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Abstract: We study the convergence of Z-estimators 5(7]) € RP for which
the objective function depends on a parameter n that belongs to a Banach
space H. Our results include the uniform consistency over H and the weak
convergence in the space of bounded RP-valued functions defined on H.
When 7 is a tuning parameter optimally selected at 79, we provide condi-
tions under which 7o can be replaced by an estimated 7 without affecting
the asymptotic variance. Interestingly, these conditions are free from any
rate of convergence of 7 to g but require the space described by 7] to be
not too large in terms of bracketing metric entropy. In particular, we show
that Nadaraya-Watson estimators satisfy this entropy condition. We high-
light several applications of our results and we study the case where 7 is
the weight function in weighted regression.
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1. Introduction

Let P denote a probability measure defined on a measurable space (Z,.A4) and
let (Zy,...,Z,) be independent and identically distributed random elements
with law P. Given a measurable function f : Z — R, we define

Pf= / fapr,  Baf=n ' Sf(Z),  Gaf =nll(B, - P)F,
i=1

where G,, is called the empirical process. We consider the estimation of a Eu-

~

clidean parameter §y € © C RP, when a collection of estimators, {6(n) : n € H},
is available. The index space (#, | - ||) is a Banach space. Suppose there exists

No € H such that 5(770) is optimal, in some sense, within the collection. Typically,
0(no) might have the smallest asymptotic variance among the estimators of the
collection. Such a situation arises in many fields of the statistics. For instance,

1 can be the cut-off parameter in Huber robust regression, or n might as well be
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the weight function in weighted least squares (see equation (5) below and the
next section for more details and examples). Unfortunately, ng is generally un-
known since it depends on the distribution P. Usually, one is restricted to first
estimate 1y by, say, 77 and then compute the estimator 6(7), which should result
in a not too bad approximation of 6. It turns out that, in many situations,

~ ~

n*2(0(7) — 6p) has the same asymptotic law as  n'/2(0(no) — 6), (1)

meaning that, not only the rate of convergence but also the asymptotic variance
are the same (see for instance Newey and McFadden (1994), page 2164, the
reference therein, and van der Vaart (1998), page 61). This is all the more
surprising since the accuracy of 7] estimating 7y does not matter provided its
consistency.

A paradigm that encompasses the previous facts can be developed wvia the
stochastic equicontinuity of the underlying empirical process G,, over the set of
influence functions. Suppose that

~

sup [n'/2(0(n) — 6o) — Guipy| = op(1),
neH

where | - | stands for the Euclidean norm and ¢, : Z — RP? is the so called
influence function. It follows that, (1) holds whenever G, (p5 — ¢y,) goes to
0 in probability. This holds true if the process n — G, (¢;,) is stochastically
equicontinuous on H, i.e., if for any € > 0,

020 n—+oo lln1 72/l <8

lim limsup P ( sup |Gy @y — Pna)| > e) =0, (2)

where the supremum is taken over n; and 7y in H, and if, in addition,
~ P ~ P
PheH)—1 and 17— nol| — O. (3)

Hence, to obtain (1), stochastic equicontinuity allows for relying on (3), a mild
“no-rate” conditions on 7. In fact, conditions (2) and (3) represent a trade-off
we need to accomplish when selecting the norm || - ||. When one prefers to have
|- |l as weak as possible in order to prove (3), one needs the metric to be strong
enough so that (2) can hold. Empirical process theory turns to be very useful to
deal with this kind of problem. As it is summarized in van der Vaart and Wellner
(1996), a natural choice for || - || is the Lo(P)-norm. Sufficient conditions for (2)
then involve weak convergence of the empirical process n — Gy (y,) or, more
restrictively, the metric entropy of the class of functions {¢, : n € H}. Such
an approach succeeded in deriving the asymptotics of specific semiparametric
estimators (Akritas and Van Keilegom, 2001; van der Vaart and Wellner, 2007;
Portier and Segers, 2015).

The main purpose of the paper is to establish conditions ensuring (1) holds,

o~

in the case when (7)) is a Z-estimator for which the objective function depends
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on some 7 € H. More formally, we consider 6y and 5(17) defined, respectively, as
“zeros” of the maps

0 — P, (0) and 0 — Pry,(0), (4)

where for each § € © and n € H, ¥,(9) is an RP-valued measurable map
defined on Z. Since for every n € H, Piy,(6p) = 0, we have several (possibly
infinitely many) equations available and n € H does not affect the limit, in
probability, of the sequence 5(77) Hence 1 might better be understood as a
tuning parameter rather than as a semiparametric nuisance parameter. In fact,
the semiparametric models corresponding to (4) are subjected to an asymptotic
orthogonality condition between 6 and 7.

In Newey (1994), semiparametric estimators are studied using pathwise deri-
vatives along sub-models and the author underlines that, for such models, “dif-
ferent nonparametric estimators of the same functions should result in the same
asymptotic variance” (Newey, 1994, page 1356). In Andrews (1994), the previ-
ous statement is formally demonstrated by relying on stochastic equicontinuity,
as detailed in (2) and (3). In this paper, we provide new conditions on the map
(6,m) — 1, (0) and the estimators 7 under which (1) holds. Despite considering
slightly less general estimators than in Andrews (1994), our approach alleviates
the regularity conditions imposed on the map 6 — 1,(#). They are replaced
by weaker regularity conditions dealing with the map 6 — P, (). In addition,
the class of functions H is allowed to depend on n. We focus on conditional
moment restrictions models in which 7 is a weight function. In this context,
our approach results in a simple condition on the size of the bracketing metric
entropy generated by 7. In the case of weighted linear regression, when 7 is a
Nadaraya-Watson estimator, the previous condition is shown to be satisfied (see
below for more details). Our result extends those of Ojeda (2008) and Portier
and Segers (2015) on local linear estimators.

Our study is based on the weak convergence of {n'/2(8(n) — 6o)}nen in
£>°(H)P, the space of bounded RP-valued functions defined on H. The tools
we use in the proofs are reminiscent of the Z-estimation literature for which
we mention some of the most relevant contributions. In the case where 6, is
Euclidean, asymptotic normality is obtained in Huber (1967) and nonsmooth
objective functions are considered in Pollard (1985). In the case where 6y is
infinite dimensional, weak convergence is established in van der Vaart (1995).
The presence of a nuisance parameter with possibly, slower than root n rates of
convergence, is studied in Newey (1994) and nonsmooth objective functions are
investigated in Chen et al. (2003). Relevant textbooks are Newey and McFadden
(1994), van der Vaart and Wellner (1996), van der Vaart (1998), Kosorok (2008).

Among the different applications, we focus on weighted linear regression for
heteroscedastic models. As this topic is quite well documented (see among others,
Robinson (1987), Carroll et al. (1988) and the references therein), it allows
for comparing our approach with the existing ones. Let (Y;, X;)i=1,..» denote
independently and identically distributed random variables with distribution P.
The weighted least squares estimator is given by
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n
B(w) = argming, g, cpia Y (Vi — b1+ B3 Xi) w(X5), (5)

i=1
where w : R? — R is a measurable function. Among such a collection of esti-
mators, there exists a member S(wg) with minimum variance (see Section 4.1
for details). Many studies have focused on the estimation of wy. For instance,
Carroll and Ruppert (1982) argues that a parametric estimation of wy can be
performed, and Carroll (1982) and Robinson (1987) use different nonparamet-
ric estimators to approximate wg. Usually, the estimators B\(@) are shown to
have minimal variance by relying on U-statistics-based decompositions. It in-
volves relatively long and peculiar calculations depending on both @ : R? — R
and the loss function. Our approach overpass this issue by providing high-level
conditions on @ that are in some ways independent from the rest of the prob-
lem. To summarize, we require that @w(x) — wo(z) in probability, dP(x)-almost
everywhere, and the existence of a function space W, satisfying

+oo
P@eW)—1 and / \/log/\/[](e,W,Lr(P))de < 400,
0

for some r > 2, where Njj(e, W, L,.(P)) denotes the e-bracketing number of the
metric space (W, L,.(P)) (van der Vaart and Wellner, 1996, Definition 2.1.6). As
detailed in the paper, when wy is modelled parametrically, the previous condi-
tions are fairly easy to verify. For nonparametric estimators of wy, in particular
for Nadaraya-Watson estimators, smoothness restrictions on the kernel function
with respect to the dimension are appropriate to obtain, in the mean time, suf-
ficiently sharp bounds on the bracketing numbers of YW and that @ belongs to
W, with probability going to 1. In contrast to Carroll and Ruppert (1982) and
Robinson (1987), the bandwidth sequence (hy,)nen of the Nadaraya-Watson es-
timator is allowed to go to 0 as slowly as we wish but not too fast. It is required
that h,, — 0 and nh29%t% — 400, for some § > 0.

