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Abstract: Fast multiple change-point segmentation methods, which addi-
tionally provide faithful statistical statements on the number, locations and
sizes of the segments, have recently received great attention. In this paper,
we propose a multiscale segmentation method, FDRSeg, which controls the
false discovery rate (FDR) in the sense that the number of false jumps is
bounded linearly by the number of true jumps. In this way, it adapts the
detection power to the number of true jumps. We prove a non-asymptotic
upper bound for its FDR in a Gaussian setting, which allows to calibrate
the only parameter of FDRSeg properly. Moreover, we show that FDRSeg
estimates change-point locations, as well as the signal, in a uniform sense at
optimal minimax convergence rates up to a log-factor. The latter is w.r.t.
Lp-risk, p ≥ 1, over classes of step functions with bounded jump sizes and
either bounded, or even increasing, number of change-points. FDRSeg can
be efficiently computed by an accelerated dynamic program; its computa-
tional complexity is shown to be linear in the number of observations when
there are many change-points. The performance of the proposed method
is examined by comparisons with some state of the art methods on both
simulated and real datasets. An R-package is available online.
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1. Introduction

To keep the presentation simple, we assume that observations are given by the
regression model

∗Supported by China Scholarship Council and CRC 755.
†Supported by DFG CRC 755 A4, CRC 803-Z02, and DFG FOR 916 B3.

918

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/16-EJS1131
mailto:hli3@gwdg.de
mailto:munk@math.uni-goettingen.de
mailto:hsielin@uni-goettingen.de


FDR-control in multiscale change-point segmentation 919

Yi = μ

(
i

n

)
+ σεi, i = 0, 1, . . . , n− 1, (1)

where ε0, . . . , εn−1 are independent standard normally distributed, and σ > 0.
The mean-value function μ is assumed to be right-continuous and piecewise
constant with K + 1 segments Ik = [τk, τk+1) ⊂ [0, 1), i.e.

μ =

K∑
k=0

ck1[τk,τk+1). (2)

Here the number of change-points K is unknown, as well as the change-points
τk, 0 < τ1 < . . . < τK < 1, with the convention that τ0 := 0 and τK+1 := 1. The
(unknown) value of μ on the k-th segment Ik is denoted by ck and we assume
ck �= ck+1, k = 0, 1, . . . ,K − 1 for identifiability of μ. We stress, however, that
much of our subsequent methodology and analysis can be extended to other
models, e.g. for nonequidistant sampling points, when the observations come
from an exponential family or more generally, errors obey certain moment con-
ditions, and to dependent data. The latter case will be illustrated in Section 5.3
for the segmentation of ion channel recordings.

Estimation of μ and its change-points in this seemingly simple model (1) (and
variations thereof) has a long history in statistical research (see e.g. [11, 17, 54,
30] for a survey). It has recently gained renewed interest from two perspectives,
in particular. Firstly, large scale applications such as from finance (see e.g. [41, 2,
46, 58, 18]), signal processing (see e.g. [37, 8, 40]) or genetic engineering (see e.g.
[10, 48, 70, 71, 43, 54]) call for change-point segmentation methods which are
computationally fast, say almost linear in the number of observations. Secondly,
besides of a mere segmentation of the data into pieces of constancy certain
evidence on the number, locations and heights of these pieces which come with
this segmentation is demanded.

Many state of the art segmentation methods which aim to meet the latter
two goals are based on minimizing a penalized cost functional among different
number of change-pointsK and locations of change-points τk. For a cost function
C, which serves as goodness-of-fit measure of a constant function on an interval,
and a penalty against over-fitting f(K) these approaches search for a solution
of the global optimization problem

min
μ

K∑
k=0

C(Y�nτk�, . . . , Y�nτk+1�−1; ck) + γnf(K). (3)

Fast and exact algorithms for this kind of methods employ dynamic program-
ming such as the optimal partitioning method [42] and the Potts estimate [9, 59],
who advocate the sparsest subset selection penalty

f(K) = �0(μ) = K. (4)

For more general f , see e.g. the segment neighbor method [1] or [32]. More
recently, Killick et al. [45] introduced a pruned dynamic program (PELT) with
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expected linear complexity mainly for f(K) = K and Du et al. [23] used dynamic
programming to compute the marginal MLE in a Bayesian framework. From a
computational point of view, approaches of type (3) seem therefore beneficial.
Nevertheless, the choice of f and its associated balancing parameter γn = γn(Y )
in (3) is subtle. Birgè and Massart [7] offer examples and discussion of this
and other penalty choices, and Boysen et al. [9] provide asymptotically optimal
choices of γn, as n → ∞. Zhang and Siegmund [70, 71] proposed a penalty
depending on K and additionally on distances between consecutive change-
points.

In contrast to solving the global optimization problem in (3) another promi-
nent class of methods is based on the idea to iteratively apply a local segmenta-
tion method to detect a single change-point. If such a change-point is detected
on a segment, it is split into two parts and the same routine is applied to both
new segments. The method stops if no further change-points are found. This
approach, referred to as binary segmentation (BS), is certainly among the most
popular ones for change-point segmentation, in particular in the context of the
analysis of copy number variation data and related biostatistical issues. It has
already been suggested in [53] and more recently related methods have been
proposed, such as circular binary segmentation (CBS) [48, 65] and wild binary
segmentation (WBS) [33]. For these approaches, the to be specified parameter
among others is the probability of including a false change-point in one iteration.
Therefore, local error control can be provided, but the overall uniform control
on the error to include or exclude wrong segments appears to be often difficult
for these methods, as well. A notable exception is [33, Theorems 3.2 and 3.3],
however, these bounds depend on constants which are difficult to specify.

However, given the data at hand, significant conclusions on the number, lo-
cation and size of the change-point function are not an easy task for the above
mentioned methods as these require uniform finite sample error bounds, for
all these quantities, simultaneously. A similar comment applies to other global
segmentation methods which rely on an �1 approximation of the nonconvex �0
penalty in (4) including lasso-type techniques possibly together with post filter-
ing to further enhance sparseness, see e.g. [61, 31, 38].

Frick et al. [30] suggest a hybrid method, simultaneous multiscale change-
point estimator (SMUCE), which tries to address both tasks (computationally
fast while still obeying finite sample uniform error control) by minimizing the
number of change-points under a local multiscale side-constraint, see also [9, 18]
for related estimators. The side-constraint is based on a simultaneous multiple
testing procedure on all scales (length of subsequent observations) which em-
ploys a scale calibrating penalty [26]. It can be shown that for the resulting seg-
mentation μ̂ the number of change-points is not overestimated at a pre-defined
probability, 1− αS (i.e. family-wise error rate, FWER). This provides a direct
statistical interpretation. In fact, the error of including too many change-points
provided by SMUCE has exponential decay,

P{K̂ ≥ K + j} ≤ α
�j/2�
S , j = 1, 2, . . . (5)

(see [30]), which in particular controls the overestimation of the number of true
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change-points K (j = 1 in (5))

P{K̂ > K} ≤ αS . (6)

Moreover, it can be shown that the method possesses good coverage properties,
and is able to detect the true K over a large range of scales with minimax
detection power [30, Theorem 5]. However, according to (6), in particular in
situations with low signal to noise ratio (SNR) or with many change-points
compared to the number of observations, the family-wise error control under-
lying SMUCE necessarily leads to a conservative estimate μ̂ of μ in (2), i.e.
with fewer change-points than the true number K. Therefore, in this paper we
offer a strategy to overcome this drawback which might be beneficial also for
other related methods. This is based on the control of the false discovery rate
(FDR) [5] instead of the FWER control in (6). Despite of the huge literature
about change-point segmentation and detection, there is only a small number
of papers addressing the FDR issue in this context. Early references include
[60] which proposed a multiple stage procedure, and gave empirical evidence
for the FDR control, and [29] which considered a local FDR based approach
for the copy number variation analysis of multiple samples in cancer genetics.
Recently, Hao et al. [36] proved the FDR control of the screening and ranking
algorithm [47] for a restricted definition of FDR, and Cheng and Schwartzman
[14] provided an asymptotic control of FDR of a smoothing based approach. For
further discussion see Section 1.2.

1.1. FDRSeg

In this work, we will present FDRSeg, which controls the FDR of the whole
segmentation. The significance statement given by the method is quite intuitive
and also holds for a finite number of observations. This reveals the contribution
of this work as threefold: First, the new method overcomes the conservative
nature of SMUCE and variants (see [13]) while maintaining a solid statistical
interpretation. In doing this, we provide a general framework how to combine
FDR-control with global segmentation methods in a multiscale fashion, which
is of interest by its own. Second, various optimality statements are provided,
and all results hold in a non-asymptotic manner uniformly over a large class
of piecewise constant functions μ in model (2). Third, FDRSeg is shown to
be computable often in almost linear time. In summary, FDRSeg is a hybrid
segmentation technique, combining statistical efficiency and fast computation
while providing solutions with preassigned statistical accuracy.

Before going into details, we illustrate our approach by the example in Fig-
ure 1. We employed the blocks signal [22] with Gaussian observations of standard
deviation σ = 10 (with integrated SNR

∫
|μ(x)| dx/σ ≈ 0.65). Very naturally we

declare such discoveries (estimated change-points) true if they are “close” (to be
specified later) to true change-points. In this example FDRSeg (β = 0.1) detects
all the change-points correctly, while SMUCE (αS = 0.1) finds only 6 out of 11,
due to its requirement to control the FWER in (6). This remains valid until
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Fig 1. Illustration of FDRSeg. The noisy data together with the true signal is shown in
the second panel. Below, FDRSeg (β = 0.05), FDRSeg (β = 0.1), FDRSeg (β = 0.3), and
FDRSeg (β = 0.5) are shown. As a comparison, SMUCE (αS = 0.1) is shown on the top.
Each true discovery is indicated by a vertical blue dashed line and each false one by a vertical
red dotted line and an associated interval defined in (7). The vertical green lines indicate
missed change-points.

