of their results on the accuracy of the normal
approximation in actuarial journals. For a small sample of recent uses of BE
bounds in various areas of sciences and engineering (again for linear statistics),
see e.g. [43, 41, 80, 31, 40].

Kendall’s and Spearman’s correlation coefficients are instances of U -statistics,
for which BE bounds are well known; see e.g. [38]. As for the Pearson statistic
(say R), we have not been able to find a BE bound in the literature.

This may not be very surprising, considering that an optimal BE bound
for the somewhat similar (and, perhaps, somewhat simpler) Student’s statistic
was obtained only in 1996, by Bentkus and Götze [6] for independent identically
distributed (i.i.d.) random variables (r.v.’s) and by Bentkus, Bloznelis and Götze
[4] in the general, non-i.i.d. case.

(
A necessary and sufficient condition, in the

i.i.d. case, for the Student statistic to be asymptotically standard normal was
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established only in 1997 by Giné, Götze and Mason [22], and Hall and Wang
[26] derive the leading term in the convergence rate in this general setting.

)
Employing such simple and standard tools as a delta-method type lineariza-

tion together with the Chebyshev and Rosenthal inequalities, we quickly ob-
tained (in the i.i.d. case) a uniform bound of the form O(n−1/3) for the Pearson
statistic. Indeed, Pearson’s R can be expressed as f(V ), a smooth nonlinear
function of the sample mean V = 1

n

∑n
i=1 Vi, where the Vi’s are independent

zero-mean random vectors constructed based on the observations of a random
sample; cf. (3.7). A natural approximation to f(V ) − f(0), obtained by the
delta method, is the linear statistic L(V ) =

∑n
i=1 L(

1
nVi), where L is the lin-

ear functional that is the first derivative of f at the origin. Since BE bounds
for linear statistics is a well-studied subject, we are left with estimating the
closeness between f(V ) and L(V ). Assuming f is smooth enough, one will have
|f(V )−L(V )| on the order of ‖V ‖2, and so, demonstrating the smallness of this
remainder term becomes the main problem.

The reader is referred to [75] for a rather detailed description of the delta
method and its applications; see [39, 71] for a more modern treatment of the
delta method applied to infinite-dimensional random vectors.

While the mentioned uniform bound of the form O(n−1/3) (obtained under
the assumption E ‖V1‖3 < ∞) would have sufficed as far as the ARE is con-
cerned, we became interested in obtaining an optimal-rate BE bound for the
Pearson statistic, of the form O(n−1/2).

Such a bound is obtained in this paper. In fact, we present (in Section 2)
general optimal-rate BE bounds (both uniform and nonuniform) for the rate
of convergence to normality in the multivariate delta method. The results are
applicable almost as widely as the delta method itself – except that, quite nat-
urally, we generally need to require the condition E ‖V1‖3 < ∞ (or something
close to that) to hold, whereas the condition E ‖V1‖2 < ∞ (or something close
to that) is generally needed for the corresponding central limit theorems.

As applications of our general bounds, we provide (in Section 3) uniform and
nonuniform BE-type bounds for the Pearson statistic, the noncentral Student
and Hotelling statistics, various statistics commonly used in testing hypotheses
about a population covariance matrix, the largest eigenvalue of a certain linear
operator on an infinite-dimensional Hilbert space, and maximum likelihood es-
timators (MLEs). No such BE bounds appear to be previously known, except
for uniform BE bounds for MLEs. In fact, our BE bounds appear new even for
the one-dimensional delta method, that is, for smooth functions of the sample
mean of univariate r.v.’s. Moreover, for the Pearson statistic we obtain bounds
with explicit constant factors, which are also of moderate sizes.

Our general BE bounds in the multivariate delta method can of course be
used in applications other than the ones considered here; we mention a number
of other potential applications in Subsections 3.4 and 3.5. In fact, a result from
an earlier arXiv version of this paper, similar to Theorem 2.9, was already used
in [20]. Of course, our results cannot perfectly cover the entire variety of uses
of the delta method; they may require modification or use of different ideas; see
e.g. [77, pages 1198 and 1211].
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As for the requirement that the observations be identically distributed, it
may (and will) be dispensed in general; that is, V will in general be replaced
by a sum S of independent but not necessarily identically distributed random
vectors.

The paper is structured as follows:

• Section 2 contains our main results. Theorems 2.2 and 2.5 present compar-
atively abstract versions of uniform and nonuniform BE-type bounds in
the delta method for smooth enough functions of sums of independent (not
necessarily identically distributed) random vectors. These bounds, which
are quite explicit, constitute the basis of all the subsequent results in the
paper. However, the generality of the conditions in which the bounds of
Theorems 2.2 and 2.5 hold and their rather abstract nature may make it
somewhat difficult to discern the behavior and quality of the bounds in
particular situations of interest. By specializing Theorems 2.2 and 2.5 to
the case when the summands are i.i.d. random vectors, we obtain The-
orems 2.9 and 2.11, where it becomes clear that the resulting BE-type
bounds are of the optimal order O(1/

√
n) in n, whereas the nonuniform

versions of the bound also have the optimal order O(1/z3) of decrease in z
assuming the finiteness of the third absolute moment, where z is the num-
ber of the asymptotic standard deviations of the nonlinear statistic from
its mean. In Theorem 2.10, the i.i.d. setting is specialized even further –
to the case when the summands are one-dimensional, that is, real-valued;
even in this special case, our results appear to be new.

• In Section 3, Theorems 2.9 and 2.11 are applied in order to obtain optimal-
order BE-type bounds for several specific statistics, including the Student,
Pearson, and noncentral Hotelling statistics, test statistics for sphericity,
certain statistics arising in principal component analysis, and maximum
likelihood estimators.

• Section 4 contains the proofs of all results from Section 2, as well as asso-
ciated lemmas and proofs.

More technical results and proofs are relegated to appendices found at the
end of the paper.

• In Appendix A we state and prove Theorem A.2, which presents an explicit
nonuniform bound on the rate of convergence in the delta method in the
i.i.d. setting.

• The nonuniform bound (2.25) in Theorem 2.9 holds only for z = O(
√
n);

in Appendix B we prove that this condition cannot generally be relaxed.
• In Appendix C we prove Corollary 3.8, which provides a simple uniform

bound on the distance to normality of Pearson’s R.
• In Appendix D we analyze the asymptotic behavior of our uniform and

nonuniform bounds in the i.i.d. setting.
• In Appendix E we provide a short, self-contained proof of the compactness

of the covariance operator for a random vector taking values in a separable
Hilbert space and possessing a finite second moment; this is used in one of
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our applications on the principal component of a certain linear operator.
• In Appendix F we outline the proof of the existence of the spectral de-

composition for the covariance operator of a random vector taking values
in an infinite-dimensional separable Hilbert space.

More details can be found in the online version [65] of this paper. One sig-
nificant distinction of [65] from the present paper is that there a more general
moment condition is considered: E ‖V1‖p < ∞ for some p ∈ (2, 3], in place of
E ‖V1‖3 < ∞; of course, then the optimal BE bound is of the form O(n1−p/2),
in place of O(n−1/2). The case p = 3 is given the most attention in the existing
literature. The other significant difference between the present paper and [65] is
the presence there, in Subsection 4.2.1, of explicit uniform and nonuniform BE-
type bounds for the self-normalized sum, closely related to the centered Student
statistic; the corresponding proofs are rather technical and rely heavily on the
use of a computer algebra system.

1.1. Notation and conventions

Before moving on to the main results of the paper, let us adopt some conventions
and introduce notation that will be used throughout the paper. We use the
abbreviations a.s. for “almost surely”, d.f. for “distribution function”, and i.i.d.
for “independent and identically distributed”; r.v. shall always mean a real-
valued “random variable”, whereas the phrase “random vector” will not be
abbreviated.

The symbol X shall be used to denote a separable Banach space (equipped
with norm ‖·‖) of type 2; recall that this means there exists D ∈ (0,∞) such
that

E

( n∑
i=1

εixi

)2

� D2
n∑

i=1

‖xi‖2

for all vectors x1, . . . , xn in X, where ε1, . . . , εn are i.i.d. r.v.’s with P(ε1 = 1) =
P(ε1 = −1) = 1/2. In particular, it is well known and easy to see that, if X
is a Hilbert space, then X is of type 2, and at that one may choose D = 1.
In particular, any finite-dimensional Euclidean space R

d is a Hilbert space and
thus of type 2, with D = 1.

For any X-valued random vector ζ, we use the norm notation

‖ζ‖p :=
(
E‖ζ‖p

)1/p
for any real p � 1;

the set R of all real numbers will always be equipped with the canonical norm
|·|.

The symbols x∧y and x∨y denote the minimum and maximum, respectively,
of the real numbers x and y; also, let x+ := 0 ∨ x denote the positive part of a
real number x.

The symbols Φ and ϕ will denote, respectively, the distribution and density
functions of the standard normal distribution.
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2. General bounds on the convergence rate for smooth nonlinear
functions of sums of independent random vectors

In this section we provide general BE-type bounds on the rate of convergence
to normality in the delta method. The more general and abstract results here
are explicit bounds on

|P(f(S) � σz)− P(L(S) � σz)|,

where S is the sum of independent random vectors, f is a smooth enough real-
valued function, L is an appropriate linear approximation of f , σ is the standard
deviation of L(S), and z is a real number. More specifically, Theorems 2.2 and
2.5 will present, respectively, uniform (in z) and nonuniform (that is, dependent
on z) bounds on |P(f(S) � σz) − P(L(S) � σz)|. The nonuniform bounds are
smaller, and thus better, than the uniform ones in tail zones, for large enough
values of z.

Once appropriate bounds on |P(f(S) � σz) − P(L(S) � σz)| are estab-
lished, one can combine them with any number of well-known BE bounds on
the distance |P(L(S) � σz) − Φ(z)| for the linear statistic L(S) (see e.g. in-
equality (2.19) in this paper), to immediately obtain bounds on |P(f(S) �
σz)− P(L(S) � σz)|, that is, on the closeness of the nonlinear statistic f(S) to
normality.

After Theorems 2.2 and 2.5 are stated and discussed, we shall let (in (2.20))
Xi = Vi/n, where the Vi’s are i.i.d. random vectors, and the distribution of V1

should be thought of as fixed – that is, not depending on n. Then, accordingly,
one will have S =

∑
i Xi = V and f(S) = f(V ). This scaling, Xi = Vi/n, is

precisely what is needed in the delta method, where a smooth function of the
sample mean is approximated in a neighborhood of the true mean by a linear
function of the sample mean.

Theorem 2.9 and its special case for one dimensional random summands pre-
sented in Theorem 2.10 state the existence of what we call non-explicit bounds
in the i.i.d. setting; roughly, the uniform bound will be of the form C/

√
n and

the nonuniform bound of the form C/(z3
√
n). An explicit expression for C can

be obtained by careful analysis of the proofs in Section 4. An example of such
an explicit uniform bound is found in Theorem 2.11; such an explicit bound can
then be used to obtain relatively simple expressions for C that depend only on
universal constants and a few moments of V1 and L(V1) in specific applications
(such as Pearson’s R, as in Corollary 3.8).

The following smoothness condition is crucial. Take any Borel-measurable
functional f : X → R such that there exist ε ∈ (0,∞), Mε ∈ (0,∞), and a
continuous linear functional L : X → R such that∣∣f(x)− L(x)

∣∣ � Mε

2
‖x‖2 for all x ∈ X with ‖x‖ � ε. (2.1)

Thus, f(0) = 0 and L necessarily coincides with the first Fréchet derivative,
f ′(0), of the function f at 0. Moreover, given f(0) = 0, for the smoothness
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condition (2.1) to hold, it is enough that the second derivative f ′′(x) exist and
be bounded (in the operator norm) by Mε over all x ∈ X with ‖x‖ � ε.

Throughout the remainder of the paper, the use of the symbols f , L, ε, and
Mε shall refer to the smoothness condition (2.1).

Remark 2.1. A fact useful in applications is that the smoothness condition (2.1)
continues to hold over compositions of functions. Specifically, suppose that X,
Y, and Z are separable Banach spaces with respective norms ‖·‖X, ‖·‖Y, and
‖·‖Z, and let h : X → Y and g : Y → Z be functions such that

‖h(x)− Lh(x)‖Y � Mh

2 ‖x‖2X for all x ∈ X with ‖x‖X � εh (2.2)

and
‖g(y)− Lg(y)‖Z � Mg

2 ‖y‖2Y for all y ∈ Y with ‖y‖Y � εg (2.3)

for some continuous linear operators Lh : X → Y, Lg : Y → Z and positive real
numbers Mh, εh, Mg, εg. Then the composition f := g ◦h : X → Z satisfies (2.1)
with Z in place of R, L = Lg◦Lh,Mε = Mh‖Lg‖+Mgm

2
h,mh := ‖Lh‖+Mhεh/2,

and ε = εh, provided that εh is chosen small enough to ensure mhεh � εg. Such a
statement can of course be generalized to the composition of any finite number
of functions. We shall prove this assertion in Section 4.

Next let X1, . . . , Xn be independent random vectors in X with EXi = 0 for
i = 1, . . . , n, and set

S :=
n∑

i=1

Xi.

Assume that

σ := ‖L(S)‖2 =
√∑

i EL(Xi)2 (2.4)

is finite and nonzero, and let

T :=
f(S)

σ
and W :=

L(S)

σ
=

n∑
i=1

ξi, (2.5)

where
ξi := L(Xi)/σ, i = 1, . . . , n. (2.6)

For any real p � 1, let

sp :=
(∑

i‖Xi‖pp
)1/p

and σp :=
(∑

i‖ξi‖pp
)1/p

. (2.7)

The assumption (made in Subsection 1.1) that X is of type 2 implies

‖S‖2 � Ds2 (2.8)

for some D ∈ (0,∞) (cf. [30, 66]); we shall assume that D is chosen to be
minimal with respect to this property, so that D = 1 with the equality in (2.8)
whenever X is a Hilbert space. Take also an arbitrary c∗ ∈ (0, 1) and let δ be
any real number such that ∑

i E |ξi|
(
δ ∧ |ξi|

)
� c∗; (2.9)
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note that such a number δ always exists (because the limit of the left-hand side
of (2.9) as δ ↑ ∞ is 1). Necessarily, δ > 0.

We now have enough notation to present the following bound on the Kol-
mogorov distance between T and its linear approximation W :

Theorem 2.2. Let X1, . . . , Xn be independent zero-mean random vectors in X,
let f : X → R satisfy (2.1), and assume that σ > 0; also, take any c∗ ∈ (0, 1).
Then for all z ∈ R∣∣P(T > z)− P(W > z)

∣∣ � 1

2c∗

(
4δ +

(
σ3 + (8/π)1/6

)
u+ σ3v

)
+ P

(
‖S‖ > ε

)
,

(2.10)

where

u :=
Mε

2σ

(1 +D2

2

)2/3(
s23 + 22/3s22

)
, v :=

Mε

2σ

(
s23 + 2Ds3/2s2

)
, (2.11)

and δ is any real number satisfying (2.9).

Remark 2.3. As shown in [59, Theorem 1], (2.9) will hold with

δ =

⎧⎪⎨⎪⎩
c∗σ

3
3 if 0 < c∗ � 1

2 ,

σ3
3 − (2c∗ − 1)2/σ1

4(1− c∗)
if 1

2 � c∗ < 1,
(2.12)

provided that σ3 < ∞. For c∗ = 1
2 , this result follows from [11, Remark 2.1]. If

δ is chosen to be as in (2.12), then 1
2c∗

4δ = 2σ3
3 is constant over all c∗ ∈ (0, 1

2 ],

and hence it may be assumed in Theorem 2.2 that c∗ ∈ [ 12 , 1). However, in
applications of Theorem 2.5 below, some choices of c∗ ∈ (0, 1

2 ) in (2.12) will
turn out beneficial.

Remark 2.4. The term P(‖S‖ > ε) in (2.10) can be bounded in a variety of
ways. For instance, using Chebyshev’s inequality, one can write

P(‖S‖ > ε) � ‖S‖22
ε2

� D2s22
ε2

. (2.13)

Alternatively, one can write

P(‖S‖ > ε) � ‖S‖33
ε3

� 1 +D2

2

s33 + 2s32
ε3

,

using the Rosenthal-type inequality [67, (12)].

The hardest to obtain result of this section is the following nonuniform bound:

Theorem 2.5. Assume that the conditions of Theorem 2.2 are satisfied, and
take any positive real numbers θ, w, δ0, π1, π2, π3, and ω satisfying the addi-
tional restrictions

δ0 � w, π1 + π2 + π3 = 1, and ω � Mεε
2

2π1
. (2.14)
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Then for all
z ∈ [0, ω/σ] (2.15)

one has ∣∣P(T > z)− P(W > z)
∣∣ � γz + τe−(1−π1)z/θ, (2.16)

where

γz :=
n∑

i=1

P
(
ξi > π2z

)
+

n∑
i=1

P
(
W − ξi � π3z

)
P
(
ξi > w

)
+ P

(
‖S‖ >

√
2π1σz

Mε

)
,

(2.17)
τ := c1σ3v+ c2u+ c3δ, (2.18)

u and v are as in (2.11), and c1, c2, and c3 are finite positive expressions defined
in (4.14)–(4.16), which depend only on c∗, θ, w, δ0, maxi‖ξi‖2, and σ3.

Remark 2.6. The bound (2.16) is stated only for z � 0, which allows for one-
tail expressions such as P(ξi > π2z) to be used in (2.17), as opposed to larger
two-tail expressions such as P(|ξi| > π2|z|). In order to obtain a corresponding
bound for z < 0, all that is needed is to replace f with −f (and hence also L
with −L and ξi with −ξi).

Remark 2.7. The restriction (2.15) is of essence. Indeed, if z >> 1
σ (that is, if z

is much greater than 1
σ ) and the event {W > z} in (2.16) occurs, then, by (2.5),

L(S) >> 1 and hence ‖S‖ >> 1, and in this latter zone, of large deviations of S
from its zero mean, the linear approximation of f(S) by L(S) will usually break
down. This heuristics will be implicitly used in Appendix B, which shows that
the upper bound ω

σ on z in (2.15) is indeed the best possible up to a constant
factor, even when the Hilbert space X is one-dimensional. Note also that the
last inequality in (2.14) can be satisfied for any given ω ∈ (0,∞) by (say) taking
π1 to be small enough.

Remark 2.8. If, in the conditions of Theorem 2.5, it is additionally assumed that
the ξi’s are all symmetric(ally distributed), then, according to the main result
of [58], the expression e3w/θ − 1 (found in the definition (4.15) of c2) may be
replaced by the smaller quantity sinh(3w/θ). This sharpening of the inequality
(2.16) allows for smaller universal constants to be obtained in applications of
Theorem 2.5.

The bounds in (2.10) and (2.16) on the closeness of the distribution of the
linear approximation W to that of the original statistic T are to be comple-
mented by any number of well-known BE-type bounds on the closeness of the
distribution of the linear statistic W to the standard normal distribution; the
reader may be referred to Petrov’s monograph [50, Chapter V] or the paper [55].
For instance, for the linear statistic W as in (2.5) with i.i.d. ξ1, . . . , ξn, results
due to Shevtsova [74] and Michel [44] imply∣∣P(W � z)− Φ(z)

∣∣ � n
(
0.33554

(
‖ξ1‖33 + 0.415‖ξ1‖32

)
∧ 30.2211‖ξ1‖33

|z|3 + 1

)
. (2.19)

While the expressions for the upper bounds given in Theorems 2.2 and 2.5
are quite explicit, they may seem complicated (especially as compared with the
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classical uniform and nonuniform BE bounds). This should hardly be surprising,
however, when one reflects upon the generality of the results. Indeed, there are
a whole host of players here: those associated with the function f and the space
X (namely, L, ε, Mε, and D), the parameters we are free to choose (c∗, θ, w, δ0,
π1, π2, π3, and ω), and more traditional terms (σ3, s2, s3, and σ) – each with
a significant and rather circumscribed role to play.

