
The Annals of Statistics
2017, Vol. 45, No. 2, 833–865
DOI: 10.1214/16-AOS1469
© Institute of Mathematical Statistics, 2017

ASYMPTOTIC BEHAVIOUR OF THE EMPIRICAL BAYES
POSTERIORS ASSOCIATED TO MAXIMUM MARGINAL

LIKELIHOOD ESTIMATOR

BY JUDITH ROUSSEAU1,∗,† AND BOTOND SZABO2,‡,§

University Paris Dauphine,∗ CREST-ENSAE,† Budapest University of
Technology‡ and Leiden University§

We consider the asymptotic behaviour of the marginal maximum likeli-
hood empirical Bayes posterior distribution in general setting. First, we char-
acterize the set where the maximum marginal likelihood estimator is located
with high probability. Then we provide oracle type of upper and lower bounds
for the contraction rates of the empirical Bayes posterior. We also show that
the hierarchical Bayes posterior achieves the same contraction rate as the
maximum marginal likelihood empirical Bayes posterior. We demonstrate
the applicability of our general results for various models and prior distri-
butions by deriving upper and lower bounds for the contraction rates of the
corresponding empirical and hierarchical Bayes posterior distributions.

1. Introduction. In the Bayesian approach, the whole inference is based on
the posterior distribution, which is proportional to the likelihood times the prior
(in case of dominated models). The task of designing a prior distribution � on
the parameter θ ∈ � is difficult and in large dimensional models cannot be per-
formed in a fully subjective way. It is therefore common practice to consider a
family of prior distributions �(·|λ) indexed by a hyper-parameter λ ∈ � and to
either put a hyper-prior on λ (hierarchical approach) or to choose λ depending on
the data, so that λ = λ̂(xn) where xn denotes the collection of observations. The
latter is referred to as an empirical Bayes (hereafter EB) approach, see for instance
[17]. There are many ways to select the hyper-parameter λ based on the data, in
particular depending on the nature of the hyper-parameter.

Recently, [19] have studied the asymptotic behaviour of the posterior distribu-
tion for general empirical Bayes approaches; they provide conditions to obtain
consistency of the EB posterior and in the case of parametric models characterized
the behaviour of the maximum marginal likelihood estimator λ̂n ≡ λ̂(xn) (here-
after MMLE), together with the corresponding posterior distribution �(·|λ̂n;xn)
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on θ . They show that asymptotically the MMLE converges to some oracle value
λ0 which maximizes, in λ, the prior density calculated at the true value θ0 of the
parameter, π(θ0|λ0) = sup{π(θ0|λ),λ ∈ �}, where the density is with respect to
Lebesgue measure. This cannot be directly extended to the nonparametric setup,
since in this case, typically the prior distributions �(·|λ), λ ∈ � are not abso-
lutely continuous with respect to a fixed measure. In the nonparametric setup, the
asymptotic behaviour of the MMLE and its associated EB posterior distribution
has been studied in the (inverse) white noise model under various families of Gaus-
sian prior processes by [3, 9, 14, 28, 29], in the nonparametric regression problem
with smoothing spline priors [24] and rescaled Brownian motion prior [26], and
in a sparse setting by [13]. In all these papers, the results have been obtained via
explicit expression of the marginal likelihood. Interesting phenomena have been
observed in these specific cases. In [29], an infinite dimensional Gaussian prior
was considered with fixed regularity parameter α and a scaling hyper-parameter τ .
Then it was shown that the scaling parameter can compensate for possible mis-
match of the base regularity α of the prior distribution and the regularity β of
the true parameter of interest up to a certain limit. However, too smooth truth can
only be recovered sub-optimally by MMLE empirical Bayes method with rescaled
Gaussian priors. In contrast to this in [14], it was shown that by substituting the
MMLE of the regularity hyper-parameter into the posterior, then one can get op-
timal contraction rate (up to a logn factor) for every Sobolev regularity class, si-
multaneously.

In this paper, we are interested in generalizing the specific results of [14] (in
the direct case), [29] to more general models, shading light on what is driving the
asymptotic behaviour of the MMLE in nonparametric or large dimensional models.
We also provide sufficient conditions to derive posterior concentration rates for EB
procedures based on the MMLE. Finally, we investigate the relationship between
the MMLE empirical Bayes and hierarchical Bayes approaches. We show that the
hierarchical Bayes posterior distribution (under mild conditions on the hyper-prior
distribution) achieves the same contraction rate as the MMLE empirical Bayes
posterior distribution. Note that our results do not answer the question whether
empirical Bayes and hierarchical Bayes posterior distributions are strongly merg-
ing, which is certainly of interest, but would require typically a much more precise
analysis of the posterior distributions.

More precisely, set xn the vector of observations and assume that conditionally
on some parameter θ ∈ �, xn is distributed according to P n

θ with density pn
θ with

respect to some given measure μ. Let �(·|λ),λ ∈ � be a family of prior distribu-
tions on �. Then the associated posterior distributions are equal to

�(B|xn;λ) =
∫
B pn

θ (xn) d�(θ |λ)

m̄(xn|λ)
, m̄(xn|λ) =

∫
�

pn
θ (xn) d�(θ |λ)

for all λ ∈ � and any Borelian subset B of �. The MMLE is defined as

(1.1) λ̂n ∈ argmax
λ∈�n

m̄(xn|λ)
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for some �n ⊆ �, and the associated EB posterior distribution by �(·|xn, λ̂n).
We note that in case there are multiple maximizers one can take an arbitrary one.
Furthermore, from practical consideration (both computational and technical) we
allow the maximizer to be taken on the subset �n ⊆ �.

Our aim is two-fold, first to characterize the asymptotic behaviour of λ̂n and
second to derive posterior concentration rates in such models, that is, to determine
sequences εn going to 0 such that

(1.2) �
(
θ : d(θ, θ0) ≤ εn|xn; λ̂n

) → 1

in probability under P n
θ0

, with θ0 ∈ � and d(·, ·) some appropriate positive loss
function on � [typically a metric or semi-metric, see condition (A2) later for more
precise description]. There is now a substantial literature on posterior concentra-
tion rates in large or infinite dimensional models initiated by the seminal paper of
[11]. Most results, however, deal with fully Bayesian posterior distributions, that
is, associated to priors that are not data dependent. The literature on EB posterior
concentration rates deals mainly with specific models and specific priors.

Recently, in [8], sufficient conditions are provided for deriving general EB pos-
terior concentration rates when it is known that λ̂n belongs to a well chosen subset
�0 of �. In essence, their result boils down to controlling supλ∈�0

�(d(θ, θ0) >

εn|xn, λ). Hence, either λ has very little influence on the posterior concentration
rate and it is not so important to characterize precisely �0 or λ is influential and
it becomes crucial to determine properly �0. In [8], the authors focus on the for-
mer. In this paper, we are mainly concerned with the latter, with λ̂n the MMLE.
Since the MMLE is an implicit estimator (as opposed to the moment estimates
considered in [8]) the main difficulty here is to understand what the set �0 is.

We show in this paper that �0 can be characterized roughly as

�0 = {
λ : εn(λ) ≤ Mnεn,0

}
for any sequence Mn going to infinity and with εn,0 = inf{εn(λ);λ ∈ �n} and εn(λ)

satisfying

(1.3) �
(‖θ − θ0‖ ≤ Kεn(λ)|λ) = e−nε2

n(λ),

with (�,‖ · ‖) a Banach space and for some large enough constant K [in the
notation we omitted the dependence of εn(λ) on K and θ0]. We then prove that the
concentration rate of the MMLE empirical Bayes posterior distribution is of order
O(Mnεn,0). We also show that the preceding rates are sharp, that is, the posterior
contraction rate is bounded from below by δnεn,0 [for arbitrary δn = o(1)]. Hence,
our results reveal the exact posterior contraction rates for every individual θ0 ∈ �.
Furthermore, we also show that the hierarchical Bayes method behaves similarly,
that is, the hierarchical posterior has the same upper (Mnεn,0) and lower (δnεn,0)
bounds on the contraction rate for every θ0 ∈ � as the MMLE empirical Bayes
posterior.
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Our aim is not so much to advocate the use of the MMLE empirical Bayes ap-
proach, but rather to understand its behaviour. Interestingly, our results show that
it is driven by the choice of the prior family {�(·|λ),λ ∈ �)} in the neighbour-
hood of the true parameter θ0. This allows to determine a priori which family of
prior distributions will lead to well behaved MMLE empirical Bayes posteriors
and which will not. In certain cases, however, the computation of the MMLE is
very challenging. Therefore, it would be interesting to investigate other type of
estimators for the hyper-parameters like the cross validation estimator. At the mo-
ment, there is only a limited number of papers on this topic and only for specific
models and priors; see, for instance, [26, 27].

These results are summarized in Theorem 2.1, in Corollary 2.1, and in The-
orem 2.3, in Section 2. Then three different types of priors on � = 
2 =
{(θj )j∈N;∑

j θ2
j < +∞} are studied, for which upper bounds on εn(λ) are given in

Section 3.1. We apply these results to three different sampling models: the Gaus-
sian white noise, the regression and the estimation of the density based on i.i.d.
data models in Sections 3.5 and 3.6. Proofs are postponed to Section 4, to the
Appendix for those concerned with the determination of εn(λ) and to the Supple-
mentary Material [23].

1.1. Notation and setup. We assume that the observations xn ∈ Xn (where Xn

denotes the sample space) are distributed according to a distribution P n
θ (they are

not necessarily i.i.d.), with θ ∈ �, where (�,‖ · ‖) is a Banach space. We denote
by μ a dominating measure and by pn

θ and En
θ the corresponding density and

expected value of P n
θ , respectively. We consider the family of prior distributions

{�(·|λ),λ ∈ �} on � with � ⊂ R
d for some d ≥ 1 and we denote by �(·|xn;λ)

the associated posterior distributions.
Throughout the paper, K(θ0, θ) denotes the Kullback–Leibler divergence be-

tween P n
θ0

and P n
θ for all θ, θ0 ∈ � while V2(θ0, θ) denotes the centered second

moment of the log-likelihood:

K(θ0, θ) =
∫
Xn

pn
θ0

(xn) log
(

pn
θ0

pn
θ

(xn)

)
dμ(xn),

V2(θ0, θ) = En
θ0

(∣∣
n(θ0) − 
n(θ) − K(θ0, θ)
∣∣2)

with 
n(θ) = logpn
θ (xn). As in [12], we define the Kullback–Leibler neighbour-

hoods of θ0 as

B(θ0, ε,2) = {
θ;K(θ0, θ) ≤ nε2,V2(θ0, θ) ≤ nε2}

and note that in the above definition V2(θ0, θ) ≤ nε2 can be replaced by
V2(θ0, θ) ≤ Cnε2 for any positive constant C without changing the results.

