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PSEUDO-VALUE APPROACH FOR CONDITIONAL QUANTILE
RESIDUAL LIFETIME ANALYSIS FOR CLUSTERED SURVIVAL

AND COMPETING RISKS DATA WITH APPLICATIONS TO BONE
MARROW TRANSPLANT DATA1

BY KWANG WOO AHN AND BRENT R. LOGAN

Medical College of Wisconsin

Quantile residual lifetime analysis is conducted to compare remaining
lifetimes among groups for survival data. Evaluating residual lifetimes among
groups after adjustment for covariates is often of interest. The current litera-
ture is limited to comparing two groups for independent data. We propose a
pseudo-value approach to compare quantile residual lifetimes given covari-
ates between multiple groups for independent and clustered survival data.
The proposed method considers clustered event times and clustered censoring
times in addition to independent event times and censoring times. We show
that the method can also be used to compare multiple groups on the cause-
specific residual life distribution in the competing risk setting, for which there
are no current methods which account for clustering. The empirical Type I er-
rors and statistical power of the proposed study are examined in a simulation
study, which shows that the proposed method controls Type I errors very well
and has higher power than an existing method. The proposed method is illus-
trated by a bone marrow transplant data set.

1. Introduction. A blood and marrow transplant is one of the most widely
used procedures to treat cancers, including leukemia, lymphoma and multiple
myeloma. As patients survive longer, pre- and post-transplant exposures have the
potential to compromise life expectancy and can contribute to development of late
complications [Majhail and Rizzo (2013)]. Thus, clinicians in bone marrow trans-
plantation are often interested in studying survival outcomes for patients who sur-
vived for at least some specific period after transplant. For example, Martin et al.
(2010) studied residual life expectancy in patients surviving more than 5 years af-
ter allogeneic or autologous hematopoietic cell transplantation from 1970 through
2002. In practice, survival outcomes and censoring times of bone marrow trans-
plant data are often clustered due to a transplant center effect. Thus, developing
statistical models for clustered data is essential in studying residual life: remaining
lifetime of a patient given that the patient survived at least to time t .

Quantile residual lifetime analysis is often preferred when the distribution of the
residual lifetime is skewed [Ma and Wei (2012)]. Statistical methods for residual
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lifetime analysis with survival data have been recently developed as in Kim, Zhou
and Jeong (2012) and Lin, Zhang and Zhou (2015). Although they incorporate
covariates into the models, they are restricted to independent survival data.

To illustrate some existing methods, consider independent survival data with
sample size n. Let Ti , Ci and Zi be the event time, censoring time and covari-
ate vector of individual i, respectively, for i = 1, . . . , n. For simplicity, we as-
sume that Zi’s are fixed over time. The observed time of individual i is defined by
Xi = min(Ti,Ci). Let �i = I (Ti ≤ Ci). Define qτ as the τ th conditional quantile
residual lifetime given survival to time t0 for covariate Z = z0. Then qτ satisfies

(1.1) S(t0 + qτ |z0) = (1 − τ)S(t0|z0),

where S(t |Z) is a survival probability at time t given the covariate Z = z0. The Cox
proportional hazards model [Cox (1972)] and Breslow estimator [Breslow (1972)]
can be used to consistently estimate S(t |Z) as in Lin (2007) and Zhao et al. (2015).
Lin, Zhang and Zhou (2015) estimated a solution to (1.1) by solving

(1.2) Û (qτ ) = Ŝ(t0 + qτ |z0) − (1 − τ)Ŝ(t0|z0) = 0.

Let q̂τ be a solution to (1.2). Lin, Zhang and Zhou (2015) studied the asymptotics
of q̂τ and proposed one-sample and two-sample tests based on q̂τ for compar-
ing conditional residual lifetimes given Z = z0. However, they did not discuss
methods for comparing more than two groups, and their method is only applicable
for independent survival data. In addition, estimating the variance of q̂τ requires
simulation-based methods such as resampling methods and bootstrap in practice
[Zeng and Lin (2008)]. Thus, it is desirable to develop a nonsimulation-based
method for multiple group comparisons with independent and clustered data.

Jeong and Fine (2009) proposed analyzing the cause-specific residual life distri-
bution for the competing risks setting. For failure time T and cause of failure ε, let
the cumulative incidence function for cause k be Fk(t) = P(T ≤ t, ε = k). They
defined the residual cumulative incidence function given survival to t0 for cause k

as follows:

Fk(t + t0) − Fk(t0)

S(t0)
.

Let Qτ be the τ th quantile of the cause k residual cumulative incidence function
given survival to t0. Then Qτ is defined as a solution to

Fk(t0 + Qτ) − Fk(t0)

S(t0)
= τ.

Note that if there is at least an event for each cause, then Fk(∞) < 1 for all k.
Although the above equation allows that Fk(∞) < 1, Qτ may not exist for some
extreme τ . In this paper, we only consider a case that Qτ exists. A nonparamet-
ric test was developed for testing one sample and two samples by Jeong and Fine
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(2013). Like Lin, Zhang and Zhou (2015), they did not discuss methods for com-
paring more than two groups, and their method is only applicable to independent
data. Moreover, their proposed method does not take covariates into account.

We propose a pseudo-value-based method to compare quantile residual life-
times or residual cumulative incidence given covariates between multiple groups
for clustered survival and competing risks data. The pseudo-values can be used as a
response variable under the generalized estimating equations (GEE) setting. Thus,
statistical inference on clustered data can be readily handled via the GEE. Thanks
to this technical convenience, the GEE using pseudo-values has been widely used
to make inference on survival or competing risks data for independent and clus-
tered data [Andersen, Klein and Rosthøj (2003); Logan, Zhang and Klein (2011)].
Our proposed method using pseudo-values is flexible and the strategy can be ap-
plied to independent or clustered data, as well as to residual lifetimes or cumula-
tive incidence with minimal modifications. Standard errors and inference are also
straightforward, without requiring simulation-based techniques. Importantly, it al-
lows for covariate specific inference for comparing residual cumulative incidence
functions, which has not previously been accomplished. We describe our motivat-
ing data in Section 2. Then, in Section 3 we extend the pseudo-value technique,
which previously was restricted to clustered event times and independent censor-
ing times, to also handle clustered censoring times. In Section 4, we propose a test
statistic based on pseudo-values and study its asymptotic distribution. A simulation
study is conducted in Section 5. A bone marrow transplant example is illustrated
in Section 6. We give a brief conclusion in Section 7.

2. Data. The data for this application were collected by the Center for In-
ternational Blood and Marrow Transplant Research [Shaw et al. (2010)]. It con-
sists of pediatric patients (<18 years) undergoing allogeneic T-replete, myeloab-
lative bone marrow transplantation between 1993 and 2006. We study relapse and
disease-free survival (DFS) of patients with severe disease conditions in this pa-
per: intermediate or advanced disease status. The data contains 847 patients from
99 transplant centers. A significant center effect exists in DFS rates (p-value =
0.038) and relapse (p-value = 0.042) at a significance level of 0.05 using the ran-
dom effect score test of Commenges and Andersen (1995). The censoring times of
both endpoints are also correlated because their p-values from the score test are
0.050 and 0.008 for DFS and relapse, respectively.