The paper is organised as follows. We describe in Section 2 some examples
of estimators satisfying equation (4). Section 3 contains the theoretical back-
ground of the paper. We study the consistency of 5(77) (Section 3.1) and the
weak convergence of n1/2(§(r]) —6p) in £°°(H)P (Section 3.2). Based on this, we
establish conditions ensuring (1) (Section 3.3). In the end, we consider some
weighted estimators for conditional moment restrictions models (Section 3.4).
In Section 4, we focus on the metric entropy of estimators of the optimal weight
function in weighted linear regression. We investigate different approaches, from
the parametric to the fully nonparametric approach. In the later case, we study
the Nadaraya-Watson estimator. In Section 5, we evaluate the finite sample
performance of the methods by means of simulations.

2. Examples

As discussed in the introduction, the results of the paper allow to obtain (1)
for estimators satisfying (4) that depend on a tuning parameter. This occurs at
many levels of statistical theory. We raise several examples in the following.
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Example 1. (Least squares constrained estimation) Given é\, an arbitrary but
consistent estimator of 6, the estimator é\c is said to be a least squares con-
strained estimator if it minimizes (0 — 0)TT(0 — 0) over {0 : g(#) = 0}, for
some function g, where I' is lying over the set of symmetric positive definite
matrices I' > b > 0. Consequently, 6. depends on the choice of I' but since
10.—0) < b~ HTY2(0.—0))?> < b~ T'V2(0y—0)|> — 0 in probability, the matrix
I" does not affect the consistency of é\c estimating 60y. It is well known that 50 is
a minimum variance estimator if I' equals the inverse of the asymptotic variance
of 8 (Newey and McFadden, 1994, Section 5.2). Such a class is popular among
econometricians and also known as minimal distance estimator.

In the above illustrative example, the use of the asymptotic equicontinuity of
the process I' — nl/ 2(0. — 6p) is not really legitimate since we could obtain the
asymptotics using more basic tools such as the Slutsky’s lemma in Euclidean
space. This is due of course to the Euclideanity of 6 and I' but also to the
simplicity of the mapping (6,T) — (0 —60)TT(6 — 6). Consequently, we highlight
below more evolved examples in which either the tuning parameter is a function
(Examples 2, 4 and 5) or the dependence structure between 6 and 7 is more
complicated than before (Example 3). To our knowledge, the asymptotics for
the examples below are quite difficult to obtain.

Example 2. (weighted linear regression) This includes the estimators described
by (5) but other losses than the square function might be used to adapt to the
distribution of the noise. Examples are L, (IP,)-losses, Huber robust loss (see
Example 3 for details), least absolute deviation and quantile losses. In a general
framework covering every of the latter examples, a formula of the optimal weight
function is established in Bates and White (1993).

Example 3. (Huber cut-off ) Whereas weighted regression handles heteroscedas-
ticity in the data, the cut-off in Huber robust regression carries out the adapta-
tion to the distribution of the noise (Huber, 1967). The Huber objective function
is defined as the continuous function that coincides with the identity on [—c¢, ¢]
(c is called the cut-off) and is constant elsewhere. A Z-estimator based on this
function permits to handle heavy tails in the distribution of the noise. The choice
of the cut-off might be done by minimizing the asymptotic variance.

Example 4. (instrumental variable) In Newey (1990), the class of nonlinear
instrumental variables is defined through the generalized method of moment.
The estimator ¢ depends on a so-called matriz of instruments W, and satisfies
the equation >, W(Z;)¢(Z;,0) = 0, where each Z; is some set of coordinates
of Z; and ¢ is a given function. A formula for the optimal matrix of instruments
is available.

Example 5. (dimension reduction) The method sliced inverse regression (Li,
1991) is based on estimating the subspace generated by the vectors EX(Y),
when 1) varies in a given class of functions. Minimization the asymptotic variance
leads to an expression of the optimal ¢y (Portier and Delyon, 2013).
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3. Uniform Z-estimation theory

Define (24, A, Pxo) as the probability space associated to the whole sequence
(Z1,Z3,...). Random elements in ¢>°(H)P, such as n — G, 1, (6), are not nec-
essarily measurable. To account for this, we work with the outer expectation
E¢, and the outer probability measure P2 (see the introduction of van der
Vaart and Wellner (1996) for the definitions). Each convergence, in probability
or in distribution, will be stated with respect to the outer probability. A class
of functions F is said to be Glivenko-Cantelli if sup ¢ » [(P, — P) f| goes to 0
in P¢ -probability. A class of functions F is said to be Donsker if G, f con-
verges weakly in /°°(F) to a tight measurable element. Let || f||z,p) = v/ Pf?.
A class F is Donsker if and only if it is totally bounded with respect to the
Ly (P)-distance and if, for every ¢ > 0,

lim lim sup P2, sup IGn(f—g)|>€| =0, (6)
070 n—+too 1F=gllzypy <6

where the supremum is taken over f and g in F. The previous assertion follows
from the characterization of tight sequences valued in the space of bounded
functions (van der Vaart and Wellner, 1996, Theorem 1.5.7). We refer to the
book van der Vaart and Wellner (1996) for a comprehensive study of the latter
concepts.

For any element A € RP*?, let |A| denote the Frobenius norm, i.e., |A|* =
tr(AT A). Note that if A is a vector, it coincides with the Euclidean norm. For
r >0 and f, a measurable function, let || f||z, p) denote the L,(P)-norm of the
function f.

For the sake of generality, we authorize, in Section 3.1 and 3.2, the parameter
of interest 6y to depend on 7. Hence we further assume that 6y(-) is an element
of £°(H)P.

3.1. Uniform consistency

Before being possibly expressed as a Z-estimator, the parameter of interest 6
is often defined as an M-estimator, i.e., 8y € £°°(H)P is such that

to(n) = argming.g Pm,(0), (7)

where m,(0) : £ — R is a known real valued measurable function, for every

0 € © and each € H. The estimator of 6y is denoted by 5, it depends on 7
since it satisfies

(/9\(77) = argmingeg Pp,my, (0). (8)

Both elements fy and @ are RP-valued functions defined on 7. When dealing
with consistency, considering M-estimators is more general but not more dif-
ficult than Z-estimators (see Remark 3). The following generalizes standard
consistency theorems for M-estimators (van der Vaart, 1998, Theorem 5.7) to
uniform consistency results.
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Theorem 1. Assume that (7) and (8) hold. Suppose that

po
(a1) sup,ey gee |(Pn — P)my(0)] = 0.
(a2) For all § > 0, there exists € > 0 such that

sup 0(n) —bo(n)| >0 = sup P{m,(0(n)) —m,(0o(n))} > e

then, we have sup, cy |§(77) — 0o(n)] 0.
Proof. We follow the lines of the proof of Theorem 5.7 in van der Vaart (1998).
Given § > 0, assumption (a2) implies that there exists € > 0 such that

P <su£ 1Bn) — Bo(n)] > 5) <P (sup P{my (@) — ma(Bo(m))} > ) |

ne neH

By definition, Pn{mn(g(n)) — my(8o(n))} < 0 for every n € H, then we know
that

~

PAmy (0(n)) = mn(0o(n)}

o~ ~

= (P =Pu){my(0(n)} + (Pn — P){mny(00(n))} + Pn{my,(0(n)) —my(0o(n))}
< (P —=P){my(6(n)} + (B, — P){my(60(n))}
<2 sup |(Pn — P){my(0)}],
0€O, neEH
that goes to 0 in outer probability by (al). O

Remark 1. Condition (al) requires the class {m,(0) : 0 € ©,n € H} to be
Glivenko-Cantelli. It is enough to bound the uniform covering numbers or the
bracketing numbers (van der Vaart and Wellner, 1996, Chapter 2.4). When © is
unbounded, the Glivenko-Cantelli property may fail. Examples include L, (P,)-
losses in linear regression. In such situations, one may require the optimisation
set © to be compact. Another possibility is to use, if available, special features
of the functions 6 — my,(0), n € H, such as convexity (Newey, 1994, Theorem
2.7).