For any subset A ⊂ � and ε > 0, we denote logN(ε,A,d(·, ·)) the ε-entropy of
A with respect to the (pseudo) metric d(·, ·), that is, the logarithm of the covering
number of A by d(·, ·) balls of radius ε.
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We also write

m(xn|λ) = m̄(xn|λ)

pn
θ0

(xn)
=

∫
� pn

θ (xn) d�(θ |λ)

pn
θ0

(xn)
.

For any bounded function f , ‖f ‖∞ = supx |f (x)| and if ϕ denotes a countable
collection of functions (ϕi, i ∈ N), then ‖ϕ‖∞ = maxi ‖ϕi‖∞. If the function is
integrable, then ‖f ‖1 denotes its L1 norm while ‖f ‖2 its L2 norm and if θ ∈ 
r =
{θ = (θi)i∈N,

∑
i |θi |r < +∞}, with r ≥ 1, ‖θ‖r = (

∑
i |θi |r )1/r .

Throughout the paper, xn � yn means that there exists a constant C such that
for n large enough xn ≤ Cyn, similarly with xn � yn and xn � yn is equivalent to
yn � xn � yn. For equivalent (abbreviated) notation, we use the symbol ≡.

2. Asymptotic behaviour of the MMLE, its associated posterior distribu-
tion and the hierarchical Bayes method. Although the problem can be formu-
lated as a classical parametric maximum likelihood estimation problem, since λ is
finite dimensional, its study is more involved than the usual regular models due to
the complicated nature of the marginal likelihood. Indeed m(xn|λ) is an integral
over an infinite (or large) dimensional space.

For θ0 ∈ � denoting the true parameter, define the sequence εn(λ) ≡ εn(λ,

θ0,K) as

(2.1) �
(
θ : ‖θ − θ0‖ ≤ Kεn(λ)|λ) = e−nεn(λ)2

,

for some positive parameter K > 0. If the cumulative distribution function of ‖θ −
θ0‖ under �(·|λ) is not continuous, then the definition of εn(λ) can be replaced by

(2.2) c̃−1
0 nεn(λ)2 ≤ − log�

(
θ : ‖θ − θ0‖ ≤ Kεn(λ)|λ) ≤ c̃0nεn(λ)2,

for some c̃0 ≥ 1 under the assumption that such a sequence εn(λ) exists.
Roughly speaking, under the assumptions stated below, logm(xn|λ) � nε2

n(λ)

and εn(λ) is the posterior concentration rate associated to the prior �(·|λ) and the
best possible (oracle) posterior concentration rate over λ ∈ �n is denoted

ε2
n,0 = inf

λ∈�n

{
εn(λ)2 : εn(λ)2 ≥ mn(logn)/n

} ∨ mn(logn)/n,

with any sequence mn tending to infinity.
With the help of the oracle value εn,0, we define a set of hyper-parameters with

similar properties, as

�0 ≡ �0(Mn) ≡ �0,n(K, θ0,Mn) = {
λ ∈ �n : εn(λ) ≤ Mnεn,0

}
,(2.3)

with any sequence Mn going to infinity. We show that under general (and natural)
assumptions the marginal maximum likelihood estimator λ̂n belongs to the set
�0 with probability tending to one, for some constant K > 0 large enough. The
parameter K provides extra flexibility to the approach and simplifies the proofs of
the upcoming conditions in certain examples. In practice (at least in the examples
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we have studied), the constant K essentially modifies εn(λ) by a multiplicative
constant, and thus does not modify the final posterior concentration rate, nor the
set �0 since Mn is any sequence going to infinity. Note that our results are only
meaningful in cases where εn(λ) defined by (2.2) vary with λ.

We now give general conditions under which the MMLE is inside of the set
�0 with probability going to 1 under P n

θ0
. Using [8], we will then deduce that the

concentration rate of the associated MMLE empirical Bayes posterior distribution
is bounded by Mnεn,0.

Following [19] and [8], we construct for all λ,λ′ ∈ �n a transformation ψλ,λ′ :
� �→ � such that if θ ∼ �(·|λ) then ψλ,λ′(θ) ∼ �(·|λ′) and for a given sequence
un → 0 we introduce the notation

qθ
λ,n(xn) = sup

ρ(λ,λ′)≤un

pn
ψλ,λ′ (θ)(xn),(2.4)

where ρ : �n × �n →R
+ is some loss function and Qθ

λ,n the associated measure.
Denote by Nn(�0),Nn(�n\�0), and Nn(�n) the covering number of �0,�n\�0
and �n by balls of radius un, respectively, with respect of the loss function ρ.

We consider the following set of assumptions to bound supλ∈�n\�0
m(xn|λ)

from above:

• (A1) There exists N > 0 such that for all λ ∈ �n \ �0 and n ≥ N , there exists
�n(λ) ⊂ �

(2.5) sup
{‖θ−θ0‖≤Kεn(λ)}∩�n(λ)

logQθ
λ,n(Xn)

nεn(λ)2 = o(1),

and such that

(2.6)
∫
�n(λ)c

Qθ
λ,n(Xn) d�(θ |λ) ≤ e

−w2
nnε2

n,0,

for some positive sequence wn going to infinity.
• (A2) [tests] There exists 0 < ζ, c1 < 1 such that for all λ ∈ �n \ �0 and all

θ ∈ �n(λ), there exist tests ϕn(θ) such that

En
θ0

ϕn(θ) ≤ e−c1nd2(θ,θ0),
(2.7)

sup
d(θ,θ ′)≤ζd(θ,θ0)

Qθ ′
λ,n

(
1 − ϕn(θ)

) ≤ e−c1nd2(θ,θ0),

where d(·, ·) is a semi-metric satisfying

(2.8) �n(λ) ∩ {‖θ − θ0‖ > Kεn(λ)
} ⊂ �n(λ) ∩ {

d(θ, θ0) > c(λ)εn(λ)
}

for some c(λ) ≥ wnεn,0/εn(λ) and

(2.9) logN
(
ζu,

{
u ≤ d(θ, θ0) ≤ 2u

} ∩ �n(λ), d(·, ·)) ≤ c1nu2/2

for all u ≥ c(λ)εn(λ).
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REMARK 2.1. We note that we can weaken (2.5) to

sup
{‖θ−θ0‖≤εn(λ)}∩�n(λ)

Qθ
λ,n(Xn) ≤ ecnε2

n(λ),

for some positive constant c < 1 in case the cumulative distribution of ‖ · −θ0‖
under �(·|λ) is continuous, and hence the definition (2.1) is meaningful.

Conditions (2.5) and (2.6) imply that we can control the small perturbations of
the likelihood pn

ψλ,λ′ (θ)(xn) due to the change of measures ψλ,λ′ and are similar

to those used in [8]. They allow us to control m(xn|λ) uniformly over �n \ �0.
They are rather weak conditions since un can be chosen very small. In [8], the au-
thors show that they hold even with complex priors such as nonparametric mixture
models. Assumption (2.7), together with (2.9) have been verified in many contexts,
with the difference that here the tests need to be performed with respect to the per-
turbed likelihoods qθ

λ,n. Since the un—mesh of �n \ �0 can be very fine, these
perturbations can be well controlled over the sets �n(λ); see, for instance, [8] in
the context of density estimation or intensity estimation of Aalen point processes.
The interest of the above conditions is that they are very similar to standard con-
ditions considered in the posterior concentration rates literature, starting with [11]
and [12], so that there is a large literature on such types of conditions which can be
applied in the present setting. Therefore, the usual variations on these conditions
can be considered. For instance, an alternative condition to (A2) is:

(A2 bis) There exists 0 < ζ < 1 such that for all λ ∈ �n \�0 and all θ ∈ �n(λ),
there exist tests ϕn(θ) such that (2.7) is verified and for all j ≥ K , writing

Bn,j (λ) = �n(λ) ∩ {
jεn(λ) ≤ ‖θ − θ0‖ < (j + 1)εn(λ)

}
,

then

Bn,j (λ) ⊂ �n(λ) ∩ {
d(θ, θ0) > c(λ, j)εn(λ)

}
with ∑

j≥K

exp
(
−c1

2
nc(λ, j)2εn(λ)2

)
� e

−nw2
nε2

n,0

and

logN
(
ζc(λ, j)εn(λ),Bn,j (λ), d(·, ·)) ≤ c1nc(λ, j)2εn(λ)2

2
.

Here, the difficulty lies in the comparison between the metric ‖ · ‖ of the Ba-
nach space and the testing distance d(·, ·), in condition (2.8). Outside the white
noise model, where the Kullback and other moments of the likelihood ratio are di-
rectly linked to the L2 norm on θ − θ0, such comparison may be nontrivial. In van
der Vaart and van Zanten [31], the prior had some natural Banach structure and
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norm, which was possibly different to the Kullback–Leibler and the testing dis-
tance d(·, ·), but comparable in some sense. Our approach is similar in spirit. We
illustrate this here in the special cases of regression function and density estima-
tion under different families of priors; see Sections 3.5 and 3.6.1. In Section 3.6.2,
we use a prior which is not so much driven by a Banach structure and the norm
‖ · ‖ is replaced by the Hellinger distance. Hence, in full generality ‖ · ‖ could be
replaced by any metric, for instance the testing metric d(·, ·), as long as the rates
εn(λ) can be computed.

The following assumption is used to bound from below supλ∈�0
m(xn|λ):

• (B1) There exist �̃0 ⊂ �0 and M2 ≥ 1 such that for every λ ∈ �̃0{‖θ − θ0‖ ≤ Kεn(λ)
} ⊂ B

(
θ0,M2εn(λ),2

)
,

and such that there exists λ0 ∈ �̃0 for which εn(λ0) ≤ M1εn,0 for some posi-
tive M1.