β is increased to β ≈ 0.5. For larger β FDRSeg overestimates the number of
change-points. For example, if β = 0.5 it finds one additional false change-point
(at 0.17, marked by a vertical red line and an associated interval defined in (7),
in the bottom panel) besides all the true ones. The proportion between false and
all discoveries plus one (number of segments) is hence 1/(12 + 1) ≈ 0.08 	 0.5.
Later we will show that FDRSeg is indeed able to control this proportion in
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expectation at any predefined level β uniformly over all possible change-point
functions μ. For the other direction, the largest β for which FDRSeg underesti-
mates the number of change-points is 0.07 (see the third panel for β = 0.05; the
missing change-point is marked by a vertical green line). That is, FDRSeg esti-
mates the correct number of change-points for the entire range of β ∈ (0.07, 0.50)
and hence appears to be remarkably stable in terms of the control parameter β.
This will be investigated more detailed later.

1.2. Multiplicity and FDR control

For our purpose it is helpful to interpret the “detection part” of the multiple
change-point regression problem as a multiple testing problem. In the literature
methods with this flavor often consider multiscale local likelihood tests. Whereas
local tests for the presence of a change-point on small systems of sets (e.g.
the dyadics) of the sampling points {0, 1/n, . . . , (n − 1)/n} can be efficiently
computed they may have low detection power and highly redundant systems
such as the system of all intervals have been suggested instead [55, 26, 30]. See,
however, [67, 51] for less redundant but still asymptotically efficient systems.
It was pointed out in [56] that classical FDR for redundant systems might
be misleading, because such local tests are highly correlated and consequently
tests on nearby intervals likely reject/accept the null-hypothesis together, see
also [6, 34] for a general discussion of this issue. Siegmund et al. [56] therefore
suggest to test for constancy on subintervals and to group the nearby false (or
true) rejections, and count them as a single discovery, which allows to control
the FDR group-wise. In our approach, we circumvent this, but still are able to
work with redundant systems, because instead we perform a multiple test for
the change-points directly, i.e. we treat the multiple testing problem

Hi :
i

n
is not a change-point, v.s. Ai :

i

n
is a change-point, i = 0, . . . , n− 1.

It remains to define a true/false discovery. This is done by identifying a rejec-
tion as a true discovery if it is “close” to a true change-point. To be specific,
let {τ̂1, . . . , τ̂K̂} be rejections (i.e. estimated change-points), and K̂ the esti-

mated number of change-points. For each i ∈ {1, . . . , K̂}, we classify τ̂i as a true
discovery if there is a true change-point lying in[

�n(τ̂i−1 + τ̂i)/2�
n

,
�n(τ̂i + τ̂i+1)/2�

n

)
(7)

where τ̂0 := 0 and τ̂K̂+1 := 1; otherwise, it is a false discovery, see again the
bottom panel in Figure 1. Similar to [5], we then define the FDR by

FDR := E

[
FD

K̂ + 1

]
, (8)

where FD is the number of false discoveries in the above sense.
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Note, that the above notion of true/false discoveries is well defined : (a) every
estimated change-point is either true or false, but not both; (b) corresponding
to each true change-point there is at most one true discovery, because the in-
tervals (7) are disjoint for different i. We stress that no additional assumption,
such as the sparsity of change-points, or on the minimal length of segments,
is needed for this definition. It automatically adapts to the individual length
of segments (adaptive accuracy), in particular for the region of rapid changes,
such as subgating characteristic of ion channel recordings [40] (see Section 5.3).
In this paper we will show that the FDR of the proposed method, FDRSeg,
is indeed controllable, and the only tuning parameter of FDRSeg can be cali-
brated such that FDR control can be provided for any finite sample size n (see
Theorem 2.2).

Note, that to some extent the FDR criterion in (8) neglects the accuracy of
jump locations, especially when the change-points are far apart located. In this
sense, this definition primarily focuses on the correct number of change-points
rather than the locations or the sizes of the segments. However, later we will
see (Section 1.3) that additional control of estimated location accuracy and size
of segments comes automatically for FDRSeg.

Our notion of FDR is different from those in the literature, which often
assumes a uniform accuracy. More precisely, a change-point τ̂i, 1 ≤ i ≤ K̂, is
identified as a true discovery, if

min
1≤j≤K

|τ̂i − τj | ≤ h

for a user-specified threshold h; otherwise, it is false (see e.g. [45, 71, 36, 14]).
This notion of FDR provides immediate control over location accuracy (which
we obtain for FDRSeg as well, but not as part of the definition of the FDR
criterion). The reason why we excluded this in our definition (7) and (8) is that
we sometimes see the choice of the accuracy parameter h as problematic. If the
segment lengths of the truth occur at various scales: a large h large makes it
meaningless for short segments, while choosing h small will restrict control for
long segments. Besides, special care is needed to avoid multiple true discoveries
corresponding to a single true change-point.

1.3. Further statistical properties

Therefore, as discussed above, instead of integrating this into the FDR measure,
we evaluate the estimation accuracy of change-point locations separately by

d(μ, μ̂) := max
0≤i≤K+1

min
0≤j≤K̂+1

|τi − τ̂j | , (9)

for μ =
∑K

i=0 1[τi,τi+1)ci and μ̂ =
∑K̂

j=0 1[τ̂j ,τ̂j+1)ĉj , with the convention that
τ0 = τ̂0 = 0 and τK+1 = τ̂K̂+1 = 1. For FDRSeg, we will prove a finite sample
exponential deviation bound for (9) (see Theorem 3.1). From this we will derive
(see Remark 3.2) that the locations are estimated at the optimal sampling rate
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O(1/n) up to a log-factor uniformly over a large class of sequences of step
functions μ with possibly increasing number of change-points, minimal scale of
order log(n)/n, and non-vanishing minimal jump height.

In addition, we examine the estimation error of FDRSeg for the entire signal
(including jump locations and function values) in terms of the classical Lp-risk
(1 ≤ p < ∞). We will show that its Lp-risk is of order (log(n)/n)min{1/2,1/p}

(see Theorem 3.3) uniformly over the class of step functions with minimal scale
and jump bounded away from zero and bounded jump size. Together with a new
lower bound (see Theorem 3.4), this reveals that FDRSeg is minimax optimal
up to a log-factor in the aforementioned class.

1.4. Plan of the paper

The rest of the paper is organized as follows. In Section 2, we introduce the
new segmentation method FDRSeg and show its FDR control. In Section 3, we
further present some bounds on its estimation error of jump locations and its
Lp-risk (1 ≤ p < ∞). In Section 4 we will develop a pruned dynamic program
for the computation of FDRSeg. It has linear memory complexity, and linear
time complexity for signals with many change-points, in terms of the number of
observations. The accuracy and efficiency of FDRSeg is examined in Section 5
on both simulated and real datasets. Compared to state of the art methods,
FDRSeg shows a high power in detecting change-points and high efficiency for
signal recovery on various scales, simultaneously. As demonstrated on ion chan-
nel recordings, a modification to dependent data (D-FDRSeg) reveals relevant
gating characteristics, but avoids at the same hand spurious change-points which
are misleadingly found without adaptation to the correlated noise. The paper
ends with a conclusion in Section 6.

An implementation of FDRSeg is provided in R-package “FDRSeg”, available
from http://www.stochastik.math.uni-goettingen.de/fdrs.

2. Method and FDR control

We start by giving a formal definition of the FDRSeg method. To simplify, we
assume that the noise level σ is known. For methods to estimate σ2, see (23) or
e.g. [50, 35, 20] among many others. Assume that Y = (Y0, . . . , Yn−1) is given
by model (1). For an interval I ⊂ [0, 1) we consider the multiscale statistic with
scale calibration (motivated from [30])

TI(Y, c) = max
[i/n,j/n]⊂I

∣∣∣∑j
l=i(Yl − c)

∣∣∣
σ
√
j − i+ 1

− pen

(
j − i+ 1

#I

)
, (10)

where c is a real number, pen(x) =
√
2 log(e/x) the penalty term for the scale

and #I the number of sampling points i/n in I (scale). The first term in (10)
describes how well the data can be locally described by the constant c on the

http://www.stochastik.math.uni-goettingen.de/fdrs
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interval [i/n, j/n] ⊂ I, and the second term (so called scale calibration) is de-
signed to balance the detection power among different scales (i.e. lengths of
intervals), see [26, 30] for further details. Thus, TI(Y, c) examines the hypothe-
ses that μ ≡ c on the interval I simultaneously over all intervals ⊂ I, i.e. in
particular on all scales of I.

For α ∈ (0, 1), let us introduce local quantiles qα(m), m = 1, . . . , n, by

qα(m) := min {q : P {TI(ε, ε̄I) > q} ≤ α} , (11)

where ε = (ε0, . . . , εn−1) is standard normally distributed, ε̄I =
∑

i/n∈I εi/#I,

and I a fixed interval with #I = m. Obviously, qα(m) does not depend on the
choice of I if #I = m, which justifies the definition (11).

Remark 2.1. As a direct consequence of [26] (see also [27, 30]) the limit distri-
bution of TI(ε, ε̄I) is finite almost surely and is continuous [25], as #I → ∞. For
every α ∈ (0, 1), the values qα(m)’s are therefore uniformly bounded for all m.
In practice, qα(m)’s are obtained by Monte-Carlo simulations. Note, that this
needs only to be done once and can be stored in a table, as it does not depend
on the data nor the signal μ.

For our purpose we have to introduce the set of step functions restricted to
the multiscale side-constraint induced by (10) and (11) (for fixed α)

Ck =

{
μ =

k∑
i=0

ci1Ii : TIi(Y, ci)− qα(#Ii) ≤ 0 ∀i = 0, 1, . . . , k

}
. (12)

The estimated number of change-points K̂ according to FDRSeg will then be
given by

K̂ := min {k : Ck �= ∅} . (13)

The K̂ will be always an integer between 0 and n, since
∑n−1

i=0 Yi1[i/n, (i +
1)/n) ∈ Cn−1. The FDRSeg estimate μ̂ is given by

μ̂ := argmin
μ∈CK̂

n−1∑
i=0

(
Yi − μ

(
i

n

))2

, (14)

that is, the constrained maximum likelihood estimator within CK̂ . The intuition
behind is to search for the simplest step function (with complexity measured
by number of change-points) which lies in the multiscale constraint in the form
of (12).