Remark 2. Condition (a2) is needed for the identifiability of the parameter 0q.
It says that when 0(-) is not uniformly close to 0y(+), the objective function eval-
uated at 0(+) is not uniformly small. Consequently, every sequence of functions
On(-) such that sup, s P{my(0n(n)) — my(0o(n))} — 0 as n — +o0, converges
uniformly to 0o(-). It is a functional version of the so called “well-separated
mazimum” (Kosorok, 2008, page 252). It is stronger but often more convenient
to verify

(a2’) inf, ey infig_g,(m)|>5 P{my,(0) — my(6o(n))} > 0.

for every § > 0. This resembles to Van der Vaart’s consistency conditions in
van der Vaart (1998), Theorem 5.9. To show that (a2’) implies (a2), suppose
that sup, ¢4 [0(n) — 0o(n)| > 20 and write



Z -estimators indexed by functions 471

P{my(0(n)) — my(0o(n))}
> Lqjo)—00(n)| 26y P{mn (0(n)) — my(00(n))}

= Lijoe-ootnizay ,_ ik P{my(0) = may(0o(n))}

> Liotn—so(mizay jof - inf Ay (0) = m(60(1))}-

Conclude by taking the supremum over H in both side.

Remark 3. Estimators defined through zeros of the map Pp1,(8) are also min-
imizers of |Ppi)y,(0)|. Therefore they can be handle by Theorem 1. Let 0y(-) be
such that P, (00(n)) = 0 for every n € H. If (al) holds replacing m by v and
if for all 5 > 0, there exists € > 0 such that

sup [0(n) —bo(n)] =6 >0 = sup |Py,(0(n))| >€>0,
neH neH

then, the uniform convergence of zeros of Ppi,(0) to the zero of Piyy(8) is
guaranteed. Given that m,, is differentiable, the associated M -estimator can be
expressed as a Z-estimator with objective function Vem,. Because a function
can have several local minimums, the previous condition with Vem,, is stronger
than (a2). Consequently, for consistency purpose, M -estimators should not be
expressed in terms of Z-estimators (see also Newey (1994), page 2117).

3.2. Weak convergence

We now consider the weak convergence properties of Z-estimators indexed by
the objective functions. We assume further that 6y € ¢>°(H)P and satisfies the
p-dimensional set of equations, for each n € H,

Py (Bo(n)) = 0, 9)

where 1, (6) : Z — RP is a known measurable function. The estimator of 6 (-)
is denoted by 6(-) and for each 7, it holds that

~

Pt (Bn)) = 0. (10)
Here we shall suppose that sup, ¢4 10(n) — 00 (n)| = ops (1), so that the functions
Yy, 1 € M, are not intended to necessarily satisfy (a2). Indeed consistency of
5( -) may have been established from other restrictions such as being a minimizer
(see Remark 3).
We require some “uniform” Frechet differentiability for the map 6 — Py, (6),
that is, there exists A, : © — RP*? such that, for all §,, — 0,

Py (8) — Py (8) — A, (0)(0 — 0)
sup — — 0. (11)
0<|0—0|<6n,nEH 10 — 0
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Theorem 2. Assume that (9) and (10) hold. Suppose that
~ pe
(a3) sup,eq [0(n) — Oo(n)| = 0.
(a4) Let ¢, denote the k-th coordinate of v,. For all € > 0, there exists

0 > 0 such that |0 — §| < 0 implies that maxpe(1,... ¢} SUP, ey [¥Vnk(0) —

Unk(0)]| Lo (p) <€

(a5) The matriz By, := A,(00(n)), defined in (11), is bounded and invertible
uniformly in 1.

(a6) There exists 6 > 0 such that the class U := {z — 1, (0)(2) : |0 — 0y(n)| <
0, n € H} is P-Donsker.

then, we have

sup n2(0(n) — 00(n)) + B, Gty (00(n))| = ops (1)

Consequently, nl/z(a(n) —00(n)) converges weakly to a tight zero-mean Gaussian
element in £>°(H) whose covariance function is given by

(m1,m2) = By, P(¢, (B0 (1)), (B0 (n2)) ") Byt

Proof. We follow a standard approach by first deriving the (uniform) rates of
convergence and second computing the asymptotic distribution (van der Vaart,
1998, Theorem 5.21). From (a3) and (a4), we know that, for some nonrandom
positive sequence 6§, — 0, the set

E, =

{sup 18(n) — Bo(m)| < 8n, _max sup by 1 (B(n)) — .k (O(0) | acr) < 6n}7

neH €{L,...p} neH

is such that P2 (E,) — 1. Because we are interested in showing convergence in

~

probability, we can restrict attention to E,. By definition of (7)), we have

o~

0 = n'2{Ppty (0(n)) — Py (8o ()}

= G {¥y(0(n) — ¥y (80 (1))} + Gthy(Bo(n)) + n'/2P {1, (B(n)) — wnwo(%

The first term is treated as follows. Under E,,, we have

.....

<Vp sup Gn{t — ¥},

=Py Py <On

where the supremum is over ¥ and {/; in ¥. Using (a6) together with equation
(6), the first term in (12) goes to 0 in P2 -probability. As a consequence, we have

that G,y (60(1))+n 2 P{, (B(n)) —1b, (60 (n))} = opg (1) or, equivalently, that

Gr{thy (Bo(m)} + Byn'/*(8(n) = 60(n)) = an(n) + ope (1), (13)
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where the opo (1) is uniform in 7 € H and a,(n) = —nl/Q{P{wn(é\(n)) -
Uy (00(1))} = Byn'/2(6(n) — 0o(n))}. Using (a5), we have that

an(n) < [n/2@(n) — bo(m)|  sup { [Py(0) = Poby(6) — A, (6)(0 = )] }
0<[0—-0/<6n 16 — 0]
< sup |n1/2(5(n) —6o(n))| x o(1). (14)

neH

Hence, because we know from (a6) that sup, ¢4, |Gnipy(60(n))| = Ope (1), and
using (ab) again, in particular the full rank condition on B,,, we get

sup [n'/2(0(n) — 0o(n))| < sup{|B,yn/2(@(n) — Oo(n))|} sup |B;  ul = Ops (1).
neH neH lu|=1

Bringing the previous information in equation (14) gives that sup, ¢4, lan(n)| =
opo (1). Therefore equation (13) becomes

sup Guthy(80(n)) + Byn'2(6(n) — 6o (n))| = 0pg (1),

and the conclusion follows. O

Remark 4. Weak convergence of M -estimators is in general more difficult to
handle than weak convergence of Z-estimators (van der Vaart and Wellner,
1996, chapter 3.2). An interesting strategy is to focus on convex objective func-
tions as developed in Pollard (1985). Unlike the approach taken in Theorem 2,
this strategy handles non-smooth objective functions and it turns out to be useful
to study least absolute deviation estimators. More recently, Kato (2009) consid-
ers conver objective functions that are indexed by real parameters. The main
application deals with weak convergence of the quantile regression process.