We consider four variables: disease status, donor type, disease type and recipi-
ent age at transplant. They were all identified as significant factors for DFS in the
marginal Cox proportional hazards model [Lee, Wei and Amato (1992)]. There
are 619 and 228 patients with intermediate disease status and advanced disease
status, respectively. Donor type has three groups: 80 patients with one-antigen
mismatched related donors or phenotypically matched nonsibling related donors,
583 patients with human leukocyte antigen (HLA) identical sibling donors, and
184 patients with 8/8 allele-matched unrelated donors. Three disease types are
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FIG. 1. Cumulative incidence rate of treatment-related mortality (left plot) and histogram of resid-
ual follow-up time (right plot). The dotted vertical line of the left plot indicates 6 months after trans-
plant.

considered: 170 patients with acute myeloid leukemia (AML), 547 patients with
acute lymphoblastic leukemia (ALL), and 130 patients with myelodysplastic syn-
drome (MDS). Two groups are studied for recipient age as in Shaw et al. (2010):
554 patients who are younger than or equal to 10 years old and 293 who are older
than 10 years old.

Many of the deadly treatment-related complications occur within 3 months af-
ter bone marrow transplant. Early complications include acute graft-versus-host
disease, engraftment failure and various early infections. The left plot of Fig-
ure 1 shows the cumulative incidence rate of treatment-related mortality (TRM).
The dotted vertical line indicates 6 months after transplant. The majority of the
treatment-related deaths occurred within 6 months post transplant due to early
complications. Thus, it is of interest to study the residual lifetime of patients who
survived disease-free to at least 6 months after transplant. There were 547 patients
from 86 centers who survived disease-free to at least 6 months. The right plot of
Figure 1 shows the histogram of the last follow-up times of patients who survived
disease-free to at least 6 months. The median last follow-up time and the longest
last follow-up time are 15 months and 171 months, respectively. For patients who
survived disease-free to at least 6 months, 48% of relapse and 47% of events in
DFS occurred between 6 months and 1 year after transplant. An additional 21%
of relapse and 20% of events in DFS occurred between 12 months and 18 months
post transplant. These suggest that the distributions of event times for patients who
survived disease-free to at least 6 months after transplant are skewed in relapse
and DFS. Therefore, we will study conditional quantile residual lifetime of pa-
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tients who survived disease-free to at least 6 months in relapse and DFS based on
the four variables that we mentioned in the previous paragraph.

3. Pseudo-value approach. In this section, we extend the pseudo-value ap-
proach to clustered events and clustered censoring times for competing risks and
survival settings. We first consider the competing risks setting with two causes of
failure ε ∈ {1,2}. We assume that there are m clusters and each cluster has � in-
dividuals, where n = m × � is the total sample size. Note that the clusters may
have different sizes by defining censoring times as zero when observed times are
missing [Spiekerman and Lin (1998)]. Let Tij , Cij , εij and Zij be the event time,
censoring time, cause of failure and covariate vector of individual j in cluster i,
respectively, for i = 1, . . . ,m and j = 1, . . . , �. Let Ti = {Tij , j = 1, . . . , �},Ci =
{Cij , j = 1, . . . , �},εi = {εij , j = 1, . . . , �}, and Zi = {Zij , j = 1, . . . , �}. Suppose
that (Ti ,εi ,Ci ,Zi) are independent and identically distributed (i.i.d.). We assume
that the Cij ’s do not depend on the Zij ’s and the (Tij , εij )’s are independent of
the Cij ’s given Zij ’s for i = 1, . . . ,m and j = 1, . . . , �. This setting allows that
the event times may be correlated within the same cluster. Similarly, the censor-
ing times may be correlated within the same cluster. The Cij ’s are assumed to
have a common distribution G(t) = P(C ≥ t), where C is a censoring time. Let
Xij = min(Tij ,Cij ) be the observed time and �ij = I (Tij ≤ Cij ).

To define a pseudo-value, we first consider the unadjusted marginal cumulative
incidence function for cause 1 without loss of generality. We adjust for covari-
ates under the GEE framework after obtaining the pseudo-values. Let F1(t) =
P(T ≤ t, ε = 1) and Nkij (t) = I (Tij ≤ t)I (εij = k)�ij for k = 1,2. Define
Nij (t) = N1ij (t) + N2ij (t). Let Yij (t) = I {t ≤ Xij } and Y(t) = ∑m

i=1
∑�

j=1 Yij .

The cumulative incidence estimate can be estimated by F̂1(t) = ∫ t
0 Ŝ(u−) dĤ1(u),

where Ŝ(u−) is the Kaplan–Meier estimate of event-free survival and Ĥ1(t) is the
estimated cause-specific cumulative hazard function given by

dĤ1(t) =
m∑

i=1

�∑
j=1

dN1ij (t)

Y (t)
.

Zhou et al. (2012) showed that F̂1(t) is a consistent estimator of F1(t) for clustered
competing risks event times and clustered censoring times.

A pseudo-value at time t of the j th individual in the ith cluster for F1(t) is
defined by

P
f
ij (t) = nF̂1(t) − (n − 1)F̂

−ij
1 (t), i = 1, . . . ,m, j = 1, . . . , �,

where F̂
−ij
1 (t) is the cumulative incidence estimate obtained by omitting the j th

individual in the ith cluster. Let Nc
ij (t) = I (Cij ≤ t) and Hc(t) be the cumula-

tive hazard function by treating censored observations as events. Let Mc
ij (t) =
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Nc
ij (t) − ∫ t

0 I (Xij ≥ u)dHc(u) and T is an event time of any cause. Then, as in
the Supplementary Materials [see Ahn and Logan (2016)], we can show

(3.1) P
f
ij (t) = N1ij (t)

G(Xij )
+

∫ Xij

0

P(T ≤ t, ε = 1|T ≥ u)

G(u)
dMc

ij (u) + Op

(
m−1/2)

,

which implies that Pf
i (t) = {P f

i1(t), . . . ,P
f
i�(t)}T ’s asymptotically depend on i.

Thus, Pf
i (t)’s are asymptotically independent with limm→∞ E(P

f
ij (t)|Zij ) =

F1(t |Zij ). A generalized estimating equation (GEE) setting can be used by treating
pseudo-values as a response variable [Andersen, Klein and Rosthøj (2003); Logan,
Zhang and Klein (2011); Klein and Andersen (2005)]. We illustrate the use of the
GEE at a fixed time point t . To model the marginal cumulative incidence function
at time t , we assume the cumulative incidence is related to covariates through a link
function h(·) so that h{F1(t |Zij )} = βT Zij . Let νij (t) = F1(t |Zij ) = h−1(βT Zij )

and νi = {νi1(t), . . . , νi�(t)}T for i = 1, . . . ,m and j = 1, . . . , �. Then the GEE is
defined as follows: ∑

i

(
∂νi

∂β

)T

V−1
i

(
Pf

i − νi

) = 0,

where Vi is a working covariance matrix for Pf
i . Statistical inference on β can be

readily handled by using the sandwich estimator in GEE [Liang and Zeger (1986)],
which is consistent even if the working correlation matrix is misspecified [Zeger,
Liang and Albert (1988)]. This sandwich estimator may slightly overestimate the
variance of β̂ as Jacobsen and Martinussen (2014) pointed out. However, they ar-
gued that this overestimation should be minor in many applications because their
simulation study showed that the sandwich estimator estimated the variance of β̂
very well unless β was too large. In addition, Logan, Zhang and Klein (2011), Ahn
and Mendolia (2014), and Klein and Andersen (2005) showed that the sandwich
estimator worked well for the pseudo-value approach under their various simula-
tion settings.