The main result of this section is that our estimator is able to control the
FDR in the sense of (8) by choosing the local levels α(m) for intervals of length
m in (11) properly.

Theorem 2.2. Let Y be observations from model (1), and 0 < α < 1/3. Then
FDRSeg in (12)–(14) with qα in (11) controls the FDR defined in (8),

FDRμ̂(α) ≤
2α

1− α
=: β. (15)
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Fig 2. Simulation on the bound of FDR.

Proof. See Appendix A.1.

Remark 2.3 (Discussion of the bound). Various simulation studies (not dis-
played) suggest even the bound FDR ≤ α, improving (15) by a factor of 2.
Although we were not able to prove this, we stress that this might be useful for
practical purpose to select and interpret α. For example in Figure 2 we display
results for the teeth signal (adopted from [33], see Figure 6), where the FDR
is estimated by the empirical mean of 1,000 repetitions with n = 600. It shows
that the bound (15) (dashed line) is good when α is small, and gets worse as α
increases.

Remark 2.4 (Choice of parameter for FDRSeg). Note that Theorem 2.2 pro-
vides a statistical guidance for the choice of the only parameter α for FDRSeg.
To calibrate the method for given β, we simply rewrite (15) into

α =
β

2 + β
,

which is roughly, α = β/2 for small β, see Figure 3. The choice of α (and hence
β) regulates the FDR control according to (15). As FDR in general, it also allows
for an empirical Bayes interpretation (see e.g. [28]). In various simulations and
applications, we found that it works empirically well for a range of β ∈ [0.01, 0.4]
(cf. Section 5). We stress further that the reconstructions provided by FDRSeg
are actually very robust to the choice of β (or α), as we have already seen in
Figure 1. In practice, one could even use α = β as discussed in Remark 2.3.

Remark 2.5 (Comparison of SMUCE and FDRSeg). Let us stress some notable
differences to SMUCE [30], which is based on restricting possible estimators to

C0
k =

{
μ =

k∑
i=0

ci1Ii : max
i=0,...,k

T 0
Ii(Y, ci) ≤ q̃αS

}
,
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Fig 3. Relation between the tuning parameter α and the bound of FDR β.

where T 0
I (Y, c) is as in (10), with penalty pen((j − i+ 1)/n) instead, and

q̃αS
= q̃αS

(n) := min
{
q : P

{
T 0
[0,1)(ε, 0) > q

}
≤ αS

}
, ε ∼ N (0, In). (16)

Firstly, this penalty term underlying SMUCE on the interval [i/n , j/n] only
relates the ratio between the number of observations in [i/n, j/n] and all the
observations, while that of FDRSeg relies on the ratio between the number
of observations in [i/n, j/n] and the corresponding segment length of I. This
modification has a flavor similar to the refined Bayes information criterion type
of penalty in [70]. Secondly, the parameter αS of SMUCE ensures that the true
signal lies in the side-constraint C0

K with probability at least 1−αS . In contrast,
FDRSeg considers constant parts of the true signal individually, guaranteeing
that the mean value of each segment Ii lies in its associated side-constraint
in CK with probability at least 1 − α. This makes it much less conservative,
and its error controllable in terms of FDR (see Theorem 2.2). This is a key
idea underlying FDRSeg. For an illustration of this effect see Figure 4. Thirdly,
the thresholding underlying SMUCE is based on a global quantile. In contrast,
for FDRSeg, the quantiles qα in (11) are locally chosen according to the scale,
revealing the resulting method less conservative. Note, that qα(m) in (11) and
q̃αS

(n) in (16) are even different when α = αS and m = n. Simulations show
that qα(n) < q̃α(n) for every α and n, see Figure 5. This again highlights that
FDRSeg detects more change-points than SMUCE.

In situations with many change-points or low SNR, to overcome the conserva-
tive nature of SMUCE, the significance level αS in (6) to control the overestima-
tion error, has been suggested to be chosen close to one to produce an estimate
with good screening properties [30], although then the confidence statements
in (5) and (6) becomes statistically meaningless. It follows from the arguments
above that the parameter α of FDRSeg relates to αS roughly by

1− (1− α)K+1 ≈ αS (17)
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Fig 4. Difference between SMUCE and FDRSeg. The upper plots show the two estimates (solid
line), respectively, together with the truth (dotted line) and the data (points). The lower left
(right) shows all the intervals on which there is a constant function satisfying the multiscale
side-constraint of SMUCE (FDRSeg), with red ones chosen by the estimator, separately.

Fig 5. Comparison of qα(n) and q̃α(n) for various n. Each value is estimated by 100,000
simulations.

because the probability of coverage of the true signal by CK is (1−α)K+1, where
K is the true number of change-points. This is confirmed by simulations. For
example, consider the recovery of a teeth signal (see Figure 6) with K = 50
from 900 observations contaminated by standard Gaussian noise. In Figure 7,
the histogram of estimated number of change-points by SMUCE (αS = 0.1) and
FDRSeg (α = 0.1) are shown in white bars from 1,000 repetitions. It can be
seen that SMUCE (αS = 0.1) seriously underestimates the number of change-
points, while FDRSeg estimates the right number of change-points with high
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Fig 6. Estimation of teeth signal (K = 50, n = 900) by SMUCE (αS = 0.1), SMUCE
(αS = 0.995) and FDRSeg (α = 0.1). The true signal (blue line), together with data (points),
is shown in each panel.

Fig 7. Histogram of number of change-points for SMUCE (αS = 0.1, left in white bars),
SMUCE (αS = 0.995, left in grey bars) and FDRSeg (α = 0.1, right in white bars). The
shaded bars correspond to the true number of change-points 50. The number of simulations
is 1,000.

probability. If we adjust αS according to (17), i.e. αS = 1− (1− 0.1)51 ≈ 0.995,
this leads to a significant improvement of detection power of SMUCE, as is
shown by the corresponding histogram of estimated number of change-points
in grey bars (left panel in Figure 7), however, at the expense of any reasonable
statistical error control, i.e. the control of overestimating the true K for SMUCE
becomes increasingly more difficult asK gets larger. On the other hand, FDRSeg
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adapts to K automatically, and works well with a choice of small values of β
in (15). Moreover, concerning the accuracy of locations, the medians of d(μ, ·),
see (9), of SMUCE (αS = 0.995) and FDRSeg (α = 0.1) have been found as
0.0178 and 0.0078, respectively, while such medians conditioned on K̂ = K have
the same value, 0.0067. This confirms the visual impression when comparing
the two lower panels in Figure 6: Local thresholding in (11) and (12) makes an
important difference to SMUCE.

3. Risk bounds for FDRSeg

In order to state uniform results on the Lp-risk of μ̂ and on the simultaneous
estimation of the change-point locations, we define the smallest segment length
λμ of a step function μ in (2) by

λμ := min
0≤k≤K

|τk+1 − τk| ,

and the smallest jump size Δμ of μ by

Δμ := min
1≤k≤K

|ck − ck−1| , if Kμ ≥ 1.

The subscript μ will be suppressed in the following, if there is no ambiguity.
Note, that no method can recover arbitrary fine details measured in terms of
λ and Δ for given sample size n. More precisely, the detection boundary for
testing μn := Δn1In against a zero signal asymptotically is given as

Δn

σ

√
|In| ≥

√
2 log |In|−1

n
+ a−1

n with an = o(
√
n), (18)

see [12, 30]. It is worth noting that FDRSeg detects such signals (18) with
asymptotic power 1, provided that the level α = αn is bounded away from 0, as
n → ∞. The proof is omitted because it is similar to [30, Theorem 5].

In the following we will show how λ and Δ determine the detection and
estimation difficulty for step functions with multiple change-points (cf. Theo-
rems 3.1 and 3.3) in a non-asymptotic way. The following exponential bound
for the estimated locations provides a theoretical justification of the previous
empirical findings (see also Section 5) of the good detection and estimation
performance of FDRSeg.

Theorem 3.1. Assume the change-point regression model (1) with signal μ
in (2), and let (x)+ := max{x, 0}, δλ := min{δ, λ/2}, and d(μ, μ̂) defined in (9)
Then for the FDRSeg μ̂ in (14), the following statements are valid:

(i) It holds for any δ > 0 that

P {d(μ, μ̂) > δ} ≤2K exp

(
−1

8

(
Δ
√
nδλ

2σ
−max

m≤n
qα(m)−

√
2 log

e

δλ

)2

+

)

+ 2K exp

(
−nΔ2δλ

8σ2

)
. (19)
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(ii) Let K ≥ 1, α ≡ αn � n−γ with γ ≥ 0, and assume

δλ ≥
8
(
(
√
γ + 1)

√
log n+ 2

√
logK

)2
nmin {(Δ/σ)2, 1} (1 + ε),

for some positive ε independent of n, then

lim
n→∞

P {d(μ, μ̂n) > δ} = 0.

In particular, for every C > 8(
√
γ + 3)2, we have

lim
n→∞

sup
μ∈An

P

{
d(μ, μ̂n) > C

logn

n

}
= 0,

where

An :=

{
step signal μ in (2), s.t.λμ ≥ 2C

logn

n
and Δμ ≥ σ, if Kμ ≥ 1

}
.

Proof. See Appendix A.2.