REMARK 2.2. A variation of (B1) can be considered where {‖θ − θ0‖ ≤
Kεn(λ)} is replaced by {‖θ − θ0‖ ≤ Kεn(λ)} ∩ �̃n(λ) where �̃n(λ) ⊂ � verifies

�
({‖θ − θ0‖ ≤ Kεn(λ)

} ∩ �̃n(λ)|λ)
� e−K2nε2

n(λ),

for some K2 ≥ 1. This is used in Section 3.6.

2.1. Asymptotic behaviour of the MMLE and empirical Bayes posterior con-
centration rate. We now present the two main results of this section, namely:
asymptotic behaviour of the MMLE and concentration rate of the resulting empir-
ical Bayes posterior. We first describe the asymptotic behaviour of λ̂n.

THEOREM 2.1. Assume that there exists K > 0 such that conditions (A1),
(A2) and (B1) hold with wn = o(Mn), then if logNn(�n \ �0) = o(nw2

nε
2
n,0),

lim
n→∞P n

θ0
(λ̂n ∈ �0) = 1.

The proof of Theorem 2.1 is given in Section 4.1.
The above theorem describes the asymptotic behaviour of the MMLE λ̂n, via

the oracle set �0, in other words it minimizes εn(λ). The use of the Banach norm
is particularly adapted to the case of priors on parameters θ = (θi)i∈N ∈ 
2, where
the θ ′

i s are assumed independent. This type of priors is studied in Section 3.1.
Note that in the definition of �0(Mn), Mn can be any sequence going to infinity.

In the examples, we have considered in Section 3.1, Mn can be chosen to increase
to infinity arbitrarily slowly. If εn(λ) is (rate) constant, (2.1) presents no interest
since �0 = �n, but if for some λ �= λ′ the fraction εn(λ)/εn(λ

′) either goes to in-
finity or to 0, then choosing Mn increasing slowly enough to infinity, Theorem 2.1
implies that the MMLE converges to a meaningful subset of �n. In particular, our
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results are too crude to be informative in the parametric case. Indeed from [19], in
the parametric non-degenerative case εn(λ) � √

(logn)/n in definition (2.2) for all
λ and �0 = �n. In the parametric degenerative case, where the λ0 belongs to the
boundary of the set � then one would have at the limit π(·|λ0) = δθ0 correspond-
ing to εn(λ0) = 0. So we do recover the oracle parametric value of [19]. However,
for the condition logNn(�n \ �0) = o(nw2

nε
2
n,0) to be valid one would require

essentially that �0 is the whole set �n.
Using the above theorem, together with [8], we obtain the associated posterior

concentration rate, controlling uniformly �(d(θ0, θ) ≤ εn|xn, λ) over λ ∈ �0, with
εn = Mnεn,0. To do so, we consider the following additional assumptions:

• (C1) For every c2 > 0 there exists constant N > 0 such that for all λ ∈ �0 and
n ≥ N , there exists �n(λ) satisfying

(2.10) sup
λ∈�0

∫
�n(λ)c

Qθ
λ,n(Xn) d�(θ |λ) ≤ e

−c2nε2
n,0

• (C2) There exists 0 < c1, ζ < 1 such that for all λ ∈ �0 and all θ ∈ �n(λ), there
exist tests ϕn(θ) satisfying (2.7) and (2.9), where (2.9) is supposed to hold for
any u ≥ MMnεn,0 for some M > 0.

• (C3) There exists C0 > 0 such that for all λ ∈ �0, for all θ ∈ {d(θ0, θ) ≤
Mnεn,0} ∩ �n(λ),

sup
ρ(λ,λ′)≤un

d
(
θ,ψλ,λ′(θ)

) ≤ C0Mnεn,0.

COROLLARY 2.1. Assume that λ̂n ∈ �0 with probability going to 1 under
P n

θ0
and that assumptions (C1)–(C3) and (B1) are satisfied, then if logNn(�0) ≤

O(nε2
n,0), there exists M > 0 such that

(2.11) En
θ0

�
(
θ : d(θ, θ0) ≥ MMnεn,0|xn; λ̂n

) = o(1).

A consequence of Corollary 2.1 is in terms of frequentist risks of Bayesian
estimators. Following [4], one can construct an estimator based on the posterior
which converges at the posterior concentration rate: Eθ0[d(θ̂, θ0)] = O(Mnεn,0).
Similar results can also be derived for the posterior mean in case d(·, ·) is convex
and bounded, and (2.11) is of order O(Mnεn,0); see, for instance, [11].

Corollary 2.1 is proved in a similar way to Theorem 1 of [8], apart from the
lower bound on the marginal likelihood since here we use the nature of the MMLE
which simplifies the computations. The details are presented in Section 4.2. We
can refine the condition on tests (C3) by considering slices as in [8].

Next, we provide a lower bound on the contraction rate of the MMLE empirical
Bayes posterior distribution. For this, we have to introduce some further assump-
tions. First of all, we extend assumption (2.5) to the set �0. Let e : � × � → R

+
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be a pseudo-metric and assume that for all λ ∈ �0 and some δn tending to zero we
have

sup
{‖θ−θ0‖≤εn(λ)}∩�n(λ)

logQθ
λ,n(Xn)

nε2
n(λ)

= o(1),

(2.12)

sup
λ∈�0

nε2
n,0

− log�(θ : e(θ, θ0) ≤ 2δnεn,0|λ)
= o(1)

and consider the modified version of (C3): (C3bis). There exists C0 > 0 such that
for all λ ∈ �0, for all θ ∈ {e(θ0, θ) ≤ δnεn,0} ∩ �n(λ),

sup
ρ(λ,λ′)≤un

d
(
θ,ψλ,λ′(θ)

) ≤ C0δnεn,0.

THEOREM 2.2. Assume that conditions (A1)–(C2) and (C3bis) together with
assumption (2.12) hold. In case logNn(�0) = o(nε2

n,0) and ε2
n,0 > mn(logn)/n,

we get that

En
θ0

�
(
θ : e(θ, θ0) ≤ δnεn,0|λ̂n;xn

) = o(1).

Typically e(·, ·) will be either d(·, ·) or ‖ · ‖. The lower bound is proved using
the same argument as the one used to bound En

θ0
(�(�c

n|λ̂n,xn)) (see Section 4.1
and 4.2), where {d(θ, θ0) ≤ δnεn,0} plays the same role as �c

n. We postpone the
details of the proof to Section 1.7 of the Supplementary Material [23].

2.2. Contraction rate of the hierarchical Bayes posterior. In this section, we
investigate the relation between the MMLE empirical Bayes method and the hi-
erarchical Bayes method. We show that under the preceding assumptions comple-
mented with not too restrictive conditions on the hyper-prior distribution the hier-
archical posterior distribution achieves the same convergence rate as the MMLE
empirical Bayes posterior. Let us denote by π̃(·) the density function of the hyper-
prior, then the hierarchical prior takes the form

�(·) =
∫
�

�(·|λ)π̃(λ) dλ.

Note that we integrate here over the whole hyper-parameter space �, not over the
subset �n ⊆ � used in the MMLE empirical Bayes approach.

Intuitively, to have the same contraction rate, one would need that the set of
probable hyper-parameter values �0 accumulates enough hyper-prior mass. Let us
introduce a sequence w̃n tending to infinity and satisfying w̃n = o(Mn ∧ wn) and
denote by �0(w̃n) the set defined in (2.3) with w̃n.

• (H1) Assume that �̃0 ⊂ �0(w̃n) and for some c̄0 > 0 there exists N > 0 such
that for all n ≥ N the hyper-prior satisfies∫

�̃0

π̃ (λ) dλ � e
−nε2

n,0



EMPIRICAL BAYES MMLE 843

and ∫
�c

n

π̃(λ) dλ ≤ e
−c̄0nε2

n,0 .

• (H2) Uniformly over λ ∈ �̃0 and {θ : ‖θ − θ0‖ ≤ Kεn(λ)} there exists c3 > 0
such that

P n
θ0

{
inf

λ′:ρ(λ,λ′)≤un


n

(
ψλ,λ′(θ)

) − 
n(θ0) ≤ −c3nεn(λ)2
}

= O
(
e
−nε2

n,0
)
.

We can then show that the preceding condition is sufficient for giving upper and
lower bounds for the contraction rate of the hierarchical posterior distribution.

THEOREM 2.3. Assume that the conditions of Theorem 2.1 and Corollary 2.1
hold alongside with conditions (H1) with c̄0 > 2M2

2 + 1 and (H2). Then the hi-
erarchical posterior achieves the oracle contraction rate (up to a slowly varying
term)

En
θ0

�
(
θ : d(θ, θ0) ≥ MMnεn,0|xn

) = o(1).

Furthermore, if condition (2.12) also holds we have that

En
θ0

�
(
θ : d(θ, θ0) ≤ δnεn,0|xn

) = o(1).

The proof of the theorem is given in Section 4.3.

3. Application to sequence parameters and histograms.

3.1. Sequence parameters. In this section, we apply Theorem 2.1 and Corol-
lary 2.1 to the case of priors on (�,‖ · ‖) = (
2,‖ · ‖2). We endow the sequence
parameter θ = (θ1, θ2, . . .) with independent product priors of the following three
types:

(T1) Sieve prior: The hyper-parameter of interest is λ = k the truncation: For
2 ≤ k,

θj
ind∼ g(·), if j ≤ k, and θj = 0 if j > k.

We assume that
∫

es0|x|p∗
g(x) dx = a < +∞ for some s0 > 0 and p∗ ≥ 1.

(T2) Scale parameter of a Gaussian process prior: let τj = τj−α−1/2 and λ = τ

with

θj
ind∼ N

(·, τ 2
j

)
, 1 ≤ j ≤ n, and θj = 0 if j > n.

(T3) Rate parameter: same prior as above but this time λ = α.
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REMARK 3.1. Alternatively, one could consider the priors (T2) and (T3) with-
out truncation at level n. The theoretical behaviour of the truncated and nontrun-
cated versions of the priors are very similar, however, from a practical point of
view the truncated priors are arguably more natural.