In applications to problems of the asymptotic relative efficiency of statistical
tests, usually it is the closeness of the distribution of the test statistic to a
normal distribution (on R) that is needed or most convenient; in fact, obtaining
uniform bounds on such closeness was our original motivation for this work. On
the other hand, there have been a number of deep results on the closeness of the
distribution of f(S), not to a normal distribution, but to that of f(N), where
N is a normal random vector with the mean and covariance matching those
of S. In particular, Götze [25] provided an upper bound of the order O(1/

√
n)

on the uniform distance between the d.f.’s of the r.v.’s f(S) and f(N) under
comparatively mild restrictions on the smoothness of f ; however, the bound
increases to ∞ with the dimension k of the space X (which is R

k therein).
Chen and Fang [10, Theorem 3.5] recently showed the constant in this bound is
O(k1/2). One important feature of the bounds in Theorems 2.2 and 2.5 is that
they do not explicitly depend on the dimension of the space X but only on the
choice of the norm ‖·‖ on X.

One should also note here such results as the ones obtained by Götze [24] (uni-
form bounds) and Zalesskĭı [78, 79] (nonuniform bounds), also on the closeness
of the distribution of f(S) to that of f(N). There (in an i.i.d. case), X can be any
type 2 Banach space, but f is required to be at least thrice differentiable, with
certain conditions on the derivatives. Moreover, Bentkus and Götze [5] provide
several examples showing that, in an infinite-dimensional space X, the existence
of the first three derivatives (and the associated smoothness conditions on such
derivatives) cannot be relaxed in general.

Another advantage of the bounds in (2.10) and (2.16) is that they do not
explicitly depend on n. Indeed, n is irrelevant when the Xi’s are not identically
distributed (because one could e.g. introduce any number of additional zero
summands Xi). In fact, (2.10) and (2.16) remain valid when S is the sum of
an infinite series of independent zero-mean random vectors, i.e. S =

∑∞
i=1 Xi,

provided that the series converges in an appropriate sense; see e.g. Jain and
Marcus [33].

On the other hand, for i.i.d. random vectors Xi our bounds have the correct
order of magnitude in n. Indeed, let

V, V1, . . . , Vn be i.i.d. random vectors

in X, with EV = 0. Throughout the rest of this section and in Section 3, we
shall use

Vi/n in place of Xi and V :=
1

n

n∑
i=1

Vi in place of S. (2.20)
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Further let

σ̃ := ‖L(V )‖2, vp := ‖V ‖p, and ςp :=
‖L(V )‖p

σ̃
(2.21)

for any p � 1, so that (2.4), (2.6), and (2.7) yield

σ =
σ̃√
n
, ξi =

L(Vi)

σ̃
√
n
, sp =

vp
n1−1/p

, and σp =
ςp

n1/2−1/p
. (2.22)

Theorem 2.9. Suppose that (2.1) holds, and let V, V1, V2, . . . , Vn be i.i.d. zero-
mean random vectors with σ̃ > 0 and v3 < ∞. Then for all z ∈ R∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � C√
n
. (2.23)

Moreover, for any ω ∈ (0,∞) and for all

z ∈
(
0, ω

√
n
]

(2.24)

one has∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � C

(
nP

(
‖V ‖ > Cz

√
n
)
+

nP(‖V ‖ > C
√
n)

z3

+
1

z3n3/2
+

1

ez
√
n

)
(2.25)

� C

z3
√
n
. (2.26)

Each instance of C above is a finite positive expression that depends only upon the
space X (through the constant D in (2.8)), the function f (through (2.1)), and
the moments σ̃, ς3, v3/2, v2, and v3, with C in (2.25) and (2.26) also depending

on ω. Moreover, (2.23) and (2.25) both hold when P(
√
nL(V )/σ̃ � z) replaces

Φ(z).

The restriction (2.24) concerning (2.25) cannot be relaxed in general; see
Appendix B.

Theorem 2.10. Suppose that a function f : R → R is twice continuously differ-
entiable in a neighborhood of 0, with f(0) = 0 and f ′(0) �= 0. Let Y, Y1, Y2, . . . be
a sequence of i.i.d. zero-mean unit-variance real-valued r.v.’s with ‖Y ‖3 < ∞,
and let Y n := 1

n

∑n
i=1 Yi. Then there exists a real number C > 0 such that for

all n ∈ N and all z ∈ R∣∣∣P( f(Y n)

|f ′(0)|/√n
� z

)
− Φ(z)

∣∣∣ � C√
n
. (2.27)

Moreover, for any ω ∈ (0,∞) there exists a real number C > 0 such that for all
n ∈ N and all z as in (2.24)∣∣∣P( f(Y n)

|f ′(0)|/√n
� z

)
− Φ(z)

∣∣∣ � C

z3
√
n
. (2.28)
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Theorem 2.10, a straightforward consequence of Theorem 2.9, is stated here to
provide an example of uniform and nonuniform BE bounds for the “classical”,
“univariate” delta method; even this very simple case appears to be new to
the literature. Just as with the BE bound for linear statistics, we see that the
moment restriction ‖Y ‖3 < ∞ is sufficient to obtain a bound on the order of
O(1/

√
n). That bounds such as (2.27) are useful in applications was suggested to

us by E. MolavianJazi [45], who needed such a result in his research in electrical
engineering.

Theorem 2.11. Let X be a Hilbert space, let f satisfy (2.1) for some real ε > 0,
and assume that EV = 0, σ̃ > 0, and v3 < ∞. Take any real number c∗ ∈ [ 12 , 1).
Then∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � K0 + K1ς
3
3 + (K20 + K21ς3)v

2
2 + (K30 + K31ς3)v

2
3 + Kε√

n
(2.29)

for all z ∈ R and n ∈ N, where

K0 := 0.13925− (2c∗ − 1)2

2c∗(1− c∗)
, K1 := 0.33554 +

1

2c∗(1− c∗)
,

(
K20,K21,K30,K31

)
:=

Mε

4c∗σ̃

(
2
( 2

π

)1/6

, 2 +
22/3

n1/6
,
(8/π)1/6

n1/3
,

2

n1/2

)
,

and Kε :=
v22

ε2n1/2

∧ 2v32 + v33/n
1/2

ε3n
.

(2.30)

Thus, Theorem 2.11 provides an explicit expression of the constant C in
(2.23), depending only on n, the moments σ̃, ς3, v2, and v3, and a choice of the
parameters c∗, ε (and henceMε). However, in many applications the non-explicit
bounds presented in Theorem 2.9 will be enough; see e.g. [20].

An explicit counterpart to the nonuniform bounds in (2.25)–(2.26) is pre-
sented in Theorem A.2. It takes nearly three pages of notation just to state that
theorem (and many more to prove it). Therefore, we defer the proof of Theo-
rem A.2 to Appendix A. However, the very long expressions of the bounds in
Theorem A.2 can be greatly simplified in specific applications, as is illustrated
e.g. in the application to the central T statistic in [65]. Moreover, the corre-
sponding explicit constants in that application are rather moderate in size, and
indeed are comparable with the constant factor in the nonuniform BE inequality
(2.19) for linear statistics. Furthermore, the constant factor in the asymptotic
bound for general statistics deduced from Theorem A.2 is just the same as that
for sums of independent real-valued r.v.’s; see (D.3) in Appendix D.

3. Applications

Here we shall apply the results of Section 2 to present several novel bounds on
the rate of convergence to normality in some common applications of the delta
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method. Throughout this section, we shall use the i.i.d. notation as presented
in (2.20)–(2.22). Moreover, in most of our applications V will take values in
the Euclidean space X = Rk for some natural number k; an exception to this
assumption is taken in Subsection 3.5, where we allow X to be an infinite-
dimensional Hilbert space.

The components of the zero-mean random vector V will typically be some
functions of real-valued zero-mean r.v.’s denoted by Y and Z. E.g., in our ap-
plication to the Pearson statistic in Subsection 3.2, V will stand for the 5-
dimensional zero-mean random vector (Y, Z, Y 2− 1, Z2− 1, Y Z−EY Z), where
Y and Z are zero-mean unit-variance r.v.’s.

The non-explicit bounds for the Student, Pearson, noncentral Hotelling, cer-
tain covariance statistics, principal component analysis, and maximum likeli-
hood estimators to be given in Theorems 3.1, 3.4, 3.9, 3.12, 3.15 and 3.16,
respectively, are more or less straightforward applications of Theorem 2.9.

In contrast, the explicit bounds, such as the one for the Pearson statistic given
in Corollary 3.8, are based on Theorem 2.11, and they require significantly more
work. As the proof of Corollary 3.8 is rather lengthy and technical, it is placed
in Appendix C.

3.1. Student’s T

Let Y, Y1, . . . , Yn be i.i.d. real-valued r.v.’s, with

μ := EY and VarY ∈ (0,∞).

Consider the statistic commonly referred to as Student’s T (or simply T ):

T :=
Y

SY /
√
n
=

√
n Y(

Y 2 − Y
2)1/2 ,

where

Y := 1
n

∑
i Yi, Y 2 := 1

n

∑
i Y

2
i ,

and SY :=
(

1
n

∑
i(Yi − Y )2

)1/2

=
(
Y 2 − Y

2
)1/2

;

let T := 0 when Y 2 = Y
2
. Note that SY is defined here as the empirical stan-

dard deviation of the sample (Yi)
n
i=1, rather than the sample standard deviation

( n
n−1 (Y

2 − Y
2
))1/2. Let us call T “central” when μ = 0 and “noncentral” when

μ �= 0.

As T is invariant under the transformation Yi �→ aYi for arbitrary a > 0, let
us assume without loss of generality (w.l.o.g.) that

VarY = 1.
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Now let X = R
2, and for x = (x1, x2) ∈ X such that 1 + x2 − x2

1 > 0, let
f : X → R be defined by

f(x) = f(x1, x2) =
x1 + μ√

1 + x2 − x2
1

− μ;

let f(x) := −μ for all other x ∈ X. Since

min
x2
1+x2

2�ε2
(1 + x2 − x2

1) =

{
1− ε if 0 < ε � 1

2 ,
3
4 − ε2 if ε � 1

2 ,
(3.1)

it is easy to see that f ′′ is continuous (and hence uniformly bounded) on the
closed ball {x ∈ X : ‖x‖ � ε} for any fixed ε ∈ (0,

√
3/2). So, the smoothness

condition (2.1) is satisfied, with L(x) = x1 − μx2/2 for x = (x1, x2) ∈ X, and
upon letting

V =
(
Y − μ, (Y − μ)2 − 1

)
(3.2)

we see that
√
nf(V ) = T −√

nμ. Then Theorem 2.9 immediately yields

Theorem 3.1. Assume that σ̃ > 0 and v3 < ∞, for σ̃ and vp defined in (2.21).
Then for all n ∈ N and z ∈ R∣∣∣P(T −√

nμ

σ̃
� z

)
− Φ(z)

∣∣∣ � C√
n
, (3.3)

where C is a finite expression depending only on the distribution of Y ; also, for
any ω > 0 and for all real z > 0 and n ∈ N satisfying (2.24),∣∣∣P(T −√

nμ

σ̃
� z

)
− Φ(z)

∣∣∣ � C

z3
√
n
, (3.4)

where C is a finite expression depending only on ω and the distribution of Y .

Remark 3.2. If μ = 0 then σ̃ �= 0, and otherwise σ̃ = 0 only if Y has a 2-point
distribution, which depends only on μ. Indeed, if μ �= 0 then σ̃ = 0 ⇔ L(V ) = 0

almost surely (a.s.) ⇔ Y − μ = (1±
√
1 + μ2)/μ a.s. That is, σ̃ = 0 if and only

if Y = 2
√
p(1− p)/(1− 2p) + Bp a.s., where Bp is a standardized Bernoulli(p)

r.v. with p ∈ (0, 1) \ { 1
2}.

Remark 3.3. The upper bound in (3.3) is optimal in its dependence on n for the
noncentral T . Indeed, suppose that a function f : Rk → R is twice continuously
differentiable in a neighborhood of the origin (so that f satisfies the smoothness
condition (2.1)), and let L and H denote here the gradient vector and Hessian
matrix of f at 0. Further assume, in addition to the assumptions σ̃ > 0 and v3 <

∞, that V satisfies the Cramér-type condition lim sup‖t‖→∞|E eit
TV | < 1. Then

a calculation of the asymptotic distribution of
√
nf(V )/σ̃ using [8, Theorem 2]

implies

sup
z∈R

∣∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)− Δ(z)√

n

∣∣∣∣ = o
( 1√

n

)
, (3.5)
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where

Δ(z) := −
[(

E[(LTV )3]

6σ̃3
+ a3

)
(z2 − 1) + a1

]
ϕ(z), (3.6)

a1 :=
1

2σ̃
tr(HΣ), a3 :=

1

4σ̃3
(LTΣL− σ̃2) tr(HΣ) +

1

2σ̃3
LTΣHΣL,

Σ denotes the covariance matrix of V , and ϕ is the standard normal density.
In the conditions of Theorem 3.1, take the simple case where Y is unit-

variance, symmetric about its non-zero mean μ, and has an absolutely continu-
ous distribution; let νk := E(Y −μ)k denote the kth central moment of Y , so that

νk = 0 for odd natural k. Then, for Δ(z) as in (3.6), Δ(1) = −μ(1+3ν4)
8σ̃ ϕ(1)

and σ̃ = 1 + μ2

4 (ν4 − 1). That is, σ̃ > 0 and Δ(1) �= 0, and we see that the
dependence of the upper bound in (3.3) on n is optimal.

The bounds in (3.3) and (3.4) appear to be new for the noncentral T . It
was shown in [7] that, if ‖Y ‖4 < ∞, then (after some standardization) T has
a limit distribution which is either the standard normal distribution or the χ2

distribution with one degree of freedom; the latter will be the case if and only
if Y has the two-point distribution described above in Remark 3.2 concerning
the degeneracy condition σ̃ = 0.

The bounds in Theorem 3.1 apply to the central T as well. In Subsection 4.2.1
of the arXiv version of this paper [65] we present several uniform and nonuniform
BE-type bounds for the self-normalized sum – which is a simple one-to-one
monotonic transformation of the central Student T , along with comparisons of
those bounds to existing ones in the literature. The reader is referred to [73] for
a survey of limit theorems concerning the self-normalized sums.

3.2. Pearson’s R

Let (Y, Z), (Y1, Z1), . . . , (Yn, Zn) be a sequence of i.i.d. random points in R
2,

with

VarY ∈ (0,∞) and VarZ ∈ (0,∞).

Recall the definition of Pearson’s product-moment correlation coefficient:

R :=

∑n
i=1(Yi − Y )(Zi − Z)√∑n

i=1(Yi − Y )2
√∑n

i=1(Zi − Z)2
=

Y Z − Y Z√
Y 2 − Y

2
√
Z2 − Z

2
, (3.7)

where

Y := 1
n

∑
i Yi, Z := 1

n

∑
i Zi, Y 2 := 1

n

∑
i Y

2
i , Z2 := 1

n

∑
i Z

2
i ,

and Y Z := 1
n

∑
i YiZi;

let R := 0 if the denominator in (3.7) is 0. Note that R is invariant under all
affine transformations of the form Yi �→ a+ bYi and Zi �→ c+ dZi with positive
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b and d; so, in what follows we may (and shall) assume that the r.v.’s Y and Z
are standardized:

EY = EZ = 0 and EY 2 = EZ2 = 1, and we let ρ := EY Z = Corr(Y, Z).

Let X = R
5, and for x = (x1, x2, x3, x4, x5) ∈ X such that 1 + x3 − x2

1 > 0
and 1 + x4 − x2

2 > 0, let

f(x) = f(x1, x2, x3, x4, x5) =
x5 + ρ− x1x2√

1 + x3 − x2
1

√
1 + x4 − x2

2

− ρ; (3.8)

let f(x) := −ρ for all other x ∈ X. Recall (3.1) to see that f ′′(x) exists and is
continuous on the closed ε-ball about the origin for any fixed ε ∈ (0,

√
3/2); then

the smoothness condition (2.1) holds, with L(x) = f ′(0)(x1, x2, x3, x4, x5) =
−ρx3/2 − ρx4/2 + x5. Letting V =

(
Y, Z, Y 2 − 1, Z2 − 1, Y Z − ρ

)
, so that

L(V ) = Y Z − ρ
2

(
Y 2 + Z2

)
, we see that f(V ) = R − ρ. Then Theorem 2.9

immediately yields

Theorem 3.4. Assume that σ̃ > 0 and v3 < ∞, for σ̃ and vp defined in (2.21).
Then for all n ∈ N and z ∈ R∣∣∣P(R− ρ

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � C√
n
, (3.9)

where C is a finite expression depending only on the distribution of the random
point (Y, Z). Also, for any ω > 0 and all real z > 0 and n ∈ N satisfying (2.24),∣∣∣P(R− ρ

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � C

z3
√
n
, (3.10)

where C is a finite expression depending only on ω and the distribution of (Y, Z).

Remark 3.5. Note that the degeneracy condition σ̃ = 0 is equivalent to the
following: there exists some κ ∈ R such that the random point (Y, Z) lies a.s.
on the union of the two straight lines through the origin with slopes κ and 1/κ
(for κ = 0, these two lines should be understood as the two coordinate axes in
the plane R

2). Indeed, if σ̃ = 0, then Y Z − ρ
2 (Y

2 + Z2) = 0 a.s.; solving this
equation for the slope Z/Y , one obtains two roots, whose product is 1. Vice
versa, if (Y, Z) lies a.s. on the union of the two lines through the origin with
slopes κ and 1/κ, then Y Z = r

2 (Y
2+Z2) a.s. for r := 2κ/(κ2+1) and, moreover,

r = E
r
2 (Y

2 + Z2) = EY Z = ρ.

For example, let the random point (Y, Z) equal (cx, κcx), (−cx,−κcx),
(κcy, cy), (−κcy,−cy) with probabilities p

2 ,
p
2 ,

q
2 ,

q
2 , respectively, where x �= 0,

y �= 0, κ ∈ R, c :=

√
x−2 + y−2

κ2 + 1
, p :=

y2

x2 + y2
, and q := 1− p; then σ̃ = 0 (and

the r.v.’s Y and Z are standardized). In particular, one can take here x = y = 1,
so that p = q = 1

2 .
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Remark 3.6. The condition v3 < ∞ in Theorem 3.4 is equivalent to ‖Y ‖6 +
‖Z‖6 < ∞, which might seem overly restrictive, since only the finiteness of the
third absolute moments is needed to have a BE-type bound of order O(1/

√
n)

for linear statistics. However, the moments ‖Y ‖6 and ‖Z‖6 do appear in an
asymptotic expansion (up to an order n−1/2) of the distribution of R when
ρ �= 0; for details, one can see [53]. When ρ = 0, the most restrictive moment
assumption for the existence of the asymptotic expansion is that ‖Y Z‖3 < ∞.

Remark 3.7. Recall the asymptotic distribution results of [8] as outlined in
Remark 3.3. In the conditions of Theorem 3.4, take the very simple case when
Y and Z are zero-mean, unit-variance, absolutely continuous r.v.’s independent
of each other. Then a straightforward calculation shows that a1 = 0, a3 = 0, and
hence Δ(z) = −1

6 EY 3
EZ3(z2 − 1)ϕ(z). So, the bound in (3.9) has an optimal

dependence on n whenever EY 3 �= 0 and EZ3 �= 0. Moreover, since Δ(z) is
real-analytic in z, L, H, and moments of V , we see that generally Δ(z) �= 0 and
hence the bound in (3.9) is generally of the optimal order in n.