Remark 3.2. It is worth noting that the first term in (19) is always greater
than the second one, and that the influence of α (or equivalently β, see (15))
only appears in maxm≤n qα(m), which is bounded by C +

√
2 log(1/α), see

Lemma A.3. Hence, for a fixed regression function μ, FDRSeg is able to estimate
the jump locations correctly at a log(n)/n rate. Note, that this is the optimal
sampling rate 1/n (up to a log-factor). It improves several results obtained for
other methods, e.g. in [38] for a total variation penalized estimator a log2(n)/n
rate has been shown. Theorem 3.1 also applies for a sequence of signals μn

with K = Kn, Δ = Δn, and λ = λn. For example, it shows that FDRSeg
detects jump locations at a log(n)/n rate for μn with possibly unbounded Kn,
λn ∼ log(n)/n, and bounded 1/Δn. The same rate is shown for WBS in [33],
however, under the additional assumption of bounded Kn or an oracle choice of
the threshold depending on the underlying signal.

Next we will study the convergence rate of FDRSeg in terms of Lp-risk. By
Δ̃μ we denote the largest jump size of a step function μ, that is,

Δ̃ = Δ̃μ := max
1≤k≤Kμ

|ck − ck−1| if Kμ ≥ 1.

Let us introduce the following class of step functions, Bν,ε,L, with bounded
minimal segment length and jump size:

Bν,ε,L := {step signal μ : λμ ≥ ν, and ε ≤ Δμ ≤ Δ̃μ ≤ L if Kμ ≥ 1}, (20)

for 0 < ν < 1/2, and 0 < ε < L < ∞. Within such classes, we obtain a uniform
control on the Lp-risk of FDRSeg for 1 ≤ p < ∞.

Theorem 3.3. Assume Bν,ε,L is defined in (20), and μ̂n,αn the FDRSeg esti-
mator with α = αn from n observations in model (1).
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(i) If αn � 1/n and

αn = o

(
1√
n

(
logn

n

)min{1/2,1/p})
,

then

lim sup
n→∞

sup
μ∈Bν,ε,L

E
[
‖μ̂n,αn − μ‖Lp

]( νε2n

σ2 logn

)min{1/2,1/p}
≤ 25L,

for any σ > 0, 0 < ν < 1/2, 0 < ε < L < ∞, and 1 ≤ p < ∞.
(ii) If an−γ ≤ ν := νn ≤ bn−γ with constants a, b > 0, 0 < γ < 1, and

αn � n−3/2 and

αn = o

(
1

nγ+1/2

(
logn

n1−γ

)min{1/2,1/p})
,

then

lim sup
n→∞

sup
μ∈Bνn,ε,L

E
[
‖μ̂n,αn − μ‖Lp

]( ε2n1−γ

σ2 logn

)min{1/2,1/p}
≤ 34L,

for any a, b, σ > 0, 0 < γ < 1, 0 < ε < L < ∞, and 1 ≤ p < ∞.

Proof. See Appendix A.3.

In fact, the rates above are minimax optimal, possibly up to a log-term.

Theorem 3.4. Assume the change-point regression model (1), and Bν,ε,L is
defined in (20).

(i) There is a positive constant C, such that

inf
μ̂n

sup
μ∈Bν,ε,L

E [‖μ̂n − μ‖Lp ] ≥ C

(
σ2

n

)min{1/2,1/p}
,

for any σ > 0, 0 < ν < 1/2, 0 < ε < 1 < L < ∞, and 1 ≤ p < ∞.
(ii) If an−γ ≤ ν := νn ≤ bn−γ with constants a, b > 0, 0 < γ < 1, then there is

a positive constant C, such that

inf
μ̂n

sup
μ∈Bνn,ε,L

E [‖μ̂n − μ‖Lp ] ≥ C

(
σ2

bn1−γ

)min{1/2,1/p}
,

for any a, b, σ > 0, 0 < γ < 1, 0 < ε < 1 < L < ∞, and 1 ≤ p < ∞.

Proof. See Appendix A.4

Remark 3.5. It is worth noting that, with a close inspect to the proofs, we
can actually show that the results in Theorem 3.1, 3.3, and 3.4 still holds if the
errors εi in model (1) are i.i.d sub-Gaussian random variables (which includes
Gaussian and bounded random variables as special cases).
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4. Implementation

It will be shown that FDRSeg can be efficiently computed by a specific dynamic
programming algorithm, which is significantly faster than the standard one. For
convenience let us introduce

I
(
[
i

n
,
j

n
)

)
=

{
1 if T[i/n,j/n)(Y, c) ≤ qα(j − i) for some constant c,

0 otherwise.

We first consider the computation of K̂, see (13). Let K̂[i] be the estimated
number of change-points by FDRSeg when applying to (Y0, . . . , Yi−1), i.e.,

K̂[i] :=min

⎧⎨
⎩k : max

0≤j≤k
TIj (Y, cj)− qα(#Ij) ≤ 0,

for some μ =

k∑
j=0

cj1Ij with

k⊎
j=0

Ij = [0,
i

n
)

⎫⎬
⎭

for i = 1, . . . , n, where
⊎

denotes disjoint union. Then the estimated number of
change-points K̂ in (13) is given by K̂[n]. It can be shown that the following
recursive relation

K̂[0] := −1

K̂[i] = min

{
K̂[j] + 1 : I

(
[
j

n
,
i

n
)

)
= 1, j = 0, . . . , i− 1

}
(21)

holds for i = 1, . . . , n. Eq. (21) is often referred to as Bellman equation [3], also
known as optimal substructure property in computer science community (16).
It justifies the use of dynamic programming [3, 4] for computing FDRSeg. In
this way, the computation of K̂ is decomposed into smaller subproblems of
determining K̂[i]’s. For each subproblem, it boils down to checking the existence
of constant functions which satisfy the multiscale side-constraint on [j/n, i/n)
i.e. I ([j/n, i/n))=1. The K̂[i] is computed, via the recursive relation (21), as i
increases from 1 to n. For each i, this involves the search space of {0, . . . , i−1},
which increases as i approaches n. However, some of such searches are, actually,
not necessary and can be pruned. This can be seen by rewriting the recursive
relation in terms of the number of change-points. Let A0 := {0} and B0 :=
{1, 2, . . . , n}. For k = 1, 2, . . . , let

rk := max
{
j : T 0

[i/n,j/n](Y, c) ≤ max
m

qα(m) for some i ∈ Ak−1, c ∈ R

}
,

Ak := {i ∈ Bk−1 ∩ [1, rk] : I ([j/n, i/n)) = 1 for some j ∈ Ak−1} ,
Bk := Bk−1 \ Ak.

Then K̂ = k∗ − 1 with Ak∗ � n. The reason for introducing rk is that there
is no need to consider larger intervals if the multiscale side-constraint on an
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interval does not allow a constant signal even with the maximal penalty and the
maximal quantile. Now for each i we only need to search in a subset Bk ∩ [1, rk]
of {0, . . . , i− 1}, where k := k(i). The complexity for computing K̂ is bounded
from above by

O

⎛
⎝ K̂∑

k=0

(#Ak)

(
rk+1 −minAk − #Ak

2

)2
⎞
⎠

≤ O
(
n max

0≤k≤K̂

(
rk+1 −minAk − #Ak

2

)2
)
.

(22)

The value max0≤k≤K̂ (rk+1 −minAk − (#Ak)/2)
2 depends on the signal and

the noise. If the signal has many change-points and segments have similar
lengths, it is probably a constant independent of n. The higher the noise level,
the larger it might be. In such situation, the computation complexity is linear,
although in the worst case it can be cubic in n.

Indeed, the searches of K̂ and the maximum likelihood estimate can be
done simultaneously, if we record the likelihood for each point i. The com-
plexity is again bounded above by (22) but with a possibly larger constant.
The memory complexity of the whole algorithm is linear, i.e. O(n). We omit
technical details, and provide the implementation in the R package “FDRSeg”
(http://www.stochastik.math.uni-goettingen.de/fdrs).

5. Simulations and Applications

5.1. Simulation study

We now investigate the performance of FDRSeg under situations with various
SNRs and different number of change-points, and compare it with PELT [45],
BS [53], CBS [48, 65], WBS [33], and SMUCE [30]. As mentioned in Sec-
tion 1, these methods represent a selection of powerful state of the art pro-
cedures from two different view points: first, exact and fast global optimiza-
tion methods based on dynamic programming, including PELT, and SMUCE;
second, fast greedy methods based on local single change-point detection, in-
cluding BS, CBS and WBS. In addition, we also include two recent fully au-
tomatic penalization methods, specifically tailored to jump detection. The first
is based on a modified Schwarz information criterion (SIC) [70], referred to
as mSIC, which assumes the number of change-points is bounded. The sec-
ond is a recent variant [71], referred to as mSIC2, which is primarily designed
for many change-points. Concerning implementation, we use the CRAN R-
packages “PSCBS” for CBS, “wbs” for BS and WBS, “changepoint” for PELT,
and an efficient implementation in our R-package “FDRSeg” for SMUCE, see
http://www.stochastik.math.uni-goettingen.de/fdrs. For both SMUCE
and FDRSeg, we estimate the α-quantile thresholds by 5,000 Monte-Carlo sim-
ulations. The penalty 2 log(K) is chosen for PELT, which is dubbed by “SIC1”

http://www.stochastik.math.uni-goettingen.de/fdrs
http://www.stochastik.math.uni-goettingen.de/fdrs
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in the codes provided by its authors, and works much better than the default
choice. If we identify a change-point with two parameters (location and jump-
size), this is the same as the SIC. We use the automatic rule, strengthened SIC,
recommended by the author for WBS. The default parameter setting provided
in the packages was used for BS and CBS. For mSIC and mSIC2, maximum
likelihood estimates are first computed by dynamic programming (see [32]), for
each fixed number of change-points up to some prechosen constant Kmax, and
then the optimal solutions are found within such maximum likelihood estimates,
according to criteria in [70] and [71], respectively. Thus, their computation com-
plexity depends increasingly on Kmax. In all simulated scenarios, we assume
that the noise level σ is known beforehand. For quantitative evaluation, we will
use the mean integrated squared error (MISE), the error of estimated locations
d∗(μ̂) := E [d(μ, μ̂)], see (9), the FDR defined in (8) and the V-measure [52], a
segmentation evaluation measure, which takes values in [0, 1], with a larger value
indicating higher accuracy. It is based upon two criteria for clustering usefulness,
homogeneity and completeness, which capture a clustering solution’s success in
including all and only data points from a given class in a given cluster. In par-
ticular, a V-measure of 1 shows a perfect segmentation. All the experiments are
repeated 1,000 times.