Remark 5. All the examples in Section 2 focus on particular situations where
o does not depend on n. Hence, {1y, n € H}, represents a range of criterion
functions available for estimating a single parameter 6y. In this context, condi-
tion (a4) becomes

(a4’) For allk € {1,...,p}, sup,cq |ty £(0) — ¥y x(00)| Lo (P) — 0, as € — 6.

and condition (a5) is reduced to

(a5’) There exists B,, € RP*P, bounded and invertible, uniformly in n, such that

sup [P, (6) — Py (6) — By (6 — 60)| = o{0 — 6).
neH

3.3. Asymptotic equivalence

In this section, Theorem 2 is used to establish conditions for the asymptotics of
0(n) estimating 6y € ©. Hence, we shall assume that for every n € H, 09(n) = 6o,
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as in the introduction and as in Remark 5. Let 77 denote a consistent estimator
of 7. The next theorem asserts that, whatever the rate of convergence of 7,
0( o) and 0( 77) have the same asymptotic behaviour. Consequently, whenever
8(no) is an efficient estimator of 6y, 5(?]) is an efficient estimator of 6. For the
sake of generality, we consider two cases: when the class H does not change with
n and when it does.

Theorem 3. Assume that (9), (10), (a3), (a4’), (a5’) and (a6) hold. Suppose
that

(a7) For everyn € H, 6p(n) = 0.
(a8) There exist no € H and 7 such that

(i) PL(neM)—1.

.. p° pe
(i1) maxpeqy,... py 197.1(00) — Yyok(00)) | o(py =¥ 0 and |B — By,| =¥ 0.

then, n1/2(9( m) — 6o) = n'/2(0(no) — 6o) + ops (1).
Proof. Since

~ ~ -~

0(7) — 0o = (0(7) — 0(110)) + (o) — bo),

we have to show that the first term of the right-hand side is neglectabe, i.e.,
0(7) — O(no) = ops (n71/2). By (a8), for a certain nonrandom positive sequence
6n — 0, the event

{ﬁe H,  max ||¢5.(00) = Yyok(00)llLyp) < Ony  [Bj — Byl < 5n} ;
ke{1,...,p}

has probability going to 1. As we are concerned with convergence in probability,
we can restrict attention to this event. Applying Theorem 2, we find

-~

n'2(0(7) — 0(no)) =
BAIG {¥no(00) — 1/Jn(90)}+( BA ) n¢n0(90)+0P;(1)-

By (a5’), the second term in the right-hand side equals B, ' — B?Tl = B, 1 (B;—
B,,D)Bg1 = O(d,) multiplied by a term which is bounded in probability, from
(a6). To obtain the convergence in probability to 0 of the first term in the right-
hand side, we follow a similar approach as in the proof of Theorem 2, i.e., we
make use of (a6) to rely on the stochastic equicontinuity, as expressed in (6). O

Now we consider the case when the class H does change with n. We rely
on results from van der Vaart and Wellner (2007) which considers empirical
processes indexed by estimated functions. It requires to bound the e-bracketing
numbers of the class ¥ together with a Lindeberg condition on the class. Similar
conditions can also be derived considering the covering numbers.

Theorem 4. Let H := H,, and assume that (9), (10), (a3), (a4’), (a5’), (a7)
and (a8) hold (with H,, in place of H). Suppose that
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(a6°) Let Wy g = {z = ¢y x(0)(2) = 10— Oo(n)| < 6, n € Hp} and 3, , be a
measurable envelope for the class Wy, i, i.e., [(z)| <V, ,(2) for every i €

U,k and z € Z. There exists s > 0 such that maxyeq,... p) P@”,k\z“‘s <
+o0 and, for every 6, — 0 and every k € {1,...,p},

5” J—
/ VI8N (el o) o La(P))de — 0.
0

then, n1/2(§(?]) —00) = n*/2(0(no) — bo) + ope (1).

Proof. The proof is the same as the proof of Theorem 3 with one change. We
no longer rely on the Donsker property to provide

sup (G {1, (00) = ¥ (00)}| = 0, (15)
nEHn

|G {wn(60) — by, (60)}| 7= 0, (16)

respectively, in the proof of Theorems 2 and 3. We rely on Theorem 2.2 in
van der Vaart and Wellner (2007), which asserts that (16) holds whenever, for
every k € {1,...,p},

P(5.1(80) — o,k (60))? 0,

677,
— 6n—0
/ I8N (B oy s La(P))de =50,
0

Pai,k = 0(1)7 Pwi,k]l{ﬂ L >enl/2} — 07 for each € > 0.

The first condition is (a8). The second is (a6’). The third is obtained from the
Holder inequality using the moment condition on %, ; in (a6’). The same can
be done to obtain (15). O

Remark 6. Covering and bracketing numbers are classically employed to deal
with weak convergence of empirical processes (van der Vaart and Wellner, 1996,
Chapter 2.5). It often gives tractable conditions that can be verified in practice
(see Chapter 2.6 and 2.7 in van der Vaart and Wellner (1996), and Section
5 of the present paper for applications to semiparametric estimators). In our
approach, the entropy conditions allow moreover to consider classes that depends
on n. It turns out to be important when treating weighted regression estimators
in Section 5, in which 7 is a Nadaraya- Watson estimator.

3.4. Conditional moment restrictions

We now consider conditional moment restrictions models defined as follows.
There exists Sy € RP such that
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where X € X and Z € Z are random variables with joint distribution P and
© is a known RP-valued function. Equation (17) implies that infinitely many
(unconditional) equations are available to characterize [y, that is, for every
bounded measurable real function w defined on X, one has

E(w(X)¢(Z, ) = 0.

Let (Z,X),(Z1,X1),(Z2,X3),... denote an independent and identically dis-
tributed sequence of random variables satisfying model (17). The probability
measure associated to the sequence (Z1,X1),(Z2,X2),... is still denoted by
P, The estimator B(w) satisfies

nt Zw(xi)sa(zi,ﬂ(w)) =0, (18)

for every w in W, a class of bounded real functions. Note that this framework
includes Example 2 of Section 2. In the case where W is an RP*P-valued class of
functions, it includes Example 4 of Section 2. In the following theorem, W is a
real-valued class of functions (see Remark 9 for R?*P-valued classes of functions).
The proof follows from an application of Theorems 3 and 4 to the particular
case of a Z-estimator defined with the objective function (8, w) — w(-)e(-, B).
As in the previous section, we start by considering the case when W is fixed.

Theorem 5. Assume that (17) and (18) hold. Suppose that

~ P°
(b1) sup,ew |B(w) — Bo] =5 0.
(b2) Let @i denote the k-th coordinate of p. Whenever 8 — By, we have

maxge(i,...p} [|96(Z, 8) — 0x(Z, Bo)ll Lo Py — 0.
(b3) There exist k >0 and B : X —€ RP*P such that E|B(X)| < +o00 and

E{|E[¢(Z,B) = o(Z,Bo) | X] = B(X)(B — o)l } < &6 = Bol?,

and where Ew(X)B(X) is invertible, uniformly in w € W.

(b4) Let By be an open ball centred at Bo and Dy (z) = supgep, [vx(z, 8)|. There
exists s > 0 such that maxpe(1,... p) P|p,|*** < 400 and the classes @y, :=
{z = vr(z,8) : B €Bo}, ke{l,...,p}, are P-Donsker. Moreover, W is
uniformly bounded by 1 and the class VW is P-Donsker.

(b5) There exist W : X — R (suitably measurable) and wo : X — R such that

(i) PL,(WeW)—1.
(i1) |W(z) — wo(z)] o, dP(z)-almost everywhere.

then, n'/*(B(@) — Bo) = n'/*(B(wo) — Bo) + ope (1).

Proof. We verify each condition of Theorem 3 for the map ,(#) given by
w(-)p(+, 8) in which 8 and w replace, respectively, § and 7. The space corre-
sponding to H in Theorem 3 is here W. Note first that (9), (10) and (a3) are
implied by (17), (18) and (bl), respectively. Moreovoer (b2) implies (a4’) and
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(17) implies (a7). To complete the proof, we show that (a5’), (a6) and (a8) hold
(see Remark 5 for (ad’) and (ab’)).

We start by showing that (b3) = (a5’) with B, equal to Ew(X)B(X). From
(b3), the matrix Fw(X)B(X) is invertible and bounded. Moreover by (b3), we
have

| E{w(X)((Z,B) — (Z, Bo) = B(X)(8 ~ Bo)) }| < &8 — Bol?

which implies (a5’).