The bounds in (3.9) and (3.10) appear to be new. In fact, we have not been
able to find in the literature any uniform (or nonuniform) bound on the closeness
of the distribution of R to normality. Note that such bounds are important in
considerations of the asymptotic relative efficiency of statistical tests; see e.g.
Noether [48].

A simple and explicit bound for the Pearson statistic is given in the following
corollary.

Corollary 3.8 (to Theorem 2.11). Assume that EY Z = 0 and σ̃ = ‖Y Z‖2 > 0.
Then for all n ∈ N and z ∈ R∣∣∣P( R

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � B0 +B3/σ̃
3

√
n

(
‖Y ‖66 + ‖Z‖66

)
, (3.11)

where (B0, B3) is any ordered pair in the set{
(3.61, 3.61), (1.12, 8.94), (13.33, 1.69), (0.56, 14.97), (36.32, 1.37)

}
. (3.12)

The proof of Corollary 3.8 (given in Appendix C) provides a method by which
one may obtain a variety of values for the pair (B0, B3). The specific pairs listed
in (3.12) are obtained by trying to minimizeB0∨B3/σ̃

3 for σ̃ ∈ {1, 2, 1/2, 3, 1/3}.

3.3. Noncentral Hotelling’s T 2 statistic

Let k � 2 be an integer, and let Y, Y1, . . . , Yn be i.i.d. random vectors in R
k,

with finite

μ := EY and Cov Y = EY Y T − μμT strictly positive definite.

Consider Hotelling’s T 2 statistic

T 2 := Y
T
(S2

Y /n)
−1Y = nY

T
(
Y Y T − Y Y

T
)−1

Y , (3.13)
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where

Y := 1
n

∑
i Yi, Y Y T := 1

n

∑
i YiY

T
i ,

and S2
Y := 1

n

∑
i

(
Yi − Y

)(
Yi − Y

)T
= Y Y T − Y Y

T
;

the generalized inverse is often used in place of the inverse in (3.13), though here
we may just let T 2 := 0 whenever S2

Y is singular. Also note that S2
Y is defined as

the empirical covariance matrix of the sample (Yi)
n
i=1, rather than the sample

covariance matrix n
n−1S

2
Y . Call T 2 “central” when μ = 0 and “noncentral”

otherwise.
For any nonsingular matrix B, T 2 is invariant under the invertible trans-

formation Yi �→ BYi, so let us assume w.l.o.g. that

Cov Y = I,

the k × k identity matrix.
Now let X =

{
(x1, x2) : x1 ∈ R

k, x2 ∈ R
k×k

}
be equipped with the norm

‖(x1, x2)‖ :=
√
‖x1‖2 + ‖x2‖2F , (3.14)

where ‖x2‖F :=
√
tr(x2xT

2 ) is the Frobenius norm. For x = (x1, x2) ∈ X such
that I + x2 − x1x

T
1 is nonsingular, let

f(x) = (x1 + μ)T
(
I + x2 − x1x

T
1

)−1
(x1 + μ)− μTμ,

and let f(x) := −μTμ for all other x ∈ X. The Fréchet derivative of f at the
origin is the linear functional defined by L(x) = f ′(0)(x1, x2) = 2xT

1μ− μTx2μ.
Let us recall a couple of other useful facts (found in, say, the monograph [32]):
the spectral norm ‖B‖ of any k×k matrix B does not exceed ‖B‖F , and ‖B‖ < 1
implies I −B is nonsingular and ‖(I −B)−1‖ � 1/(1− ‖B‖). In particular,

‖x1x
T
1 − x2‖ � ‖x1x

T
1 − x2‖F � ‖x1x

T
1 ‖F + ‖x2‖F = ‖x1‖2 + ‖x2‖F < 1

for any x in the closed ε-ball about the origin and any fixed ε ∈ (0,
√
3/2) (which

again follows from (3.1)), so that the smoothness condition (2.1) holds. Upon
letting

V =
(
Y − μ, (Y − μ)(Y − μ)T − I

)
,

we see that nf(V ) = T 2 − nμTμ. Then Theorem 2.9 immediately yields

Theorem 3.9. Assume that σ̃ > 0 and v3 < ∞, for σ̃ and vp defined in (2.21).
Then for all n ∈ N and z ∈ R∣∣∣P(T 2 − nμTμ

σ̃
√
n

� z
)
− Φ(z)

∣∣∣ � C√
n
, (3.15)

where C is a finite expression depending only on the distribution of Y ; also, for
any ω > 0 and all real z > 0 and n ∈ N satisfying (2.24),∣∣∣P(T 2 − nμTμ

σ̃
√
n

� z
)
− Φ(z)

∣∣∣ � C

z3
√
n
, (3.16)

where C is a finite expression depending only on ω and the distribution of Y .
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Remark 3.10. The non-degeneracy condition σ̃ > 0 immediately implies that
μ �= 0, so that Theorem 3.9 is applicable only to the noncentral T 2. If μ �= 0,
then σ̃ = 0 if and only if (Y − μ)Tμ = 1 ±

√
1 + ‖μ‖2 a.s., that is, if and only

if P(Y Tμ = x1) = 1− P(Y Tμ = x2) = p, where

x1 = 1 + ‖μ‖2 +
√

1 + ‖μ‖2, x2 = 1 + ‖μ‖2 −
√

1 + ‖μ‖2,

p =
1

2

(
1− 1√

1 + ‖μ‖2
)
;

in other words, σ̃ = 0 if and only if Y lies a.s. in the two hyperplanes defined
by Y Tμ = x1 or Y Tμ = x2. Note the similarity to the degeneracy condition of
Student’s T statistic described in Remark 3.2. Recalling the conditions EY = μ
and Cov Y = I, we have σ̃ = 0 if and only if

Y = ξ
μ

‖μ‖ + Ỹ a.s.,

where

ξ =
2
√
p(1− p)

1− 2p
+Bp for some p ∈ (0, 1

2 ),

and Ỹ is a random vector in R
k such that E Ỹ = 0, E ξỸ = 0, Ỹ Tμ = 0 a.s., and

Cov Ỹ is the orthoprojector onto the hyperplane {μ}⊥ := {x ∈ R
k : xTμ = 0}.

Remark 3.11. Using again [8, Theorem 2] (cf. Remark 3.3), we can show that
generally the upper bound in (3.15) has an optimal dependence on n as well.
For instance, consider the simple case when Y = (Y1, Y2), where Y1 and Y2

have absolutely continuous distributions and are independent of one another;
further suppose that EY2 = 0, EY1 = μ1 �= 0, and that Y1 is symmetric, so that
E(Y1 − μ1)

m = 0 for odd natural m. Then, for Δ(z) as in (3.6),

Δ(1) = −μ2
1(ν4 + 1) + 2

σ̃
ϕ(1) and σ̃ = |μ1|

√
(ν4 − 1)μ2

1 + 4,

with ν4 := E(Y1 − μ1)
4 � E

2(Y1 − μ1)
2 = 1. So, σ̃ > 0 and Δ(1) �= 0. Thus, the

dependence of the upper bound in (3.15) on n is optimal.

Again, the bounds in (3.15) and (3.16) appear to be new; we have found no
mention of BE bounds for T 2 in the literature. A potential for application of
our result for the noncentral Hotelling statistic to certain problems in electrical
engineering was indicated in [35].

3.4. Covariance test statistics

For any natural k � 2, let Y, Y1, . . . , Yn be i.i.d. random vectors in R
k with

EY = 0 and Σ := Cov Y = EY Y T > 0.

Further let

α := tr(Σ)/k, β := det(Σ)1/k, δ :=
√

tr[(Σ− αI)2]/k (3.17)
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be the arithmetic mean, geometric mean, and standard deviation, respectively,
of the eigenvalues of Σ; the assumption that Σ > 0 implies α > 0 and β > 0.

We consider here a few statistics used to test either the null hypothesis of
sphericity (H0,1 : Σ = σ2I for some unknown σ2 > 0) or the null hypothesis
of the identity covariance (H0,2 : Σ = I). Each of these statistics is a smooth
function of the sample covariance matrix

S := Y Y T − Y Y
T
, where Y := 1

n

∑
i Yi, and Y Y T := 1

n

∑
i YiY

T
i .

In turn, S is a smooth function of the zero-mean random vector

V := 1
n

∑
i Vi = (Y , Y Y T − Σ), where Vi := (Yi, YiY

T
i − Σ).

Let X = Rk×Rk×k, Y = Rk×k, and Z = R, where X has the norm defined by
(3.14) and Y is equipped with the spectral norm. Then the function h : X → Y

defined by the formula h(x1, x2) = x2−x1x
T
1 satisfies the smoothness condition

(2.2) with Lh(x1, x2) = x2, Mh = 2, and any εh ∈ (0,∞). Moreover, h(V ) =
S − Σ.

The likelihood-ratio tests of H0,1 and H0,2 against their negations, based on
a normal population, reject for small values of the statistics

Λ1 =
det(S)

(tr(S)/k)k
and Λ2 =

det(S)

etr(S)
,

respectively; see e.g. Muirhead [46, Theorems 8.3.2 and 8.4.2]; one can also
find in [46] asymptotic properties of these tests, including expansions of their
distributions under both null and nonnull distributions. Associate with Λ1 the
functions g : Y → Z and Lg : Y → Z defined by

g(x) =
det(x+Σ)

[tr(x+Σ)/k]k
I{tr(x) > −kα} −

(β
α

)k

and Lg(x) =
(β
α

)k

tr[(Σ−1 − α−1I)x].

Similarly, with the statistic Λ2 associate the functions g and Lg defined by

g(x) =
det(x+Σ)

etr(x+Σ)
−
( β

eα

)k

and Lg(x) =
( β

eα

)k

tr[(Σ−1 − I)x].

It is clear that, for either of the two functions g defined above, Lg = g′(0)
and g satisfies (2.3) for small enough εg. Hence f := g ◦ h satisfies (2.1), for
both versions of the function g, and so, Theorem 2.9 may be applied to f(V ) =
Λ1 − (β/α)k and f(V ) = Λ2 − (β/eα)k.

For the case when the dimension k is large, Nagao [47] proposes the test
statistics

U :=
1

k
tr
[( S

tr(S)/k
− I

)2]
and Ṽ :=

1

k
tr
[
(S − I)2

]
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in place of the statistics Λ1 and Λ2, respectively. John [36] shows that the test
of H0,1 based on U is locally most powerful (assuming a normal population).
Associate with U the functions

g(x) =
1

k
tr
[( x+Σ

tr(x+Σ)/k
− I

)2]
− δ2

α2

and Lg(x) =
2

k2α3
tr
[(
Σ− αI

)(
kαI − Σ

)
x
]

and with Ṽ the functions

g(x) =
1

k
tr
[(
x+Σ− I

)2]− δ2 − (1− α)2 and Lg(x) =
2

k
tr
[
(Σ− I)x

]
.

It is straightforward to verify that either of the above functions g satisfies the
smoothness condition (2.3), and hence Theorem 2.9 may be applied to either of

the functions f(V ) = U − δ2/α2 or f(V ) = Ṽ − δ2 − (1− α)2.
Yet one more variation on these tests we consider is the “large-dimensional”

case. Ledoit and Wolf [42] investigate the asymptotic behavior of both U and Ṽ
when k/n → c ∈ (0,∞) as n → ∞, as opposed to the “fixed-dimensional” case
(where n → ∞ while k is assumed a constant). They show that the test of H0,1

based on U remains consistent in the large-dimensional setting, whereas the test
of H0,2 based on Ṽ is not necessarily consistent. By not dropping terms like k/n

in investigations of the asymptotics of Ṽ , the authors propose the statistic

W := Ṽ − k

n

([ tr(S)
k

]2
− 1

)
=

1

k
tr
[
(S − I)2

]
− k

n

([ tr(S)
k

]2
− 1

)
(3.18)

as an alternative to Ṽ in the test of H0,2. It is shown that W has the same

limiting distribution as Ṽ in the fixed-dimensional setting while also being con-
sistent in a large-dimensional framework. We see that f(V ) = W − δ2 − (1 −
α)2 + k

n (α
2 − 1) when f = g ◦ h and g is defined by

g(x) =
1

k
tr
[(
x+Σ− I

)2]− k

n

(( tr(x+Σ)

k

)2

− 1

)
− δ2− (1−α)2+

k

n
(α2− 1);

moreover, g satisfies (2.3) with Lg(x) =
2
k tr[(Σ− I − k

n αI)x].

Theorem 3.12. Take any t ∈ {Λ1,Λ2, U, Ṽ ,W}, and let f = g ◦ h and L =
Lg ◦Lh for the functions g and Lg paired with the statistic t as described above.
Assume that σ̃ > 0 and v3 < ∞, for σ̃ and vp defined in (2.21). Then for all
n ∈ N and z ∈ R, ∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � C√
n
, (3.19)

where C is a finite expression depending only on the distribution of Y ; also, for
any ω > 0 and all real z > 0 and n ∈ N satisfying (2.24),∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � C

z3
√
n
, (3.20)

where C is a finite expression depending only on ω and the distribution of Y .
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Remark 3.13. The non-degeneracy condition σ̃ > 0 immediately implies that
Theorem 3.12 – and the delta method itself – are applicable only to non-null
distributions of the statistics Λ1, Λ2, U , and Ṽ , since Lg = 0 for any of these
statistics under the assumption of their respective null hypotheses. This should
hardly be surprising, as it is known that these statistics (or some normalizing
function of them) all have a limiting χ2 distribution under the null hypothesis.

However, one can fix the null-degeneracy of the statistics Λ1, Λ2, U , or Ṽ and
thus make the delta method and our BE bounds applicable even to the null dis-
tributions by using essentially the same trick as in the definition of the statistic

W in (3.18), that is, by adding a term of the form α
([ tr(S)

k

]2 − 1
)
for some

nonzero real α.
By diagonalization of Σ, we can simply characterize the degeneracy condition

σ̃ = 0 for any of the above statistics in this subsection. Indeed, by the spectral
decomposition, Σ = QTDQ, whereD is the diagonal matrix with the eigenvalues
λ1, . . . , λk of Σ on its diagonal and Q is an orthogonal matrix whose columns are
corresponding orthonormal eigenvectors of Σ. Let Z = (Z1, . . . , Zk)

T := QY .
Then, for the statistic Λ1,(

α
β

)k
L(V ) = tr

[
(Σ−1 − α−1I)(Y Y T − Σ)

]
= tr

[
QT(D−1 − α−1I)QQT(Z ZT −D)Q

]
= tr

[
(D−1 − α−1I)(Z ZT −D)

]
= tr

[
(D−1 − α−1I)Z ZT

]
− tr

[
I − α−1D

]
=

k∑
j=1

(
1
λj

− 1
α

)
Z2
j .

Since σ̃ = 0 means precisely that L(V ) = 0 a.s., it follows that for any non-null
alternative, σ̃ = 0 for the statistic Λ1 if and only if the support of the distribution
of the random vector Y degenerates so as to lie entirely on a certain quadratic
conical surface in R

k. Similar work shows that for one of the statistics Λ2, U ,
Ṽ , and W we have σ̃ = 0 if and only if the respective one of the random
(homogeneous or not) quadratic forms

k∑
j=1

(
1
λj

− 1
)
Z2
j ,

k∑
j=1

(λj − α)(kα− λj)(Z
2
j − λj),

k∑
j=1

(λj − 1)(Z2
j − λj),

k∑
j=1

(
λj − 1− kα

n

)
(Z2

j − λj)

equals 0 a.s. In particular, whenever the random vector Y is absolutely contin-
uous, one has σ̃ > 0 for all these statistics in the non-null case, and then σ̃ > 0
for the statistic W even in the null case provided that (1− k

n )Σ �= I.

Remark 3.14. Let Σ0 be any given positive definite symmetric matrix. Then the
hypotheses Σ = σ2Σ0 (with an unknown σ2 > 0) and Σ = Σ0 on the common
covariance matrix Σ of i.i.d. random vectors Yi are obviously equivalent to the
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respective hypotheses Σ̃ = σ2I (with an unknown σ2 > 0) and Σ̃ = I on the

common covariance matrix Σ̃ of the i.i.d. random vectors Ỹi := Σ
−1/2
0 Yi. So, the

results in this subsection can be obviously extended to the more general case of
the null hypotheses Σ = σ2Σ0 and Σ = Σ0.

It appears certain that the bounds in Theorem 3.12 are all new to the liter-
ature; indeed, any of the results concerning these statistics that we have found
investigates their asymptotic properties under the assumption of a normal pop-
ulation, whereas our bounds have only mild moment restrictions on Y . We men-
tion here that Theorem 2.9 could be applied to several other popular statistics
which are smooth functions of the sample covariance matrix S. For instance, our
results can easily yield BE bounds for statistics proposed by Srivastava [76] or
Fisher et al. [18]; Chen et al. [12] propose a statistic for the sphericity test which
is a function of a U -statistic, for which the methods of this paper and [11] could
presumably be adapted. The reader is referred to [46] for other statistics used
in testing for the equality of population covariances or independence between
certain projections applied to Y .

3.5. Principal component analysis (PCA)

It is well known that any simple eigenvalue of a (say, symmetric real matrix)
and the orthoprojector onto the corresponding eigenspace are smooth functions
of the matrix. Therefore, the delta method is almost universally applicable to
PCA, and hence so are our results such as Theorem 2.9. The actual verification
of the smoothness condition (2.1) in PCA may involve operator perturbation
theory and related tools, based on a representation of analytic functions of a
linear operator as certain integrals of the resolvent. This representation largely
reduces the problem of the smoothness of a general analytic function of an
operator to the obvious smoothness of the map A �→ A−1 on the set of all
bounded invertible linear operators A (cf. (F.5) and (F.6)). Whereas this idea
is rather transparent, its execution may in some cases be rather nontrivial, and
it may result in complicated expressions for ε and Mε in (2.1).

As an illustration of these general theses, let us consider here a statistic rather
recently introduced by Cupidon et al. [14, 13]. Let Y, Y1, . . . , Yn be i.i.d. random
vectors taking values in a separable real Hilbert space H with inner product
〈·, ·〉 and the corresponding norm ‖ · ‖. Assume at this point that E ‖Y ‖2 < ∞,
EY = 0, and the covariance operator

R := Cov Y = E(Y ⊗ Y )

of Y is (strictly) positive definite. Here, as usual, ⊗ denotes the tensor product
on H, so that Rx = E〈x, Y 〉Y for all x ∈ H. Given the condition E ‖Y ‖2 < ∞,
the covariance operator R is known to be compact, which allows its spectral
decomposition – see e.g. [37, Theorem 2.10, page 260]; a short proof of the
compactness of R is presented in Appendix E for the readers’ convenience.

Next suppose that H = H1 ⊕ H2, where H1, H2 are closed orthogonal sub-
spaces of H; for j, k ∈ {1, 2}, let Πj denote the orthoprojector onto Hj , Rjk :=
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ΠjRΠk, and also let Ij denote the identity operator on Hj . Then, for any fixed
α > 0, the regularized squared principal canonical correlation, RSPCC or ρ2, is
defined by the formula

ρ2 := ρ2(α) := max
x∈H1\{0}
y∈H2\{0}

〈x,R12y〉2
〈x, (αI1 +R11)x〉〈y, (αI2 +R22)y〉

; (3.21)

that this is a well-defined quantity is proved in [14]. Define the sample RSPCC,
ρ̂2, by replacing Rjk in (3.21) with Sjk, where

Sjk = ΠjS Πk, S := Y ⊗ Y − Y ⊗ Y , Y := 1
n

∑
i Yi,

and Y ⊗ Y := 1
n

∑
i Yi ⊗ Yi;

thus, S is the sample covariance operator of the random vector Y . See e.g. [27, 17]
for discussion and results on the use of canonical correlations in functional data.