5.1.1. Varying noise level

Let us consider the impact of different noise levels. To this end, we use the mix
signal (adopted from [33]), see Figure 9, with additive Gaussian noise, which is
a mix of prominent change-points between short intervals and less prominent
change-points between longer intervals. The noise level σ varies from 1 to 8, and
the number of observations n = 560. For SMUCE and FDRSeg, we choose the
same parameter αS = α = 0.15. As in Figure 8, FDRSeg outperforms others
in all noise levels, in terms of V-measure, MISE, d∗(·), and detection power
measured by the average number of detected change-points. As indicated by the
number of detected change-points and MISE, PELT ranks second followed by
WBS, then mSIC, CBS, SMUCE and lastly BS. The same order of performance
is also seen from V-measure and d∗(·) up to σ = 5, but SMUCE deteriorates
slower as noise level σ increases and achieves a better V-measure and d∗(·) than
CBS when σ ≥ 6 and than WBS at σ = 8. The mSIC2 performs comparably to
mSIC when σ ≤ 3, while deteriorating faster as σ increases, similar to BS when
σ ≥ 7. It is worth noting that the empirical FDR of FDRSeg is around 0.1, below
α = 0.15 and the theoretical bound ≈ 0.35 in Theorem 2.2 (indicated by the
dashed horizontal line in the lower-left panel). The CBS has the second largest
empirical FDR, while that of PELT, SMUCE, mSIC, mSIC2, BS and WBS is
almost zero. Once the quantiles for SMUCE and FDRSeg are simulated, they
can be stored and used for later computations, which are therefore excluded from
the recorded computation time. The computation time of FDRSeg is similar to
the fastest ones, namely PELT, BS and SMUCE, at σ = 1 and increases with
the noise level σ. The FDRSeg is faster than WBS and CBS in all scenarios. As
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Fig 8. The mix signal with various noise levels. True number of change-points is K = 13,
indicated by the dashed line in the first panel.

mentioned earlier, the computation time of mSIC and mSIC2 depends on the
upper bound Kmax of the possible number of change-points, which is set to 100.
To have a closer examination, we also illustrate histograms of the locations of
change-points, for σ = 8 in Figure 9. In this situation, the FDRSeg has always
the largest detection power over all change-point locations.

The constant signal with no change-point serves as an example to examine
whether FDRSeg detects artificial jumps. Figure 10 shows the comparison be-
tween SMUCE (αS = 0.15) and FDRSeg (α = 0.15) when μ ≡ 0. Remarkably,
the difference between the two estimators is negligible and the overestimation
by FDRSeg number of jumps is quite insignificant.

5.1.2. Varying frequency of change-points

In order to evaluate the detection power as K increases, we employed the teeth
signal (see Figure 6) with n = 3,000, and K = nθ, θ = 0.1, 0.2, . . . , 0.9, as
its integrated SNR remains the same for different number of change-points.
The same parameter αS = α = 0.1 is chosen for SMUCE and FDRSeg. The
results are summarized in Figure 11. The FDRSeg, mSIC, and PELT perform
comparably well in all situations in terms of number of detected change-points,
V-measure, MISE and d∗(·), while FDRSeg is slightly better in terms of accuracy
of change-point locations at θ = 0.9. As shown by V-measure, CBS and WBS
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Fig 9. The histogram of the estimated locations of change-points for the mix signal with σ = 8.
As a benchmark, the true signal is plotted.

Fig 10. The constant signal with various noise levels.

fail when θ ≥ 0.7, BS fails when θ ≥ 0.8, and SMUCE and mSIC2 deteriorate at
θ = 0.9. A similar trend can also be seen for the number of estimated change-
points, MISE, and d∗(·). It is interesting that the empirical FDR of FDRSeg
gets closer to the theoretical bound ≈ 0.22 as θ → 1, indicating that this gets
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Fig 11. The teeth signal with various frequencies of change-points. True number of change-
points is plotted in dashed line in the first panel.

sharper for increasing K, although we have no proof for this. The empirical
FDR of CBS is large when the change-points are sparse, and decreases as K
increases, while PELT, SMUCE, mSIC, mSIC2, BS and WBS have a relatively
small FDR close to zero in all cases. The computation time of FDRSeg decreases
as K increases, and is comparable to the fastest ones (SMUCE, PELT and BS),
when θ ≥ 0.6. The computation time of mSIC and mSIC2 is the slowest, since we
have to search among maximum likelihood estimates with all possible numbers
of change-points, i.e. Kmax = n− 1.

5.2. Array CGH data

Identifying the chromosomal aberration locations in genomic DNA samples is
crucial in understanding the pathogenesis of many diseases, in particular, various
cancers. Array comparative genomic hybridization (CGH) provides the means
to quantitatively measure such changes in terms of DNA copy number [49]. The
statistical task is to determine accurately the regions of changed copy number,
and the model (1) and variants thereof has been commonly studied in this
context [48, 70, 60, 43]. We compared FDRSeg with SMUCE, and CBS, which
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Fig 12. Array CGH profile in GM01524 cell line in the Coriel data set.

is designed for the analysis of array CGH data, on the Coriel data set from [57].
Following [48] outliers have been removed before segmentation. The noise level
is estimated by an interquartile range (IQR) applied to local differences (see
[19])

σ̂ =
1.349√

2

(
q̂0.75 − q̂0.25

)
, (23)

where q̂α is the empirical α-quantile of {Yi−Yi−1}N−1
i=1 . The CBS was computed

using default parameters provided in the package “PSCBS”. The estimated copy
number variations by each method are plotted with the data (points) for cell
line GM01524 in Figure 12. The SMUCE (αS = 0.05) detects 8 change-points,
while FDRSeg (β = 0.05) finds 5 more change-points, which are all found by
CBS as well. The latter provides the largest number of change-points, 17, 4
of them are not supported by FDRSeg (marked by ‘x’). We stress that, there
is biological evidence that such small jumps might be artifacts due to genomic
waves, see [21]. The model (1) apparently does not take such waves into account.
Apart from this possible modeling error, it is worth noting that, by Theorem 2.2,
among 13 change-points by FDRSeg there are on average at most 0.7 false ones.
In order to study the robustness against such a modeling error, we consider step
functions in (1) with periodic trend component, as in [48, 70], i.e.

Yi ∼ N
(
μ(i/n) + 0.25b sin(aπi), σ2

)
, i = 0, 1, . . . , n− 1, (24)

where σ = 0.2, n = 497, and μ has change-points {137, 224, 241, 298, 307, 331}/n
with values {−0.18, 0.08, 1.07,−0.53, 0.16,−0.69,−0.16} on each segment, re-
spectively. The FDRSeg with β = 0.05 is applied to the signal (24) within a
range of a and b. The frequency of detecting the right number of change-points,
together with the average of (K̂−K), in 1,000 simulations is given in Figure 13.
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Fig 13. Frequencies of estimating correctly the number of jumps (left), and averages of (K̂ −
K) (right), by FDRSeg (β = 0.05) for signal (24) with various a and b as in (24).

It shows that FDRSeg is robust within a large range of local trends, and only
includes false positives when the trend becomes large and highly oscillating.

5.3. Ion channel idealization

Being prominent components of the nervous system, ion channels play major
roles in cellular processes [39], which are helpful in diagnosing many human
diseases such as epilepsy, cardiac arrhythmias, etc. [44]. The data analysis is
to obtain information about channel characteristics and the effect of external
stimuli by monitoring their behavior with respect to conductance and/or ki-
netics [15]. The measuring process involves an analog low-pass filter prior to
digitization. As suggested by [40], hence a realistic model for observations is

Yi = (ρ ∗ μ)(iϑ) + ε̃i, (25)

where 1/ϑ is the sampling rate, and the convolution kernel ρ of the low-pass
filter has compact support in an interval of length L, such that

∫
ρ(t)dt = 1.

Being the independent and identically distributed (i.i.d.) Gaussian noise after
the low-pass filter ρ, the ε̃i’s are still Gaussian with mean zero, but are correlated
now.

As mentioned earlier in Section 1, FDRSeg can be extended to more general
models than (1). We illustrate this for the present case of colored noise. To this
end, we modify FDRSeg which explicitly takes into account the dependence
structure of the noise in (25). This requires to adjust the definition of quantiles
qα(·) by using dependent Gaussian random variables, see (11). Note that the
dependence structure is completely known from the kernel ρ, so the modified
quantiles can also be estimated via Monte-Carlo simulations. In order to ana-
lyze the data properly, we observe that ρ ∗ μ is constant on [s + ϑL, t] if μ is
constant on [s, t]. Thus we consider only intervals contained in [τ̂i + ϑL, τ̂i+1)
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Fig 14. Simulation study on a two-state Markov chain with different transition rates
(SNR = 3).

in the multiscale side-constraint (12) instead of all subintervals of [τ̂i, τ̂i+1), for
i = 0, 1, . . . , K̂. By incorporating these two modifications, we obtain a modified
version of FDRSeg adjusted to this dependency, D-FDRSeg. For comparison,
we consider a state of the art method, the jump segmentation by multiresolu-
tion filter (J-SMURF) [40]. The implementation of J-SMURF is provided in
R-package “stepR”, available from CRAN. As in [40], the significance level αJ

of J-SMURF is set to 0.05. The significance parameter β of D-FDRSeg is also
chosen as 0.05. The noise level, i.e. the standard deviation of ε̃i, is estimated
by (23) from the undersampled data {YiL}i.