For the survival setting, the pseudo-value for survival at time t is defined as
P s

ij (t) = nŜ(t) − (n − 1)Ŝ−ij (t) for i = 1, . . . ,m and j = 1, . . . , �, where Ŝ−ij (t)

is the Kaplan–Meier estimate obtained by omitting the j th individual in the ith
cluster. As in the competing risks setting, we can show

(3.2) P s
ij (t) = Nij (t)

G(Xij )
+

∫ Xij

0

P(T ≤ t |T ≥ u)

G(u)
dMc

ij (u) + Op

(
m−1/2)

,

where T is event time of interest. This shows that limm→∞ E{P s
ij (t)|Zij } =

S(t |Zij ) and Ps
i (t) = (P s

i1(t), . . . , P
s
i�(t))

T ’s are asymptotically independent. The
GEE setting can be similarly used as in the competing risks setting to directly
model the marginal survival function at time t in the presence of clustered survival
and censoring data.
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4. Method. In this section, we propose a test to compare the conditional resid-
ual quantiles between multiple groups for independent and clustered data given a
fixed covariate level Z = z0. We first propose a test for the competing risks setting
where cause 1 is of interest.

We denote Qgτ , g = 1, . . . , ζ as the τ th conditional quantiles of the cause 1
residual cumulative incidence given survival to time t0 for group g when the co-
variate level is Z = z0. Then Qgτ is defined as a solution to

Ug(Qgτ ) = F1g(t0 + Qgτ |z0) − F1g(t0|z0) − τSg(t0|z0) = 0,

where F1g(t |z0) and Sg(t |z0) are the cumulative incidence and survival probability
at time t given Z = z0 for group g. Assuming that F1g(t |z0) is absolutely continu-
ous and f1g(t |z0) = dF1g(t |z0)/dt is positive on some neighborhood of t0 + Qgτ ,
Ug(Qgτ ) has a unique solution. We are interested in testing H0 : Q1τ = · · · =
Qζτ ≡ Qτ . Testing H0 is equivalent to testing H ′

0 : U1(Qτ ) = · · · = Uζ (Qτ ) = 0
due to the unique solution of Ug(Qτ ) for g = 1, . . . , ζ . To test H ′

0, we follow the
steps below:

1. Obtain a consistent estimator Q̂τ of Qτ based on the pooled data;
2. Compute pseudo-values P

f
ij (t0 + Q̂τ ),P

f
ij (t0) and P s

ij (t0) for i = 1, . . . ,m

and j = 1, . . . , �;
3. Fit GEE using the pseudo-values to estimate F1g(t0 +Q̂τ |z0),F1g(t0|z0) and

Sg(t0|z0) for g = 1, . . . , ζ ;
4. Estimate Ug(Qτ ) for g = 1, . . . , ζ and their covariance matrix using the es-

timates of the GEE;
5. Obtain a quadratic form test statistic to test H ′

0.

For step 1, we first study how to obtain consistent estimates of S(t |Z) and
F1(t |Z). A consistent estimate of S(t |Z) even for clustered data is obtained by
the marginal Cox model and Breslow estimator. See the Supplementary Materials
for details of the marginal Cox model and Breslow estimator for clustered data, and
the asymptotic distribution of S(t |Z). To obtain a consistent estimate of F1(t |Z),
we use a marginal proportional subdistribution hazard model proposed by Zhou
et al. (2012). Here the subdistribution hazard λ1(t |Z) = dF1(t |Z)/{1 − F1(t |Z)}
follows a proportional hazards representation as

λ1(t |Z) = λ10(t) exp
(
βT Z

)
.

Under this model, the cumulative subdistribution hazard for cause 1 can be esti-
mated by


̂1(t |Z) =
∫ t

0
exp

(
β̂

T
Z

)
d
̂10(u)

= 1

n

m∑
i=1

�∑
j=1

∫ t

0

exp(β̂
T

Z)

1
n

∑m
a=1

∑�
b=1 ŵab(u)I (Xab ≥ u) exp{β̂T

Z}
× ŵij (u) dN1ij (u),
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where ŵij (t) = I {Cij ≥ min(Xij , t)}Ĝ(t)/Ĝ{min(Xij , t)} and Ĝ(t) is the Kaplan–
Meier estimate at time t for the censoring distribution. Zhou et al. (2012) showed
the consistency of F̂1(t |Z) = 1 − exp{−
̂1(t |Z)} for clustered event times and
clustered censoring times.

Let F̂1(t |z0) and Ŝ(t |z0) be consistent estimators of F1(t |z0) and S(t |z0) based
on the pooled data. Then, under the null hypothesis, Qτ can be consistently esti-
mated by solving F̂1(t0 + Qτ |z0) − F̂1(t0|z0) − τ Ŝ(t0|z0) = 0. We estimate Q̂τ as
the smallest Qτ at which F̂1(t0 + Qτ |z0) − F̂1(t0|z0) − τ Ŝ(t0|z0) crosses 0. Due
to the consistency of F̂1(t |z0) and Ŝ(t |z0), Q̂τ is also consistent.

For step 2, we calculate the pseudo-values P
f
ij (t0 + Q̂τ ),P

f
ij (t0) and P s

ij (t0) for
individual j of cluster i as described in Section 3.

Because each Ug(Q̂τ ) depends on the components F1g(t0 + Q̂τ |z0),F1g(t0|z0)

and Sg(t0|z0), we use a single pseudo-value regression model to obtain estimates
of these components for each group in step 3. One main advantage of using a single
pseudo-value regression model is that it provides direct estimates of the covariance
matrix across these components in the complex clustered data setting using the
sandwich variance estimate, leading to straightforward estimation of the variance
of the final test statistic. We parameterize a joint model using a link function h(·)
so that

μ
f
ij (t0) = F1g(t0|Zij ) = h−1(

φ + φ1 + γ T
1 Zij + θ1g

)
,

μ
f
ij (t0 + Q̂τ ) = F1g(t0 + Q̂τ |Zij ) = h−1(

φ + φ2 + γ T
2 Zij + θ2g

)
,

μs
ij (t0) = Sg(t0|Zij ) = h−1(

φ + γ T
3 Zij + θ3g

)
,

where θ1ζ = θ2ζ = θ3ζ = 0. Here φ, φ + φ1 and φ + φ2 are intercept terms

for h{μs
ij (t0)}, h{μf

ij (t0)} and h{μf
ij (t0 + Q̂τ )}, respectively. And θ1g, θ2g and

θ3g are parameters for an indicator function of group g = 1, . . . , ζ − 1 for

h{μf
ij (t0)}, h{μf

ij (t0 + Q̂τ )} and h{μs
ij (t0)}, respectively. In matrix notation, con-

sider the response variable vector Pi = {Pf
i (t0),Pf

i (t0 + Q̂τ ),Ps
i (t0)}T , where

Pf
i (t) = {P f

i1(t), . . . ,P
f
i�(t)}T and Ps

i (t) = {P s
i1(t), . . . ,P

s
i�(t)}T for i = 1, . . . ,m.