In the hierarchical setup with a prior on k, type (T1) prior has been studied
by [1, 25] for generic models, by [22] for density estimation, by [2] for Gaussian
white noise model and by [20] for inverse problems. Type (T2) and (T3) priors
have been studied with fixed hyper-parameters by [5, 7, 15, 31, 34] or using a
prior on λ = τ and λ = α in [4, 14, 18, 29]. In the white noise model, using the
explicit expressions of the marginal likelihoods and the posterior distributions, [14,
29] have derived posterior concentration rates and described quite precisely the
behaviours of the MMLE using type (T3) and (T2) priors, respectively.

In the following, �(·|k) denotes a prior in the form (T1), while �(·|τ,α) de-
notes either (T2) or (T3).

3.2. Deriving εn(λ) for priors (T1)–(T3). It appears from Theorem 2.1 that
a key quantity to describe the behaviour of the MMLE is εn(λ) defined by (2.1).
In the following lemmas, we describe εn(λ) ≡ εn(λ,K) for any K > 0 under the
three types of priors above and for true parameters θ0 belonging to either hyper-
rectangles

H∞(β,L) =
{
θ = (θi)i : max

i
i2β+1θ2

i ≤ L
}

or Sobolev balls

Sβ(L) =
{
θ = (θi)i :

∞∑
i=1

i2βθ2
i ≤ L

}
.

LEMMA 3.1. Consider priors of type (T1), with g positive and continuous on
R and let θ0 ∈ 
2, then for all K > 0 fixed and if k ∈ {2, . . . , εn/ logn}, with ε > 0
a small enough constant

εn(k)2 �
∞∑

i=k+1

θ2
0,i + k logn

n
.

Moreover, if θ0 ∈ H∞(β,L) ∪ Sβ(L) with β > 0 and L any positive constant,

(3.1) εn,0 � (n/ logn)−β/(2β+1),

and there exists θ0 ∈ H∞(β,L) ∪ Sβ(L) for which (3.1) is also a lower bound.

The proof of Lemma 3.1 is postponed to Section A.1. We note that it is enough
in the above lemma to assume that g is positive and continuous over the set {|x| ≤
M} with M > 2‖θ0‖∞.
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REMARK 3.2. One might get rid of the logn factor in the rate by allowing the
density g to depend on n; as in [2, 10], for instance.

Priors of type (T2) and (T3) are Gaussian process priors, thus following [31],
let us introduce the so called concentration function

ϕθ0(ε;α, τ) = inf
h∈Hα,τ :‖h−θ0‖2≤ε

‖h‖2
Hα,τ − log�

(‖θ‖2 ≤ ε|α, τ
)
,(3.2)

where H
α,τ denotes the Reproducing Kernel Hilbert Space (RKHS) associated to

the Gaussian prior �(·|α, τ)

H
α,τ =

{
θ = (θi)i∈N;

n∑
i=1

i2α+1θ2
i < +∞, θi = 0 for i > n

}
= R

n,

with for all θ ∈ H
α,τ

‖θ‖2
Hα,τ = τ−2

n∑
i=1

i2α+1θ2
i .

Then from Lemma 5.3 of [32],

(3.3) ϕθ0(Kε;α, τ) ≤ − log�
(‖θ − θ0‖2 ≤ Kε|α, τ

) ≤ ϕθ0(Kε/2;α, τ).

We also have that

(3.4) c̃−1
1 (Kε/τ)−1/α ≤ − log�

(‖θ‖2 ≤ Kε|α, τ
) ≤ c̃1(Kε/τ)−1/α,

for some c̃1 ≥ 1; see, for instance, Theorem 4 of [16]. This leads to the following
two lemmas.

LEMMA 3.2. In the case of type (T2) and (T3) priors, with θ0 ∈ Sβ(L) ∪
H∞(β,L):

• If β �= α + 1/2
‖θ0‖2√

nτ 2
1nτ 2>1 + n− α

2α+1 τ
1

2α+1

(3.5)

� εn(λ) � n− α
2α+1 τ

1
2α+1 +

(
a(α,β)

nτ 2

) β
2α+1 ∧ 1

2
,

where a(α,β) = L
α+1/2

β /|2α−2β +1| if θ0 ∈ H∞(β,L) while a(α,β) = L
α+1/2

β

if θ0 ∈ Sβ(L). The constants depend possibly on K but neither on n, τ or α.
• If β = α + 1/2 then

‖θ0‖2√
nτ 2

1nτ 2>1 + n− α
2α+1 τ

1
2α+1

(3.6)

� εn(λ) � n− α
2α+1 τ

1
2α+1 +

(
log(nτ 2)

nτ 2

) 1
2
1nτ 2>1,

where the term log(nτ 2) can be eliminated in the case where θ0 ∈ Sβ(L).



846 J. ROUSSEAU AND B. SZABO

LEMMA 3.3. In the case of prior type (T2) (with λ = τ ):

• If α + 1/2 < β , then for all θ0 ∈ H∞(β,L) ∪ Sβ(L)

(3.7) εn,0 � n−(2α+1)/(4α+4),

and for all θ0 ∈ 
2(L) satisfying ‖θ0‖2 ≥ c for some fixed c > 0, (3.7) is also a
lower bound.

• If α + 1/2 > β , then

(3.8) εn,0 � n−β/(2β+1).

• If α + 1/2 = β , then

εn,0 � n−β/(2β+1) logn1/(2β+1), if θ0 ∈ H∞(β,L),
(3.9)

εn,0 � n−β/(2β+1), if θ0 ∈ Sβ(L),

and there exists θ0 ∈ H∞(β,L) for which the upper bound (3.9) is also a lower
bound.

In the case of prior type (T3) (with λ = α),

(3.10) εn,0 � n−β/(2β+1), if θ0 ∈ Sβ(L) ∪H∞(β,L).

We note that for the scaling prior (T2) in the case α + 1/2 < β Lemma 3.3 pro-
vides us the sub-optimal rate εn,0 � n−(2α+1)/(4α+4). Therefore, under condition
(2.12) [verified in the supplementary material for prior (T2)] in all three types of
examples studied in this paper (white noise, regression and estimation of density
models), we get that for all θ0 �= 0 with α + 1/2 < β , the type (T2) prior leads to
sub-optimal posterior concentration rates [and in case θ0 ∈ H∞(β,L), β = α+1/2
as well].

An important tool to derive posterior concentration rates in the case of empirical
Bayes procedures is the construction of the change of measure ψλ,λ′ . We present
in the following section how these changes of measures can be constructed in the
context of priors (T1)–(T3).

3.3. Change of measure. In the case of prior (T1), there is no need to con-
struct ψλ,λ′ due to the discrete nature of the hyper-parameter λ = k the truncation
threshold.

In the case of prior (T2) if τ, τ ′ > 0, then define for all i ∈ N

(3.11) ψτ,τ ′(θi) = τ ′

τ
θi

so that ψτ,τ ′(θ) = (ψτ,τ ′(θi), i ∈N) = θτ ′/τ and if θ ∼ �(·|τ,α), then ψτ,τ ′(θ) ∼
�(·|τ ′, α).
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Similarly, in the case of type (T3) prior,

(3.12) ψα,α′(θi) = iα−α′
θi

so that ψα,α′(θ) = (ψα,α′(θi), i ∈ N) and if θ ∼ �(·|τ,α), then ψα,α′(θ) ∼
�(·|τ,α′). Note in particular that if α′ ≥ α and

∑
i θ

2
i < +∞ hold then∑

i ψα,α′(θi)
2 < ∞. This will turn out to be useful in the sequel.

3.4. Choice of the hyper-prior. In this section, we give sufficient conditions
on the hyper-priors in the case of the prior distribution (T1)–(T3), such that con-
dition (H1) is satisfied. The proofs are deferred to Section 3 of the Supplementary
Material [23].

LEMMA 3.4. In case of prior (T1) assume that θ0 ∈ Sβ(L) ∪ H∞(β,L) for
some β ≥ β1 > β0 ≥ 0. Then for any hyper-prior satisfying

(3.13) k−c2k � π̃(k) � e−c1k
1/(1+2β0)

,

for some c1, c2 > 0, assumption (H1) holds.

Note that the hypergeometric and the Poisson distribution satisfies the above
conditions.

LEMMA 3.5. Consider the prior (T2) then for any hyper-prior satisfying

e−c1τ
2

1+2α � π̃ (τ ) � τ−c2 for τ ≥ 1 with some c1 > 0 and c2 > 1 + 1/c0,

e−c3τ
−2 � π̃ (τ ) � τ c4 for τ ≤ 1 with some c2 > 0 and c4 > 1/c0 − 1,

for some c0 > 0, assumption (H1) holds.

Note that for instance the inverse gamma and Weibull distributions satisfy this
assumption.

REMARK 3.3. To obtain the polynomial upper bound of the hyper-prior den-
sities π̃ (τ ) in Lemma 3.5, the set �n is taken to be larger than it is necessary
in the empirical Bayes method to achieve adaptive posterior contraction rates;
see, for instance, Propositions 3.2 and 3.4. Nevertheless, the conditions on the

hyper-entropy are still satisfied, that is, by taking un = e
−2c0c̄0w̃

2
nnε2

n,0 on � \ �0
and un = n−d (for any d > 0) on �0 we get that logNn(�n) = o(w2

nnε2
n,0) and

logNn(�0) = o(nε2
n,0).

LEMMA 3.6. Consider the prior (T3) and assume that θ0 ∈ Sβ(L)∪H∞(β,L)

for some β > β0 > 0. Then for any hyper-prior satisfying

e−c2α � π̃(α) � e−c0α
1/c1

, for α > 0

and for some c0, c1, c2 > 0, assumption (H1) holds.
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In the following sections, we prove that in the Gaussian white noise, regression
and density estimation models the MMLE empirical Bayes posterior concentra-
tion rate is bounded from above by Mnεn,0 and from below by δnεn,0, where εn,0
is given in Lemma 3.3 under priors (T1)–(T3) and Mn, respectively δn, tends to
infinity, respectively 0, arbitrary slowly.

3.5. Application to the nonparametric regression model. In this section, we
show that our results apply to the nonparametric regression model. We consider
the fixed design regression problem, where we assume that the observations xn =
(x1, x2, . . . , xn) satisfy

xi = f0(ti) + Zi, i = 1,2, . . . , n,(3.14)

where Zi
i.i.d.∼ N(0, σ 2) random variables (with known σ 2 for simplicity) and ti =

i/n.
Let us denote by θ0 = (θ0,1, θ0,2, . . .) the Fourier coefficients of the regression

function f0 ∈ L2(M): f0(t) = ∑∞
j=1 θ0,j ej (t), so that (ej (·))j is the Fourier basis.