In order to explore the potential of D-FDRSeg, we first carried a validation
study on simulated data. Mimicking various dynamics of ion channels, we choose
the truth μ in (25) by a simulated continuous time two-state Markov chain with
different transition rates for 1 s. The true signal was tenfold oversampled at
100 kHz, and added by Gaussian white noise. Then, a digital low-pass filter
with kernel ρ in (25) was applied, and the data with 10,000 points were finally
obtained after a subsampling at 10 kHz. The noise level was chosen such that
SNR equals to 3. All the parameters above are typical for a real experimental
setup (see [64, 40] for further details). The average of (K̂ −K) for J-SMURF,
FDRSeg, and D-FDRSeg in 100 simulations is given in Figure 14. As to be
expected, FDRSeg detects a large amount of false positives due to violation of
the independence assumption of the noise (25), while D-FDRSeg with the de-
pendence adjustment corrects for this. It shows a higher accuracy, and a higher
detection power than J-SMURF, over all transition rates. We further compare
D-FDRSeg with J-SMURF on experimental data: a characteristic conductance
trace of gramicidin A (provided by the Steinem lab, Institute of Organic and
Biomolecular Chemistry, University of Göttingen) with a typical SNR, L = 30
and ϑ = 0.1 ms, see Figure 15. The J-SMURF detects only 8 change-points,
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Fig 15. The time trace of conductance for gramicidin A.

while FDRSeg suggests 5 additional ones, i.e. 13 in total, all of which are visu-
ally reasonable. This illustrates the ability of FDRSeg to detect change-points
simultaneously over various scales, as it is required for the investigated grami-
cidin channel (see [40] for an explanation).

Finally, we point out that the derived error bounds in Theorems 3.1 and 3.3
can be extended to the model (25). A combination of the strong invariance
principle [68, 69] with our proofs immediately gives such an extension, if the
minimal segment length λ ≡ λn of the truth satisfies

lim sup
n→∞

λ−1n−1/2 log2 n = 0.

This essentially requires λ at least (up to a log-factor) of order n−1/2. Since
λ � n−1/2 = 0.01 for the experiment in Figure 15, this seems to explain the
desirable behavior of D-FDRSeg there.

6. Conclusion and discussion

In this work we proposed a multiple change-point segmentation method FDRSeg,
which is based on the relaxation of FWER to FDR. By experiments on both
simulation and real data, FDRSeg shows high detection power with controlled
accuracy. A theoretical bound is provided for its FDR, which provides a mean-
ingful interpretation of the only user-specified parameter α. In addition, we have
shown that jump locations are detected at the optimal sampling rate 1/n up to
a log-factor. Concerning the signal, i.e. both jump locations and function values,
the convergence rate of the estimator is minimax optimal w.r.t. Lp-risk (p ≥ 1)
up to a log-factor. This result is over classes of step signals with bounded jump
sizes, and either bounded, or possibly increasing, number of jumps.
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Our method is not confined to i.i.d. Gaussian observations, although we re-
stricted our presentation to this in order to highlight the main ideas more con-
cisely. Obviously, it can be extended to more general additive errors, because
the proof of Lemma A.1 only relies on Gaussianity for the independence of the
residuals and the mean. In the case of different models, e.g. exponential family
regression, we believe that one can argue along similar lines as in the proof of
Theorem 2.2, but results will only hold asymptotically. This, however, is above
the scope of the paper, and postponed to further research. Moreover, following
the proofs closely, one can see that the error bounds in Theorems 3.1 and 3.3
even holds for model (1) with more general sub-Gaussian noise. As we have ap-
plied the CBS outlier smoothing procedure to the array CGH data, it might be
of interest to have more robust versions of FDRSeg. To this end, e.g. local me-
dian, instead of local mean, might provide useful results. Alternatively, one may
transform this into a Bernoulli regression problem (see [24, 30]), which might be
interesting for further research. In the paper, we also suggested a modification of
FDRSeg for dependent data, which shows attractive empirical results. It would
be of interest to further study this modified estimator from a theoretical point
of view as well.

Appendix A: Technical proofs

A.1. Proof of Theorem 2.2

The proof of Theorem 2.2 relies on two lemmata. As a convention, all results
are concerning the FDRSeg μ̂ in (14) without explicit statement. The first one
gives a bound for the expected number of false discoveries (FD) given no true
discoveries (TD = 0), see Section 1 for the definitions.

Lemma A.1. Under above notations, we have for 0 < α < 1/3

E [FD(α)|TD(α) = 0] ≤ 2α

1− 3α
=: G(α).

Proof. Note that it suffices to prove the result for a constant signal, which we
assume w.l.o.g. to be constant zero. The proof is then based on the following

observation. Assume there exists an estimate μ̃ =
∑K̃

k=0 ck1Ĩk
with (K̃+1) seg-

ments
⊎K̃

k=0 Ĩk = [0, 1), which fulfills the multiscale side-constraint CK̃ in (12).

Then, the FD of FDRSeg is bounded by K̃, since it minimizes the number of
change-points k among all nonempty Ck’s. We will prove the result by con-
structing such an estimate μ̃ and show that E[K̃] ≤ 2α/(1− 3α). The estimate
μ̃ is given by an iterative rule to include change-points until the multiscale
side-constraint CK̃ is fulfilled.

We first check the whole interval [0, 1) whether its mean value Ȳ satisfies the
multiscale side-constraint. If T[0,1)(Y, Ȳ ) ≤ qα(n), then μ̃ := Ȳ 1[0,1). Otherwise,
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we randomly choose i∗ and j∗ from

{
(i, j) : t[0,1)

([
i

n
,
j

n

])
:=

∣∣∣∑j
l=i(Yl − Ȳ )

∣∣∣
σ
√
j − i+ 1

− pen

(
j − i+ 1

n

)
− qα(n) > 0

}
,

(26)
according to any distribution which is independent of the values t[0,1)([i/n, j/n])’s.
Then we check intervals [0, i∗/n), [i∗/n, j∗/n] and (j∗/n, 1) individually, and
split them further in the same manner if necessary. This procedure is repeated
until on each resulting interval I its mean value ȲI satisfies the multiscale side-
constraint, i.e. TI(Y, ȲI) ≤ qα(#I). Finally, μ̃ :=

∑
I ȲI1I .

Let Dk denote the number of change-points (discoveries) and Sk the num-
ber of segments introduced in the k-th step. We make the convention that
Dk = Sk = 0 if the procedure stops before the k-th step. It follows from
P
{
T[0,1)(Y, Ȳ ) > qα(n)

}
≤ α, cf. (11), (recall Yi = εi here) that

E [D1] ≤ 2α and E [S1] ≤ 3α.

Now we consider the three intervals I1 = [0, i∗/n), I2 = [i∗/n, j∗/n] and I3 =
(j∗/n, 1) and bound the probability of further splitting them into smaller inter-
vals. It will be shown that

P
{
TIk(Y, ȲIk) > qα(#Ik)

∣∣T[0,1)(Y, Ȳ ) > qα(n)
}
≤ α for k = 1, 2, 3.

Given I2 = [i/n, j/n], the random variable TIk(Y, ȲIk) depends only on {Yi −
ȲIk , i/n ∈ Ik}, which is independent of Ȳ and ȲI2 . It follows from (26) that
t[0,1)(I2) depends only on Ȳ and ȲI2 . Thus TIk(Y, ȲIk) is independent of t[0,1)(I2)
conditioned on I2.

P
{
TIk(Y, ȲIk) > qα(#Ik)

∣∣T[0,1)(Y, Ȳ ) > qα(n)
}

=
∑

0≤i≤j<n

P

{
TIk(Y, ȲIk) > qα(#Ik)

∣∣∣∣ t[0,1)(I2) > 0, I2 =

[
i

n
,
j

n

]}

× P

{
I2 =

[
i

n
,
j

n

] ∣∣∣∣T[0,1)(Y, Ȳ ) > qα(n)

}

=
∑

0≤i≤j<n

P

{
TIk(Y, ȲIk) > qα(#Ik)

∣∣∣∣ I2 =

[
i

n
,
j

n

]}

× P

{
I2 =

[
i

n
,
j

n

] ∣∣∣∣T[0,1)(Y, Ȳ ) > qα(n)

}

≤
∑

0≤i≤j<n

αP

{
I2 =

[
i

n
,
j

n

] ∣∣∣∣T[0,1)(Y, Ȳ ) > qα(n)

}
≤ α.

It follows that
E [D2|S1] ≤ 2αS1 and E [S2|S1] ≤ 3αS1

Using the same line of argumentation we find in general that

E [Dk|Sk−1] ≤ 2αSk−1 and E [Sk|Sk−1] ≤ 3αSk−1.
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It implies

E [Dk] = E [E [Dk|Sk−1]] ≤ 2αE [Sk−1] = 2αE [Sk−1|Sk−2]

≤ 2α · 3αE [Sk−2] ≤ 2α(3α)k−1.

Hence,

E [FD] ≤ E
[
K̃
]
= E

[ ∞∑
k=1

Dk

]
=

∞∑
k=1

E [Dk] ≤
∞∑
k=1

2α (3α)
k−1

=
2α

1− 3α
.

The next lemma shows the expected FD conditioned on TD.

Lemma A.2. E [FD(α)|TD(α) = κ] ≤ (κ+ 1)E [FD(α)] ≤ (κ+ 1)G(α).

Proof.

E [FD |TD = κ]

=
∑

i1<···<iκ

E [FD | τ̂i1 , . . . , τ̂iκ are true,TD = κ]P {τ̂i1 , . . . , τ̂iκ are true |TD = κ}

=
∑

i1<···<iκ

κ∑
j=0

E
[
FD|(τ̂ij ,τ̂ij+1

)

∣∣∣ τ̂i1 , . . . , τ̂iκ are true,TD = κ
]

× P {τ̂i1 , . . . , τ̂iκ are true |TD = κ} ,

where τi0 := 0 and τiκ+1 := 1. Note that there is no true discovery on (τ̂ij , τ̂ij+1),
j = 0, . . . , κ. By applying Lemma A.1 to each segment on (τ̂ij , τ̂ij+1), we have

E [FD |TD = κ] ≤
∑

i1<···<iκ

κ∑
j=0

G(α)P {τ̂i1 , . . . , τ̂iκ are true |TD = κ}

≤ (κ+ 1)G(α).