Next define the (bounded self-adjoint nonnegative-definite linear) operators

R1 :=(αI1 +R11)
−1/2R12(αI2 +R22)

−1R21(αI1 +R11)
−1/2,

R2 :=(αI2 +R22)
−1/2R21(αI1 +R11)

−1R12(αI2 +R22)
−1/2,

(3.22)

and similarly let R̂j denote the sample analogues of Rj (obtained by replacing
Rjk with Sjk); under the assumption that E ‖Y ‖2 < ∞ (which implies that R is
compact), we see that R1 and R2 are also compact. Moreover, by [13, Theorem
2.4], ‖R1‖ = ‖R2‖ = ρ2 and ‖R̂1‖ = ‖R̂2‖ = ρ̂2, where ρ2 is as in (3.21) and
‖ · ‖ denotes the operator norm, so that ‖Rj‖ is the largest eigenvalue of Rj .

Fix any j ∈ {1, 2} and assume that ρ2 is a simple nonzero eigenvalue of
Rj , and then let P denote the orthoprojector onto the corresponding (one-
dimensional) eigenspace of Rj . Let B(H) and B(Hj) denote the Hilbert spaces
of all bounded linear operators on H and Hj , respectively, equipped with the
corresponding operator norms.

Let g(x) := ‖x+Rj‖−‖Rj‖ for any x ∈ B(Hj), so that g(R̂j−Rj) = ρ̂2−ρ2.
By formulas (3.6)–(3.8) on page 89, (2.32) on page 79, and (3.4) on page 88 in

[37] (with n = 1, κ = 1, λ̂(κ) = ‖x + R̂j‖, λ = ‖Rj‖ = ρ2, λ̂(1) = tr(xP ),
T (1) = x, T (2) = T (3) = · · · = 0, a = ‖x‖, c = 0, and 00 := 1), the smoothness

condition (2.3) will be satisfied with εg = β/m, β ∈ (0, 1), L(x) = λ̂(1) = tr(xP ),

and Mg = 2 �m2

1−β , where � := maxz∈Γ|z − λ|, m := maxz∈Γ ‖Rj(z)‖, Rj(z) :=

(Rj − zI)−1 is the resolvent of Rj , and Γ is the boundary of any open disc D
in C such that λ ∈ D but the closure of D does not contain 0 or any eigenvalue
of Rj other than λ.(

The results from [37] referred to in the above paragraph were stated there for
the case when the Hilbert space H is finite-dimensional. All those results carry
verbatim to the “infinite-dimensional” case. Such information can be extracted
from other chapters in [37]. However, for readers’ convenience, in Appendix F we
provide the few necessary stepping stones to make the transition to the infinite
dimension.

)
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By [21, Theorem 2.1], condition (2.2) holds for the function y �→ hj(y) :=
(αIj +Rjj + y)−1/2− (αIj +Rjj)

−1/2 in place of h for some real εhj > 0 and all
y ∈ Hj with ‖y‖ � εhj . So, in view of definitions (3.22) of Rj , their counterparts

for R̂j , and Remark 2.1, one can set up a function h : H × B(H) → Hj in a

straightforward manner so that condition (2.2) holds and h(V ) = R̂j −Rj , with
the zero-mean vector V = (Y, Y ⊗ Y − R). Using Remark 2.1 once again, one
sees that the function f = g ◦ h satisfies the smoothness condition (2.1), and at
that f(V ) = ρ̂2 − ρ2. Thus, Theorem 2.9 yields

Theorem 3.15. Assume that σ̃ > 0 and v3 < ∞, for σ̃ and vp defined in
(2.21). Then for all n ∈ N and z ∈ R,∣∣∣P( ρ̂2 − ρ2

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � C√
n
, (3.23)

where C is a finite expression depending only on the distribution of Y ; also, for
any ω > 0 and all real z > 0 and n ∈ N satisfying (2.24),∣∣∣P( ρ̂2 − ρ2

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � C

z3
√
n
, (3.24)

where C is a finite expression depending only on ω and the distribution of Y .

Expressions for σ̃ can be obtained from [14, (4.20), (5.1)]. We see the recurring
theme that ‖Y ‖4 < ∞ is used to establish asymptotic normality of ρ̂2 (cf. [14,
(2.1), Theorem 4.2]), while the moment restriction ‖Y ‖6 < ∞ (equivalent to
v3 < ∞ in Theorem 3.15) is needed here to bound the rate of convergence on
the order O(1/

√
n). Again, it appears that the bounds in Theorem 3.15 are

entirely new to the literature.
In Subsection 3.4, we considered various smooth functions of the determinant

and trace of the sample covariance matrix for finite-dimensional random vectors
Y , and in the present subsection we have a function of the largest eigenvalue of
some smooth function of a sample covariance operator. Other statistics which
are functions of eigenvalues from a sample covariance operator (be it constructed
from a finite-dimensional or infinite-dimensional population) may of course lie
in the class of statistics to which Theorem 2.9 could be applied; the primary
problem to the practitioner is the demonstration of the smoothness condtion
(2.1). The use of perturbation theory, as was done above, appears to be valu-
able for many such potential applications; we mention here statistics proposed
in [34, 19], concerning the testing of equality of two covariance operators, as fur-
ther examples. Yet another potential application of our results would be to the
empirical Wasserstein distance, for which central limit theorems were recently
given in [70]; cf. [49, 16, 23] (as noted by Dudley in his review MR0752258 on
MathSciNet, the normality assumption is not actually needed there).

3.6. Maximum likelihood estimators (MLEs)

Bounds on the closeness of the distribution of the MLE to normality in the so-
called bounded Wasserstein distance, dbW, were recently obtained in [2] under
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certain regularity conditions. In [1], these bounds were improved in the rather

common case when the MLE θ̂ satisfies the condition

q(θ̂) =
1

n

n∑
i=1

g(Yi), (3.25)

where q : Θ → R is a twice continuously differentiable one-to-one mapping,
g : R → R is a Borel-measurable function, and the Yi’s are i.i.d. real-valued
r.v.’s.

It is noted in [2, Proposition 2.1] that for any r.v. Y and Z ∼ N(0, 1) one
has dKo(Y, Z) � 2

√
dbW(Y, Z), where dKo denotes the Kolmogorov distance.

This bound on dKo in terms of dbW is the best possible one, up a constant
factor. Indeed, for each real ε > 0, define a r.v. Yε as follows: Yε = ε if 0 <
Z < ε and Yε = Z otherwise. Then for any Lip(1) function h : R → R one has
|Eh(Yε)−Eh(Z)| � E |h(Yε)−h(Z)| � E |Yε−Z| =

∫ ε

0
(ε−z)ϕ(z) dz � ϕ(0)ε2/2.

So, dbW(Yε, Z) � dW(Yε, Z) � ϕ(0)ε2/2, where dW is the Wasserstein distance:
dW(X,Y ) := sup{|Eh(X) − Eh(Y )| : h ∈ Lip(1), h bounded} for any r.v.’s X
and Y . On the other hand, dKo(Yε, Z) � P(Z < ε)− P(Yε < ε) = Φ(ε)− 1/2 ∼
ϕ(0)ε, so that dKo(Yε, Z) �

√
2ϕ(0)− o(1)

√
dbW(Yε, Z) as ε ↓ 0.

Therefore, even though the bounds on dbW obtained in [2, 1] are of the optimal
order O(1/

√
n), the resulting bounds on the Kolmogorov distance are only of

the order O(1/n1/4).
In this subsection, as an application of our general results, we shall obtain

bounds of the optimal order O(1/
√
n) on the closeness of the distribution of the

MLE to normality in the Kolmogorov distance assuming a somewhat relaxed
version of the condition (3.25). In addition, we shall present a corresponding
nonuniform bound. At that, our regularity conditions appear simpler than those
in [2, 1].

Indeed, let here Y, Y1, Y2, . . . be r.v.’s mapping a measurable space (Ω,A)
to another measurable space (X ,B) and let (Pθ)θ∈Θ be a parametric family
of probability measures on (Ω,A) such that the r.v.’s Y1, Y2, . . . are i.i.d. with
respect to each of the probability measures Pθ with θ ∈ Θ; here the parameter
space Θ is assumed to be a subset of R. As usual, let Eθ denote the expectation
with respect to the probability measure Pθ. Suppose that for each θ ∈ Θ the
distribution Pθ Y

−1 of the r.v. Y with respect to the probability measure Pθ has a
density pθ with respect to a measure μ on B. For each point x = (x1, . . . , xn) ∈
Xn such that the likelihood function Θ � θ �→ Lx(θ) :=

∏n
i=1 pθ(xi) has a

unique maximizer, denote this maximizer by θ̂n(x); otherwise, assign to θ̂n(x)

any value in Θ. Let us then refer to θ̂n(Y ) as the MLE of θ, where Y :=
(Y1, Y2, . . . ). Clearly, this is a more general definition of the MLE than usual,

and we can even allow the function θ̂n to be non-measurable. So, the MLE
θ̂n(Y ) does not have to be a r.v. Let θ0 ∈ Θ be the “true” value of the unknown
parameter θ, such that Θ0 := (θ0 − ε, θ0 + ε) ⊆ Θ for some real ε > 0.

We assume the following relaxed version of the condition (3.25): for some real
constant C > 0 and each natural n there exists a set En ∈ B⊗n such that

Pθ0(Y /∈ En) � C/
√
n (3.26)
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and for each point x = (x1, . . . , xn) ∈ En the value θ̂n(x) of the MLE belongs
to the neighborhood Θ0 of the point θ0 and satisfies the condition

q
(
θ̂n(x)

)
=

1

n

n∑
i=1

g(xi), (3.27)

for some measurable function g : X → R and some twice continuously differen-
tiable mapping q : Θ0 → R with q′(θ) �= 0 for all θ ∈ Θ0, so that the mapping q

is one-to-one. Suppose also that the MLE θ̂n(Y ) is consistent at the point θ0,

that is, θ̂n(Y ) −→
n→∞

θ0 in probability with respect to the probability measure

Pθ0 ; since the MLE θ̂n(Y ) does not have to be a r.v., the precise meaning of this

consistency is that (Pθ0)
∗(|θ̂n(Y ) − θ0| > δ) −→

n→∞
0 for each real δ > 0, where

(Pθ0)
∗ denotes the outer measure induced by the probability measure Pθ0 . Then,

under the condition Eθ0 |g(Y1)| < ∞, it follows from (3.27) by the law of large
numbers that q(θ0) = μg := Eθ0 g(Y1) or, equivalently, θ0 = q−1(μg), where q−1

stands for the inverse of the function q.
Assuming further that σg :=

√
Varθ0 g(Y1) ∈ (0,∞), let us introduce

Vi :=
g(Yi)− μg

σg

for i = 1, . . . , n and

f(v) := q−1(μg + σgv)− q−1(μg) = q−1(μg + σgv)− θ0

for real v such that μg+σgv ∈ q(Θ0) and f(v) = 0 (say) for the other real values

of v. Then, in view of (3.27), on the event {Y /∈ En} one has f(V ) = θ̂n(Y )−θ0,
and at that f(0) = 0, f ′(0) = σg (q

−1)′(μg) = σg/q
′(q−1(μg)

)
= σg/q

′(θ0), and
f is twice continuously differentiable in a neighborhood of 0. So, Theorem 2.10
immediately yields

Theorem 3.16. In addition to the conditions specified above, assume that
Eθ0 |g(Y1)|3 < ∞. Then for all n ∈ N and z ∈ R

∣∣∣Pθ0

( θ̂n(Y )− θ0
σg/

√
n

� z

|q′(θ0)|
)
− Φ(z)

∣∣∣ � C + C√
n

, (3.28)

where C is as in (3.26) and C is a finite expression depending only on the Pθ-
distributions of Y1 for θ in a neighborhood of θ0. Also, if in (3.26) one can
replace

√
n by n2, then for any ω > 0 and for all real z > 0 and n ∈ N satisfying

(2.24), ∣∣∣Pθ0

( θ̂n(Y )− θ0
σg/

√
n

� z

|q′(θ0)|
)
− Φ(z)

∣∣∣ � C + C

z3
√
n
, (3.29)

where C is a finite expression depending only on ω and the Pθ-distributions of
Y1 for θ in a neighborhood of θ0.
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As was noted, the MLE θ̂n(Y ) does not have to be a r.v., and so, the Pθ0 -
probability in (3.28) and (3.29) does not have to be defined. Thus, strictly
speaking, one should understand this probability as the corresponding outer or
inner probability, (Pθ0)

∗ or (Pθ0)∗ – each one of the two versions will do in each
of the two inequalities, (3.28) and (3.29).

Let us show that, under certain mild and natural conditions, (3.27) is fulfilled
if the densities pθ form an exponential family with a natural parameter (cf. [1]),
so that

pθ(x) = eθg(x)−c(θ) (3.30)

for some function c : Θ → R and all θ ∈ Θ and x ∈ X . Here, as before, g : X → R

is a measurable function. The natural choice of the parameter space here is
Θ := {θ ∈ R : E(θ) :=

∫
X eθg(x)μ(dx) < ∞}, and then of course c(θ) = ln E(θ)

for all θ ∈ Θ. As before, assume that Θ0 := (θ0 − ε, θ0 + ε) ⊆ Θ for some
real ε > 0. In fact, by decreasing ε if necessary, we may and shall assume
that [θ0 − ε, θ0 + ε] ⊆ Θ. If μ({x ∈ X : g(x) �= a}) = 0 for some real a, then
for all θ ∈ Θ one has E(θ) = eθaμ(X ) < ∞, whence pθ(x) = 1/μ(X ) for
x ∈ X , so that the densities pθ are the same for all θ ∈ Θ, and therefore
parameter θ is not identifiable. Let us exclude this trivial case. Note that the
function c is infinitely many times differentiable (and even real-analytic) on
Θ0 = (θ0−ε, θ0+ε). Moreover, its derivative c′ is (strictly) increasing and hence c
is strictly convex on Θ0, because c

′′(θ) = (ln E)′′(θ) = Varθ g(Y1) > 0 for θ ∈ Θ0,
since the trivial case of the non-identifiability of θ has just been excluded. In
particular, it follows that the condition σg :=

√
Varθ0 g(Y1) ∈ (0,∞) holds. At

that, μg := Eθ0 g(Y1) = c′(θ0).
Let now

En :=
{
x ∈ Xn : c′(θ0 − ε) <

1

n

n∑
i=1

g(xi) < c′(θ0 + ε)
)}

. (3.31)

By Markov’s inequality,

Pθ0

( 1

n

n∑
i=1

g(Yi) � c′(θ0 − ε)
)

= Pθ0

(
exp

{
− ε

n∑
i=1

g(Yi)
}

� exp
{
− nε c′(θ0 − ε)

})
� exp

{
nε c′(θ0 − ε)

}
Eθ0 exp

{
− ε

n∑
i=1

g(Yi)
}

= exp
{
nε c′(θ0 − ε) + nc(θ0 − ε)− nc(θ0)

}
= e−nδ(ε),

where δ(ε) := c(θ0)−c(θ0−ε)−c′(θ0−ε)ε > 0; the latter inequality holds because
(i) the function c is strictly convex and (ii) one has h(u+ v) > h(u)+h′(u)v for
any strictly convex differentiable function h, any u, and any nonzero v. Quite
similarly, Pθ0

(
1
n

∑n
i=1 g(Yi) � c′(θ0 + ε)

)
� e−nδ(−ε), with δ(−ε) > 0. So,

Pθ0(Y /∈ En) � e−nδ(ε) + e−nδ(−ε), (3.32)
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so that condition (3.26) holds, even with n2 in place of
√
n. On the other hand,

in view of (3.31) and because c′ is continuous and increasing on Θ0, we see that
(3.27) holds for all x ∈ En, with q(θ) = c′(θ) for all θ ∈ Θ0. Now the consistency
of the MLE at point θ0 follows because (i) by (3.32), Pθ0(Y /∈ En) −→

n→∞
0 and

(ii) by the law of large numbers, 1
n

∑n
i=1 g(Yi) −→

n→∞
Eθ0 g(Y1) = μg = c′(θ0) in

Pθ0 -probability.
Note finally that the condition Eθ0 |g(Y1)|3 < ∞ in Theorem 3.16 holds as

well, since

Eθ0 exp{ε |g(Y1)|} < Eθ0 exp{ε g(Y1)}+ Eθ0 exp{−ε g(Y1)}
= c(θ0 + ε) + c(θ0 − ε) < ∞.

We have verified all the conditions needed in order to apply Theorem 3.16.
In addition to this, note that in the present context of exponential families,

q′(θ) = c′′(θ) = − ∂2

∂θ2 ln pθ(x) does not depend on x, whence for each θ ∈ Θ0

one has q′(θ) = −Eθ
∂2

∂θ2 ln pθ(Y1) = I(θ), the Fisher information contained in

Y1. Also, recall that σg =
√
Varθ0 g(Y1) =

√
c′′(θ0) =

√
I(θ0). Thus, we have

Corollary 3.17. Suppose that the conditions introduced above starting with the
exponential family condition (3.30) hold. Then for all n ∈ N and z ∈ R∣∣∣Pθ0

(
θ̂n(Y )− θ0 � z√

nI(θ0)

)
− Φ(z)

∣∣∣ � C√
n
, (3.33)

where C is a finite expression depending only on the Pθ-distributions of Y1 for
θ in a neighborhood of θ0. Also, for any ω > 0 and for all real z > 0 and n ∈ N

satisfying (2.24),∣∣∣Pθ0

(
θ̂n(Y )− θ0 � z√

nI(θ0)

)
− Φ(z)

∣∣∣ � C

z3
√
n
, (3.34)

where C is a finite expression depending only on ω and the Pθ-distributions of
Y1 for θ in a neighborhood of θ0.

Example 3.18. Let here X = R and let B be the Borel σ-algebra over R.
Let the measure μ on B be defined by the formula μ(dx) = (x + 1)−3 I{x �
0} dx, and let g(x) = x for all real x. Let then pθ be as in (3.30), with Θ =
(−∞, 0]. It follows that c′ increases on Θ, with c′(0−) =

∫∞
0

x(x + 1)−3 dx
/∫∞

0
(x+ 1)−3 dx = 1 < ∞. On the other hand, for each natural n, with nonzero

Pθ-probability for each θ ∈ Θ, the r.v. 1
n

∑n
i=1 g(Yi) =

1
n

∑n
i=1 Yi may take arbi-

trarily large values, in particular values exceeding 1 = c′(0−) = supθ∈Θ c′(θ). So,
the equality (3.25) will be violated with nonzero Pθ-probability for each θ ∈ Θ
and for each natural n. However, Theorem 3.16 and Corollary 3.17 will hold in
this situation. This shows the usefulness of the relaxed version (3.26)–(3.27) of
the condition (3.25).

As shown in [64], with more effort one can utilize the “multivariate” Theo-
rem 2.9 (rather than the “univariate” Theorem 2.10, used in this subsection)
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to obtain bounds of optimal order O(1/
√
n) on the Kolmogorov distance for

MLEs in general, without assuming (3.25) or (3.26)–(3.27). It is also shown in
[64] that, again without assuming (3.25) or (3.26)–(3.27), one can obtain the
corresponding nonuniform bounds of the optimal orders in n and z. All these
results can be extended to the more general case of M -estimators or, even more
generally, to the estimators that are zeros of estimating functions; see e.g. [28].
Indeed, the condition that pθ is a pdf for θ �= θ0 is used in our proofs only in
order to state that Eθ �

′
X(θ) = 0 and Eθ �

′
X(θ)2 = −Eθ �

′′
X(θ) = I(θ) ∈ (0,∞).