Assuming N1ij (x) is continuous at x = Qτ + t0 with probability one, we can show

that Pf
i (t0 + Q̂τ ) converges in probability to Pf

i (t0 +Qτ) as in the Supplementary
Materials. Define the parameter vector α = (φ,φ1, φ2,γ

T
1 , θT

1 ,γ T
2 , θT

2 ,γ T
3 , θT

3 )T ,
where θk = (θk1, . . . , θkζ−1)

T for k = 1,2,3. Define the mean vector as μi =
{μf

i (t0),μ
f
i (t0 + Q̂τ ),μ

s
i (t0)}T for i = 1, . . . ,m, where μ

f
i (t) = (μ

f
i1(t), . . . ,

μ
f
i�(t))

T and μs
i (t) = (μs

i1(t), . . . ,μ
s
i�(t))

T for i = 1, . . . ,m. This joint model can
be fitted using the GEE∑

i

(
∂μi

∂α

)T

V−1
i (Pi − μi ) ≡ ∑

i

Ai (α) = 0,
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where Vi models the covariance matrix of Pi . Then
√

m(α̂ − α) converges in
distribution to N(0,
f ) given Q̂τ . The sandwich estimator is used to estimate 
f

as follows:


̂f = I(α̂)−1V̂ar
{
A(α̂)

}
I(α̂)−1,

where

I(α) = ∑
i

(
∂μi

∂α

)T

V−1
i

(
∂μi

∂α

)
, V̂ar

{
A(α̂)

} = ∑
i

Ai (α̂)Ai (α̂)T .

This GEE is used to estimate the parameter vector α and obtain the covariance
matrix of the estimate; however, what we are ultimately interested in is testing H ′

0
through U , which is specific to a particular covariate value z0.

Thus, in step 4, we estimate Ug(Q̂τ ) under the null hypothesis by

Ûg(Q̂τ ) = h−1(
φ̂ + φ̂2 + γ̂ T

2 z0 + θ̂2g

) − h−1(
φ̂ + φ̂1 + γ̂ T

1 z0 + θ̂1g

)
− τh−1(

φ̂ + γ̂ T
3 z0 + θ̂3g

)
, if g = 1, . . . , ζ − 1;

Ûζ (Q̂τ ) = h−1(
φ̂ + φ̂2 + γ̂ T

2 z0
) − h−1(

φ̂ + φ̂1 + γ̂ T
1 z0

) − τh−1(
φ̂ + γ̂ T

3 z0
)
,

if g = ζ .

Using the delta method, we can show that under the null hypothesis {Û1(Q̂τ ), . . . ,

Ûζ (Q̂τ )}T converges in distribution to N(0,�f 
f �T
f ), where

�f =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂U1(Q̂τ )

∂φ

∂U1(Q̂τ )

∂φ1
· · · ∂U1(Q̂τ )

∂θ3ζ−1

∂U2(Q̂τ )

∂φ

∂U2(Q̂τ )

∂φ1
· · · ∂U2(Q̂τ )

∂θ3ζ−1
...

...
. . .

...

∂Uζ (Q̂τ )

∂φ

∂Uζ (Q̂τ )

∂φ1
· · · ∂Uζ (Q̂τ )

∂θ3ζ−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We can obtain �̂f by plugging α̂ into �f .
Finally, in step 5, we construct a quadratic form test based on an estimate of the

vector

U = {
U1(Q̂τ ), . . . ,Uζ (Q̂τ )

}T
,

which should have a mean vector of 0 under the null hypothesis. Let ng be the

sample size of group g and n = ∑ζ
g=1 ng . Define the weighted mean of Ûg(Q̂τ )’s

as

U(Q̂τ ) = 1

n

ζ∑
g=1

ngÛg(Q̂τ ),
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which converges in probability to zero under the null hypothesis. Then, under the
null hypothesis, {Û1(Q̂τ ) − U(Q̂τ ), . . . , Ûζ (Q̂τ ) − U(Q̂τ )}T converges in distri-
bution to N(0,B�f 
f �T

f BT ), where

B = Iζ − 1

n
M,

Iζ is a ζ × ζ identity matrix and

M =

⎛⎜⎜⎜⎝
n1 n2 · · · nζ

n1 n2 · · · nζ

...
...

. . .
...

n1 n2 · · · nζ

⎞⎟⎟⎟⎠ .

Note that B�f 
f �T
f BT is not invertible. To test H ′

0, the final test statistic is

X2 = m
{
Û1(Q̂τ ) − U(Q̂τ ), . . . , Ûζ (Q̂τ ) − U(Q̂τ )

}T (
B�̂f 
̂f �̂T

f BT )−
× {

Û1(Q̂τ ) − U(Q̂τ ), . . . , Ûζ (Q̂τ ) − U(Q̂τ )
}
,

where (B�̂
̂�̂T BT )− is a generalized inverse of B�̂
̂�̂T BT . Under the null hy-
pothesis, X2 converges in distribution to a chi-squared distribution with degrees of
freedom ζ − 1.

The proposed method can be easily adapted to the one-sample setting where we
are interested in testing if Qτ = Q0τ for a prespecified Q0τ . Let

ωf =
{
∂U1(Q0τ )

∂φ
,
∂U1(Q0τ )

∂φ1
, . . . ,

∂U1(Q0τ )

∂θ3ζ−1

}T

.

Let ω̂f be an estimator of ωf by plugging α̂ into ωf . We propose a test statistic
mÛ1(Q0τ )

2/D̂, where D̂ = ω̂T
f 
̂f ω̂f . Under the null hypothesis, mÛ1(Q0τ )

2/D̂
follows a chi-squared distribution with degree of freedom 1.

The proposed method for the survival setting can be similarly constructed; see
the Supplementary Materials for details.

5. Simulation.

5.1. Survival setting. In this section, we perform a simulation study for the
survival setting. We consider a one-sample test first. A positive stable frailty is
used to generate correlated event times as in Logan, Zhang and Klein (2011). In-
dependent of event times, correlated censoring times are generated. We consider
m = 100,200 and 400 with cluster size � = 4. For each cluster, two independent
random effects w and wc are generated from a positive stable frailty distribution
with parameter ψ , where the Laplace transformation of the standard positive sta-
ble distribution is L(s) = exp(−sψ). Three ψ values are used: 0.25 and 0.5 for
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clustered data and 1 for independent data. These values of ψ would correspond
to values of Kendall’s τ equal to 0.75, 0.5 and 0, respectively [Logan, Zhang and
Klein (2011)]. For each cluster, three binary covariates are considered: (i) Z1 is a
cluster level covariate. For each cluster, a random binary number is generated with
probability 0.5 and it is assigned to all individuals within a cluster; (ii) Z2 is inde-
pendently generated with probability 0.5 for each individual within a cluster; and
(iii) Z3 represents a matched pair design. Thus, two individuals have 0’s and the
other two have 1’s. Following Logan, Zhang and Klein (2011), we generate event
and censoring times for each cluster from

(5.1) S(t |w) = exp
{−w exp

(
βT Z

)
t
}
, G(t |w) = exp(−wcλct),

where Z = (Z1,Z2,Z3)
T and ψβ = (1,−0.5,0.5)T . We select λc to gener-

ate a 50% censoring rate. We consider the median residual lifetime given z0 =
(1,1,1)T conditional on survival to t0, where S(t0|z0) = 0.8, which yields t0 =
−{log(0.8)}1/ψ/ exp(1/ψ). Let q0τ be the true conditional median lifetime un-
der the null hypothesis where τ = 0.5. Then q0τ = 0.013,0.107 and 0.255 for
ψ = 0.25,0.5 and 1, respectively.