Now we are ready to prove Theorem 2.2.

Proof of Theorem 2.2. For random variables X, Y and Z = X + Y we find by
Jensen’s inequality that

E

[
E

[
X

Z

∣∣∣∣Y
]]

≤ E

[
E [X|Y ]

Y +E [X|Y ]

]
.

We set X = FD, Y = TD+ 1. Together with Lemma A.2 this yields that

FDR = E

[
X

Z

]
= E

[
E

[
X

Z

∣∣∣∣Y
]]

≤ E

[
E [X|Y ]

Y +E [X|Y ]

]
≤ G(α)

1 +G(α)
=

2α

1− α
.
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A.2. Proof of Theorem 3.1

Lemma A.3 (Upper bound for quantiles). Let qα(n) be given in (11). Then
there is a constant C such that

sup
n≥1

qα(n) ≤ C +

√
2 log

1

α
for all α ∈ (0, 1).

Proof. Let aij ∈ R
n, 0 ≤ i ≤ j < n, be given by

aij :=

{
1√

j−i+1
if i ≤ k ≤ j

0 otherwise
,

and A := {aij : 0 ≤ i ≤ j < n}. Let also ξ ∼ N (0, In) with In the n-dimensional
identity matrix, and 1 := (1, . . . , 1)t ∈ R

n. Then qα(n) is the upper α-quantile
of Tn,

Tn := max
a∈A∪(−A)

at(In − 1

n
11t)ξ − λa,

where λa = λ−a =
√
2 log(en ‖a‖2∞). Define f : Rn → R by

f(x) = max
a∈A∪(−A)

at(In − 1

n
11t)x− λa for x ∈ R

n.

It follows that for x1, x2 ∈ R
n,

|f(x1)− f(x2)| ≤ max
a∈A∪(−A)

∣∣∣∣at(In − 1

n
11t)(x1 − x2)

∣∣∣∣
≤ max

a∈A∪(−A)

∥∥∥∥(In − 1

n
11t)a

∥∥∥∥ ‖x1 − x2‖

≤ max
a∈A∪(−A)

‖a‖ ‖x− y‖ ≤ ‖x1 − x2‖ .

That is, f is Lipschitz continuous with constant 1. By [63, Lemma A.2.2] we
have

P {Tn −E [Tn] > t} = P {f(ξ)−E [f(ξ)] > t} ≤ e−
t2

2 for t ≥ 0. (27)

It follows from [66] that

E [Tn] ≤ E

[
max

a∈A∪(−A)
atξ − λa

]
.

By [30] we further have

E

[
max

a∈A∪(−A)
atξ − λa

]
≤ E

[
sup

0≤s<t≤1

|B(t)−B(s)|√
t− s

−
√
log

e

t− s

]
:= C < ∞
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where B(t) is a standard Brownian motion. It together with (27) implies

qα(n) ≤ E [Tn] +

√
2 log

1

α
≤ C +

√
2 log

1

α
for all n ∈ N.

Proof of Theorem 3.1. (i) This follows from the proof of Theorem 7 in [30] by
replacing q by maxm≤n qα(m).
(ii) Given any ε > 0, it follows by Lemma A.3 that

max
m≤n

qαn(m) ≤ C +

√
2 log

1

αn
≤
√
2(1 + ε)γ logn,

for sufficiently large n. Then, elementary calculation and (19) shows the asser-
tion.

A.3. Proof of Theorem 3.3

Let K̂n be the number of change-points of FDRSeg μ̂n,αn , and qn :=
maxm≤n qαn(m). The control of FDR implies a bound on overestimation of
the number of change-points.

Lemma A.4 (Overestimation bound).

P{K̂n > K} ≤ (K + 2)
2αn

1− αn
.

Proof.

P{K̂n > K}

= P{(K̂n −K)+ ≥ 1} ≤ P

{
(K̂n −K)+

(K̂n −K)+ +K + 1
≥ 1

1 +K + 1

}

≤ (K + 2)E

[
(K̂n −K)+

K̂n + 1

]
≤ (K + 2)E

[
FD

K̂n + 1

]
≤ (K + 2)

2αn

1− αn
,

where the last inequality follows from Theorem 2.2.

Proof of Theorem 3.3 (i). Let p∗ := 1/min{1/2, 1/p}. Note that

E
[
‖μ̂n,αn − μ‖Lp

]
=

∫ √
n

0

P
{
‖μ̂n,αn − μ‖Lp ≥ s

}
ds+

∫ ∞

√
n

P
{
‖μ̂n,αn − μ‖Lp ≥ s

}
ds.

In the following, we will show as n → ∞,

sup
μ∈Bν,ε,L

∫ √
n

0

P
{
‖μ̂n,αn − μ‖Lp ≥ s

}
ds

(
νε2n

σ2 logn

)1/p∗

≤ 25L, (28)



FDR-control in multiscale change-point segmentation 949

sup
μ∈Bν,ε,L

∫ ∞

√
n

P
{
‖μ̂n,αn − μ‖Lp ≥ s

}
ds

(
νε2n

σ2 logn

)1/p∗

→ 0. (29)

Then, the assertion of the theorem holds by combining (28) and (29).
Verification of (28): Let us choose

δn := 129
σ2 logn

ε2n
. (30)

Note that

∫ √
n

0

P
{
‖μ̂n,αn − μ‖Lp ≥ s

}
ds

(
νε2n

σ2 logn

)1/p∗

≤
√
n

(
νε2n

σ2 log n

)1/p∗ (
P{K̂n > Kμ}+ P {d (μ, μ̂n,αn) > δn}

+

∫ ∞

0

P

{
‖μ̂n,αn − μ‖Lp ≥ s; K̂n ≤ Kμ; d(μ, μ̂n,αn) ≤ δn

}
ds

)
.

(31)

For the first term in (31), it follows from Lemma A.4 that

lim sup
n→∞

sup
μ∈Bν,ε,L

√
n

(
νε2n

σ2 logn

)1/p∗

P{K̂n > Kμ}

≤ lim sup
n→∞

sup
μ∈Bν,ε,L

√
n

(
νε2n

σ2 logn

)1/p∗

(Kμ + 2)
2αn

1− αn

≤ lim sup
n→∞

√
n

(
νε2n

σ2 logn

)1/p∗ (1

ν
+ 2

)
2αn

1− αn
= 0.

For the second term in (31), by elementary calculation, one can derive from
Theorem 3.1 and (30) that

lim sup
n→∞

sup
μ∈Bν,ε,L

√
n

(
νε2n

σ2 logn

)1/p∗

P {d (μ, μ̂n,αn) > δn} = 0.

Now we consider the last term in (31). Let {τi; i = 1, . . . ,Kμ} be the change-

points of μ, {τ̂i; i = 1, . . . , K̂n} the change-points of μ̂n,αn . Both are ordered
increasingly. By (30), we have δn < ν/2 for large enough n. It implies that
K̂n = Kμ and |τi − τ̂i| ≤ δn for i = 1, . . . ,Kμ. Let ‖f‖I,∞ := maxx∈I |f(x)|,

In :=
{
[0, τ1 − δn), (τ1 + δn, τ2 − δn), . . . , (τKμ + δn, 1)

}
,

and Jn := {[τi − δn, τi + δn]; i = 1, . . . ,Kμ}.

For I ∈ In, we have

μ̂n,αn ≡ μ̂I,n, and μ ≡ μI on I,
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for some constants μ̂I,n and μI . Note that

√
n |I|

∣∣ȲI − μ̂I,n

∣∣
σ

≤ qn +

√
2 log(

e

|I| ),

which implies
√

n |I|
∣∣ȲI − μI − σs

∣∣ /σ ≤ qn +
√

2 log(e/ |I|), if ȲI − μI ≤ σs
and μ̂I,n − μI > σs. Then,

P{μ̂I,n − μI ≥ σs}
≤ P{ȲI − μI ≤ σs; μ̂I,n − μI > σs}+ P{ȲI > μI + σs}

≤ P

{√
n |I|

∣∣∣∣ ȲI − μI

σ
− s

∣∣∣∣ ≤ qn +

√
2 log

e

|I|

}
+ P{ȲI > μI + σs}

≤ exp

(
−1

8

(
s
√

n |I| − qn −
√
2 log

e

|I|

)2

+

)
+ exp

(
−n |I| s2

2

)

≤ 2 exp

(
−1

8

(
s
√

n |I| − qn −
√
2 log

e

|I|

)2

+

)
,

≤ 2 exp

(
−1

8

(
s
√

n(λμ − 2δn)− qn −
√
2 log

e

λμ − 2δn

)2

+

)
.

The third inequality above follows from Lemmata 7.1 and 7.3 in [30]. By the
symmetry of the Gaussian distribution, the same bound can be shown for
P{μ̂I,n − μI ≤ −σs}. Thus, for each I ∈ In,

P{|μ̂I,n − μI | ≥ σs}

≤ 4 exp

(
−1

8

(
s
√

n(λμ − 2δn)− qn −
√

2 log
e

λμ − 2δn

)2

+

)
.

For each J ∈ Jn, we have

‖μ̂n,αn − μ‖J,∞ ≤ max
I∈In

|μ̂I,n − μI |+ Δ̃μ ≤ max
I∈In

|μ̂I,n − μI |+ L.