We note that following from Lemma 1.7 in [30] and Parseval’s inequality we have
that

‖f0‖2 = ‖θ0‖2 = ‖f0‖n,

where ‖f0‖n denotes the L2-metric associated to the empirical norm.
First, we deal with the random truncation prior (T1) where applying Theo-

rem 2.1, Corollary 2.1 and Theorem 2.3 combined with Lemma 3.1 we get that
both the MMLE empirical Bayes and hierarchical Bayes posteriors are rate adap-
tive (up to a logn factor). The following proposition is proved in Section 1.1 of the
Supplementary Material [23].

PROPOSITION 3.1. Assume that f0 ∈ H∞(β,L) ∪ Sβ(L) and consider a
type (T1) prior. Let �n = {2, . . . , kn} with kn = εn/ logn for some small enough
constant ε > 0. Then, for any Mn tending to infinity and K > 0 the MMLE estima-
tor k̂n ∈ �0 = {k : εn(k) ≤ Mnεn,0} with probability going to 1 under P n

θ0
, where

εn(k) and εn,0 are given in Lemma 3.1.
Furthermore, we also have the following contraction rates: for all 0 < β1 ≤

β2 < +∞, uniformly over β ∈ (β1, β2)

sup
f0∈H∞(β,L)∪Sβ(L)

En
f0

�
(
f : ‖f0 − f ‖2 ≥ Mn(n/ logn)

− β
2β+1 |xn; k̂n

) = o(1),

sup
f0∈H∞(β,L)∪Sβ(L)

En
f0

�
(
f : ‖f0 − f ‖2 ≥ Mn(n/ logn)

− β
2β+1 |xn

) = o(1),

where the latter is satisfied if the hyper prior on k satisfies (3.13).
Finally, we note that the above bounds are sharp in the sense that both the

MMLE empirical and the hierarchical Bayes posterior contraction rates are
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bounded from below by δn(n/ logn)−β/(2β+1) with P n
f0

-probability tending to one,
for any δn = o(1) and some f0 ∈ H∞(β,L) ∪ Sβ(L).

Next, we consider the priors (T2) and (T3). As a consequence of Theorem 2.1,
Corollary 2.1, Theorem 2.3 and Lemma 3.3 we can show that both the hierarchical
Bayes and the MMLE empirical Bayes method for the rescaled Gaussian prior
(T2) is optimal only in a limited range of regularity classes Sβ(L) ∪ H∞(β,L)

satisfying β < α + 1/2, else the posterior achieves a sub-optimal contraction rate
n−(2α+1)/(4α+4). However, by taking the MMLE of the regularity hyper-parameter
α or endowing it with a hyper-prior distribution in the Gaussian prior (T3), the
posterior achieves the minimax contraction rate n−β/(1+2β). Similar results were
derived in [29] and [14] in the context of the (inverse) Gaussian white noise model
using semi-explicit computations. We note that our implicit (and general) approach
not just reproduces the previous findings in the direct (noninverse problem) case,
but also improves on the posterior contraction rate in case of the prior (T3), where
in [14] an extra logn factor was present.

PROPOSITION 3.2. Assume that f0 ∈ Sβ(L) ∪ H∞(β,L) for some β > 0
and consider type (T2) and (T3) priors with α > 0. Furthermore, take �n(τ) =
[n−1/(4α), nα/2] and �n(α) = (0, c0n

c1], respectively, for some c0, c1 > 0. Then
λ̂n ∈ �0 with P n

f0
-probability tending to 1. Furthermore, both in the case of the

MMLE empirical Bayes and hierarchical Bayes approach we have for any Mn go-
ing to infinity with hyper-priors satisfying (H1) (see, for instance, Lemma 3.5 and
Lemma 3.6) that:

• For the multiplicative scaling prior (T2)
– If β > α + 1/2, the posterior concentration rate is bounded from above by

Mnεn,0 � Mnn
−(2α+1)/(4α+4),

and for δn = o(1) and ‖f0‖2 ≥ c (for some positive constant c) it is bounded
from below by

δnεn,0 � δnn
−(2α+1)/(4α+4).

– If β < α + 1/2, the posterior concentration rate is bounded by

Mnεn,0 � Mnn
−β/(2β+1),

with an extra logn term if β = α + 1/2 and f0 ∈ H∞(β,L).
• For the regularity prior (T3), the posterior contraction rate is also

Mnεn,0 � Mnn
−β/(2β+1).

Proposition 3.2 is proved in Section 1.2 of the Supplementary Material [23].
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REMARK 3.4. In fact, our results are stronger than the minimax results pre-
sented in Propositions 3.1 and 3.2. From Theorem 2.1 and Corollary 2.1, it follows
that for both the MMLE empirical Bayes and the hierarchical Bayes methods the
posterior contracts around the truth for every θ0 ∈ � with rate Mnεn,0(θ0), which is
more informative than a statement on the worst case scenario over some regularity
class, that is, the minimax result.

REMARK 3.5. We note that in the case of the Gaussian white noise model
the same posterior contraction rate results (both for the empirical Bayes and hier-
archical Bayes approaches) hold for the priors (T1)–(T3) as in the nonparametric
regression model. The proof of this statement can be easily derived as a special
case of the results on the nonparametric regression; see the end of the proofs of
Propositions 3.1 and 3.2.

3.6. Application to density estimation. In this section, we consider the density
estimation problem on [0,1], that is, the observations xn = (x1, . . . , xn) are inde-
pendent and identically distributed from a distribution with density f with respect
to Lebesgue measure. We consider two families of priors on the set of densities
F = {f : [0,1] → R

+; ∫ 1
0 f (x) dx = 1}. In the first case, we parameterize the den-

sities as

f (x) = fθ(x) = exp

( ∞∑
j=1

θjϕj (x) − c(θ)

)
,

(3.15)

ec(θ) =
∫ 1

0
exp

( ∞∑
j=1

θjϕj (x)

)
dx,

where (ϕj )j∈N forms an orthonormal basis with ϕ0 = 1 and θ = (θj )j∈N ∈ 
2.
Hence, (3.15) can be seen either as a log-linear model or as an infinite dimensional
exponential family; see, for instance, [1, 21, 22, 31, 33].

In the second case, we consider random histograms to parameterize F .

3.6.1. Log-linear model. We study priors based on the parameterization (3.15)
and we assume that the true density has the form f0 = fθ0 for some θ0 ∈ 
2 and
throughout the section we will assume that f0 verifies ‖ logf0‖∞ < +∞ and that
θ0 ∈ Sβ(L) for some L > 0. We study the MMLE empirical Bayes and hierarchical
Bayes methods based on priors of type (T1), (T2) and (T3) in this model. We
consider the usual metric in the context of density estimation, namely the Hellinger
metric h(f1, f2)

2 = ∫ 1
0 (

√
f1(x) − √

f2(x))2 dx.
First, we consider the type (T1) prior where λ = k. We show that Theorems 2.1,

2.3 and Corollary 2.1 can be applied so that the MMLE empirical Bayes and hier-
archical posterior rates are minimax adaptive over a collection of Sobolev classes.
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PROPOSITION 3.3. Assume that θ0 ∈ Sβ(L) with β > 1/2, consider a type
(T1) prior, and let �n = {2, . . . , kn} with kn = k0

√
n/(logn)3. Then, for any Mn

going to infinity and K > 0, if k̂n is the MMLE over �n, with probability going
to 1 under P n

θ0
, k̂n ∈ �0 = {k; εn(k) ≤ Mnεn,0}, where εn(k) and εn,0 are given in

Lemma 3.1 and for all 1/2 < β1 ≤ β2 < +∞
sup

β∈(β1,β2)

sup
θ0∈Sβ(L)

En
θ0

{
�

(
h(fθ0, fθ ) ≥ Mn(n/ logn)

− β
2β+1 |xn; k̂n

)} = o(1).

Similarly, the hierarchical posterior distribution with hyper-prior satisfying the
conditions of Lemma 3.4 also achieves the (nearly) minimax contraction rate

sup
β∈(β1,β2)

sup
θ0∈Sβ(L)

En
θ0

{
�

(
h(fθ0, fθ ) ≥ Mn(n/ logn)

− β
2β+1 |xn

)} = o(1).

Moreover, there exists θ0 ∈ Sβ(L) for which δn(n/ logn)−β/(2β+1) is a lower
bound on the posterior concentration rate for both the empirical and the hierar-
chical Bayes methods.

The proof of Proposition 3.3 is presented in Section 1.3 of the Supplementary
Material [23].

We now apply Theorems 2.1, 2.3, and Corollary 2.1 to priors (T2) and (T3) and
derive similar concentration rates as in the case of the regression model. Let

τ̄n = nα/2−1/4, τ n = n−1/4+1/(8α).

PROPOSITION 3.4. Assume that θ0 ∈ Sβ(L) with β > 1/2 and consider a type
(T2) prior with α > 1/

√
2 and �n = (τn, τ̄n). Then λ̂n ∈ �0 with probability going

to 1 under P n
θ0

and the same conclusions as in Proposition 3.2 hold.

The constraint α > 1/
√

2 is to ensure that for all β ≤ α+1/2, τ = n−(β−α)/(2β+1)

which corresponds to the minimizer of εn(τ ) (up to a multiplicative constant) be-
longs to the set (τn, τ̄n).

PROPOSITION 3.5. Assume that θ0 ∈ Sβ(L) with β > 1/2 and consider
a type (T3) prior with α > 1/2 and �n = [1/2 + 1/n1/4, λ̄n], with λ̄n =
logn/(16 log logn). Then for any Mn going to infinity the MMLE empirical Bayes
posterior achieves the minimax contraction rate

Mnεn,0 � Mnn
−β/(2β+1).

Furthermore, the hierarchical posterior also achieves the minimax contraction
rate for hyper-priors satisfying (H1).

The proofs of Propositions 3.4 and 3.5 are presented in Sections 1.4 and 1.5 of
the Supplementary Material [23].