To test qτ = q0τ , we test if S(t0 + q0τ |z0) − 0.5S(t0|z0) = 0 using GEE. The
identity link and logit link functions with the independence working correlation
matrix are considered. Table 1 shows the empirical Type I error probabilities
with 5000 iterations at a significance level of 0.05. For each link function, two
GEE models are fitted: (i) GEE ignoring within-cluster correlation, that is, as-
suming independent data; and (ii) GEE accounting for within-cluster correlation.
“PVI–Ind,” “PVI–Cluster,” “PVL–Ind” and “PVL–Cluster” indicate the pseudo-
value approach with identity link function assuming independent data, identity link
function accounting for within-cluster correlation, logit link function assuming in-
dependent data and logit link function accounting for within-cluster correlation,
respectively. As we can see in Table 1, the pseudo-value approach ignoring within-
cluster correlation performs well for independent data. However, it becomes more
liberal as the within-cluster correlation increases. Thus, the presence of a cluster
effect leads to underestimation of the variance when the cluster effect is ignored
under our simulation setting. On the other hand, the pseudo-value approach ac-
counting for within-cluster correlation controls Type I error very well for clustered
data. As m increases, its empirical Type I errors become closer to 0.05 in general.
It appears that the pseudo-value approach with the identity link function controls
Type I errors slightly better than that with the logit link function.

Next, we consider the three group comparison. A cluster size � = 6 is considered
with two binary covariates: (i) Z1 is a cluster level covariate so that it is generated
with probability 0.5; and (ii) Z2 is independently generated with probability 0.5
for each individual within a cluster. Each group has two individuals from each
cluster. We generate event and censoring times from (5.1) with Z = (Z1,Z2)

T and
ψβ = (1,0.5)T . We choose λc to generate a 50% censoring rate. We consider the
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TABLE 1
Empirical Type I error probabilities for the survival setting: “PVI–Ind,” “PVI–Cluster,” “PVL–Ind”

and “PVL–Cluster” indicate the pseudo-value approach with identity link function assuming
independent data, identity link function accounting for within-cluster correlation, logit link
function assuming independent data and logit link function accounting for within-cluster

correlation, respectively

ψ m PVI–Ind PVI–Cluster PVL–Ind PVL–Cluster

One-sample test
1 50 0.0600 0.0646 0.0658 0.0714

100 0.0506 0.0516 0.0530 0.0578
200 0.0506 0.0534 0.0508 0.0520
400 0.0502 0.0514 0.0504 0.0516

0.5 50 0.0918 0.0656 0.0990 0.0790
100 0.0872 0.0600 0.0902 0.0640
200 0.0868 0.0566 0.0832 0.0592
400 0.0862 0.0516 0.0848 0.0558

0.25 50 0.1172 0.0734 0.1286 0.0850
100 0.1148 0.0600 0.1100 0.0622
200 0.1096 0.0514 0.1046 0.0532
400 0.1122 0.0500 0.1024 0.0512

Three-sample test
1 50 0.0604 0.0732 0.0650 0.0812

100 0.0556 0.0584 0.0586 0.0626
200 0.0444 0.0504 0.0512 0.0524
400 0.0484 0.0514 0.0494 0.0520

0.5 50 0.0166 0.0714 0.0250 0.081
100 0.0146 0.0594 0.0204 0.0614
200 0.0148 0.0536 0.0178 0.0514
400 0.0124 0.0514 0.0168 0.0506

0.25 50 0.0032 0.0592 0.0126 0.0770
100 0.0018 0.0586 0.0038 0.0610
200 0.0016 0.0524 0.0034 0.0546
400 0.0010 0.0468 0.0024 0.0514

median residual lifetime given z0 = (1,1)T conditional on survival to t0, where
S(t0|z0) = 0.8, which leads t0 to be −{log(0.8)}1/ψ/ exp(1.5/ψ). Table 1 shows
the empirical Type I errors from the three-sample test with 5000 iterations. As
in the one-sample test setting, the pseudo-value approach accounting for within-
cluster correlation controls Type I errors very well for clustered data. As m in-
creases, the empirical Type I errors become closer to 0.05. The pseudo-value ap-
proach ignoring within-cluster correlation works properly only for independent
data as expected. It is somewhat conservative for clustered data. This is because
our three-group-comparison setting is more like a matched pairs setting, where
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ignoring the cluster effect amounts to ignoring the reduction in variance due to
the within-cluster group comparison. Therefore, the variance is overestimated and
the type I error is conservative. A similar phenomenon was seen in Logan, Zhang
and Klein (2011). We also examined various τ = 0.1,0.25,0.75 and 0.9. In addi-
tion, we performed a simulation assuming Z2 follows N(0,1) to study the median
residual lifetime given z0 = (0.5,1)T conditional on survival to t0. In all scenarios,
the proposed method performed as well as shown in Table 1. Thus, the results were
omitted.

We also compare the proposed method to Lin, Zhang and Zhou (2015). Because
the method of Lin, Zhang and Zhou (2015) is restricted to the two-sample test, the
two-group comparison is considered. Let qgτ be the conditional median residual
lifetime of group g for g = 1 and 2. To test q1τ = q2τ , Lin, Zhang and Zhou (2015)
proposed a test statistic

L = q̂1τ − q̂2τ

σ̂ 2
1 /n1 + σ̂ 2

2 /n2
,

where q̂iτ is obtained by solving (1.2) for group i and σ̂ 2
i /ni is the estimated

variance of q̂iτ for i = 1,2. Under the null hypothesis, L follows a chi-squared
distribution with degree of freedom 1. The bootstrap with 500 iterations is used to
estimate σ 2

i /ni for i = 1,2. We also conducted the bootstrap with 1000 iterations
for some of the simulation scenarios and obtained very similar results to those
with 500 iterations. The setting for examining empirical Type I errors is the same
as the three-group comparison’s except � = 4. Thus, each cluster consists of two
groups instead of three groups. We compare two median residual lifetimes given
z0 = (1,1)T conditional on survival to t0, where S(t0|z0) = 0.8. We examine m =
100 and m = 200. Table 2 shows the summary of 5000 iterations. For independent
data, all methods control Type I errors well, although the pseudo-value approaches
ignoring within-cluster correlation seem to work slightly better than the others.
However, Lin, Zhang and Zhou (2015) and the pseudo-value approaches ignoring
within-cluster correlation are conservative for clustered data. To compare power,
survival and censoring times are generated from

S1(t |w) = exp

{
−w

2∑
i=1

βiZit

}
, S2(t |w) = exp

{
−w

3∑
i=1

βiZit

}
,

G(t |w) = exp(−wcλct),

where Si(t |w) is the survival probability for group i, ψβ = (1,0.5,0.5)T and Zi’s
have the same definitions as in the three-group comparison setting. As can be seen
from Table 2, the pseudo-value approach has higher statistical power than Lin,
Zhang and Zhou (2015). It appears that the pseudo-value approach with the identity
link has the highest power among the five methods.
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TABLE 2
Two-sample setting with survival data and comparison to Lin, Zhang and Zhou (2015):“PVI–Ind,”
“PVI–Cluster,” “PVL–Ind” and “PVL–Cluster” indicate the pseudo-value approach with identity

link function assuming independent data, identity link function accounting for within-cluster
correlation, logit link function assuming independent data and logit link function accounting for

within-cluster correlation, respectively

ψ m PVI–Ind PVI–Cluster PVL–Ind PVL–Cluster Lin et al.