Therefore,

P

{
‖μ̂n,αn − μ‖Lp ≥ s; K̂n = Kμ; |τi − τ̂i| ≤ δn for i = 1, . . . ,Kμ

}

≤P

{∑
I∈In

|I| |μ̂I,n − μI |p +
∑
J∈Jn

|J | ‖μ̂n,αn − μ‖pJ,∞ ≥ sp

}

≤P

{
max
I∈In

|μ̂I,n − μ|p
∑
I∈In

|I|+
(
max
I∈In

|μ̂I,n − μI |+ L

)p ∑
J∈Jn

|J | ≥ sp

}

≤P

{
max
I∈In

|μ̂I,n − μ|p
∑
I∈In

|I|+
(
2p−1 max

I∈In

|μ̂I,n − μI |p + 2p−1Lp

)∑
J∈Jn

|J | ≥ sp

}
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≤P

{
max
I∈In

|μ̂I,n − μ|p (1− 2Kμδn + 2pKμδn) ≥ sp − 2pLpKμδn

}

≤
∑
I∈In

P {|μ̂I,n − μ|p (1− 2Kμδn + 2pKμδn) ≥ sp − 2pLpKμδn}

≤4(Kμ + 1) exp

(
−1

8

(√
n(λμ − 2δn)

σ

(
sp − 2pLpKμδn

1− 2Kμδn + 2pKμδn

)1/p

− qn −
√
2 log

e

λμ − 2δn

)2

+

⎞
⎠ .

Let us choose

s∗ := 25L

(
σ2 logn

νε2n

)1/p∗

.

Then, for large enough n, we have

(
νε2n

σ2 log n

)1/p∗ ∫ ∞

0

P

{
‖μ̂n,αn − μ‖Lp ≥ s; K̂n ≤ Kμ; d(μ, μ̂n,αn) ≤ δn

}
ds

≤25L+ (
4

ν
+ 4)L

∫ ∞

25

exp

(
− log n

8

(
L√
2ε

(s− 2 · 1281/p∗)− 2

)2

+

)
ds

=25L+ (
8

ν
+ 8)ε

√
π

logn
→ 25L, uniformly over Bν,ε,L, as n → ∞.

Thus, we have shown (28).
Verification of (29): From μ̂n,αn ∈ CK̂n

it follows

∥∥∥∥∥μ̂n,αn −
n−1∑
i=0

Yi1[ i
n , i+1

n )

∥∥∥∥∥
Lp

≤ max
0≤i≤n−1

∣∣∣∣μ̂n,αn(
i

n
)− Yi

∣∣∣∣ ≤ Cσ
√
logn,

for some constant C. Denoting μ =
∑Kμ

k=0 ck1[τk,τk+1), we have

∥∥∥∥∥
n−1∑
i=0

Yi1[ i
n , i+1

n ) − μ

∥∥∥∥∥
Lp

≤

∥∥∥∥∥∥
n−1∑
i=0

Yi1[ i
n , i+1

n ) −
Kμ∑
k=0

ck1
[
�nτk�

n ,
�nτk+1�

n )

∥∥∥∥∥∥
Lp

+

∥∥∥∥∥∥
Kμ∑
k=0

ck1
[
�nτk�

n ,
�nτk+1�

n )
− μ

∥∥∥∥∥∥
Lp

≤σ

(
1

n

n−1∑
i=0

|εi|p
)1/p

+ Δ̃μ

(
Kμ

n

)1/p

≤σ

(
1

n

n−1∑
i=0

|εi|p
)1/p

+ L

(
1

nν

)1/p

.
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If n is large enough such that
√
n/2 ≥ L/(nν)1/p + Cσ

√
logn, then∫ ∞

√
n

P
{
‖μ̂n,αn − μ‖Lp ≥ s

}
ds

≤
∫ ∞

√
n

P

{∥∥∥∥∥μ̂n,αn −
n−1∑
i=0

Yi1[ i
n , i+1

n )

∥∥∥∥∥
Lp

+

∥∥∥∥∥
n−1∑
i=0

Yi1[ i
n , i+1

n ) − μ

∥∥∥∥∥
Lp

≥ s

}
ds

≤
∫ ∞

√
n

P

⎧⎨
⎩σ

(
1

n

n−1∑
i=0

|εi|p
)1/p

+ L

(
1

nν

)1/p

+ Cσ
√
logn ≥ s

⎫⎬
⎭ ds

≤
∫ ∞

√
n

P

⎧⎨
⎩σ

(
1

n

n−1∑
i=0

|εi|p
)1/p

≥ s

2

⎫⎬
⎭ ds ≤

∫ ∞

√
n

(
2σ

s

)2p

dsE

⎡
⎣( 1

n

n−1∑
i=0

|εi|p
)2
⎤
⎦

≤ (2σ)2p

2p− 1
E
[
|ε0|2p

]
n1/2−p.

It implies

sup
μ∈Bν,ε,L

∫ ∞

√
n

P
{
‖μ̂n,αn − μ‖Lp ≥ s

}
ds

(
νε2n

σ2 logn

)1/p∗

≤ (2σ)2p

2p− 1
E
[
|ε0|2p

]
n1/2−p

(
νε2n

σ2 logn

)1/p∗

≤(2σ)2pE
[
|ε0|2p

]
n−1/2

(
νε2n

σ2 logn

)1/2

→ 0, as n → ∞.

Proof of Theorem 3.3 (ii). The proof follows exactly the same way as Theo-
rem 3.3 (i), if we choose

v := vn, δn := 175
σ2 logn

ε2n
, and s∗ := 34L

(
σ2 logn

νε2n

)1/p∗

.

A.4. Proof of Theorem 3.4

By χ we denote the observational space of Y = (Y0, . . . , Yn−1) from model (1).

Lemma A.5 (see Section 2.2 in [62]). Assume the change-point regression
model (1), 1 ≤ p < ∞, and B a set of step functions. If {μ1, . . . , μm} ⊂ B
satisfies

‖μi − μj‖Lp ≥ 2s, for 1 ≤ i < j ≤ m,

then
inf
μ̂

sup
μ∈B

s−1E [‖μ̂− μ‖Lp ] ≥ em := inf
ψ

max
1≤i≤m

Pμi{ψ �= i},

where the last infimum is taken over all measurable ψ : χ → {1, . . . ,m}.
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Proof of Theorem 3.4 (i). Consider

{μ1 ≡ 0, μ2 ≡ σ/
√
n} ⊂ Bν,ε,L.

Let Pi be the measure on χ associated with μi, i = 0, 1. Then, the Kullback
divergence

K(P1, P2) =
n

2σ2

(
σ√
n

)2

=
1

2
.

By Theorem 2.2 in [62], we have e2 ≥ 1/4. Note that

‖μ1 − μ2‖Lp =
σ√
n
.

It follows from Lemma A.5 that

inf
μ̂n

sup
μ∈Bν,ε,L

E [‖μ̂n − μ‖Lp ] ≥
σ

8
√
n
. (32)

Consider further

{μ1 = 1[0,ν), μ2 = 1[0,ν+σ2/n)} ⊂ Bν,ε,L.

Similarly, we have

K(P1, P2) ≤
n

2σ2

σ2

n
=

1

2
=⇒ e2 ≥ 1

4
,

and ‖μ1 − μ2‖ =

(
σ2

n

)1/p

.

Then by Lemma A.5

inf
μ̂n

sup
μ∈Bν,ε,L

E [‖μ̂n − μ‖Lp ] ≥
1

8

(
σ2

n

)1/p

. (33)

Finally, the assertion follows by (32) and (33).

Proof of Theorem 3.4 (ii). Consider

F 0
νn

:=

⎧⎨
⎩


 1
νn

�∑
i=1

(−1)i + ci
2

1[ i−1
�1/νn� ,

i
�1/νn� )

; ci = ±σ

4

√
log 2

bn1−γ

⎫⎬
⎭ ⊂ Bνn,ε,L.

It is clear that #F 0
νn

= 2
1/νn�. By Varshamov-Gilbert bound [62, Lemma 2.9],

there is a subset Fνn ⊂ F 0
νn

such that #Fνn ≥ 2
1/νn�/8 and every two ele-
ments in Fνn differ on at least �1/νn�/8 segments. Let Pi be the measure on χ
associated with μi, for μi ∈ Fνn . Then, we estimate the Kullback divergence as

K(Pi, Pj) ≤
n

2σ2

(
σ

4

√
log 2

bn1−γ

)2

≤ log 2

32νn
≤ 1

2
log 2
1/νn�/8 ≤ 1

2
log(#Fνn).
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By Fano’s Lemma [62, Corollary 2.6], it implies that e#Fνn
≥ 1/4. Note that

for any μi, μj ∈ Fνn , i �= j,

‖μi − μj‖Lp ≥ σ

4

√
log 2

bn1−γ

(
1

8

)1/p

≥ σ

32

√
log 2

bn1−γ
.

It follows from Lemma A.5 that

inf
μ̂n

sup
μ∈Bνn,ε,L

E [‖μ̂n − μ‖Lp ] ≥
σ

256

√
log 2

bn1−γ
. (34)

Consider further G0
νn

⊂ Bνn,ε,L given by

G0
νn

:=

{
 1
2νn

�∑
i=1

(−1)i

2
1[ i−1

�1/(2νn)�+ci−1,
i

�1/(2νn)�+ci)
;

ci = ±σ2 log 2

16n
, c0 = c
1/(2νn)� = 0

}
.

Similarly, there is a subset Gνn ⊂ G0
νn

such that #Gνn ≥ 2(
1/(2νn)�−1)/8 and
every two elements in Gνn differ on at least (�1/(2νn)� − 1)/8 change-points.
Then, we have

K(Pi, Pj) ≤
n

2σ2

σ2 log 2

8n

(⌊
1

2νn

⌋
− 1

)
≤ 1

2
log 2(
1/(2νn)�−1)/8 ≤ 1

2
log(#Gνn),

which implies that e#Gνn
≥ 1/4. Since, for any μi, μj ∈ Gνn , i �= j,

‖μi − μj‖Lp ≥
(
σ2 log 2

64n

(⌊
1

2νn

⌋
− 1

))1/p

≥
(

σ2 log 2

256bn1−γ

)1/p

≥ log 2

256

(
σ2

bn1−γ

)1/p

,

then

inf
μ̂n

sup
μ∈Bνn,ε,L

E [‖μ̂n − μ‖Lp ] ≥
log 2

2048

(
σ2

bn1−γ

)1/p

. (35)

Thus, the assertion follows by (34) and (35).
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