We now show that (b4) implies (a6), that is, we need to prove that the class
{(z,2) = w(x)p(z,B) : B € By, w € W} is P-Donsker. Consider the k-th
coordinate class @, x W = {w(-)ox(-,8), B € By, w € W}. Because it is the
product of two classes, ®, and W, we can apply Corollary 2.10.13 in van der
Vaart and Wellner (1996). Given two pairs (5, 8) and (w, w), we check that, for
every x € X and z € Z,

(w(@)on(z, 8) — B(@)pr(2, B))* <

2Ap(2,8) = r(2 B)* + 2 sup leu(z, ) (w(a) — (@)
0

This corresponds to (2.10.12) in van der Vaart and Wellner (1996) with L, 1 =
V2 and Loo = \/ka. By assumption, the suitable classes, ®; and W, are
P-Donsker. It remains to note that any member of the product class is square
integrable as P2 < +00. Therefore, we have that the class ®) x)V is P-Donsker.
Hence it is a tight sequence in ¢>°(By x W). Since tightness of vector-valued
random sequences is equivalent to tightness of each coordinate, the sequence
{w()e(-,B)), B € By, w € W} is tight. Using the multivariate central limit
theorem, we obtain the convergence in distribution of the finite dimensional
distributions. From Theorem 1.5.4 in van der Vaart and Wellner (1996), the
class {(z,2) — w(z)p(z,8) : B € By, w € W} is P-Donsker. Note that the
moments of order 2 + s for P, have not been used yet.

It remains to show that (b5) implies (a8). Given € > 0 and using that
| [ A(z)dz| < [|A(x)|dz, we have

| [(@(z) - wo(@) B)dP()
< [ 1B@) () - wo(@)|dP(z)

< [1B@IaP@) +2 [ IB@IL o0 dP@).

Taking the expectation, Fubini’s theorem (measurability is here implicitly as-
sumed) leads to

o / (@(x) — wo(z))B(x)dP(x)
<e / |B(2)|dP(x) + 2 / |B(@)|Po(|8(2) — wo(z)| > OdP(),
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the right-hand side goes to 0 by the Lebesgue dominated convergence theorem.
Conclude choosing € small. Using that P|g,|*t* < 400, the same analysis to-
gether with the Holder inequality, leads to the fact that, for every k € {1,...,p},
Epi(Z, Bo)*(0(X) — wo(X))? goes to 0 in Py-probability. O

Remark 7. Condition (b3) is related to the regularity of the map defined as
B — E(p(Z,B)|X). It is in general weaker than asking for the reqularity of the
map B — @(z,8). For instance, it permits to include the Huber loss function
(defined in Example 3). Note also that, contrary to W, the class of functions
{z = ¢(z,B8) : B € By} is not supposed to be bounded. This is important to
have this flexibility in order to include examples such as weighted least squares.

Remark 8. Under the conditions of Theorem 5, the sequence nl/Q(B(w) -
Bo) converges weakly in (°(W) to a tight zero-mean Gaussian element whose
covariance function is given by

(w1, w2) — Coy ' E (w1 (X)(Z, Bo)p(Z, o) wa (X)) Cppt,

with Cyy = E(w(X)B(X)).

Finally we treat the case when W := W, is changing with n by considering
the bracketing numbers of the underlying classes.

Theorem 6. Let W := W, and assume that (17), (18), (b1), (b2), (b3) and
(b5) hold (with W, in place of W). Suppose that

(b4’) Let By be an open ball centred at By, r = {z — ¢r(2,8) : B € Bo},
Pi(2) = supgep, |0k (2, B)|. For all k € {1,...,p}, there exists s > 0 such
that P|p,|*** < 400, and, for every sequence 6, — 0 and r = 2(2 + 5)/s,

—+oo
() [ Vs A (eplacry: B Lal(P))de < 4
0

On
(i) /O VI8N (€. Wa, Ly(P))de — 0.

Moreover the functions in W, are bounded by 1.
then, n'/(5(®) — o) = n'/*(B(wo) — Bo) + opg (1).

Proof. We apply Theorem 4 with ¥,, equal to {z — w(x)¢(z,5) : B € By, w €
Wi }. From the proof of Theorem 3, we have that (17), (18), (bl), (b2), (b3)
and (b5) implies (9), (10), (a3), (a4’), (ab’), (a7) and (a8). We finish the proof
by showing that (b4’) is enough to get (a6’) with ¥, ;, equal to @ X W,,.

Given € > 0, let [g(i),a(“}, i =1,...,n1, be (€|@ylr,(p), L2(P))-brackets
covering @, and let [w), @], j = 1,...,ng, be (¢, L,(P))-brackets covering
Wi, with r = 2(2 4 s)/s. Because the function z — zy attains its bounds on
every rectangle at the edges of each rectangle, the brackets

[min(g;;), max(g;;)], i=1,...,n1,7=1,...,n9,
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with g;; = (f(i)w(j),f(i)@(j),a(i)w(j),w(i)w(j)), cover the class &5 x W,,. More-
over, we have

| max(gi;) — min(gy;)| < B9 — o] + [yl [@? —w),

then, using Minkowski’s, Holder’s and Jensen’s inequalities (in this order), we
get

| max(gi;) — min(gi;)|| Lopy < €l@pllLap) + 1@ — w9l 1, p)
< 1BullLa(p) + Bl s p) 18D — 0 1, ()
< 2€H¢kHL2+s(P)’

with 7 = 2(2 + s) /s. Hence we have shown that, for every € > 0, N[} (2¢€[[@, || L, . (p)> Pk X
Wi, Ly(P)) is smaller than Nj) (e @y || 1.y, Pr, L2(P)) times Njj (e, Wy, L (P)).
This implies the integrability condition in (a6). O

Remark 9. In Example 4, the class W is a matriz-valued class of functions.
The statements in Theorems 5 and 6 only deal with the real-valued case. To be
valid in the matriz-valued case, one needs to assume the same assumptions as
in Theorems 5 and 6 but for each coordinate of the function class W. The main
reason for this is that the sum of two Donsker classes is Donsker.

4. Application to weighted linear regression

In this section, we are interested in estimating 8y = (Bo1, Bo2) € R, defined
by the following model

E(Y|X) = Bo1 + X, (19)

where the conditional distribution of Y — 8y — 8, X given X € RY is symmetric
about 0. For the sake of clarity, we focus on the linear model and we assume
that (Y, X) has a density with respect to the Lebesgue measure on R x Q, with
Q C RY. Under classical regularity conditions, it is possible to include more
general link functions in our analysis. We consider heteroscedasticity, i.e., when
the conditional variance of the residual Y — 8y — BE)FQX given X is not a constant.
In this context, ordinary least squares are not efficient whereas weighted least
squares might improve the estimation.

Let (Y, X), (Y1, X1), (Yo, X5),... denote an independent and identically dis-
tributed sequence of random variables satisfying model (19). Let P denote the
distribution of (Y, X). The probability measure associated to the whole sequence
(Y1, X1), (Y2, X5), ... is still denoted by P-,. The class of weighted estimators is

o~

given by B(w), defined by

B(’w) = argmin(ﬁhﬁz)eRHq n_l Zp (‘Y; - ﬁl - BngD ’lU(Xz)a
=1
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where p : RT — R is convex positive and differentiable and w : @ — R is called
the weight function. Such a class of estimators is studied in Huber (1967), where
a special attention is drawn on robustness properties associated to the choice of
p. Note that when p(x) = 2%, we obtain weighted least squares, when p(z) = =,
we get weighted median regression, p(z) = (22/2)1{o<z<c} + (@ — ¢/2) 150}
corresponds Huber’s weighted robust regression (where ¢ needs to be chosen in a
proper way). Finally quantile regression estimators and L, (P,,)-losses estimators
are as well included in this class.

We consider three approaches to estimate the optimal weight function wy.
Each approach is associated to a certain rate of convergence for w. The first one
is parametric, i.e., wq is supposed to be in a given class of functions indexed
by a Euclidean parameter. The second one is nonparametric, i.e., wy needs to
satisfy some regularity conditions. The third one is called semiparametric and
realizes a compromise between both previous approaches.