Empirical Type I errors
1 100 0.0552 0.0598 0.0540 0.0552 0.0594

200 0.0492 0.0486 0.0486 0.0506 0.0612

0.5 100 0.0204 0.0588 0.0238 0.0526 0.0382
200 0.0214 0.0558 0.0278 0.0558 0.0398

0.25 100 0.0046 0.0574 0.0074 0.0590 0.0304
200 0.0030 0.0560 0.0046 0.0540 0.0270

Empirical statistical power
1 100 0.6714 0.6742 0.5614 0.5712 0.2002

200 0.9304 0.9298 0.8554 0.8572 0.5256

0.5 100 0.6960 0.8216 0.5788 0.6584 0.0536
200 0.9572 0.9840 0.8832 0.9230 0.2616

0.25 100 0.7412 0.9054 0.6154 0.7400 0.0022
200 0.9732 0.9986 0.8986 0.9522 0.0190

5.2. Competing risks setting. In this section, we conduct a simulation study
for the competing risks setting. Consider the one-sample test first. As in Sec-
tion 5.1, a positive stable frailty is used to generate correlated event times and
censoring times. We consider m = 100,200 and 400 with cluster size � = 4. For
each cluster, two independent random effects w and wc are generated from a pos-
itive stable frailty distribution with parameter ψ = 0.25,0.5 and 1. Three binary
covariates are considered where the definitions of Z1,Z2 and Z3 are the same as in
Section 5.1. Similarly to Logan, Zhang and Klein (2011), we generate competing
risks event times and censoring times for each cluster from

F1(t |w) = 1 − {
1 − p

(
1 − e−t )}w exp(βT Z)

,

F2(t |w) = (1 − p)w exp(βT Z)(1 − e−t exp(βT Z)),(5.2)

G(t |wc) = exp(−wcλct),

where Z = (Z1,Z2,Z3)
T and ψβ = (1,−0.5,0.5)T . We select p and λc to gen-

erate 30% cause 1 events, 30% cause 2 events and 40% censoring. We consider
the 0.25th quantile of the cause 1 residual cumulative incidence for z0 = (1,1,1)T

conditional on survival to t0, where S(t0|z0) = 0.8. Let Q0τ be the true conditional
quantile under the null hypothesis, where τ = 0.25. Then, Q0τ = 0.068,0.194
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TABLE 3
Empirical Type I error probabilities for the competing risks setting: “PVI–Ind,” “PVI–Cluster,”
“PVL–Ind” and “PVL–Cluster” indicate the pseudo-value approach with identity link function

assuming independent data, identity link function accounting for within-cluster correlation, logit
link function assuming independent data and logit link function accounting for within-cluster

correlation, respectively

ψ m PVI–Ind PVI–Cluster PVL–Ind PVL–Cluster

One-sample test
1 50 0.0560 0.0650 0.0914 0.0970

100 0.0544 0.0580 0.0658 0.0680
200 0.0522 0.0588 0.0586 0.0590
400 0.0460 0.0476 0.0462 0.0488

0.5 50 0.0936 0.0724 0.1374 0.1286
100 0.0898 0.0640 0.0930 0.0772
200 0.0856 0.0568 0.0816 0.0612
400 0.0872 0.0522 0.0782 0.0514

0.25 50 0.1246 0.0836 0.1638 0.1406
100 0.1092 0.0622 0.1068 0.0750
200 0.1042 0.0556 0.0958 0.0598
400 0.1082 0.0540 0.0952 0.0534

Three-sample test
1 50 0.0652 0.0816 0.0684 0.092

100 0.0566 0.0620 0.0582 0.0644
200 0.0532 0.0550 0.0520 0.0572
400 0.0514 0.0536 0.0496 0.0506

0.5 50 0.0226 0.0664 0.0584 0.0978
100 0.0222 0.0626 0.0314 0.0678
200 0.0220 0.0572 0.0288 0.0578
400 0.0190 0.0542 0.0256 0.0522

0.25 50 0.0007 0.0553 0.0555 0.0975
100 0.0064 0.0544 0.0142 0.0538
200 0.0046 0.0498 0.0086 0.0486
400 0.0060 0.0516 0.0080 0.0462

and 0.341 for ψ = 0.25,0.5 and 1, respectively. To test if Qτ = Q0τ , we test if
U1(Q0τ ) = F1(Q0τ + t0|z0) − F1(t0|z0) − τS(t0|z0) = 0 using GEE. The identity
link and logit link functions with the independence working correlation matrix are
considered. Table 3 shows the empirical Type I error probabilities with 5000 itera-
tions at a significance level of 0.05. The pseudo-value approaches ignoring within-
cluster correlation become more liberal as the within-cluster correlation increases,
although they work well for independent data. On the other hand, the pseudo-value
approach accounting for within-cluster correlation controls Type I error very well
for clustered data. As m increases, its empirical Type I errors become closer to
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0.05 in general. It appears that the pseudo-value approach with the identity link
function controls Type I errors slightly better than that with the logit link function
as in the survival setting.

Next, we consider the three-group comparison. A cluster size of � = 6 is consid-
ered with two binary covariates Z1 and Z2. Each group has two individuals from
each cluster. We generate event and censoring times from (5.2) with Z = (Z1,Z2)

T

and ψβ = (1,0.5)T . We choose p and λc to generate 30% of cause 1, 30% of
cause 2 and 40% of censoring rate. We compare the 0.25th conditional quan-
tile of the cause 1 residual lifetimes given z0 = (1,1)T survival to t0, where
S(t0|z0) = 0.8. Table 3 shows the empirical Type I errors from the three-sample
test with 5000 iterations. As in the one-sample test setting, the pseudo-value ap-
proach accounting for within-cluster correlation controls Type I errors very well
for clustered data. As m increases, the empirical Type I errors become closer to
0.05 in general. The pseudo-value approach ignoring within-cluster correlation
works satisfactorily only for independent data. It is conservative for clustered data.
As in the survival setting, we also examined various τ = 0.1,0.25,0.75 and 0.9. In
addition, we performed a simulation assuming Z2 follows N(0,1). In all scenar-
ios, the proposed method performed as well as shown in Table 3. Thus, the results
were omitted.

6. Example. We revisit our motivating data [Shaw et al. (2010)] of Section 2.
As we discussed in Section 2, event times and censoring times in relapse and DFS
are clustered. The independence working correlation matrix was used for GEE. We
consider four variables: disease status, donor type, disease type and recipient age
at transplant. The censoring distribution of relapse and DFS did not depend on any
of the four variables at the significance level 0.05.

First of all, we compare the conditional median residual disease-free survival
lifetimes given disease-free survival to 6 months between the two recipient age
groups for patients having intermediate disease status, HLA identical sibling
donors and AML. The left plot of Figure 2 shows two conditional residual disease-
free survival distributions given survival to 6 months for the patients of interest,
that is,

Ŝ(t + 6|intermediate disease status, HLA identical sibling donors and AML)

Ŝ(6|intermediate disease status, HLA identical sibling donors and AML)
.