In the case of M -estimators or zeros of estimating functions, the corresponding
conditions will have to be just assumed, with some other expressions in place of
the Fisher information I(θ), as it is done e.g. in [51, 52], where uniform (but not
nonuniform) bounds of optimal order O(1/

√
n) for M -estimators were obtained

(via different, specialized methods): in [51] for a one-dimensional parameter
space Θ and in [52] in the multidimensional case.

4. Proofs

In the proofs of Theorems 2.2 and 2.5, we start with a linearization argument
mentioned in the Introduction, as is done in the delta method (which is allowed
here by the smoothness condition (2.1)), in a combination with the Stein-type
concentration method developed by Chen and Shao [11]. The idea of lineariza-
tion of nonlinear statistics has been used in large variety of papers. However,
few of them resulted in Berry–Esseen-type bounds. A notable exception in this
regard is work by Bolthausen and Götze; see e.g. [9]. However, our context and
methods are rather different from those in [9]. Also, our goals here are differ-
ent in that we want to be able to pursue BE-type bounds with explicit and
moderately sized constants.

In order to obtain bounds of the optimal order and dependence on moments,
as well as possessing sufficient flexibility regarding a variety of specific appli-
cations, we first make a generalization, presented in Lemma 4.5, of Chen and
Shao’s uniform and nonuniform bounds. In doing so, we use a number of known
(but so far hardly ever used) and new probabilistic and analytical tools, several
of which were developed specifically for the needs of this paper. In particular,
to obtain small constants in the uniform bound in Theorem 2.2, we also use an
exact Rosenthal-type inequality from [63] and an exact bound on quantiles [59].

The proof of the nonuniform bound in Theorem 2.5 is understandably a
significantly more difficult task. Aside from the introduction of various param-
eters (such as in (2.14)), we use there bounds on exponential moments, first
found in [69], which will generally be much smaller than the more classical
bounds of Hoeffding [29] and Bennett [3]; on the other hand, effective use of
these bounds requires a much more delicate approach. We also use Cramér’s
tilt transform to bound a certain expectation; without this modification, our
bounds would depend on moments higher than the third. Again, in order to
obtain relatively small constant factors, we use several new exact bounds devel-
oped in [67, 56, 57, 58]. The last term in (2.17) is the nonuniform counterpart to



Convergence rate in delta method 1031

the term P(‖S‖ > ε) of the uniform bound, and is the source of the restriction
(2.15); to ensure that this term can be bounded with a correct order and with
small constants, we employ results from [54, 55].

As mentioned before, Theorem 2.9 is applicable whenever the smoothness
condition (2.1) holds, together with only a few conditions on moments. In many
applications, the verification of the smoothness condition (2.1) is straightfor-
ward. However, sometimes this task is rather involved, as e.g. in Theorem 3.15,
whose proof relies in part on perturbation theory for linear operators [37]. In
the proof of Theorem 3.12 in the infinite-dimensional case we use various re-
sults from functional analysis. The explicit bounds found in the application to
Pearson’s R (Corollary 3.8) make use of computer algebra to search for pseudo-
optimal parameter choices and of a grid method to bound Mε for arbitrary
values of ε.

This section is organized in the following manner:

• In Subsection 4.1, we introduce several inequalities that will be used at
various points in the remainder of the section; these results are presented
in Lemmas 4.1–4.4.

• In Subsection 4.2, we state the aforementioned Lemma 4.5. We then link
these bounds to the smoothness condition (2.1), after which Theorems 2.2
and 2.5 are fairly quickly proved. We also prove Remark 2.1, concerning
the smoothness condition holding over compositions of functions.

• In Subsection 4.3, we prove Theorems 2.9 (non-explicit uniform and non-
uniform bounds in the i.i.d. setting) and 2.11 (explicit uniform bound in
the i.i.d. setting); these proofs use Theorems 2.2 and 2.5, along with a few
of the tools presented in Subsection 4.1.

• In Subsection 4.4, we prove Lemma 4.5, employing such tools as a Stein-
type concentration inequality from [11], Rosenthal-type inequalities (cf.
Lemma 4.1), bounds on an exponential moment of a sum (cf. Lemma 4.2),
a Cramér-type tilt transform, and exact lower bounds on the exponential
moment of a Winsorized r.v. (cf. Lemma 4.4).

4.1. Toolkit for proofs

Before moving on to the proofs of results from Section 2, we collect here for ease
of reference several inequalities which will be employed in the proofs. In this
subsection alone, we shall assume that

S =
∑

i ζi, where ζ1, . . . , ζn are independent real-valued r.v.’s. (4.1)

We first state bounds on the third absolute moment of S.

Lemma 4.1. If the ζi in (4.1) are all zero-mean, then

‖S‖33 �
∑

i‖ζi‖33 +
√

8

π

(∑
i‖ζi‖22

)3/2
. (4.2)
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Otherwise, if ES is finite, one has

‖S − ES‖33 � 1.316
∑

i‖ζi‖33 + 2
(∑

i‖ζi‖22
)3/2

. (4.3)

A result such as (4.2) is known as a Rosenthal-type inequality, since it was
first obtained by Rosenthal in [72, Theorem 3]; however, the constants there
were too large. The inequality in (4.2) follows from [63, Theorem 1.5] (take
X = 0 a.s. in the notation there), and (4.3) follows from [67, Corollary 2] (take
g(x1, . . . , xn) = x1 + · · · + xn there, and cf. [67, Corollary 3] concerning the
constants 1.316 and 2).

Next, we shall need upper bounds on the exponential moment E eλS and the
tail probability P(S > x) when the ζi’s are a.s. uniformly bounded from above.

Lemma 4.2. Take any real numbers y > 0, m, B > 0, and ε ∈ [0, 1], and
assume that

∑
i P(ζi > y) = 0, ES � m,

∑
i E ζ2i � B2, and

∑
i E(ζi)

3
+

B2y
� ε. (4.4)

Then for any λ � 0

E exp
{
λ(S−m)

}
� PUexp(λ, y,B, ε) := exp

{λ2

2
B2(1−ε)+

eλy − 1− λy

y2
B2ε

}
.

(4.5)
Moreover,

PUexp is nondecreasing in B and in ε. (4.6)

Lemma 4.2 is implied by [69, Theorem 2] for ε ∈ [0, 1); that we may use the
inequalities in (4.4) (in lieu of the equalities used in [69]) follows from (4.6),
which in turn follows because et − 1 − t − t2/2 � 0 for all t � 0. That (4.5)
is true when ε = 1 is a result by Bennett [3] and Hoeffding [29], and we let
BHexp(λ, y,B) := PUexp(λ, y,B, 1). The bound PUexp can be much less than
BHexp when ε is significantly less than 1.

Lemma 4.3. Under the assumptions of Lemma 4.2, let

u :=
(x−m)+y

B2
and κ :=

(x−m)+
y

.

Then

P(S > x) � BHtail(u, κ) := exp
[
κ
(
1−

(
1 +

1

u

)
ln(1 + u)

)]
(4.7)

for u > 0, with BHtail(0, κ) = 1 for any κ � 0. Moreover, if the ζi’s are X-valued
random vectors, (4.7) holds under the assumptions of (4.4) when S and ζi are
replaced with ‖S‖ and ‖ζi‖, respectively.

The notation BHtail is used for the classical bounds of Bennett [3, (8b)] and
Hoeffding [29, (2.9)]. That Lemma 4.3 remains true for X-valued random vectors
is implied by [69, p. 343] (see also [68, Theorem 1]). In Lemma A.1, we present
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a smaller bound PUtail on the tail probability P(S > x), derived from (4.5) and
thus also depending on ε in (4.4).

Lastly, we shall also have cause to find a lower bound on the exponential
moment of a Winsorized r.v.

Lemma 4.4. Let ζ be a zero-mean real-valued r.v. with
√

E ζ2 � B for some
B ∈ (0,∞). Then for any c > 0,

E exp
{
c
(
1 ∧ ζ

)}
� LW (c, B) :=

a2c,Be
c +B2e−cac,B

a2c,B +B2
, (4.8)

where ac,B is the unique positive root of the function a �→ a
c

(
2(ec+ac−1)−ac

)
−

B2.

Lemma 4.4 is proved in [56, Theorem 2.1]; in fact, as shown there, LW (c, B)
is the exact lower bound on E exp

{
c
(
1 ∧ ξ

)}
over all zero-mean r.v.’s ξ with√

E ξ2 � B, and hence LW (c, B) is nonincreasing in B ∈ (0,∞).

4.2. Proofs of bounds in general non-i.d. setting

The proofs of Theorems 2.2 and 2.5 were inspired by a pair of uniform and
nonuniform bounds first developed by Chen and Shao in [11], which bound
|P(T̃ > z)−P(W > z)| for some nonlinear statistic T̃ and a standardized linear
statistic W in terms of certain moments and tail probabilities associated with
W and Δ := |T̃ −W |. However, the results in [11] were not general enough to
quite fit our needs in obtaining BE-type bounds with the correct dependence on
moments; we present modifications, suitable for our purposes, in the following
lemma.

Lemma 4.5. Let T̃ and W =
∑n

i=1 ξi be real-valued r.v.’s defined on a common
probability space, where ξ1, . . . , ξn are independent zero-mean r.v.’s such that
‖W‖2 = 1. Take any r.v. Δ such that |Δ| � |T̃ − W | a.s., and for each i =
1, . . . , n let Δi be any r.v. such that the r.v. ξi and family (Δi, (ξj : j �= i)) of
r.v.’s are independent. Then for all c∗ ∈ (0, 1) and z ∈ R∣∣P(T̃ � z)− P(W � z)

∣∣ � 1

2c∗

(
4δ + E|WΔ|+

∑
i E|ξi(Δ−Δi)|

)
, (4.9)

where δ satisfies (2.9). Also, for any positive numbers θ, w, δ0, π1, π2, and π3

such that δ0 � w and π1 + π2 + π3 = 1,∣∣P̂(T̃ � z)− P̂(W � z)
∣∣ � γ̃z + τ̃ e−(1−π1)z/θ (4.10)

for all z � 0, where

P̂(E) := P
(
E ∩ {|Δ| � π1z}

)
for any P-measurable event E, (4.11)

γ̃z :=
∑

i P(ξi > π2z) +
∑

i P(W − ξi � π3z)P(ξi > w), (4.12)
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τ̃ := c1
∑

i‖ξi‖3‖Δ−Δi‖3/2 + c2‖Δ‖3/2 + c3δ, (4.13)

and

c1 := 1
c∗

PUexp

(
3
θ , w,

1√
3
, ε1

)
eδ0/θ, (4.14)

c2 := c1

((
1.316a1e

3w/θ
)1/3

σ3 +
(
22/3a1e

3w/θ
)1/2

+
(
e3w/θ − 1

)
/w

)
, (4.15)

c3 :=
(
2c2 +

1
c∗

√
2PUexp

(
2
θ , w,

1√
2
, ε1

))
∨
(

1
δ0

PUexp

(
1
θ , w, 1, ε1

))
, (4.16)

ε1 :=
σ3
3

w
∧ 1, (4.17)

a1 := 1/LW (3w/θ, maxi‖ξi‖2/w). (4.18)

The proof of (4.9) is nearly identical to that of [11, (2.3)] (as suggested by
the similarity of those two inequalities). In contrast, the proof of (4.10) requires
significant changes to the proof of [11, (2.6)]; as the proof of Lemma 4.5 is
relatively lengthy, we defer it to Subsection 4.4.

Assume that the conditions of Theorem 2.2 and 2.5 are satisfied; particularly,
we have a nonlinear functional f satisfying the smoothness condition (2.1), along
with the statistics T and W defined in (2.5). Then let

T̃ := T I{‖S‖ � ε}+W I{‖S‖ > ε} (4.19)

and

Δ :=
Mε

2σ
‖S‖2 and Δi =

Mε

2σ
‖S −Xi‖2 for each i = 1, . . . , n. (4.20)

By (2.1),∣∣T̃ −W
∣∣ = σ−1

∣∣f(S)− L(S)
∣∣ I{‖S‖ � ε} � Mε

2σ ‖S‖2 = Δ; (4.21)

moreover, ξi and (Δi, (ξj : j �= i)) are independent for each i = 1, . . . , n, and thus
the conditions of Lemma 4.5 are met. Theorems 2.2 and 2.5 are then fairly easily
proved by substituting the above T̃ , Δ, and Δi into the bounds of Lemma 4.5;
the following lemma (which will be proved at the end of this subsection) provides
some bounds which bridge the Δ and Δi defined above to the expressions u and
v found in (2.11).

Lemma 4.6. Under the conditions of Theorem 2.2,

‖Δ‖3/2 � u and
∑

i‖ξi‖3‖Δ−Δi‖3/2 � σ3v. (4.22)

Proof of Theorem 2.2. By (4.19), (4.9), and Hölder’s inequality,∣∣P(T � z)−P(W � z)
∣∣ � P

(
‖S‖ > ε

)
+
∣∣P(T̃ � z)− P(W � z)

∣∣
� 1

2c∗

(
4δ + ‖W‖3‖Δ‖3/2 +

∑
i‖ξi‖3‖Δ−Δi‖3/2

)
+ P(‖S‖ > ε)

for all z ∈ R. Next, ‖W‖3 � σ3 + (8/π)1/6, by the Rosenthal-type inequal-
ity (4.2); recall here also the definition of σ3 in (2.7). So, (2.10) follows by
Lemma 4.6, which completes the proof.
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Proof of Theorem 2.5. First note that, by (4.20), (2.15), and the last inequality
in (2.14),{

|Δ| � π1z
}
=
{
‖S‖ � (2π1σz/Mε)

1/2
}
⊆
{
‖S‖ � (2π1ω/Mε)

1/2
}

⊆
{
‖S‖ � ε

}
.

Recalling now the respective definitions (4.19) and (4.11) of T̃ and P̂, we have∣∣P(T � z)− P(W � z)
∣∣ �

∣∣P̂(T̃ � z)− P̂(W � z)
∣∣+ P

(
|Δ| > π1z

)
� γ̃z + τ̃ e−(1−π1)z/θ + P

(
|Δ| > π1z

)
= γz + τ̃ e−(1−π1)z/θ

for all z as in (2.15), with the last inequality following from (4.10) of Lemma 4.5
and the equality following from the definitions (2.17), (4.12), and (4.20) of γz,
γ̃z, and Δ, respectively. Since τ̃ � τ by Lemma 4.6 (cf. the definitions (2.18) and
(4.13) of τ and τ̃), the inequality in (2.16) follows and the proof is complete.

Proof of Remark 2.1. In view of (2.2), there exists mh ∈ (0,∞) such that

‖h(x)‖Y � mh‖x‖X for all x ∈ X with ‖x‖X � εh; (4.23)

indeed, we may let mh := ‖Lh‖ + Mhεh/2. Assume that εh is chosen small
enough to ensure mhεh � εg.

Take any x ∈ X with ‖x‖X � εh. Then, by (2.2), there is some yx ∈ Y such
that ‖yx‖Y � 1 and h(x) = Lh(x)+

1
2 Mh‖x‖2Xyx. By (4.23), ‖h(x)‖Y � mhεh �

εg, and so, by (2.3), there is some zx ∈ Z such that ‖zx‖Z � 1 and

g(h(x)) = Lg(h(x)) +
1
2 Mg‖h(x)‖2Yzx

= Lg(Lh(x)) +
1
2 Mh‖x‖2XLg(yx) +

1
2 Mg‖h(x)‖2Yzx.

Thus, by (4.23) (recall also ‖yx‖Y � 1 and ‖zx‖Z � 1),

‖(g ◦ h)(x)− (Lg ◦ Lh)(x)‖Z � 1
2

(
Mh‖Lg‖+Mgm

2
h

)
‖x‖2X

for all x ∈ X with ‖x‖X � εh;

that is, (2.1) with Z in place of R holds for f = g ◦ h with L = Lg ◦ Lh,
Mε = Mh‖Lg‖+Mgm

2
h, and ε = εh.

Proof of Lemma 4.6. By (4.20) and [67, (12)], we have

‖Δ‖3/2 =
Mε

2σ
‖S‖23 � Mε

2σ

(1 +D2

2

(
s33 + 2s32

))2/3

� u,

where u is as in (2.11).
For each i = 1, . . . , n, (4.20) implies

2σ
Mε

∣∣Δ−Δi

∣∣ = ∣∣‖S‖2 − ‖S −Xi‖2
∣∣ = ∣∣‖S‖ − ‖S −Xi‖

∣∣(‖S‖+ ‖S −Xi‖
)

� ‖Xi‖
(
‖Xi‖+ 2‖S −Xi‖

)
= ‖Xi‖2 + 2‖Xi‖‖S −Xi‖.
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Also, by (2.8), ‖S −Xi‖3/2 � ‖S −Xi‖2 � Ds2. It follows that∥∥Δ−Δi

∥∥
3/2

� Mε

2σ

(
‖Xi‖23+2‖Xi‖3/2 ‖S−Xi‖3/2

)
� Mε

2σ

(
‖Xi‖23+2Ds2 ‖Xi‖3/2

)
.

Then Hölder’s inequality yields

n∑
i=1

∥∥ξi∥∥3∥∥Δ−Δi

∥∥
3/2

� Mε

2σ

n∑
i=1

∥∥ξi∥∥3(‖Xi‖23 + 2Ds2‖Xi‖3/2
)

� Mε

2σ σ3

(
s23 + 2Ds2s3/2

)
= σ3v,

by the definition (2.11) of v.

4.3. Proofs of bounds in i.i.d. setting

In this subsection we prove Theorems 2.11 and 2.9, concerning our BE-type
bounds in the i.i.d. setting. Recall the i.i.d. notation as introduced in (2.20) and
(2.21), along with the subsequent substitutions for σ, ξi, sp, and σp that can be
made (cf. (2.22)).

Theorem 2.11 follows nearly directly from Theorem 2.2:

Proof of Theorem 2.11. Concerning the bound in Theorem 2.2,

(i) let D = 1 since X is assumed to be a Hilbert space;
(ii) use Remark 2.3, along with the inequality σ1 =

√
nς1 � √

nς2 =
√
n, to

set

δ =
ς33 − (2c∗ − 1)2

4(1− c∗)
√
n

; (4.24)

(iii) use the inequality v3/2 � v2 (recall also the definitions (2.11)) to assert

u =
1√
n

Mε

2σ̃

( v23
n1/3

+ 22/3v22

)
and σ3v � 1√

n

Mε

2σ̃
ς3

( v23
n1/2

+ 2v22

)
;

(4.25)
(iv) and use Remark 2.4 to see that P(‖S‖ > ε) � Kε (cf. the definition (2.30)).

Note also that in (2.19), we may make the substitutions n‖ξ1‖33 = ς33/
√
n and

n‖ξ1‖32 = 1/
√
n. Upon using the abovementioned substitutions and inequalities

in (2.10) and (2.19), (2.29) follows.

The proof of Theorem 2.9 is also a fairly straightfoward application of The-
orems 2.2 and 2.5. Most of the work involves ensuring the last term of γz in
(2.17), the presence of which stems in part from the use of the smoothness con-
dition (2.1) (cf. Remark 2.7), can be bounded on the order of 1/(z3

√
n) with the

moment assumption v3 < ∞. For this we use truncation of the Vi’s in tandem
with Lemma 4.3. In Appendix A, we use a stronger bound on the tail probability
of ‖V ‖, provided by Lemma A.1.
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Proof of Theorem 2.9. The proof of (2.23) is virtually the same as that of (2.29)
in Theorem 2.11, only we do not assume that X is a Hilbert space, hence nor
D = 1, when obtaining explicit expressions for C. It should be clear that (2.26)
follows from (2.25) after an application of the Markov inequality.