It is an exercise to verify each condition of Theorem 6. Here we focus on the
special conditions dealing with the estimator @ of wg, namely conditions (b4")(ii)
and (b5). The other conditions are more classical and have been examined in
different contexts (Newey and McFadden, 1994).

4.1. Minimum variance weights

A first question is to know, whether or not, such a class of estimators possesses
a member with munimum variance. The answer is provided in Bates and White
(1993) where the existence of a minimal variance estimator is studied. Basically,
optimal members must satisfy the equation: “the variance of the score equals
the Jacobian of the expected score” (as maximum likelihood estimators). Let
e =Y — Bo1 — BLX denote the residual of the regression. The optimal weight
function is

20/ (0) fejx=2(0) + E(g2,p, (Y, X)|X = )

T +— )
E(g1,6,(Y, X)|X = z)

where g1,6(y, ) = p/(ly — b1 — B3 2))*, g2,6(y. 2) = p"(ly — B1 — B3 ) and fex
is the conditional density of € given X. In what follows, we consider the case
where p'(0) = 0, so that wq simplifies to

_ Ng(z)
Dﬁo (CE) 7

where Ng(z) = E(g2,8(Y, X)|X = 2)f(z), Dg = E(g1,8(Y, X)|X = z)f(z) and
f is the density of X. Concerning the examples cited above, this restriction only
drops out quantile regression estimators.

A first estimator that can to be computed is E(O) = (Bio), Aéo)), defined as
B(w) with constant weight function, w(z) = 1 for every z € Q. Even if BO
is not efficient, it is well known that it is consistent for the estimation of .
Since wy depends on Sy, we use (¥ as a first-step estimator to carry on the
estimation of wy.

wo(x)
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4.2. Parametric estimation of the weights

In this paragraph, we assume that wo(x) = w(x, ), where 9 belongs to some
Euclidean space. Typically, vg is a vector containing fy. Such a situation has
been extensively studied (see Carroll et al. (1988) and the reference therein),
and it has been shown under quite general conditions that vy can be estimated
consistently. Consequently, we assume in the next lines that there exists 7 such
that ¥—7p, in P2 -probability. The estimator of wg(x) is given by w(z,7), for
every x € Q, and [y is estimated by

ﬂ = argminwlﬁZ)eRHq ’I’L_1 Zp (D/l — ﬁl — ngll) ’LU(X”:)/\)

i=1

To verify (b4’)(ii) and (b5), it is enough to ask the following Lipschitz condition.
For every x € Q, we have

lw(z,v) —w(z,7)| < |y =7l (20)

On the one hand, (b5) holds trivially with W, equal to the class {z — w(z,7) :
|[v—"0| < &}, for every 6 > 0. On the other hand, (b4’)(ii) is satisfied because the
previous class has a (¢, || - || 0 )-bracketing number of the same order as the (e, |-|)-
covering number of the Euclidean ball of radius § (van der Vaart and Wellner,
1996, Theorem 2.7.11). Obviously, condition (20) is sufficient but not necessary.
Another interesting example is w(z, 8,7) = (1 + 1{52%37})_17 reminiscent of a
piecewise heteroscedastic model.

Within the context of linear regression given by (19), the parametric mod-
elling of wg has serious drawbacks. Since a linear form is already assumed for the
conditional mean, it is very restrictive, in addition, to parametrize the optimal
weight function. It is even unnecessary as Theorem 6 does not ask for any rate
of convergence estimating wg. Finally, the definition of wg, as a complicated
quotient of conditional expectations, makes difficult for the analyst the setting
of a plausible parametric family for wy.

4.83. Nonparametric estimation of the weights

In this subsection, we consider the bracketing metric entropy generated by non-
parametric Nadaraya-Watson estimators. The classical approach taken for local
polynomial estimators relies on the asymptotic smoothness of such estimators
(Ojeda, 2008; Portier and Segers, 2015). In the Nadaraya-Watson case, this
smoothness approach can not succeed for compactly supported design. Due
to the inconsistency of the Nadaraya-Watson estimator at boundary points,
smoothness of the estimator is not inherited from the smoothness of the tar-
geted function. Here, we handle the Nadaraya-Watson case by studying the bias
and the variance separately. More precisely, we write the numerator N(x) as
Eoo[N(2)]+ An(z). It turns out that the class drawn by z — E[N ()], which
is not random, has a smaller bracketing metric entropy than the function class
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generated by  — Ay (z), which is included, as n increases and under reasonable
conditions, in a smooth class of functions. The denominator is treated similarly.
For any differentiable function f : @ C R? - Rand any { = ({1,...,{;) € N9,
let f(t1-la) abbreviates %f, where || = ;1‘:1 lj,ForkeN,0<a<l1
fL’l cee Iq
and M > 0, we say that f € Cria.n(Q) if, for every |I| < k, f( exists and is
bounded by M on Q and, for every |I| = k and every (z,7') € Q% we have

1fO(2) = fO )] < Mz —2'|°

We define the estimator by

where

N(@)=n"">" gy 50 (Vi Xi) K, (x — X3),
i=1

n
D(z) =n"" Zglﬁ(o) (Yi, Xi) K, (z — Xi),

i=1

Kp(-) =h71K(-/h) and (hy,),>1 is a sequence of bandwidths that goes to 0 as
n goes to +00. We require the following set of assumptions.

(c1) The first step estimator is consistent, i.e., 3(0) 12? Bo.

(c2) The density f of X is supported on a bounded convex set with nonempty
interior @ C R? and there exists b > 0 such that inf,co Do(x) > b > 0.

(¢3) The map x — Dq(z) is uniformly continuous on Q. There exist 0 < g < 1,
My > 0 and By C R?, an open ball centred at Sy, such that for any = € RY,
the maps 8 — Ng(z) and 8 — Dg(z) belongs to Cay a1, (Bo). Moreover, the
classes {(z,y) — grg(y,z) : B € Bo}, k = 1,2, are bounded measurable
VC classes (we use the same terminology as in Giné and Guillou (2002),
including the measurability requirements).

(c4) Let K : R? — R be a bounded measurable function with compact support.
There exists hg > 0 such that, for every x € Q and 0 < h < hy,

/K(u)du: 1, / K(u)du > ¢ > 0.
{(@-=)/h}

Moreover, there exists k1 € N such that for each |I| < ky + 1, the class

xr — -

{K(l) (T) th>0,z€ Rq} is a bounded measurable VC class.

(c5) There exists 0 < ay < 1 such that, as n — +oo,

2(k
nh%—i— (k14a1)

hp — 0, ———— — 400.
|log(hn)]
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Let V(I) denote the set of all the functions that take their values in the set I.
Define

]:n = Al,n/AZ,nu
where

At =A{Cry 401,01, (Q) + Enn} N V[—Ma, Ms),
"42,71 = {Ck1+0417M1 (Q) + ED,’VL} N V[Cb/2a M2]7

ENn = {x — /Ng(x— hou)K(u)du = B € Bo},
Epn = {:E — /Dg(x — hpu)K(u)du : B € Bo},

and My = 2M; [ |K (u)|du.
Theorem 7. If (c1) to (¢5) hold, we have
Pl (weF,) —1
log Vi (€, Fos || - lloo) < const.e~ 9/ (Fitan), for any € > 0,
where const. depends on q, Q, k1 + a1, My, b and K.
Proof. By (c1), we have that B\(O) € By with probability going to 1. Let

— Ew
— FEs
We consider the following three steps.

(i) PLAN € Chitar,i(Q)) = 1 and PL(Ap € Crytar,0 (Q) = 1,

(i) P2 (N € A n) — 1 and P2 0 (D € A, n) — 1 (note that this is the first

claim of the theorem).
(iii) Compute the bound on the bracketing numbers of F,.