The dotted horizontal line indicates 50% of the conditional residual disease-free
survival probability (CRDFS). The estimated conditional median residual lifetimes
were 73 months and 23 months for the recipient age ≤10 and >10, respectively.
It appears that the two median residual lifetimes were different. The proposed
method with the identity link function and the independence working correlation
matrix found a statistically significant difference with a p-value of 0.004. The pro-
posed method with the logit link function also found a statistical significance with
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FIG. 2. Estimated conditional residual DFS and cumulative incidence. “CI” of the right plot stands
for cumulative incidence.

a p-value 0.007. However, Lin, Zhang and Zhou (2015) did not find a statistically
significant difference at a significance level of 0.05 with a p-value of 0.257. In
addition, when adjustment for center effects was ignored, the proposed method
with the identity link function and the logit link function did not find statistical
significance with p-values of 0.081 and 0.138, respectively. As Jacobsohn (2015)
recently pointed out, there are only a few pediatric late effects studies. Nonethe-
less, our finding is interesting because Ferry et al. (2007) did not find a significant
age effect on long-term survival for pediatric patients with hematological malig-
nancies. Our result suggests that there might be another group of pediatric patients
that have a recipient age effect on long-term survival.

Next, we consider disease groups and disease status for the conditional quantile
of the residual cumulative incidence of relapse. Treatment-related mortality is the
competing risk for relapse. We compare the conditional 0.25th residual cumulative
incidence of relapse given disease-free survival to 6 months between the three
disease groups of AML, ALL and MDS. The right plot of Figure 2 shows the
conditional residual cumulative incidence given disease-free survival to 6 months
of the three disease groups with intermediate disease status, that is,

{F̂ (t + 6|intermediate disease status) − F̂ (6|intermediate disease status)}
Ŝ(6|intermediate disease status)

.

The dotted horizontal line indicates 25% of the conditional residual relapse in-
cidence (CRRI). The estimated conditional residual relapse incidence quantiles
were 4 months, 5 months and 17 months for AML, ALL and MDS, respectively.
It appears that the conditional 0.25th residual cumulative incidence of relapse for



PSEUDO-VALUE APPROACH FOR QUANTILE RESIDUAL LIFETIME 635

MDS is different from those for AML and ALL. We found a statistically signifi-
cant result with a p-value of 0.037 using the proposed method. When we ignored
adjustment for center effects, we did not find statistical significance with a p-value
of 0.482. This result is consistent to the finding of a recent adult study: Eapen et al.
(2015) studied long-term outcomes including survival, relapse and TRM for adult
patients with hematological malignancies that had a bone marrow transplant. They
also found a significant disease effect on relapse.

7. Conclusion. A pseudo-value approach has been proposed to test condi-
tional quantile residual lifetimes for survival and competing risks data. Using Zhou
et al. (2012), we extended the method of Logan, Zhang and Klein (2011) to clus-
tered event times and clustered censoring times. The proposed method uses GEE
with a sandwich variance estimator to account for correlation within a cluster.
The simulation studies show that the proposed method controls Type I errors well
and has higher power than an existing method. A bone marrow transplant data
set was provided as an example. Although we used the Cox proportional hazards
model and the marginal Fine–Gray model to estimate S(t |Z) and F1(t |Z), respec-
tively, other methods such as the additive hazards models [Yin and Cai (2004)]
and the cause-specific hazards models [Prentice et al. (1978)] can also be used to
estimate them. It needs a further investigation via extensive simulation studies to
examine the performance of the proposed method with various techniques to esti-
mate S(t |Z) and F1(t |Z). Nonetheless, using those models to estimate S(t |Z) and
F1(t |Z) adds additional assumptions to be satisfied to use the proposed method.

There are several areas for future research. We accounted for covariates by com-
paring covariate-specific residual quantiles; a method which aggregates this infer-
ence across multiple levels of covariates would also be useful. The methods focus
on testing, but estimation of confidence intervals for the residual quantiles in the
clustered data setting are also important for further investigation. Selecting the
most appropriate link function for the pseudo-value approach is a hard problem in
practice. Extensive simulation study may be needed to compare the performance
of link functions in the future. The proposed method is a marginal model. Devel-
oping a pseudo-value approach dealing with random effects is another interesting
problem. Finally, the proposed pseudo-value method assumes that censoring is in-
dependent of covariates. He et al. (2016) and Binder, Gerds and Andersen (2014)
have recently studied the subdistribution hazards model and pseudo-values, respec-
tively, allowing covariate-dependent censoring. Using these methods, the proposed
method may be extended for covariate-dependent censoring data.

Acknowledgments. The authors are grateful to the Editor, Dr. Beth Ann Grif-
fin, the Associate Editor and two anonymous referees for their helpful comments
and suggestions.



636 K. W. AHN AND B. R. LOGAN

SUPPLEMENTARY MATERIAL

Supplemental materials (DOI: 10.1214/16-AOAS927SUPP; .pdf). The online
Supplementary Materials are available with this paper at the Annals of Applied
Statistics website.

REFERENCES

AHN, K. W. and LOGAN, B. R. (2016). Supplement to “Pseudo-value approach for conditional
quantile residual lifetime analysis for clustered survival and competing risks data with applica-
tions to bone marrow transplant data.” DOI:10.1214/16-AOAS927SUPP.

AHN, K. W. and MENDOLIA, F. (2014). Pseudo-value approach for comparing survival medians for
dependent data. Stat. Med. 33 1531–1538. MR3240767

ANDERSEN, P. K., KLEIN, J. P. and ROSTHØJ, S. (2003). Generalised linear models for correlated
pseudo-observations, with applications to multi-state models. Biometrika 90 15–27. MR1966547

BINDER, N., GERDS, T. A. and ANDERSEN, P. K. (2014). Pseudo-observations for competing risks
with covariate dependent censoring. Lifetime Data Anal. 20 303–315. MR3181016

BRESLOW, N. E. (1972). Discussion of the paper by D. R. Cox. J. Roy. Statist. Soc. Ser. B 34 216–
217.

COMMENGES, D. and ANDERSEN, P. K. (1995). Score test of homogeneity for survival data. Life-
time Data Anal. 1 145–159. MR1353846

COX, D. R. (1972). Regression models and life-tables. J. Roy. Statist. Soc. Ser. B 34 187–220.
MR0341758

EAPEN, M., LOGAN, B. R., APPELBAUM, F. R., ANTIN, J. H., ANASETTI, C., COURIEL, D. R.,
CHEN, J., MAZIARZ, R. T., MCCARTHY, P. L., NAKAMURA, R., RATANATHARATHORN, V.,
VIJ, R. and CHAMPLIN, R. E. (2015). Long-term survival after transplantation of unrelated
donor peripheral blood or bone marrow hematopoietic cells for hematologic malignancy. Biol.
Blood Marrow Transplant. 21 55–59.

FERRY, C., GEMAYEL, G., ROCHA, V., LABOPIN, M., ESPEROU, H., ROBIN, M., DE LA-
TOUR, R. P., RIBAUD, P., DEVERGIE, A., LEBLANC, T., BARUCHEL, E. G. A. and SOCIE, G.
(2007). Long-term outcomes after allogeneic stem cell transplantation for children with hemato-
logical malignancies. Bone Marrow Transplant. 40 219–224.