Throughout the rest of the proof, let us write a <� b if |a| � Cb for some C as

in Theorem 2.9.
To prove (2.25), set c∗ = 1

2 , w = δ0 = 1, π1 = ((Mεε
2/(2σ̃ω)) ∧ 1

3 , π2 = π3 =
1
2 (1 − π1), and θ = 1 − π1. Then the conditions of Theorem 2.5 are met, with
σ̃ω replacing ω there.

Choose δ as in (4.24), and refer to (4.25) to see that

τe−(1−π1)z/θ <�
e−z

√
n
. (4.26)

Recall (2.6) and (2.22) to see that P(ξ1 > x) � P(‖V ‖ > xσ̃
√
n/‖L‖) for any

x > 0; also apply the Markov inequality and the Rosenthal-type inequality (4.2)
of Lemma 4.1 to see that P(W − ξ1 � π3z) <� 1/z3. Then the definition (2.17)

of γz implies

γz � nP
(
‖V ‖ > Cz

√
n
)
+ C

nP(‖V ‖ > C
√
n)

z3
+ P

(
‖V ‖ >

( 2π1σ̃z

Mε
√
n

)1/2
)
.

(4.27)
Next, choose any κ2 > 0, and let

cx :=
(2π1

Mε

)1/2

, x2 := cx

( σ̃z√
n

)1/2

, y2 :=
x2

κ2
,

V y2 := 1
n

n∑
i=1

Vi I{‖Vi‖ � ny2}.
(4.28)

Then

P

(
‖V ‖ >

( 2π1σ̃z

Mε
√
n

)1/2
)

= P
(
‖V ‖ > x2

)
� P

(
maxi‖Vi‖ > ny2

)
+ P

(
‖V y2‖ > x2

)
� nP

(
‖V ‖ > ny2

)
+ P

(
‖V y2‖ > x2

)
(4.29)

� nP
(
‖V ‖ > Cz

√
n
)
+ P

(
‖V y2‖ > x2

)
, (4.30)

with (4.30) following from (2.24) and ny2 � ny2
√
z/(ω

√
n) = Cz

√
n.

We assert that

P
(
‖V y2‖ > x2

)
�
(6eMε

π1σ̃

v22
z
√
n

)3

. (4.31)

Assume w.l.o.g. that the upper bound in (4.31) is no greater than 1, and choose
κ2 = 6. Then

E‖V y2‖ � E‖V ‖+ E‖V − V y2‖
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� ‖V ‖2 + 1
n E

∥∥∑
i Vi I{‖Vi‖ > ny2}

∥∥
� v2√

n
+

v22
ny2

=
x2

4

((8Mε

π1σ̃

v22
z
√
n

)1/2

+
12Mε

π1σ̃

v22
z
√
n

)
<

x2

4

((6eMε

π1σ̃

v22
z
√
n

)1/2

+
6eMε

π1σ̃

v22
z
√
n

)
� x2

2
,

where the equality above follows from the definitions of x2 and y2 in (4.28).
Then Lemma 4.3 implies (use x = x2, y = y2, B = v2/

√
n, and m = x2/2 in

(4.4))

P
(
‖V y2‖ > x2

)
� BHtail

(x2y2/2

v22/n
,
x2/2

y2

)
= BHtail

( x2
2

2κ2v22/n
,
κ2

2

)
�
(2eκ2

x2
2

v22
n

)κ2/2

,

with the last inequality following from BHtail(u, κ) � (e/u)κ whenever u > 0
(which in turn is easily verified by referring to (4.7)); (4.31) follows after recalling
κ2 = 6 and the definition (4.28) of x2.

Referring to (4.26), (4.27), (4.30), and (4.31), (2.25) follows when Φ(z) is
replaced by P(

√
n|L(V )| > σ̃z) there. To obtain (2.25) as stated, note that∣∣∣P( L(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ <� σ3
3

ez
+ nP

(
ξ1 > 2

5 z
)
+

nP(ξ1 > 1)

z3
(4.32)

for all z > 0; this follows by [55, Corollary 1.3] with v = w = 1, p = 3, c = 0, and
λ = 1 (in notation therein), using at that the inequalities βv � μp/v

p (displayed
right after [55, (1.2)]) and P1 ∧ · · · ∧ P5 � P4.

4.4. Proof of Lemma 4.5

The inequality in (4.9) is very similar to one proved by Chen and Shao in [11].
From the condition that |Δ| � |T̃ −W | follows the concentration inequality

− P
(
z − |Δ| � W � z

)
� P(T̃ � z)− P(W � z) � P

(
z � W � z + |Δ|

)
(4.33)

for all z ∈ R. Upon replacing [11, (2.2)] by the inequality (2.9) in the present
paper, the proof of (4.9) is then, mutatis mutandis, identical to the proof of [11,
(2.3)].

The differences between the proof of (4.10) and the analogous inequality in
[11, Theorem 2.2] are significant enough to warrant more details here; particu-

larly, aside from the use of the measure P̂ and the introduction of various parame-
ters (e.g. c∗, θ, w, δ0, and πi), we also employ a Cramér-tilt absolutely continuous
transformation of measure along with the previously mentioned Rosenthal-type
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and exponential bounds. For the ease of comparison between the two proofs, we
shall use notation similar to that in [11].

Introduce the Winsorized r.v.’s

ξi := ξi ∧ w and their sum, W :=
n∑

i=1

ξi. (4.34)

In view of the definition (4.11) of the measure P̂,

P̂
(
z − |Δ| � W � z

)
�

n∑
i=1

P
(
W � (1− π1)z, ξi > w

)
+ P̂

(
z − |Δ| � W � z,maxi ξi � w

)
�

n∑
i=1

P
(
ξi > π2z

)
+

n∑
i=1

P
(
W − ξi � π3z

)
P
(
ξi > w

)
+ P̂

(
z − |Δ| � W � z

)
= γ̃z + P̂(z − |Δ| � W � z).

(4.35)

The second inequality above follows from the independence of W − ξi and ξi,
the assumption that π3 = 1 − π1 − π2 (recall (2.14)), and the definition (4.34)
of W , while the above equality follows from the definition (4.12) of γ̃z; compare
(4.35) with [11, Lemma 5.1].

We must next establish the inequality

P̂(z − |Δ| � W � z) � τ̃ e−(1−π1)z/θ; (4.36)

cf. [11, Lemma 5.2]. Consider two cases:

(i) δ > δ0 and (ii) 0 < δ � δ0 � w

(recall the restriction on the number δ0 in (2.14)). In the first case, when δ > δ0,
one has

P̂
(
z − |Δ| � W � z

)
� P

(
W � (1− π1)z

)
� E eW/θe−(1−π1)z/θ

� δ
δ0

PUexp

(
1
θ , w, 1, ε1

)
e−(1−π1)z/θ � c3δe

−(1−π1)z/θ � τ̃ e−(1−π1)z/θ;

here (4.5) and (4.4) are used for the third inequality above (as well as the
definitions (4.17) and (2.7) of ε1 and σ3), and the definitions (4.16) and (4.13)
of c3 and τ̃ are used for the last two inequalities there. Thus, (4.36) is established
when δ > δ0.

Consider now the second case, when 0 < δ � δ0 � w. Let

fΔ(u) :=

⎧⎪⎨⎪⎩
0 if u < z − |Δ| − δ,

eu/θ(u− z + |Δ|+ δ) if z − |Δ| − δ � u < z + δ,

eu/θ(|Δ|+ 2δ) if u � z + δ
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be defined similarly to [11, (5.16)]. Then, by the independence of (Δi,W − ξi)
and ξi,

EWfΔ(W ) = G1 +G2, (4.37)

where

G1 :=
n∑

i=1

E ξi
(
fΔ(W )−fΔ(W−ξi)

)
, G2 :=

n∑
i=1

E ξi
(
fΔ(W−ξi)−fΔi(W−ξi)

)
.

Also, using an obvious modification of the arguments associated with [11, (5.17)–
(5.19)], one has

G1 � G1,1 −G1,2, (4.38)

where

G1,1 := c∗ exp
{

1
θ

(
(1− π1)z − δ

)}
P̂(z − |Δ| � W � z), (4.39)

G1,2 := E

∫
|t|�δ

e(W−δ)/θ
∣∣M(t)− EM(t)

∣∣ dt,
M(t) :=

n∑
i=1

M i(t), and M i(t) := ξi
(
I{−ξi � t � 0} − I{0 < t � −ξi}

)
;

in particular, the factor c∗ in the expression (4.39) for G1,1 arises when one uses
the relations

∫
|t|�δ

EM(t) dt =
∑

i E |ξi|(δ ∧ |ξi|) � c∗, which in turn follow by

the condition δ � δ0 � w of case (ii) and (2.9); cf. [11, (5.19)]. Further,∫
|t|�δ

E
(
M(t)− EM(t)

)2
dt �

n∑
i=1

E

∫
|t|�δ

M i(t)
2 dt =

n∑
i=1

E ξ2i
(
δ ∧ |ξi|

)
� δ,

so that two applications of the Cauchy-Schwarz inequality yield

G1,2 � E

(∫
|t|�δ

e2(W−δ)/θ dt

)1/2(∫
|t|�δ

(
M(t)− EM(t)

)2
dt

)1/2

�
(
2δ E e2(W−δ)/θ

)1/2√
δ

�
(
2PUexp

(
2
θ , w, 1, ε1

))1/2

e−δ/θδ =
√
2PUexp

(
2
θ , w,

1√
2
, ε1

)
e−δ/θδ, (4.40)

where the last inequality follows from (4.5) and (4.4), in view of the definitions
(4.34) and (4.17) of W and ε1; the equality in (4.40) follows from the easily
verified identity

PUexp

(
λ, y,B, ε

)α
= PUexp

(
λ, y, α1/2B, ε

)
for any α > 0. (4.41)

Next (cf. [11, (5.21)]),

|G2| �
n∑

i=1

E
∣∣ξie(W−ξi)/θ(Δ−Δi)

∣∣ �
n∑

i=1

∥∥ξie(W−ξi)/θ
∥∥
3

∥∥Δ−Δi

∥∥
3/2
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=
n∑

i=1

E
1/3 e

3
θ (W−ξi) ‖ξi‖3‖Δ−Δi‖3/2

� PUexp

(
3
θ , w,

1√
3
, ε1

) n∑
i=1

‖ξi‖3‖Δ−Δi‖3/2. (4.42)

Also,

EWfΔ(W ) � E
(
|Δ|+ 2δ

)
|W |eW/θ �

(
‖Δ‖3/2 + 2δ

)∥∥WeW/θ
∥∥
3
. (4.43)

In the proof in [11], the term EW 2eW was bounded from above; in our case,
more work is required to bound the last factor in (4.43). Specifically, we apply
Cramér’s tilt transform to the ξi’s, using at that results of [56, 57, 58].

Let ξ := (ξ1, . . . , ξn), and for any real c > 0 let ξ̂ =: (ξ̂1, . . . , ξ̂n) be a random
vector such that

P(ξ̂ ∈ E) =
E ecW I{ξ ∈ E}

E ecW

for all Borel sets E ⊆ R
n. Then the ξ̂i’s are necessarily independent r.v.’s;

moreover, if f : Rn → R is any nonnegative Borel function, then

E f(ξ̂) =
E f(ξ)ecW

E ecW
. (4.44)

By [57, Proposition 2.6,(I)], E ξ̂i is nondecreasing in c, so that E ξ̂i � E ξi = 0,
and so, by [57, Corollary 2.7],

∣∣∑
i E ξ̂i

∣∣ = ∑
i E ξ̂i � ecw − 1

w

∑
i E ξ2i =

ecw − 1

w
.

If the ξi’s are assumed to have symmetric distributions, then [58, Theorem 1]
allows for the factor ecw − 1 above to be replaced by sinh(cw); cf. Remark 2.8.
Choose now

c =
3

θ
.

Then, by [56, Theorem 2.1],

E ecξi = E ec(ξi∧w) = E ecw(1∧ξi/w) � LW (cw, ‖ξi‖2/w)
� LW (cw,maxi‖ξi‖2/w) = a−1

1 ,

where a1 is as defined in (4.18); the last inequality above follows because
LW (c, σ) in [56, (2.9)] is nonincreasing in σ; the condition c = 3

θ was used
here in the above display only for the last equality. So,

E|ξ̂i|α =
E|ξi|αecξi
E ecξi

� a1e
cw

E|ξi|α
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for α ∈ {2, 3}, with
∑

i E ξ̂2i � a1e
cw a consequence of this. Next,∥∥∑

i ξ̂i
∥∥
3

�
∥∥∑

i(ξ̂i − E ξ̂i)
∥∥
3
+
∣∣∑

i E ξ̂i
∣∣

�
(
1.316

∑
i E|ξ̂i|3

)1/3
+ 21/3

(∑
i E ξ̂2i

)1/2
+ (e3w/θ − 1)/w

�
(
1.316a1e

3w/θσ3
3

)1/3
+ 21/3

(
a1e

3w/θ
)1/2

+ (e3w/θ − 1)/w,

(4.45)

where (4.3) is used in the second inequality above. Letting f(x1, . . . , xn) ≡
|
∑

i xi|3 in (4.44) and using (4.5), (4.4), and (4.41) once more, one has

∥∥WeW/θ
∥∥
3
=
(
E
∣∣∑

i ξi
∣∣3e3W/θ

)1/3

=
(
E e3W/θ

E
∣∣∑

i ξ̂i
∣∣3)1/3

� PUexp

(
3
θ , w,

1√
3
, ε1

)∥∥∑
i ξ̂i

∥∥
3
.

(4.46)

Thus, recalling the case condition δ � δ0, we have

P
(
z − |Δ| � W � z,|Δ| � π1z

)
= 1

c∗
e−(1−π1)z/θeδ/θG1,1

� 1
c∗

e−(1−π1)z/θeδ/θ
(
G1,2 + |G2|+ EWfΔ(W )

)
�
(
c1
∑

i‖ξi‖3‖Δ−Δi‖3/2 + c2‖Δ‖3/2 + c3δ
)
e−(1−π1)z/θ,

where the equality comes from the definition (4.39) of G1,1, the first inequality
follows from (4.37) and (4.38), and the second inequality follows from (4.40),
(4.42), (4.43), (4.46), and (4.45), along with the definitions (4.14), (4.15), and
(4.16) of c1, c2, and c3. Thus, in view of the definition (4.13) of τ̃ , the inequality
(4.36) is proved for the other case, δ � δ0.

Replace now P with P̂ in (4.33), so that (4.35) and (4.36) imply

P̂(W � z)− P̂(T̃ � z) � γ̃z + τ̃ e−(1−π1)z/θ.

In a similar fashion, one bounds P̂(T̃ � z)− P̂(W � z) from above, establishing
(4.10).

Appendix A: An explicit nonuniform bound in the multivariate
delta method

The bound PUexp on the exponential moment of a sum of independent random
variables found in (4.5) can be used in conjunction with the Markov inequality
to obtain a bound, PUtail, on certain tail probabilities of the sum; the following
lemma quotes expressions found in [69, 54] for this bound. These expressions
will be needed in applications of Theorem A.2.

Lemma A.1. For any real x, y > 0, B > 0, m, and ε ∈ (0, 1], let

u :=
(x−m)+y

B2
and κ :=

(x−m)+
y

.
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Further, let S =
∑n

i=1 ζi, where ζ1, . . . , ζn are independent real-valued r.v.’s
satisfying (4.4). Then

P(S > x) � PUtail(u, κ, ε) := inf
λ�0

e−λ(x−m)+ PUexp(λ, y,B, ε), (A.1)

with

PUtail(0, κ, ε) = 1,

PUtail(u, κ, 1) = BHtail(u, κ)

whenever u > 0 (where BHtail is as defined in (4.7)), and

PUtail(u, κ, ε) =

exp

[
κ

2(1− ε)u

(
(1− ε)2

[
1 +W

( ε

1− ε
exp

ε+ u

1− ε

)]2
− (ε+ u)2 − (1− ε2)

)]
(A.2)

whenever u > 0 and ε < 1; in (A.2), W is Lambert’s product-log function with
domain restricted to the positive real numbers (so that for positive w and z one
has W(z) = w if and only if z = wew).

One also has the alternative identity

PUtail(u, κ, ε) = inf
0<α<1

exp
[
L1 ∨ L2

]
, (A.3)

where

L1 := L1(α, u, κ, ε) := κ

(
1− α− α

ε

1− ε
− α(2− α)

2(1− ε)
u

)
,

with L1(α, u, κ, 1) := −∞,

(A.4)

and

L2 := L2(α, u, κ, ε) := κ

(
1− α−

(
1− α

2
+

ε

u

)
ln
(
1 + (1− α)

u

ε

))
,

with L2(α, 0, κ, ε) := 0.

(A.5)

Moreover, if the ζi’s take values in a separable Banach space with norm ‖·‖,
then

(A.1) holds under (4.4) when S and ζi are replaced by ‖S‖ and ‖ζi‖, (A.6)

respectively.

Indeed, (A.1) is essentially [54, Proposition 3.1], with the “boundary” case
ε = 1 resulting in the Bennett–Hoeffding bound BHtail(u, κ). Next, (A.3) (for
ε < 1) is established in [69, Corollary 1] and, again, immediately follows for
ε = 1 using BHtail(u, κ). The verity of (A.6) is implied by the remark in [69,
p. 343] (see also [68, Theorem 1]).
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Theorem A.2. Let X be a Hilbert space, let f satisfy (2.1) for some real ε >
0, and assume that V, V1, . . . , Vn are i.i.d. X-valued random vectors such that
EV = 0, σ̃ = ‖L(V )‖2 > 0, and v3 = ‖V ‖3 < ∞. Further, take any positive
real numbers

c∗, θ, w, δ0, π1, π2, π3, z0, ω, κ2,0, κ3,0, κ2,1, κ3,1, κ2, κ3, α, ε∗,

K1, K2, and K3 (A.7)

satisfying the constraints

c∗ < 1, δ0 � w, π1 + π2 + π3 = 1, ω � Mεε
2

2π1
, κ3 � 3

2 , α < 1, ε∗ < 1,

κ̂2 � 2, γ̂ < 1, (A.8)

where

γ̂ :=
( M2

ε ω

4π2
1K2

)1/4

+
κ2
2

K3

(Mεω

2π1

)3/2

(A.9)

and
κ̂2 := (1− γ̂)κ2. (A.10)

Also introduce

t2 :=
π1α(2− α)(1− γ̂)2

Mε(1− ε∗)

(K2

ω

)1/2

, t3 :=
κ2
2

(1− γ̂)K3

(Mεω

2π1

)3/2

, (A.11)

u0 :=
2π1(1− γ̂)

Mεκ2

(K2

ω

)1/2

, (A.12)

ε̃1 := 1
K1w

, and ã1 := 1/LW (3w/θ, ε̃1), (A.13)

where LW (c, B) is as in (4.8); further let c̃1, c̃2, and c̃3 be obtained from c1,
c2, and c3 in (4.14)–(4.16) by replacing there a1, ε1, and σp by ã1, 1 ∧ ε̃1, and

K
−1/3
1 , respectively. Recall also the definition of PUtail in (A.1). Then for all

z ∈ R and n ∈ N such that
z0 � z � ω

σ̃

√
n, (A.14)

K1ς
3
3√
n

� 1,
K2v

4
2

σ̃3z3
√
n

� 1, and
K3v

3
3

σ̃3z3
√
n

� 1 (A.15)

one has∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣
�

Kn1ς
3
3 +

(
(Kn21 ∨ Kn22)v

4
2

)
∨
(
Kn31v

3
3

)
+ Kn32v

3
3

z3
√
n

+
Ke0 + Ke1ς

3
3 + Ke2v

3
2 + Ke3v

3
3

e(1−π1)z/θ
√
n

, (A.16)
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where

Kn1 := 30.2211 +
1

π3
2

+
κ
3/2
3

(wπ3)3

(
κ
3/2
3

K1
+ sup

u�π2
3z

2
0/κ3

u3/2 PUtail

(
u, κ3,

κ3

K1π3z0
∧ 1

))
, (A.17)

Kn21 :=
ω exp{κ̂2(1− α− αε∗

1−ε∗
)}

σ̃3

( Mε(1− ε∗)

π1α(2− α)(1− γ̂)2

)2

sup
t�t2

t2e−t, (A.18)

Kn22 :=
ω

σ̃3

( Mεκ2

2π1(1− γ̂)

)2

sup
u�u0

u2 PUtail(u, κ̂2, ε∗), (A.19)

Kn31 :=
κ2
2e

κ̂2(1−α)

σ̃3(1− γ̂)

(Mεω

2π1

)3/2

sup
t∈(0,t3]

1

t
exp

[
−κ̂2

(
1− α

2
+ t

)
ln
(
1 +

1− α

t

)]
,

(A.20)

Kn32 :=
(κ2

σ̃

)3(Mεω

2π1

)3/2

, (A.21)

Ke0 :=
Mεc̃2
6σ̃

( 1

κ3
3,0K

2/3
1

+
22/3

κ3
2,0

)
− (2c∗ − 1)2+

4(1− c∗)
c̃3, (A.22)

Ke1 := d(c∗)c̃3 +
Mεc̃1
6σ̃

( 1

κ3
3,1K1

+
2

κ3
2,1

)
, (A.23)

Ke2 :=
Mε

3σ̃

(
2c̃1κ

3/2
2,1 + 22/3c̃2κ

3/2
2,0

)
, (A.24)

Ke3 :=
Mε

3σ̃

( c̃1κ3/2
3,1

K1
+

c̃2κ
3/2
3,0

K
2/3
1

)
, (A.25)

d : (0, 1) → R is defined by d(c∗) =

{
c∗ if c∗ ∈ (0, 1

2 ],
1

4(1−c∗)
if c∗ ∈ ( 12 , 1);

(A.26)

moreover, each of the expressions in (A.17)–(A.25) is finite.