We now consider the second family of priors.
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3.6.2. Random histograms. In this section, we parameterize F using piece-
wise constant functions, as in [6] for instance. In other words, we define

fθ (x) = k

k∑
j=1

θj1Ij
, Ij = (

(j − 1)/k, j/k
]
,

(3.16)
k∑

j=1

θj = 1, θj ≥ 0,

and we consider a Dirichlet prior on θ = (θ1, . . . , θk) with parameter (α, . . . , α).
The hyper-parameter on which maximization is performed is λ = k, as in the case
of the truncation prior (T1). We define the sequence εn(k) in terms of the Hellinger
distance, that is, it satisfies (2.1) with h(f0, fθ ) replacing ‖θ − θ0‖.

We then have the following result.

PROPOSITION 3.6. Assume that f0 is continuous and bounded from above
and below by C0 and c0, respectively. If � = {1, . . . , kn}, with kn = O((n/ logn))

and if α ≤ A for some constant A independent on k, then for all k ∈ �

(3.17) b(k)2 + k log(n/k)

n
� εn(k)2 � b(k)2 + k logn

n
,

with

b(k)2 =
k∑

j=1

∫
Ij

(
√

f0 − η̃j k)2 dx, η̃j =
∫
Ij

√
f0(x) dx.

Now suppose that f0 ∈ Hβ(L), i.e. f0 is Holder with smoothness parameter
β > 0 and radius parameter L > 0. The MMLE empirical Bayes posterior achieves
the minimax contraction rate (up to a logn term), that is, for all Mn → +∞

Mnεn,0 � Mn(n/ logn)−β/(2β+1)

and

En
f0

�
(
h(f0, fθ ) ≥ Mnεn,0|xn

n, k̂
) = o(1).

Equation (3.17) of Proposition 3.6 is proved in Section A.4, while the rest of the
proof is given in Section 1.6 of the Supplementary Material [23].

4. Proofs.

4.1. Proof of Theorem 2.1. Following from the definition of λ̂n given in (1.1),
we have that m(xn|λ) ≤ m(xn|λ̂n) for all λ ∈ �n. Therefore, to prove our statement
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it is sufficient to show that with P n
θ0

-probability tending to one we have

sup
λ∈�n\�0

m(xn|λ) < m(xn|λ0) ≤ sup
λ∈�0

m(xn|λ),

where λ0 is some hyper-parameter belonging to �0 (possibly dependent on n).
We proceed in two steps. First, we show that there exists a constant C > 0 such

that with P n
θ0

-probability tending to one we have

m(xn|λ0) ≥ e
−Cnε2

n,0 .(4.1)

Then we complete the proof by showing that for any sequence w′
n = o(M2

n ∧ w2
n)

going to infinity

P n
θ0

(
sup

λ∈�n\�0

m(xn|λ) > e
−nw′

nε2
n,0

)
= o(1).(4.2)

We prove the first inequality (4.1) using the standard technique for lower bounds
of the likelihood ratio (e.g., Lemma 10 of [12]). Without loss of generality, we
can assume that there exists λ ∈ �n such that εn(λ) ≥ εn,0. Then take an arbitrary
λ0 ∈ �̃0 such that εn(λ0) ≤ M1εn,0 for an arbitrary M1 > 1. Then we have from the
assumption (B1) and the definition of εn(λ) given in (2.2) that with P n

θ0
-probability

tending to one the following inequality holds:

m(xn|λ0) ≥
∫
θ∈Bn(θ0,M2εn(λ0),2)

e
n(θ)−
n(θ0) d�(θ |λ0)

≥ �
(
Bn

(
θ0,M2εn(λ0),2

)|λ0
)
e−2nε2

n(λ0)M
2
2(4.3)

≥ e
−(c̃0+2M2

2 )M1nε2
n,0 .

We now prove (4.2). Split �n \ �0 into balls of size un/2 and choose for each
ball a point in �n \ �0. We denote by (λi)

Nn(�n\�0)
i=1 these points. Consider the set

�n(λi) defined in (2.6) and divide it into sieves

S
(i)
n,j = {

θ ∈ �n(λi); jεn(λi)c(λi) ≤ d(θ, θ0) ≤ (j + 1)εn(λi)c(λi)
}
.

We have following from assumption (2.9) that for all j

(4.4) logN
(
ζjεn(λi)c(λi),S

(i)
n,j , d(·, ·)) ≤ c1nj

2εn(λi)
2c(λi)

2/2

and constructing a net of S
(i)
n,j with radius ζjεn(λi)c(λi) we have following from

assumption (2.7) that there exist tests ϕ
(i)
n,j satisfying

En
θ0

(
ϕ

(i)
n,j

) ≤ e−c1nj
2εn(λi)

2c(λi)
2
,

(4.5) ∫
S

(i)
n,j

Qθ
λi,n

(
1 − ϕ

(i)
n,j

)
d�(θ |λi) ≤ e−c1nj

2εn(λi)
2c(λi)

2
�

(
S

(i)
n,j |λi

)
.
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Let us take the test ϕn,i = maxj ϕ
(i)
n,j and for convenience introduce the notation

Bn(λ) = �n(λ) ∩ {θ : ‖θ − θ0‖ ≤ Kεn(λ)}. Then using the chaining argument,
Markov’s inequality, Fubini’s theorem and (2.7) we get that

P n
θ0

(
sup

λ∈�n\�0

m(xn|λ) > e
−nw′

nε2
n,0

)

≤
Nn(�n\�0)∑

i=1

P n
θ0

(
sup

ρ(λi ,λ)≤un

m(xn|λ) > e
−nw′

nε2
n,0

)

≤
Nn(�n\�0)∑

i=1

En
θ0

[ϕn,i]

+ e
nw′

nε2
n,0

{Nn(�n\�0)∑
i=1

En
θ0

(
sup

ρ(λi ,λ)≤un

∫
ψ−1

λi ,λ
{Bn(λi)}

e
n(θ)−
n(θ0) d�(θ |λ)

)

+
Nn(�n\�0)∑

i=1

En
θ0

(
sup

ρ(λi ,λ)≤un

∫
ψ−1

λi ,λ
{�n(λi)∩Bn(λi)

c}
e
n(θ)−
n(θ0)

× (1 − ϕn,i) d�(θ |λ)

)
(4.6)

+
Nn(�n\�0)∑

i=1

En
θ0

(
sup

ρ(λi ,λ)≤un

∫
ψ−1

λi ,λ
{�n(λi)

c}
e
n(θ)−
n(θ0) d�(θ |λ)

)}

≤ Nn(�n \ �0)2e−c1n infi εn(λi)
2c(λi)

2

+ e
nw′

nε2
n,0

{Nn(�n\�0)∑
i=1

∫
Bn(λi)

Qθ
λi,n

(Xn) d�(θ |λi)

+
Nn(�n\�0)∑

i=1

∫
�n(λi)∩Bn(λi)

c
Qθ

λi,n
(1 − ϕn,i) d�(θ |λi)

+
Nn(�n\�0)∑

i=1

∫
�n(λi)

c
Qθ

λi,n
(Xn) d�(θ |λi)

}
.

Next, we deal with each term on the right-hand side of (4.6) separately and
show that all of them tend to zero. One can easily see that since λi ∈ �n \ �0 and
following the definition of c(λi) given below (2.8), we have that

Nn(�n \ �0)e
−(c1/2)n infi εn(λi)

2c(λi)
2 ≤ Nn(�n \ �0)e

−(c1/2)w2
nnε2

n,0 = o(1).
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For the second term, we have following from assumption (2.5), the definitions
of εn(λ) and the set �0 given in (2.2) and (2.3), respectively, that

e
nw′

nε2
n,0

Nn(�n\�0)∑
i=1

∫
Bn(λi)

Qθ
λi,n

(Xn) d�(θ |λi)

≤
Nn(�n\�0)∑

i=1

e
nw′

nε2
n,0eo(1)nε2

n(λi)�
(
Bn(λi)|λi

)

≤ e
−nM2

nε2
n,0(c̃

−1
0 +o(1)) = o(1).

Next, following from (4.5) we have that

e
nw′

nε2
n,0

Nn(�n\�0)∑
i=1

∫
�n(λi)∩Bn(λi)

c
Qθ

λi,n
(1 − ϕn)d�(θ |λi)

≤ e
nw′

nε2
n,0

Nn(�n\�0)∑
i=1

e−c1nεn(λi)
2c(λi)

2

≤ e
−c1nw2

nε2
n,0(1+o(1)) = o(1).

Finally, we have following assumption (2.6) that the fourth term on the right-hand
side of (4.6) can be bounded from above by

e
nw′

nε2
n,0

Nn(�n\�0)∑
i=1

∫
�n(λi)

c
Qθ

λi,n

(
X (n))d�(θ |λi) ≤ Nn(�n \ �0)e

−(w2
n−w′

n)nε2
n,0

≤ e
−nw2

nε2
n,0(1+o(1)) = o(1).

4.2. Proof of Corollary 2.1. The proof of Corollary 2.1, follows the same lines
of reasoning as Theorem 1 in [8], with the adding remark that

m(xn|λ̂n) ≥ m(xn|λ), ∀λ ∈ �n,

so that no uniform lower bound in the form infλ∈�0 m(xn|λ) is required. We have

En
θ0

�
(
d(θ, θ0) > MMnεn,0|xn; λ̂n

)

= En
θ0

(∫
d(θ,θ0)>MMnεn,0

e
n(θ)−
n(θ0) d�(θ |λ̂n)∫
� e
n(θ)−
n(θ0) d�(θ |λ̂n)

)
≡ En

θ0

(
Hn(λ̂n)

m(xn|λ̂n)

)
.

We construct ϕn = maxλi
maxj maxl ϕ

(i)
n (θj,l), with (λi)i≤Nn(�0) a net of �0 with

radius un, and for all j ≥ MMn, (θj,l)l≤Nn,j
a ζjεn(λi) net of S̄n,j = {θ, jεn,0 ≤
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d(θ, θ0) ≤ (j + 1)εn,0} ∩ �n(λi). By assumption (C2), logNn,j ≤ c1nj
2ε2

n/2 and
logNn(�0) ≤ c3nε2

n,0 (for some c3 > 0). Then we have for any c2 > 0,

En
θ0

(
Hn(λ̂n)

m(xn|λ̂n)

)
≤ P n

θ0
(λ̂n /∈ �0) + En

θ0
(ϕn) + P n

θ0

[
m(xn|λ̂n) < e

−c2nε2
n,0

]
(4.7)

+ e
c2nε2

n,0En
θ0

[
(1 − ϕn) sup

λ∈�0

Hn(λ)
]
.