Proof of (i). We make the proof for Ay since the treatment of Ap is similar.
Given l = (l1,...,l;) such that |I| < ky + 1, we have,

0 B[N ()] = by TV E[g, 50 (V, X)K O (R} (2 = X)),

Hence

NO) 1
A ( ) thFm

Z {9150 (Vi XOKO (0} (& = X)) = Blg, 500/ (¥, )R (b (2 = X))}
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and, by (¢3) and (c4), we can apply Lemma 8, stated in the Appendix, to get
that

sup |£§\l,)(x)| =0Op,, ( M) . (21)

2|l
reQ ’I’th1+ I ‘

Then, for 1 < || < k1, we know that Ag\l,) goes to 0 uniformly over Q, making
the derivatives of Ay (with order smaller than or equal to k1), bounded by M;

with probability going to 1. Now we consider the Holder property for ﬁg\l,) when
|l| = k1. For any |x — 2’| < h,,, by the mean value theorem, we have that

(AR (2) = AQ (@) (x — 2/)~ | < |o — /= sup VLAY (2)]
z

< hkrsup [VLAR (2)],
z€Q

which is, in virtue of (21), equal to a Op_ (, /%) = op(1). For any
nh

|z — 2’| > h, we have

(AR (z) = A (2") (@ — 2/) =] < 2k, sup 1AV (2)],

which has the same order as the previous term. As a consequence, for |I| = kq,
we have shown that

sup (A (2) = AP ) = )7 = 0. (1),

implying that ﬁg\l,) is ay-Holder (with constant M;) with probability going to 1.
Proof of (ii). For the first statement, using (i), it suffices to show that N lies in
V|[—Mas, Ms] with probability going to 1. Lemma 8 and condition (c3) yield

IN(2)] < |ExN(2)] +:lelg|31v($)|
— | [ Ny (@ =~ b K (a)dul + 0y(1)
< M1/|K(u)|du+op(1)
< 2M,; / | K (u)|du, with probability going to 1.

For the second statement, it suffices to show that D lies in V[ch/2, My] with
probability going to 1. To obtain the upper bound for this class, we mimic what
has been done above to treat N. To obtain the lower bound, first write

Ewo[D()] - (Do * Ky, )(x) = / (Do (& — hys) = D ( — o)) K (w)du,
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by condition (¢3), it goes to 0, uniformly over x € Q, in probability, . This yields
D(x) = (Do * Kn,)() + Ewc[D(2)] = (Do * Kn,) () + Ap ()
> (Do * K, ) () — sup | Eoo[D(x)] = (Do * K, ) ()| - sup Ap(x)l
EIS FAS

= (Do * Ky, )(z) —op_(1).
Define b(z, h) = infycg |y—zj<na Do(y) and M(z,h) = sup,cq, |y—zj<na Do(y)
where A is such that, for every u € R, K(u)ljjy>a; = 0 (A is finite be-

cause K is compactly supported). Note that, by the uniform continuity of Dy,
SUp,eo |M(x,h) —b(z,h)| = 0 as h — 0, it follows that

(Do * K, )(x)

_ / Do(z + hnu)K (u)du
> b(a. ) [ Linueoy @) sdut M) [ Ui e (K ()} -du
= b(z, hn) / Liotn,ueoy K (u)du
(o) = b)) [ Tasnuc) (K(w)-du
> b0 ) [ Losnuco) K (widu = of1)
> b/{(gz)/hn} K (u)du — o(1),

which is greater than ¢b/2 > 0, whenever n is large enough, by (c4).

Proof of (iii). We now bound the (e, | - ||oo)-bracketing number of F,. First,
Corollary 2.7.2, page 157, in van der Vaart and Wellner (1996) states that, for
every € > 0,

10g M1 (€, Cyrar iy (Q), [+ [loo) < comst.e ™9/ (ate),
where const. depends only on ¢, Q, ki1 + o and M;j. Second, by assumption
(c3),
| /(Nﬁ(w = hntt) = Ny (z = hnu)) K (u)du| < |8 — §'*2 My / K (u)|du,

\/(Dﬁ(w—hnU)—Dﬂ/(x—hnU))K(U)dul < |5_ﬁ/|a2M1/‘K(u)|du'

This makes the classes £x,, and Ep ,, being ap-Holder in the index parameter.
Hence, from Theorem 2.7.11 in van der Vaart and Wellner (1996), their (e, ||||oo )-
bracketing numbers are smaller than the (e, | - |)-covering number of By (up to
some multiplicative constant in the €). It is also smaller than the (e, || - ||oo)-
bracketing numbers of Ci, +a,,0, (@), given previously. Therefore, since the class
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Ai 4, (resp. As ) coincides with the set Ciytaq 0, (Q) plus En,y (resp. Epp),
we conclude that, for every € > 0,

log Mjj (e Ajns || - lloc) < const.e™a/(rtan),

for j = 1,2, where const. depends only on ¢, Q, k1 + oy, M7 and K. Now we
show that the previous bound is still valid for the class F,, = Aj., /A2, Let
[Ny, Nil, oo, [Ny, Ny (vesp. [Dy, D1, ..., [D,,, Dn,]) be (¢ - ||oo)-brackets
that cover A; ,, (resp. Az ,,). By taking D, Vb, ..., D, Vbinplaceof Dy,...,D, ,
we can assume that the elements of the brackets of Aj ;, are larger than or equal
to b. By a similar argument, every brackets of A; ,, are bounded by M. Hence,
for any N € A;,, and D € Ay, there exists 1 <i < n; and 1 < j < ng, such

that

N, N _N;
=< =< =,
D; D Qj
N, N,
_ — D_ S COIlSt.€7
DJ —J oo
where const. is a constant that depends only on b and Ms. As a consequence
we have exhibited a (const.e, || - || oo )-bracketing with nins elements, yielding to
the statement of the theorem. O

Remark 10. On the one hand, no strong assumptions are imposed on the reg-
ularity of the targeted functions x — No(z) and x — Dgo(x). Actually, we only
require the uniform continuity of x — Do(z) to hold. The reason is that we do
not use the consistency of N(z) (resp. D(z)) estimating No(z) (resp. Do(x)).
On the other hand, the kernel needs to be many times differentiable. Hence,
our approach consists of approximating a function, non necessarily regular, by a
smooth function. In this way, we control the bracketing metric entropy generated
by the class of estimated functions. In light of Theorem 7, assumption (b4’)(ii) is
satisfied when k14 a1 > q/2 and when the bandwidth sequence h,, — 0 such that
nh%+2(k1+a1)/| log(hy)| — 400. Provided the kernel function is smooth enough,
one can put k1 +aq1 = q/24 /4, for some § > 0. Then, it suffices to choose the
bandwidth such that nh29+° — +oco.

Remark 11. Another way to proceed is to consider the classes

En = {a: — /Ng(x—hu)K(u)du : B € By, h> 0},

Ep = {x — /Dg(m—hu)K(u)du : B € By, h> 0},
in place of En,n and Ep . These classes are larger but they no longer depend
on n. To calculate the bracketing entropy of the spaces En and Ep, one might

consider the L,.(P)-metric rather than the uniform metric because the latter
would involve some difficulties at the boundary points.
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Remark 12. Ezamples of kernels that satisfy (c4) are given in Nolan and Pol-
lard (1987), Lemma 22, see also Giné and Guillou (2002). An interesting fact
is that {K ((x —-)/h) : h >0, x € R} is a uniformly bounded VC class of func-
tions, when K has bounded variation. The assumption that f{(Qfm)/h} K(u)du >
c >0, for hg > h > 0, holds true if Q is a smooth surface, i.e., when the dis-
tance between x € RY and mathcalQ is a differentiable function of x. Note also
that in the one-dimensional case, it is always verified. Moreover, this condition
permits to include the case of non-smooth surfaces such as cubes.

4.4. Semiparametric estimation of the weights

The nonparametric approach involves a smoothing in the space R?. It is well
known that the smaller the dimension g, the better the estimation. Although it
does not affect the asymptotic variance of S(w) (no specific rate of convergence
of W to wy is required in (b5)(ii)), it certainly influences the small sample size
performances of the estimators.