HE, P., ERIKSSON, F., SCHEIKE, T. H. and ZHANG, M. J. (2016). A proportional hazards regres-
sion model for the subdistribution with covariates–adjusted censoring weight for competing risks
data. Scand. J. Stat. 43 103–122.

JACOBSEN, M. and MARTINUSSEN, T. (2014). A note on the large sample properties of estimators
based on generalized linear models for correlated pseudo-observations. Research Report 14/4.
Dept. Biostatistics, Univ. Copenhagen.

JACOBSOHN, D. A. (2015). Outcomes of pediatric bone marrow transplantation for leukemia and
myelodysplasia using matched sibling, mismatched related, or matched unrelated donor. Bone
Marrow Transplant. 50 749–750.

JEONG, J.-H. and FINE, J. P. (2009). A note on cause-specific residual life. Biometrika 96 237–242.
MR2482149

JEONG, J.-H. and FINE, J. P. (2013). Nonparametric inference on cause-specific quantile residual
life. Biom. J. 55 68–81. MR3042385

KIM, M.-O., ZHOU, M. and JEONG, J.-H. (2012). Censored quantile regression for residual life-
times. Lifetime Data Anal. 18 177–194. MR2903719

KLEIN, J. P. and ANDERSEN, P. K. (2005). Regression modeling of competing risks data based on
pseudovalues of the cumulative incidence function. Biometrics 61 223–229. MR2135864

http://dx.doi.org/10.1214/16-AOAS927SUPP
http://dx.doi.org/10.1214/16-AOAS927SUPP
http://www.ams.org/mathscinet-getitem?mr=3240767
http://www.ams.org/mathscinet-getitem?mr=1966547
http://www.ams.org/mathscinet-getitem?mr=3181016
http://www.ams.org/mathscinet-getitem?mr=1353846
http://www.ams.org/mathscinet-getitem?mr=0341758
http://www.ams.org/mathscinet-getitem?mr=2482149
http://www.ams.org/mathscinet-getitem?mr=3042385
http://www.ams.org/mathscinet-getitem?mr=2903719
http://www.ams.org/mathscinet-getitem?mr=2135864


PSEUDO-VALUE APPROACH FOR QUANTILE RESIDUAL LIFETIME 637

LEE, E. W., WEI, L. J. and AMATO, D. A. (1992). Cox-type regression analysis for large numbers
of small groups of correlated failure time observations. In Survival Analysis: State of the Art
(Columbus, OH, 1991). NATO Adv. Sci. Inst. Ser. E Appl. Sci. 211 237–247. Kluwer Academic,
Dordrecht. MR1175646

LIANG, K. Y. and ZEGER, S. L. (1986). Longitudinal data analysis using generalized linear models.
Biometrika 73 13–22. MR0836430

LIN, D. Y. (2007). On the Breslow estimator. Lifetime Data Anal. 13 471–480. MR2416534
LIN, C., ZHANG, L. and ZHOU, Y. (2015). Conditional quantile residual lifetime models for right

censored data. Lifetime Data Anal. 21 75–96.
LOGAN, B. R., ZHANG, M.-J. and KLEIN, J. P. (2011). Marginal models for clustered time-to-event

data with competing risks using pseudovalues. Biometrics 67 1–7. MR2898811
MA, Y. and WEI, Y. (2012). Analysis on censored quantile residual life model via spline smoothing.

Statist. Sinica 22 47–68. MR2933167
MAJHAIL, N. S. and RIZZO, J. D. (2013). Surviving the cure: Long term followup of hematopoietic

cell transplant recipients. Bone Marrow Transplant. 48 1145–1151.
MARTIN, P. J., COUNTS, G. W., APPELBAUM, F. R., LEE, S. J., SANDERS, J. E., DEEG, H. J.,

FLOWERS, M. E. D., SYRJALA, K. L., HANSEN, J. A., STORB, R. F. and STORER, B. E.
(2010). Life expectancy in patients surviving more than 5 years after hematopoietic cell trans-
plantation. J. Clin. Oncol. 28 1011–1016.

PRENTICE, R. L., KALBFLEISCH, J. D., PETERSON, A. V. JR., FLOURNOY, N., FAREWELL, V. T.
and BRESLOW, N. E. (1978). The analysis of failure times in the presence of competing risks.
Biometrics 34 541–554.

SHAW, P. J., KAN, F., AHN, K. W., SPELLMAN, S. R., ALJURF, M., AYAS, M., BURKE, M.,
CAIRO, M. S., CHEN, A. R., DAVIES, S. M., FRANGOUL, H., GAJEWSKI, J., GALE, R. P.,
GODDER, K., HALE, G. A., HEEMSKERK, M. B. A., HORAN, J., KAMANI, N., KASOW, K. A.,
CHAN, K. W., LEE, S. J., LEUNG, W. H., LEWIS, V. A., MIKLOS, D., OUDSHOORN, M.,
PETERSDORF, E. W., RINGDÉN, O., SANDERS, J., SCHULTZ, K. R., SEBER, A., SETTER-
HOLM, M., WALL, D. A., YU, L. and PULSIPHER, M. A. (2010). Outcomes of pediatric bone
marrow transplantation for leukemia and myelodysplasia using matched sibling, mismatched re-
lated, or matched unrelated donors. Blood 116 4007–4015.

SPIEKERMAN, C. F. and LIN, D. Y. (1998). Marginal regression models for multivariate failure time
data. J. Amer. Statist. Assoc. 93 1164–1175. MR1649210

YIN, G. and CAI, J. (2004). Additive hazards model with multivariate failure time data. Biometrika
91 801–818. MR2126034

ZEGER, S. L., LIANG, K.-Y. and ALBERT, P. S. (1988). Models for longitudinal data: A generalized
estimating equation approach. Biometrics 44 1049–1060. MR0980999

ZENG, D. and LIN, D. Y. (2008). Efficient resampling methods for nonsmooth estimating functions.
Biostat. 9 355–363.

ZHAO, Y. Q., ZENG, D., LABER, E. B., SONG, R., YUAN, M. and KOSOROK, M. R. (2015).
Doubly robust learning for estimating individualized treatment with censored data. Biometrika
102 151–168. MR3335102

ZHOU, B., FINE, J., LATOUCHE, A. and LABOPIN, M. (2012). Competing risks regression for
clustered data. Biostat. 13 371–383.

DIVISION OF BIOSTATISTICS

MEDICAL COLLEGE OF WISCONSIN

8701 WATERTOWN PLANK ROAD

MILWAUKEE, WISCONSIN 53226
USA
E-MAIL: kwooahn@mcw.edu

blogan@mcw.edu

http://www.ams.org/mathscinet-getitem?mr=1175646
http://www.ams.org/mathscinet-getitem?mr=0836430
http://www.ams.org/mathscinet-getitem?mr=2416534
http://www.ams.org/mathscinet-getitem?mr=2898811
http://www.ams.org/mathscinet-getitem?mr=2933167
http://www.ams.org/mathscinet-getitem?mr=1649210
http://www.ams.org/mathscinet-getitem?mr=2126034
http://www.ams.org/mathscinet-getitem?mr=0980999
http://www.ams.org/mathscinet-getitem?mr=3335102
mailto:kwooahn@mcw.edu
mailto:blogan@mcw.edu

	Introduction
	Data
	Pseudo-value approach
	Method
	Simulation
	Survival setting
	Competing risks setting

	Example
	Conclusion
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