We assumed that the first term tends to zero (see Theorem 2.1 for verification of
this condition in case of MMLE). Furthermore, by construction

En
θ0

(ϕn) ≤ Nn(�0) sup
i

∑
j≥MMn

ec1nj
2ε2

n(λi)/2e−c1nj
2ε2

n(λi) � e
−nc1M

2
nε2

n,0/4
.

Also,

P n
θ0

[
m(xn|λ̂n) < e

−c2nε2
n,0

] ≤ P n
θ0

[
m(xn|λ0) < e

−c2nε2
n,0

] = o(1)

following from (4.1) with c2 ≥ c3 + M1(c̃0 + 2M2
2 + 2). The control of the last

term of (4.7) follows from the proof of Theorem 1 of [8].

4.3. Proof of Theorem 2.3. As a first step for notational convenience, let us
denote by Bc

n the sets {θ : d(θ, θ0) ≥ MMnεn,0} or {θ : d(θ, θ0) ≤ δnεn,0}
�

(
Bc

n|xn

) =
∫
�0(Mn)

�
(
Bc

n|xn;λ)
π̃(λ|xn) dλ

+
∫
�0(Mn)c

�
(
Bc

n|xn;λ)
π̃ (λ|xn) dλ(4.8)

≤ sup
λ∈�0(Mn)

�
(
Bc

n|xn;λ) +
∫
�0(Mn)c

π̃(λ|xn) dλ.

Then from the proofs of Theorem 1 of [8] and Theorem 2.2 follows that the ex-
pected value of the first term on the right-hand side of the preceding display tends
to zero. We note that assumption (H2) is needed to deal with the denominator in
the posterior, unlike in Corollary 2.1, where weaker assumptions were sufficient
following from the definition of the maximum marginal likelihood estimator λ̂n.

Hence, it remained to deal with the second term on the right-hand side of (4.8).
The hyper-posterior takes the form

π(λ|xn) ∝ m(xn|λ)π̃(λ)

and from the proof of Theorem 1 of [8] (pages 10–11) and (4.6) in the proof of
Theorem 2.1 we have with P n

θ0
-probability tending to one that

m(xn|λ) ≥ e
−(c̃0+2M2

2 )w̃2
nnε2

n,0 for λ ∈ �0(w̃n), and

m(xn|λ) ≤ e
−w′

nnε2
n,0 for λ ∈ �n \ �0(Mn),
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for any w′
n = o(M2

n ∧w2
n), hence there exists w′

n, which also satisfies w̃n = o(w′
n).

Therefore, with P n
θ0

-probability tending to one we also have that

∫
�n\�0(Mn)

π(λ|xn) dλ ≤ e
−w′

nnε2
n,0

e
−(c̃0+2M2

2 )w̃2
nnε2

n,0
∫
�0(w̃n) π̃(λ) dλ

= o(1).

Finally, similarly to the preceding display we have that

En
θ0

∫
�\�n

π(λ|xn) dλ ≤
∫
�\�n

En
θ0

m(xn|λ)π̃(λ) dλ

e
−(c̃0+2M2

2 )w̃2
nnε2

n,0
∫
�0(w̃n) π̃(λ) dλ

+ o(1)

� e
(c̃0+2M2

2 +1)w̃2
nnε2

n,0

∫
�\�n

π̃(λ) dλ + o(1) = o(1),

completing the proof.

APPENDIX: PROOF OF THE LEMMAS ABOUT THE RATE εn(λ)

A.1. Proof of Lemma 3.1. We have ‖θ − θ0‖2
2 = ∑k

j=1(θj − θ0,j )
2 +∑∞

j=k+1 θ2
0,j so that ‖θ − θ0‖2

2 ≤ K2ε2 if and only if
∑k

j=1(θj − θ0,j )
2 ≡

‖θ −θ0,[k]‖2
2 ≤ δ2, with δ2 = K2ε2 −∑∞

j=k+1 θ2
0,j , and θ0,[k] = (θ0,j , j ≤ k). Then

∫
θ∈Rk

g(θ)1
{‖θ − θ0,[k]‖2 ≤ δ

}
dθ ≤ ‖g‖k∞

πk/2δk

�(k/2 + 1)

≥ gk πk/2δk

�(k/2 + 1)

with g = infBk(δ) g(x) where Bk(δ) = {x;mini≤k |x − θ0,i | ≤ δ}. The Stir-
ling formula implies that both the lower and upper bounds have the form
exp{k log(Cδ/

√
k)} and since δ = o(1) this is equivalent to exp{k log(δ/

√
k)(1 +

o(1))}. We thus have

εn(k) >

(∑
i>k

θ2
0,i

)1/2/
K and nε2

n(k) = k log(
√

k/sn)
(
1 + o(1)

)
,

with s2
n = K2ε2

n(k) − ∑∞
j=k+1 θ2

0,j . In other words, sn > 0 and

(A.1) s2
n +

∞∑
j=k+1

θ2
0,j = K2k

n
log

(√
k

sn

)(
1 + o(1)

)
.

Also, if
∑∞

j=k+1 θ2
0,j = o(k logn/n), then (A.1) implies that

s2
n = K2k

n
log

(√
k

sn

)(
1 + o(1)

) ⇒ s2
n = K2k

2n
log

(
2n/K2)(

1 + o(1)
)
.
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Now take θ0 ∈ H∞(β,L) ∪ Sβ(L), since
∑

i>k θ2
0,i � k−2β , choosing k =

�(n/ logn)1/(2β+1)� leads to εn,0 � (n/ logn)−β/(2β+1). Finally, considering θ2
0,i =

(1+ i)−2β−1 for H∞(β,L) implies that this is also a lower bound in this case. Fur-
thermore, for all δn = o(1/Mn) and for all k such that

k−2β + k logn

n
≤ M2

n(n/ logn)−2β/(2β+1) ⇒ k � M2
n(n/ logn)1/(2β+1)

and δ2
n(k

−2β + k logn/n) = o(k−2β) = o(
∑

i>k θ2
0,i) so that

�
(‖θ − θ0‖2 ≤ δnεn(k)|k) = 0

and condition (2.12) is verified.

A.2. Proof of Lemma 3.2. We need to study

inf
h∈Hα,τ :‖h−θ0‖2≤εn

‖h‖2
Hα,τ .

Let us distinguish three cases β > α + 1/2, β < α + 1/2 and β = α + 1/2, and
note that the following computations hold both for the truncated and nontruncated
versions of the priors (T2) and (T3).

In the case β > α + 1/2 and if θ2
0,i ≤ Li−2β−1 for all i, then

inf
h∈Hα,τ :‖h−θ0‖2≤ε

‖h‖2
Hα,τ ≤ τ−2L

∞∑
i=1

i2α−2β � Lτ−2

β − α − 1/2

while when θ0 ∈ Sβ(L) infh∈Hα,τ :‖h−θ0‖2≤ε ‖h‖2
Hα,τ ≤ τ−2L. Also,

n− α
2α+1 τ

1
2α+1 � εn(α, τ ) � n− α

2α+1 τ
1

2α+1 +
(

1

nτ 2(β − α − 1/2)

)1/2

if θ0 ∈ H∞(β,L), while

n− α
2α+1 τ

1
2α+1 � εn(α, τ ) � n− α

2α+1 τ
1

2α+1 +
(

1

nτ 2

)1/2

if θ0 ∈ Sβ(L). Now, if 0 < β < α + 1/2, with θ0 ∈ H∞(β,L)

inf
h∈Hα,τ :‖h−θ0‖2≤ε

‖h‖2
Hα,τ ≤ τ−2L

( L
2β

)
1

2β ε
− 1

β
n∑

i=1

i2α−2β � L
2α+1

2β
τ−2ε

− 2α−2β+1
β

2α + 1 − 2β

and when θ0 ∈ Sβ(L)

inf
h∈Hα,τ :‖h−θ0‖2≤ε

‖h‖2
Hα,τ ≤ τ−2L

2α+1
2β ε−(2α−2β+1)/β .
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If β = α + 1/2, the same result holds for θ0 ∈ Sβ(L), but it becomes

inf
h∈Hα,τ :‖h−θ0‖2≤ε

‖h‖2
Hα,τ ≤ τ−2L

β

∣∣log(ε)
∣∣(1 + o(1)

)
when θ0 ∈ H∞(β,L). These lead to the upper bound in (3.5) and (3.6).

Furthermore, for every θ0 ∈ Sβ(L) ∪ H∞(β,L) satisfying ‖θ0‖2 > 2ε, when
‖h − θ0‖2 ≤ ε then ‖h‖2 > ‖θ0‖2/2, hence

inf
h∈Hα,τ :‖h−θ0‖2≤ε

‖h‖2
Hα,τ ≥ τ−2 inf

h∈Hα,τ :‖h−θ0‖2≤ε
‖h‖2

2 � ‖θ0‖2
2τ

−2.

Hence, if ‖θ0‖2 > 2εn(α, τ ) for a(α,β) defined in Lemma 3.2,

εn(λ) � ‖θ0‖2√
nτ 2

+ n−α/(2α+1)τ 1/(2α+1)

and for all τ 2n lower bounded by a positive constant the above inequality remains
valid when ‖θ0‖2 ≤ 2εn(λ), providing us the lower bound in (3.5) and (3.6).

A.3. Proof of Lemma 3.3. The proof is based on minimizing the upper
bounds obtained in Lemmas 3.1 and 3.2.

• First, consider λ = τ . When β > α + 1/2, note that for all τ ≥ n−1/(4α+4)

(
1

nτ 2

)1/2
� n−α/(2α+1)τ 1/(2α+1)

so that εn(τ ) � n−α/(2α+1)τ 1/(2α+1) which is minimized at τ � n−1/(4α+4) so
that (3.7) is verified. Following from (3.5), the lower bound is obtained with
every ‖θ0‖2 ≥ c > 0, for any arbitrary positive constant c. Indeed in this case,
we have εn(τ ) � (nτ 2)−1/2 which implies that the lower bound is the same as
the upper bound (3.7). Furthermore, we note that the lower bound

εn,0 � n−(2α+1)/(4α+4)(A.2)

holds for every θ0 �= 0 (and large enough n). Therefore, we also have for every
τ0 satisfying εn(τ0) � εn,0 that τ0 � n−1/(4α+4).