Remark A.3. Suppose here that L(V ) is symmetric. Then the statement of
Theorem A.2 holds when the replacement mentioned in Remark 2.8 is made in
the expression (4.15) for c2 and, accordingly, in the expression for c̃2 defined
right after (A.13). Also, one can take Kn1 in (A.16) to be defined as

Kn1 := 30.2211 +
1

2π3
2

+
κ
3/2
3

2(wπ3)3

(
κ
3/2
3

2K1
+ sup

u�π2
3z

2
0/κ3

u3/2 PUtail

(
u, κ3,

κ3

K1π3z0
∧ 1

))
,

because one can then use P(ξ1 > t) � ς33/(2t
3
√
n) in place of P(ξ1 > t) �

ς33/(t
3
√
n) to improve bounds on the terms in γz.
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Remark A.4. That all the expressions denoted by K with indices and defined
by formulas (A.17)–(A.25) are finite is easily verifiable by inspection, except
perhaps for Kn1, Kn22, and Kn31, whose definitions in (A.17), (A.19), and (A.20)
involve comparatively complicated suprema. However, as shown in [65], condi-
tions κ3 � 3

2 and κ̂2 � 2 in (A.8) suffice for these three suprema, and hence for
Kn1, Kn22, and Kn31, to be finite.

Proof of Theorem A.2. Take any z ∈ R and n ∈ N such that (A.14) and (A.15)
hold. The conditions of Theorem 2.5 are met, with Xi = Vi/n, so that (2.19)
and (2.16) imply∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � 30.2211ς33
z3
√
n

+ γz + τe−(1−π1)z/θ. (A.27)

We shall first demonstrate that

τ � 1√
n

(
Ke0 + Ke1ς

3
3 + Ke2v

3
2 + Ke3v

3
3

)
, (A.28)

where Ke0, . . . ,Ke3 are as in (A.22)–(A.25). By the first inequality of (A.15)
(recall also (2.21), (4.17), and (A.13))

σ3 =
ς3

n1/6
� K

−1/3
1 , ε1 � ε̃1, and maxi

‖ξi‖2
w

=
1

w
√
n

� ς33
w
√
n

� 1

K1w
.

Then, recalling that PUexp(λ, y,B, ε) and LW (c, B) are nondecreasing with re-
spect to ε and B, respectively, we see that a1 � ã1 and cj � c̃j for j = 1, 2, 3.
By Remark 2.3 and (4.24), we see that (2.9) is satisfied when

δ =
d(c∗)ς

3
3 − (2c∗ − 1)2+/(4(1− c∗))√

n
,

where d is as in (A.26). Then (2.18) and (4.25) imply

τ �
1√
n

(
Mε

2σ̃

(
c̃1ς3

( v23
K1

+2v22

)
+c̃2

( v23

K
2/3
1

+22/3v22

))
+c̃3

(
d(c∗)ς

3
3−

(2c∗ − 1)2+
4(1− c∗)

))
;

(A.29)

the inequalities v23/
√
n � v23/K1 and v23/n

1/3 � v23/K
2/3
1 were used above, with

these following from n � K2
1 ς

3
3 � K2

1 (which follows from (A.15)). Finally, use
Young’s inequality to see that

ςi3v
2
α � 1

3

ς3i3
κ3
α,i

+
2

3
κ
3/2
α,i v

3
α for (α, i) ∈ {2, 3} × {0, 1}; (A.30)

applying (A.30) to the various terms in the bound of (A.29) yields the desired
inequality (4.26).
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Consider next the problem of bounding the terms in γz. First,∑
i P(ξi > π2z) � 1

π3
2

ς33
z3
√
n
. (A.31)

Next, use truncation and Lemma A.1 (with x = π3z, y = x3/κ3, B = 1, m = 0,
and ε = σ3

3/(B
2y)) to obtain

P(W − ξi �π3z)

� P

(
maxi ξi >

π3z

κ3

)
+ P

(∑
j �=i

ξj I
{
ξj � π3z

κ3

}
> π3z

)
� nP

(
ξ1 >

π3z

κ3

)
+ PUtail

(π2
3z

2

κ3
, κ3,

σ3
3

π3z/κ3
∧ 1

)
� 1

z3

(
κ3
3

K1π3
3

+
κ
3/2
3

π3
3

sup
u�π2

3z
2
0/κ3

u3/2 PUtail

(
u, κ3,

κ3

K1π3z0
∧ 1

))
;

note we have again used the first inequality of (A.15), the fact that PUtail is
nondecreasing in ε (cf. (4.6)), and the assumption that z > z0 (cf. (A.14)).
Then, since

∑
i P(ξi > w) � ς33/(w

3
√
n),

30.2211ς33
z3
√
n

+ γz � Kn1ς
3
3

z3
√
n
+

v33
n2y32

·
(ω√n

σ̃z

)3/2

+ P
(
‖V y2‖ > x2

)
=

Kn1ς
3
3 + Kn32v

3
3

z3
√
n

+ P
(
‖V y2‖ > x2

)
, (A.32)

with the above inequality following from (4.29) and (A.14) (recall also the defi-
nition (A.17) of Kn1), and the equality following from the definitions (4.28) and
(A.21) of y2 and Kn32, respectively.

Considering (A.27), (A.28), and (A.32), the proof will be complete once we
show that

P
(
‖V y2‖ > x2

)
� ((Kn21 ∨ Kn22)v

4
2) ∨ (Kn31v

3
3)

z3
√
n

. (A.33)

Recalling the definitions in (4.28), we have

E‖V y2‖ � E‖V ‖+ E‖V y2 − V ‖
� ‖V ‖2 + 1

n

∑
i E

∥∥Vi I{‖Vi‖ > ny2}
∥∥

� v2√
n
+

v33
n2y22

= x2

( v2
cx(σ̃z)1/2n1/4

+
κ2
2v

3
3

c3x(σ̃z)
3/2n5/4

)
= x2

(
1

cx

( v42
σ̃3z3

√
n

)1/4( σ̃z√
n

)1/4

+
κ2
2

c3x

v33
σ̃3z3

√
n

( σ̃z√
n

)3/2
)

� x2

( 1

cx

( ω

K2

)1/4

+
κ2
2ω

3/2

c3xK3

)
= γ̂x2,
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where (A.14) and (A.15) are used to obtain the last inequality above, and the
definition (A.9) of γ̂ is used for the last equality. Then, since γ̂ < 1 is assumed
in (A.8), invoke Lemma A.1 (with x = x2, y = y2, B = v2/

√
n, m = γ̂x2, and

ε = v33/(n
2B2y)) to see that

P
(
‖V y2‖ > x2

)
� PUtail(û, κ̂2, ε2) (A.34)

where

û :=
c2x(1− γ̂)

κ2

σ̃z

v22

√
n, κ̂2 := (1− γ̂)κ2, and ε2 :=

κ2v
3
3

cxv22(σ̃z)
1/2n3/4

∧ 1.

(A.35)
The inequality in (A.33) is proved by taking any ε∗ ∈ (0, 1) and then consid-

ering two cases: (i) ε2 ∈ (ε∗, 1] and (ii) ε2 ∈ (0, ε∗]. Assume first that ε2 ∈ (ε∗, 1].
By (A.35) and (A.3),

PUtail

(
û, κ̂2, ε2

)
� exp{L1(α, û, κ̂2, ε2)} ∨ exp{L2(α, û, κ̂2, ε2)} (A.36)

for any α ∈ (0, 1). Now introduce

r22 :=
1

û
=

κ2

c2x(1− γ̂)

( v42
σ̃3z3

√
n

)1/2( σ̃z√
n

)1/2

� κ2ω
1/2

c2x(1− γ̂)

( v42
σ̃3z3

√
n

)1/2

(A.37)

� κ2ω
1/2

K
1/2
2 c2x(1− γ̂)

=
1

u0
(A.38)

and

r33 :=
ε2
û

� κ2
2

c3x(1− γ̂)

v33
σ̃3z3

√
n

( σ̃z√
n

)3/2

� κ2
2ω

3/2

c3x(1− γ̂)

v33
σ̃3z3

√
n

(A.39)

� κ2
2ω

3/2

c3x(1− γ̂)K3
= t3, (A.40)

where (A.14) is used to establish the inequalities in (A.37) and (A.39), and
(A.15) and (A.11) are used for (A.38) and (A.40).

Next, in view of (A.38), (A.10), and (A.11), one has

κ̂2α(2− α)

2(1− ε2)
û � κ̂2α(2− α)

2(1− ε∗)

c2x(1− γ̂)

κ2

(K2

ω

)1/2

=
π1α(2− α)(1− γ̂)2

Mε(1− ε∗)

(K2

ω

)1/2

= t2.

So, the case condition ε2 ∈ (ε∗, 1] together with the definitions of (A.4) and
(A.37) of L1 and r22 imply

eL1 � eκ̂2(1−α−αε∗/(1−ε∗))
( 2(1− ε∗)

κ̂2α(2− α)

)2
(
sup
t�t2

t2e−t

)
r42 � Kn21

v42
z3
√
n
, (A.41)
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where the last inequality follows by the definition (A.18) of Kn21 and (A.37) (on
recalling also that κ̂2 = (1− γ̂)κ2). Note that if ε2 = 1 then, by the definition,
L1 = −∞, which makes (A.41) trivial (using the convention exp{−∞} := 0).

Again by the case condition ε2 ∈ (ε∗, 1], now together with (A.5) and (A.40),

eL2 � eκ̂2(1−α)

(
sup

t∈(0,t3]

1

t
exp

[
−κ̂2

(
1− α

2
+ t

)
ln
(
1+

1− α

t

)])
r33 � Kn31

v33
z3
√
n
,

(A.42)
where the last inequality follows by the definition (A.20) of Kn31 and (A.39).
Now, upon combining (A.36), (A.41), and (A.42), we obtain the result (A.33)
in the case ε2 ∈ (ε∗, 1].

Consider the remaining case, when ε2 ∈ (0, ε∗]. Then, by (4.6), (A.35), (A.37),
(A.38), and the definition (A.19) of Kn22,

PU2 � PUtail

(
û, κ̂2, ε2

)
� PUtail

(
û, κ̂2, ε∗

)
� r42

(
sup
u�u0

u2 PUtail

(
u, κ̂2, ε∗

))
� Kn22

v42
z3
√
n
.

(A.43)

Thus, (A.43) yields (A.33) in the case ε2 ∈ (0, ε∗] as well. As was noted, the
demonstration of (A.33) completes the proof.

Appendix B: Optimality of the restriction z = O(
√
n) for the

nonuniform bound

Proposition B.1. Let X = R and f(x) ≡ x + x2, so that (2.1) is satisfied
when L(x) ≡ x, Mε = 2, and ε = 1. Let V, V1, . . . , Vn’s be real-valued symmetric
i.i.d. r.v.’s with density |v|−4 ln−2 |v| for all |v| � v0, where the real number
v0 > 1 and the density values on (−v0, v0) are chosen so that ‖V ‖2 = 1; note
that then ‖V ‖3 < ∞. For any triple b := (b1, b2, b3) of positive real numbers,
let NZ(b) denote the set of all pairs (n, z) ∈ N× (0,∞) for which the inequality
(2.25) with b1, b2, b3 in place of the three instances of C holds. Then there exists
a constant ω(b) ∈ (0,∞) depending only on b such that (2.24) holds for all pairs
(n, z) ∈ NZ.

Remark B.2. Let r ∈ (0, 3). Then an application of Chebyshev’s inequality to
the first two terms in the bound of (2.25) yields

∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣
� C

(
E‖V ‖r I{‖V ‖ > Cz

√
n}

zrnr/2−1
+

E‖V ‖r I{‖V ‖ > C
√
n}

z3nr/2−1
+

1

z3
√
n
+

1

ez
√
n

)
(B.1)

for any z satisfying (2.24). The arguments of the proof of Proposition B.1 can
be used to demonstrate that the bound of (B.1) (larger than that in (2.25))
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generally fails to hold if z/
√
n → ∞. Using Chebyshev’s inequality when r = 3

yields ∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣ � C

z3
√
n
. (B.2)

One might hope that a bound of the form in (B.2) could hold for all f satisfying
the smoothness condition (2.1) and for all z > 0. However, another modification
of the proof of Proposition B.1 demonstrates that (B.2) fails to be true whenever

z√
n lnα n

→ ∞ for any fixed α > 1
3 ; (B.3)

the extra log factor above is needed because the bound in (B.2) is worse than
that in (B.1).

Proof of Proposition B.1. Let S = V , so that σ = ‖L(S)‖2 = 1/
√
n, T =

f(S)/σ =
√
n(S + S2), and W = L(S)/σ =

√
nS. To obtain a contradiction,

assume that Proposition B.1 is false. Then for some triple b ∈ (0,∞)3 and each
value of ω ∈ N there is a pair (n, z) = (nω, zω) ∈ NZ(b) such that z > ω

√
n.

Now, for the rest of the proof of Proposition B.1, let ω → ∞, so that

ζ := z/
√
n → ∞;

further let
ϑ := ζ1/2n = z1/2n3/4,

so that ϑ/n = ζ1/2 → ∞. Note that for v > v0

P(V > v) =

∫ ∞

v

du

u4 ln2 u
� 1

v3 ln2 v

as v → ∞, which follows by l’Hospital’s rule.
So,

nP
(
‖V ‖ > Cz

√
n
)
� n

z3n3/2 ln2(z
√
n)

=
ln2(ζ1/2n)

ζ3/2 ln2(ζn)

n

ϑ3 ln2 ϑ

= o
(
nP(V > ϑ)

)
,

nP(‖V ‖ > C
√
n)

z3
� n

z3n3/2 ln2
√
n
=

ln2(ζ1/2n)

ζ3/2 ln2
√
n

n

ϑ3 ln2 ϑ
= o

(
nP(V > ϑ)

)
,

1

(z
√
n)3

=
ln2(ζ1/2n)

ζ3/2n

n

ϑ3 ln2 ϑ
= o

(
nP(V > ϑ)

)
,

1

ez
√
n
=

ζ3/2n3/2 ln2(ζ1/2n)

eζ
√
n

n

ϑ3 ln2 ϑ
= o

(
nP(V > ϑ)

)
,

and

1− Φ(z) � 1

zez2/2
=

ζ1/2n3/2 ln2(ζ1/2n)

eζ2n/2

n

ϑ3 ln2 ϑ
= o

(
nP(V > ϑ)

)
. (B.4)
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Then (2.25) and (4.32) imply that |P(T � z) − Φ(z)| and |P(W � z) − Φ(z)|
are both o(nP(V > ϑ)). Now let Δ = T −W =

√
nS2, so that

P(Δ > 2z) � P(T > z)+P(−W > z) = P(T > z)+P(W > z) = o
(
nP(V > ϑ)

)
,

(B.5)
by (B.4).

On the other hand, by [15, Lemma 2.3],

P(Δ > 2z) = P(
√
nS2 > 2z) = P

(∣∣∑
i Vi

∣∣ > √
2ϑ
)

� 1
2 (1− e−ψ)

for large enough n, where

ψ := nP
(
|V | >

√
2ϑ
)
= 2nP

(
V >

√
2ϑ
)
.

Since ϑ/n = ζ1/2 → ∞, one has ψ = o(n−2) → 0, whence

P(Δ > 2z) � ψ
3 > 2

3·23 nP(V > ϑ)

for large enough n, which contradicts (B.5).
The statements of Remark B.2 are proved with only a few modifications to

the above arguments, using the relation

E‖V ‖r I{‖V ‖ > v} � 1

v3−r ln2 v

as v → ∞, for any r ∈ (0, 3). In order to show that (B.2) fails to hold simulta-
neously with (B.3), let V have density 1/(|v|4 ln3α |v|) for |v| � v0 > 1 (and still
assume that V is symmetric, with v0 and density on (−v0, v0) chosen to ensure

that ‖V ‖2 = 1), ζ := z/(
√
n lnα n), and ϑ := ζ1/2n = z1/2n3/4/ lnα/2 n. After

these redefinitions, it is easy to verify that

1

z3n1/2
=

ln3α(ζ1/2n)

ζ3/2 ln3α n

n

ϑ3 ln3α ϑ
� ln3α(ζ1/2n)

ζ3/2 ln3α n
nP(V > ϑ) = o

(
nP(V > ϑ)

)
,

from which (B.5) follows and the contradiction is derived as done previously.

Appendix C: Proof of explicit Berry–Esseen bounds for the Pearson
statistic

Proof of Corollary 3.8. For α � 1, let

yα := ‖Y ‖α and zα := ‖Z‖α.

Also adopt the notation of Theorem 3.4, with ρ = 0, so that V = (Y, Z, Y 2 −
1, Z2 − 1, Y Z), L(V ) = Y Z, and σ̃ = ‖Y Z‖2. Take any natural number N0 and
any real number b3 > 0, and consider the two cases: (i) n � N0 − 1 and (ii)
n � N0.
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In the first case, when n � N0−1, note that 1 � (y66+z66)/2 (since 1 = y2 � y6
and 1 = z2 � z6) and σ̃3 � (y4z4)

3 � y36z
3
6 � (y66 + z66)/2 (which follows by

Hölder’s and Young’s inequalities). Then

∣∣P(√nR/σ̃ � z)− Φ(z)
∣∣ � 1 �

√
N0 − 1√

n
� y66 + z66√

n

(
B0,1 +

B3,1

σ̃3

)
, (C.1)

where (
B0,1, B3,1

)
:=

√
N0 − 1

2(1 + b3)

(
1, b3

)
. (C.2)

Suppose then that n � N0. Take any ε ∈ (0,
√
3/2) and c∗ ∈ [ 12 , 1) so that

the conditions of Theorem 2.11 are satisfied (cf. the discussion following (3.8));
also introduce the parameter κ > 0. Recall the notation in (2.21), so that

ς3 = ‖Y Z‖3/σ̃ � y6z6/σ̃, ς33 � 1
2

(
y66 + z66

)
/σ̃3,

1 � v32 � v33 � sup
(y,z)∈R2

(y2 + z2 + (y2 − 1)2 + (z2 − 1)2 + y2z2)3/2

1− y2 + 1− z2 + y6 + z6
(
y66 + z66

)
= 33/2

2

(
y66 + z66

)
,

v22 � v23 � 1 + 2
33/2

v33 � 1
2

(
y66 + z66

)
+ 2

33/2
v33 � 3

2

(
y66 + z66

)
,

ς3v
2
2 � ς3v

2
3 � y6z6v

2
3/σ̃ �

(
y36z

3
6 + 2

33/2
v33
)
/σ̃ � 3

2

(
y66 + z66

)
/σ̃;

in the last two lines we use the following instance of Young’s inequality: ab �
a3 + 2(b/3)3/2 for a � 0 and b � 0. Then (2.29) implies∣∣∣P( R

σ̃/
√
n

� z
)
−Φ(z)

∣∣∣ � y66 + z66√
n

(
A0+

A1

σ̃
+
A2

σ̃2
+
A3

σ̃3

)
� y66 + z66√

n

(
B0,2+

B3,2

σ̃3

)
,

(C.3)
where

A0 := 1
2

(
K0

)
+
+ 33/2(2+1/

√
N0)

2ε3N0
, A1 := 3

2 (K20 + K30)σ̃,

A2 := 3
2 (K21 + K31)σ̃, A3 := 1

2 K1, (C.4)

with N0 replacing n in the expressions K1, . . . ,K3,1,

B0,2 := A0 +
2
3 κ

−3/2A1 +
1
3 κ

−3A2, and B3,2 := A3 +
1
3 κ

3A1 +
2
3κ

3/2A2.
(C.5)

Then (C.1) and (C.3) yield the desired inequality (3.11) if we let

B0 := B0,1 ∨B0,2 and B3 := B3,1 ∨B3,2. (C.6)

We shall show that, for f as in (3.8),

(2.1) holds for any pair

(ε,Mε) ∈ {(0.06, 1.094), (0.17, 1.365), (0.25, 1.688), (0.30, 1.962)}. (C.7)
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Then, substituting the values of the parameters b3, N0, ε, c∗, and κ given in the
table below into the expressions for B0 and B3 in (C.6) (which depend on the
expressions in (C.2), (C.5), (C.4), and (2.30)), one will see that (3.11) holds for
any of the pairs (B0, B3) listed in (3.12).

b3 N0 ε c∗ κ B0 B3

1 209 0.25 0.77 0.983 3.61 3.61
8 405 0.3 0.877 1.745 1.12 8.94
1/8 900 0.17 0.6115 0.4416 13.33 1.69
27 965 0.3 0.909 2.339 0.56 14.97

1/27 5674 0.06 0.5635 0.28273 36.32 1.37

To complete the proof of Corollary 3.8, it now remains to verify (C.7). Toward
that end, take any ε ∈ (0,

√
3/2), and recall the definition (3.8) of f (with ρ = 0)

to see that

f(x1, x2, x3, x4, x5) ≡ f(−x1,−x2, x3, x4, x5)

≡ −f(−x1, x2, x3, x4,−x5)

≡ −f(x1,−x2, x3, x4,−x5)

≡ f(x2, x1, x4, x3, x5)

for any x ∈ R
5 such that ‖x‖ � ε. The above identities then imply

M∗
ε := sup

‖x‖�ε

‖f ′′(x)‖ = sup
[
‖f ′′(x)‖ : x ∈ Bε ∩ R̃

5
]
;

here Bε denotes the open ε-ball about the origin and

R̃
5 :=

[
x ∈ R

5 : Sgn(x1) = Sgn(x2) = Sgn(x5) and x3 � x4

]
,

where Sgn(x) := I{x � 0} − I{x < 0}.
Next take any positive m ∈ N, and let δε := ε/m. For any u = (u1, . . . , u5) ∈

Z
5, let

Cu :=

5∏
j=1

[ujδε, (uj + 1)δε], and cu :=
(
(u1 +

1
2 )δε, . . . , (u5 +

1
2 )δε

)
;

that is, Cu is the cube of side length δε with its “southwest” corner at the point
δεu and center at cu. Introduce also the set

U :=
{
u ∈ Z

5 ∩ R̃
5 : Bε ∩ Cu �= ∅

}
=
{
u ∈ Z

5 ∩ R̃
5 :

5∑
i=1

(
uj +

1
2 − 1

2 Sgn(uj)
)2

< m2
}
,

so that Bε ∩ R̃
5 ⊆

⋃
u∈U Cu. Then

M∗
ε � max

u∈U
sup
x∈Cu

‖f ′′(x)‖ � max
u∈U

(∥∥f ′′(cu)
∥∥+ sup

x∈Cu

∥∥f ′′(x)− f ′′(cu)
∥∥
F

)



1054 I. Pinelis and R. Molzon

� max
u∈U

(∥∥f ′′(cu)
∥∥+

√
5
δε
2

sup
x∈Cu

∥∥f ′′′(x)
∥∥
F

)
, (C.8)

where ∥∥f ′′′(x)
∥∥
F
:=

(
5∑

i,j,k=1

(
fijk(x)

)2)1/2

and fijk = ∂3f/(∂xi∂xj∂xk); here we assume that m is chosen large enough
(whence δε is small enough) so as to ensure fijk exists and is continuous on each
cube Cu (i.e. minu∈U infx∈Cu [(1 + x3 − x2

1) ∧ (1 + x4 − x2
2)] > 0).

Take now any u ∈ U , and then take any x ∈ intCu, so that xj �= 0 for any
j ∈ {1, . . . , 5}. It is easy to see with a computer algebra system (CAS) that

‖f ′′′(x)‖2F =
3x̃3x̃4

64
p(x̃),

where x̃ :=
(
x̃1, . . . , x̃5

)
:=

(
x1, x2,

1

1 + x3 − x2
1

,
1

1 + x4 − x2
2

, x5

)
, (C.9)

and p is a polynomial, namely, the sum of 172 monomials with integer coeffi-
cients; note that x̃3 and x̃4 are both positive. Further, p(x̃) can be bounded
from above by bounding each of the 172 monomials. To do that, for j ∈ {1, 2, 5}
introduce

x̃j,1 :=
(
uj +

1
2 + 1

2 Sgn(uj)
)
δε and x̃j,−1 :=

(
uj +

1
2 − 1

2 Sgn(uj)
)
δε,

so that |x̃j,−1| � |x̃j | � |x̃j,1|; also, for j ∈ {3, 4} let

x̃j,1 :=
1

1 + ujδε − x̃2
j−2,1

and x̃j,−1 :=
1

1 + (uj + 1)δε − x̃2
j−2,−1

,

so that 0 < x̃j,−1 � x̃j � x̃j,1. Then, for any nonnegative integers d1, . . . , d5,
any integer a, and s := Sgn(a) Sgn(u1)

d1 Sgn(u2)
d2 Sgn(u5)

d5 ,

ax̃d1
1 x̃d2

2 x̃d3
3 x̃d4

4 x̃d5
5 = s|a||x̃1|d1 · · · |x̃5|d5 � s|a||x̃1,s|d1 · · · |x̃5,s|d5

= ax̃d1
1,sx̃

d2
2,sx̃

d3
3,sx̃

d4
4,sx̃

d5
5,s, (C.10)

which follows since x̃j � 0 whenever uj � 0 (and x̃j � 0 whenever uj < 0)
for j ∈ {1, 2, 5}. Replacing each of the monomial summands in p(x̃) with their
upper bound in (C.10), we see from (C.9) that

‖f ′′′(x)‖F �
√

3x̃3,1x̃4,1

8

√
pSgn(u1)(x̃1,1, . . . , x̃5,1, x̃1,−1, . . . , x̃5,−1), (C.11)

where p1 and p−1 are each polynomials in the 10 variables (in fact, p−1 is a
polynomial in only the five variables x̃1,1, . . . , x̃5,1, as it turns out that s = 1 for
each of the monomials of p(x̃) for u ∈ U with u1 < 0).

Thus, combining (C.8) and (C.11), one has

M∗
ε � max

u∈U

(
‖f ′′(cu)‖+

ε
√

15x̃3,1x̃4,1

16m

√
pSgn(u1)(x̃1,1, . . . , x̃5,1, x̃1,−1, . . . , x̃5,−1

)
.



Convergence rate in delta method 1055

One can then write a program in a CAS which will give an algebraic number
for the latter upper bound (and then to bound that algebraic number with a
rational). In particular, upon letting m = 19 and implementing the bound above
for ε ∈ { 6

100 ,
17
100 ,

25
100 ,

30
100}, (C.7) follows.

Appendix D: Asymptotic behavior of the uniform and nonuniform
Berry–Esseen bounds

The bounds in Theorems 2.11 and A.2 are complicated in appearance. How-
ever, in particular applications such as the one presented in Corollary 3.8, the
resulting bounds are of much simpler structure, with explicit numerical con-
stants, which are also rather moderate in size, especially in the uniform bounds.
The following corollary shows that the asymptotic behavior of the uniform and
nonuniform BE-type bounds given in Theorems 2.11 and A.2 is rather simple
as well (especially in the “nonuniform” case) and the corresponding constants
are again moderate in size.

Corollary D.1. Assume that the conditions of Theorem 2.11 hold, and also that
f ′′ is twice continuously differentiable in a neighborhood of the origin. Then

lim sup
n→∞

sup
z∈R

√
n
∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣
� 0.63925 + 0.83554ς33 +

y∗
2

+
1

2

√
(ς33 − 1)(ς33 − 1 + 2y∗) (D.1)

� 0.13925 + 1.33554ς33 + y∗, (D.2)

where

y∗ := ‖f ′′(0)‖
σ̃

((
2
π

)1/6
+ ς3

)
v22 .

Also, for any positive increasing unbounded function g on N

lim sup
n→∞

sup
g(n)�z�√

n/g(n)

z3
√
n
∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣ � 30.2211ς33 . (D.3)

In the case of a linear statistic, the simple expression in (D.2) obviously
further simplifies to 0.13925 + 1.33554ς33 .

It will be possible to replace the factor 30.2211 in (D.3) by any improved
constant factor that one will be able to obtain in place of 30.2211 in the nonuni-
form BE inequality (2.19) for linear statistics. A substantial improvement of
this constant factor appears quite possible; see e.g. [60, 61].

As one can see, in the expressions of the asymptotic uniform bounds in (D.1)
the higher moment v3 disappears, and in the asymptotic nonuniform bound
in (D.3) the moment v2 disappears as well; however, Corollary D.1 inherits
the condition v3 < ∞ from Theorems 2.11 and A.2 – where, as seen from
Remark 3.6, this condition is essential in general.
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Proof of Corollary D.1. Let n → ∞. Following the lines of the proof of (2.29),
one can see that the bound there equals

0.13925 + 0.33554ς33√
n

+
4δ

2c∗
+

C√
n
+

Kε√
n
, (D.4)

where C := (K20+K21ς3)v
2
2+(K30+K31ς3)v

2
3 is an upper bound on 1

2c∗

(
E
∣∣WΔ

∣∣+∑
i E

∣∣ξi(Δ − Δi)
∣∣) – cf. (4.9). Restricting c∗ to be in [ 12 , 1) and then letting δ

be as in (4.24), so that δ → 0, by [65, Remark 2.2] the term 4δ in the bound
(D.4) may be replaced by

2δ +
δ2

c∗
+ 2δ

√
δ

c∗
+

δ2

4c2∗
+

C√
n
∼ 2δ.

So, the term K1 = 0.33554+ 1
2c∗(1−c∗)

in (2.29) can be replaced by one asymptotic

to 0.33554 + 1
4c∗(1−c∗)

and similarly the term K0 may be replaced by 0.13925−
(2c∗−1)2

4c∗(1−c∗)
.

Let now ε = εn = n−1/8; the assumed continuity of f ′′ implies Mε ↓ ‖f ′′(0)‖,
and from (2.30) we see that Kε ↓ 0. Moreover, then

(
K20,K21,K30,K31

)
→

‖f ′′(0)‖
2c∗σ̃

((2/π)1/6, 1, 0, 0).
Thus,

lim sup
n→∞

sup
z∈R

√
n
∣∣∣P( f(V )

σ̃/
√
n

� z
)
− Φ(z)

∣∣∣
� 0.13925 + 0.33554ς33 +

ς33 − (2c∗ − 1)2

4c∗(1− c∗)
+

‖f ′′(0)‖
2c∗σ̃

(
( 2π )

1/6 + ς3
)
v22 .

Since

min
c∗∈[1/2,1)

( ς33 − (2c∗ − 1)2

4c∗(1− c∗)
+

y∗
2c∗

)
=

1 + ς33 + y∗ +
√

(ς33 − 1)(ς33 − 1 + 2y∗)

2
,

the inequality (D.1) follows. As for (D.2), it follows because the square root
term above is no greater than ς33 − 1 + y∗.

To prove (D.3), fix any real θ̃ > 0 and let z0 = g(n), ω = σ̃/g(n),K1 =
√
n/ς33 ,

K2 = σ̃3z30
√
n/v42 , and K3 = σ̃3z30

√
n/v33 , so that conditions (A.14) and (A.15)

hold for all z ∈ [g(n),
√
n/g(n)]. Then, for z � z0 and large enough n we have

z3e−z/θ̃ � z30e
−z0/θ̃ → 0. One can clearly choose values for the corresponding pa-

rameters so that (i) Ke0, . . . ,Ke3 be absolutely bounded; (ii) Kn21, Kn22, Kn31, and
Kn32 all vanish in the limit (since ω ↓ 0); and (iii) Kn1 → 30.2211+π−3

2 . Moreover,
one can replace the factor ς33 on the right-hand side of inequality (A.31) by the

asymptotically much smaller expression E
(L(V )

σ̃

)3
I{L(V ) > π2σ̃z

√
n} = o(ς33 ).

Then the limit of the corresponding improved expression for Kn1 becomes just
30.2211, instead of 30.2211 + π−3

2 . Now (D.3) follows by Theorem A.2.
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Appendix E: Compactness of the covariance operator

Here we give a short proof that the covariance operator of a random vector with
finite second moment is compact. Let X be a random vector taking values in
a separable Hilbert space H such that E‖X‖2 < ∞ and EX = μ. Then the
covariance operator R : H → H is defined by

Rx := E〈x,X − μ〉(X − μ) = E 〈X − μ, x〉(X − μ);

let us assume w.l.o.g. that μ = 0. Note that R is both self-adjoint and non-
negative-definite: for all x, y ∈ H

〈Rx, y〉 = E〈x,X〉〈X, y〉 = E 〈y,X〉 〈X,x〉 = 〈Ry, x〉 = 〈x,Ry〉

and
〈Rx, x〉 = E〈x,X〉〈X,x〉 = E

∥∥〈x,X〉
∥∥2 � 0.

Now let (ej)j∈N be any orthonormal basis of H, so that X =
∑

j〈X, ej〉ej .
Further take any x ∈ H, so that Rx = E〈x,X〉

∑
j〈X, ej〉ej . For n ∈ N, define

the operator Rn by Rnx = E〈x,X〉
∑n

j=1〈X, ej〉ej , and note that the range of
Rn is finite-dimensional. Moreover, if ‖x‖ � 1, then∥∥(R−Rn)x

∥∥ =
∥∥∥E〈x,X〉

∞∑
j=n+1

〈X, ej〉ej
∥∥∥

� E

∥∥∥〈x,X〉
∞∑

j=n+1

〈X, ej〉ej
∥∥∥

� E‖X‖
√

∞∑
j=n+1

〈X, ej〉2 →
n→∞

0;

the limit holds by dominated convergence, since√
∞∑

j=n+1

〈X, ej〉2 �
√

∞∑
j=1

〈X, ej〉2 = ‖X‖.

As x was arbitrary and the above majorant of ‖(R−Rn)x‖ does not depend on
x, it follows that ‖R − Rn‖ → 0; that is, R is the limit (in the operator norm)
of a sequence of finite-dimensional linear operators on H, and so is compact.

Appendix F: On the spectral decomposition of a covariance
operator of a random vector in an arbitrary separable
Hilbert space

Let X be a random vector in a separable Hilbert space (H, 〈·, ·〉) with E ‖X‖2 <
∞. Let R be the covariance operator of X. So, R is self-adjoint. Obviously, any
self-adjoint operator is normal. Hence, by [37, Theorem 2.10, page 260],

R =
∑
λ∈Λ

λPλ, (F.1)
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where Λ is the (necessarily at most countable) set of all (necessarily nonnegative)
eigenvalues of R; (in the case when the set Λ is infinite) the sum converges in the
operator norm; and, for each λ ∈ Λ, Pλ is the orthoprojector onto the eigenspace
(say Eλ) of λ, which is necessarily of a finite dimension nλ := dimEλ = trPλ if
λ �= 0. At that, ∑

λ∈Λ

Pλ = I, (F.2)

the identity operator, and the eigenspaces Eλ are pairwise mutually orthogonal:

PλPμ = I{λ = μ}Pλ (F.3)

for all λ and μ in Λ.
Moreover, for each λ ∈ Λ, let Bλ be any orthonormal basis of Eλ, so that

B :=
⋃

λ∈Λ Bλ is an orthonormal basis of H. Then trR =
∑

λ∈Λ λnλ =∑
λ∈Λ

∑
e∈Bλ

〈Re, e〉 =
∑

e∈B E |〈e,X〉|2 = E
∑

e∈B |〈e,X〉|2 = E ‖X‖2 < ∞,
so that

∑
λ∈Λ λnλ < ∞. So, the set Λ of all eigenvalues of R may have at most

one limit point, and any limit point of Λ must be 0.
The spectrum spR of R is defined as the set of all z ∈ C such that the linear

operator R− zI does not have a bounded inverse. It follows that spR coincides
with Λ if dimH < ∞ and with Λ ∪ {0} if dimH = ∞. The complementary set
resR := C \ spR is called the resolvent set. Let B(H) denote the Banach space
of all bounded linear operators A : H → H.

One can now define the resolvent R : resR → B(H) by the formula

R(z) := (R− zI)−1 =
∑
λ∈Λ

1

λ− z
Pλ; (F.4)

the latter equality can be easily verified in view of (F.1), (F.3), and (F.2),
because R− zI =

∑
λ∈Λ(λ− z)Pλ.

Take now any nonzero λ ∈ Λ, which is necessarily an isolated point of the
set Λ. So, there is an open disc Dλ in C such that λ ∈ Dλ but no other point
of the set Λ∪ {0} is in the closure of Dλ. Let Γλ be the boundary of Dλ. Then,
by (F.4) and the Cauchy integral theorem,

Pλ = − 1

2πi

∫
Γλ

R(z) dz, (F.5)

whence

λ =
1

nλ
trPλ =

1

nλ
trRPλ = − 1

2πinλ

∫
Γλ

trRR(z) dz. (F.6)

Formulas (F.5) and (F.6) are important, because it is comparatively easy to
analyze the resolvent.

References

[1] Anastasiou, A. and Ley, C. (2015). New simpler bounds to assess
the asymptotic normality of the maximum likelihood estimator. http://
arxiv.org/abs/1508.04948.

http://arxiv.org/abs/1508.04948
http://arxiv.org/abs/1508.04948


Convergence rate in delta method 1059

[2] Anastasiou, A. and Reinert, G. (2015). Bounds for the normal approx-
imation of the maximum likelihood estimator. http://arxiv.org/abs/
1411.2391.

[3] Bennett, G. (1962). Probability inequalities for the sum of independent
random variables. J. Amer. Statist. Assoc. 57 33–45.

[4] Bentkus, V., Bloznelis, M. and Götze, F. (1996). A Berry-Esséen
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