When β < α + 1/2, we have for all τ ≥ n−(β−α)/(2β+1) that εn(τ ) � n− α
2α+1 ×

τ
1

2α+1 , which is minimized at τ � n−(β−α)/(2β+1), leading to the upper bound (3.8).
The upper bound is obtained choosing for instance θ0,i = √

Li−β−1/2 for all i ≤
Kn, for some sequence Kn going to infinity, so that

inf‖h−θ‖2≤εn(τ )
‖h‖2

Hα,τ ≥ τ−2
Kn∑
i=1

i2α+1[
θ2

0,i − 2θ0,i (θ0,i − hi)
]

� τ−2(
LK2α−2β+1

n − 2
√

Lεn(τ)K2α−β+1
n

)
� τ−2K2α−2β+1

n
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and Kn ≤ k0εn(τ )−1/β . This leads to εn(τ ) ≥ (nτ 2)−β/(2α+1), with an extra logn

term in the case α + 1/2 = β and θ0 ∈ H∞(β,L) so that the lower bound is of the
same order as the upper bound (3.6) which in terms implies that the lower bound
is the same as the upper bound (3.8).

We now consider the case λ = α, then we have a generic upper bound for εn(α)

in the form n−(α∧β)/(2α+1) following from (3.5) and θ0 ∈ H∞(β,L) ∪ Sβ(L),
while the lower bound is a multiple of n−α/(2α+1). We thus have εn,0 � n−β/(2β+1)

for all θ0 ∈ H∞(β,L) ∪ Sβ(L) and the constant depends only on β and L.

A.4. Proof of equation (3.17) in Proposition 3.6. We prove the first part of
proposition, namely the bounds on εn(k). Denote by g0 the function

g0(x) = k

k∑
j=1

η̃j1Ij
(x),

then g0 is the projection of
√

f0 on the set of piecewise constant functions on a k

regular grid and for any θ ∈ Sk the k-dimensional simplex,

h2(f0, fθ ) = h2(
f0, g

2
0
) +

k∑
j=1

(
√

θj − η̃j

√
k)2 ≥ h2(

f0, g
2
0
) = b(k)2.

Define θ̄j,k = (η̃j

√
k)2/

∑
l η̃

2
l k and for some vn = o(1) consider θ = (θ1, . . . ,

θk) ∈ Sk satisfying |θj − θ̄j,k| ≤ θ̄j,kvn for j ≤ k − 1. Then |θk − θ̄k,k| ≤∑k−1
j=1 θ̄j,kvn ≤ vn. Note that b(k)2 = 1 − ∑k

j=1 η̃2
j k, so that

k∑
j=1

(
√

θj − η̃j

√
k)2 =

k∑
j=1

(√
θj −

√
θ̄j,k

√∑
l

η̃2
l k

)2

≤ 2
k∑

j=1

(
√

θj −
√

θ̄j,k)
2 + 2

k∑
j=1

θ̄j,k

(√∑
l

η̃2
l k − 1

)2

≤ 2v2
n + 2b(k)2,

which implies that for such θ , h2(f0, fθ ) ≤ 3b(k)2 + 2v2
n. Since c0 ≤ f0 ≤ C0,

c0/k ≤ θ̄j,k ≤ C0/k and we also have, as in the proof of Lemma 6.1 of [11], that
if vn ≤ c0/(2k), then vn ≤ θ̄k,k/2 and

π
(|θj − θ̄j,k| ≤ θ̄j,kvn,∀j ≤ k − 1

)
� �(kα)

�(α)k
θ̄α−1
k,k

∏
j≤k−1

∫ θ̄j,k(1+vn)

θ̄j,k(1−vn)
xα−1 dx

� (C1vn)
k�(kα)

(α�(α))k−1�(α)

∏
j≤k−1

θ̄ α
j,k

� (C2vn)
k�(kα)k−kα

(α�(α))k−1�(α)
,
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for some constant C1,C2 > 0. Since α ≤ A, if vn = n−h for some h > 0,

π
(|θj − θ̄j,k| ≤ θ̄j,kvn,∀j ≤ k − 1

)
� e−ck logn,

which implies that for all k such that b(k)2 � k logn/n we have εn(k)2 �
b(k)2 + k logn/n. We now bound from below εn(k). Since h2(f0, fθ ) = b(k)2 +∑k

j=1(
√

θj −
√

θ̄j,k

√
1 − b(k)2)2, on the set h2(f0, fθ ) ≤ ε2

n, b(k)2 ≤ ε2
n and∑k

j=1(
√

θj −
√

θ̄j,k

√
1 − b(k)2)2 ≤ ε2

n. Using elementary algebra and the Cauchy–
Schwarz inequality, we have if εn is small, b(k) is small and

k∑
j=1

(√
θj −

√
θ̄j,k

√
1 − b(k)2

)2

≥
k∑

j=1

(
√

θj −
√

θ̄j,k)
2 + b4(k)

4
− 2b2(k)

√√√√√ k∑
j=1

(
√

θj −
√

θ̄j,k)2

=
(√√√√√ k∑

j=1

(
√

θj −
√

θ̄j,k)2 − b(k)2

2

)2

.

Over the set
∑k

j=1(
√

θj −
√

θ̄j,k)
2 ≥ ε2

n/2, then

√√√√√ k∑
j=1

(
√

θj −
√

θ̄j,k)2 ≥ b(k)2

and

k∑
j=1

(√
θj −

√
θ̄j,k

√
1 − b(k)2

)2 ≥ 1

4

k∑
j=1

(
√

θj −
√

θ̄j,k)
2,

so that if h(f0, fθ ) ≤ εn small enough, then

h2(f0, fθ ) ≥ b(k)2 + 1

4

k∑
j=1

(
√

θj −
√

θ̄j,k)
2.

Hence,

�
{
h2(f0, fθ ) ≤ Kεn(k)2}

≤ �

(
k∑

j=1

(
√

θj −
√

θ̄j,k)
2 ≤ Kεn(k)2 − b(k)2

)
,
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with b(k)2<Kεn(k)2. Set s2
n = Kεn(k)2 − b(k)2. On the set

k∑
j=1

(
√

θj −
√

θ̄j,k)
2 ≤ s2

n,

we split {1, . . . , k − 1} into |√θj −
√

θ̄j,k| ≤ 1/
√

k and |√θj −
√

θ̄j,k| > 1/
√

k.

The cardinality of the latter is bounded from above by s2
nk. Moreover, if |√θj −√

θ̄j,k| ≤ 1/
√

k then by triangle inequality
√

θj � 1/
√

k else
√

θj � sn. We have

�

(
k∑

j=1

(
θ

1/2
j − θ̄

1/2
j,k

)2 ≤ s2
n

)

≤ πk/2�(αk)sk
n

�(α)k�(k/2 + 1)

�s2
nk�∑

l=0

(
k

l

)
s(2α−1)l
n k−(k−l)(α−1/2)

≤ π
k
2 �(αk)sk

n

�(α)k�(k/2 + 1)

(
k−k(α−1/2)

+ ∑
l≤s2

nk

Cel log(k)+2l−(k−l)(α−1/2) log(k)+2l(α−1/2) log(sn)

)

� exp
{
αk log(k) − k log�(α) − k

2
log(k) + k log(sn)

− k

(
α − 1

2

)
log k + O(k)

}

� exp
(
k log(sn) + O(k)

)
if α ≥ 1/2. If α < 1/2, for each θ split {1, . . . , k − 1} into the set S of indices
where θi ≥ ρn/k and its complement, with ρn = o(1). The number of indices such

that θi < ρn/k is bounded by O(s2
nk) on the set

∑k
j=1(

√
θj −

√
θ̄j,k)

2 ≤ s2
n , so that

�

(
k∑

j=1

(
√

θ −
√

θ̄j,k)
2 ≤ s2

n

)

≤ �(kα)

�(α)k

× ∑
S⊂{1,...,k}

∫
∑

i∈S(θ
1/2
i −θ̄

1/2
i,k )2≤s2

n

1 ∀i∈S
θi≥ ρn

k

∏
i∈S

θα−1
i dθi

∫
1∀i∈Sc

θi<
ρn
k

∏
i∈Sc

θα−1
i dθi

≤ �(kα)

�(α)k
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× ∑
S⊂{1,...,k}

(∫
∑

i∈S(ui−θ̄
1/2
i,k )2≤s2

n

1 ∀i∈S

ui≥(
ρn
k

)
1
2

∏
i∈S

u2α−1
i dui

)(
ρn

k

)|Sc|α
α−|Sc|

≤ �(kα)

�(α)k

∑
l≥k(1−s2

n)

(
ρn

k

)(k−l)α

α−(k−l)

(
ρn

k

)l(α−1/2)
√

π
l
sl
n

�(l/2 + 1)

(
k

l

)

≤ �(kα)

(α�(α))k
(ρn/k)kα

k∑
l≥k(1−s2

n)

αle
l log( k1/2Csn√

lρn
)+k log k−l log l−(k−l) log(k−l)+O(k)

≤ exp
{
kα log(ρn) + k log(sn/

√
ρn) + O(k)

} ≤ ek log sn−k(1/2−α) logρn+O(k).

Hence, choosing | logρn| = o(| log sn|) leads to

�

(
k∑

j=1

(
√

θ −
√

θ̄j,k)
2 ≤ s2

n

)
≤ ek(1+o(1)) log sn,

so that s2
n| log sn| ≥ k/n and s2

n � k/n log(n/k).
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SUPPLEMENTARY MATERIAL

Supplement to “Asymptotic behaviour of the empirical Bayes posteriors
associated to maximum marginal likelihood estimator” (DOI: 10.1214/16-
AOS1469SUPP; .pdf). This is the supplementary material associated to the present
paper. We provide here the proofs of Propositions 3.1–3.6, together with some
technical Lemmas used in the context of priors (T2) and (T3) and some techni-
cal Lemmas used in the study of the hierarchical Bayes posteriors. Finally some
Lemmas used in the regression and density estimation problems are given.
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