There exist different ways to introduce a semiparametric procedure to esti-
mate wg. In the following, we rely on the single index approach. In our initial
regression model (19), the conditional mean of Y given X depends only on 81, X.
Given this, it is slightly stronger to ask that the conditional law of Y given X
is equal to the conditional law of Y given 51, X, in other words, that

Y L X|B5,X, (22)
or equivalently that,
E(9(Y)|X) = E(9(Y)|B52X),

for every bounded measurable function g. Such an assumption has been intro-
duced in Li (1991) to estimate the law of Y given X. Here (22) is introduced
in a different spirit: since a linear regression model has already been imposed
in (19), condition (22) appears as an additional mild requirement, that serves
only the estimation of wy. The calculation of semiparametric estimators of wy
is done by using similar tools as in the previous section. In order to fully benefit
from condition (22), we realize the smoothing in a low-dimensional subspace of
RY. We define the estimator of wg by
() = S e)
ng)( éO)Tx)

where, for every t € R,

No(t)=n""> " g2.5(Vi, Xi) L, (t — B3 X),

i=1

Ds(t) =n"'> g1.5(Yi, Xi)Ln, (t — B3 X,),

i=1
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with Lp(-) = h™1L(-/h). The proofs are more involved than in the nonparamet-

ric case notably because of the randomness of the space generated by B(O)
which the smoothing is realized.

5. Simulations

The asymptotic analysis conducted in the previous sections demonstrates that,
in weighted linear regression the estimation of wy does not matter provided its
consistency, e.g., w1 and Wy might converge to wy with different rates, whereas
B (wy) and B (Wq) are asymptotically equivalent. Nevertheless when the sample
size is not very large, differences might arise between the procedures. In the next
we consider the three approaches investigated in the previous section, namely,
parametric, nonparametric and semiparametric. Each of these procedures results
in different rates of convergence of w to wy. Here the purpose is two folds. First
to provide a clear picture of the small sample size performances of each method.
Second, to analyse, from a practical point of view, the relaxation of the regularity
conditions on wy.

In what follows, we consider the following heteroscedastic linear regression
model. Let (X,Y), (X;,Y;)i=1,... » be independently and identically distributed
random variables. Suppose that

Y = Bo1 + B X + 0(X)e,

where (X,e) € R has a standard normal distribution and (Bo1,B02) =
(1,...,1)/v/q+ 1. The weighted least square estimator is given by

o~

Bw) = S(w)"'F(w), (23)

with S(w) = n ' Y7 X, X w(Xy), 7(w) = n 1 Y1, X;Yiw(X;) and XT =
(1,X7), for i = 1,...,n. Let B© = (B, 5", with B{” € R and B € RY,
denote the coordinates of the first-step estimator with constant weights. For
different sample sizes n and also several dimensions ¢, we consider two functions
for og: a smooth function and a not continuous function, respectively given by,
for every x € R,

B

| Boz

In each case, k = 1,2, the optimal weight function wy = 1/02, is estimated by
these methods:

1
oo1 () = and  002(2) = 5 + 2 Ligz .m0y

2

(i) Parametric: Wy, is computed using 3 (0) in place of By in the formula of wyy,
(ii) Nonparametric: Nadaraya-Watson procedure, Wy is given by

Z?:l Ky, (Xi - x)
S = B - BT X2 K, (X — )
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(iii) Semiparametric: Nadaraya-Watson procedure in a reduced sample-based
space, Wy, is given by
2 im1 Kn, (AXi — 7))
S = 5 - B X0 K, (A(X; - )

)

where A = ]32(0) + €l and ﬁQ(O) denotes the orthogonal projector onto the
linear space generated by 6;0).

For (ii) and (iii), the kernel K is the Epanechnikov kernel given by K(u) =
cq(1 = |u|?)4, where ¢, is such that [ K(u)du = 1. For k = 1,2, @y, is initially
computed according to one of the method (i), (ii) or (iii), then the final estimator
of By is computed with 3(@},) given by (23).

In practice, we find that choosing the bandwidth h,, by cross validation is
reasonable. More precisely, considering the estimation of o2(x) by %(z), it is
defined by

n
P o = argming.o (Y = B = B X)? = 5200 (X)),

i=1
where 52(=%)(x) is either the leave-one-out nonparametric estimator of o2 (z)
given by (ii) or the leave-one-out semiparametric estimator of o2(z) given by
(iii). Such a data-driven algorithm for h,, has the advantage to select automat-
ically the bandwidth without regard for the underlying dimension of the semi-
and nonparametric estimators. In every examples, the semiparametric h,, ¢, was

smaller than the nonparametric hy, cy.

For the semiparametric method, the matrix A denotes the orthogonal projec-
tor onto the space generated by [y perturbed by € in the diagonal. This permits
not to have a blind confidence in the first-step estimator Sy accounting for vari-
ations of wq in the other directions. Hence € is reasonably selected if el has the
same order as the error 132(0) - PQ(O), where PQ(O) is the orthogonal projector onto

the linear space generated by 550). We have

0)\ 3(0
2/(I — P,”)By" 2
(0
185”12
The numerator is approximated by an estimator of the average value of its
asymptotic law in the case where e L X. It gives 262n /2 iy /\% where Ay

are the eigenvalues associated to the matrix (I — ﬁéo))igl(l - ﬁéo))’ 52 =
n~ 3 (Y — Bo — BEX;)? and ¥, ! denotes the g x ¢ lower triangular block
of the inverse of n=! Z?zl X;XI'. As a consequence, € is given by

nq|B[?

where |/q appears as a normalizing constant.

B = P = 2trace(( — P )P}")) =
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Figures 1 to 4 provide boxplots associated to the estimation error of each
method, parametric (i), nonparametric (ii), and semiparamteric (iii), according
to different values of n = 50,100,500, ¢ = 4,16 and o9 = 001, 002. We also
consider the first-step estimator 5(?) and a “reference estimator” computed with
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the unknown optimal weights, i.e., 3 (wp). In every case, the accuracy of each
method lies between the first step estimator and the reference estimator. In
agreement with Theorems 6 and 7, the gap between the reference estimator and
the method (i), (ii), (iii) diminishes as n increases. Each method (i), (ii), (iii),
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performs differently showing that their equivalence occurs only at very large
sample size.

Among the three methods under evaluation (i), (ii), (iii), the clear winner
is the semiparametric method (with selection of the bandwidth by cross vali-
dation). The fact that it over-rules the nonparametric estimator was somewhat
predictable, but the difference in accuracy with the parametric method is sur-
prising. In every situation, the variance and the mean of the error associated to
the semiparametric approach are smaller than the variance and the mean of the
others. Moreover, the nonparametric method performs as well as the parametric
method even when the dimension is large. In fact, both approaches are similarly
affected by the increase of the dimension. Finally, one sees that the choice of
the bandwidth by cross validation works well for both methods nonparametric
and semiparametric. In all cases, the estimator with h,, ¢, performs similarly to
the estimator with the optimal value of h,,.

Appendix: Concentration rates for kernel regression estimators

The following result follows from the formulation of the Talagrand inequality
(Talagrand, 1994) given in Theorem 2.1 in Giné and Guillou (2002).

Lemma 8. Let (Y € R, X € RY?), (Y1, X4), (Y2, X2),... denote a sequence of
random variables independently and identically distributed such that X has a
bounded density f. Let K : R? — R be a bounded square integrable measurable
function and ¥ be a class of real-valued measurable functions defined on R+,
If both classes ¥ and {K ((x —-)/h) : © € R%, h > 0} are bounded measurable
VC classes, then, for any sequence h, — 0 such that nhi /|log(hy)| — 400, we
have, as n — +o0,

1 & ~ ~
weil,lfem - ; {v(Yi, Xi) K, (x — X;) — E[p(Y, X)Kp, (v — X)]}‘

log(hn
o, [ [los(h)

i nhi ’

where Ky () = K(-/h)/hA.

Proof. The empirical process to consider is indexed by the product class ¥ x
{K((x —-)/hyn), * € R9}, which is uniformly bounded VC since the product
of two uniformly bounded VC classes remains uniformly bounded VC'. The
variance satisfies

var (6 (Y, X)R (b, (= X)) < B (Y, XK (b, (2 — X))?)

< 121 ook / R (u)du,

tion of Theorem 2.1 in Giné and Guillou (2002) gives the specified bound. O

and a uniform bound is given by [|/K s < SUD e % ]loo || K || so- The applica-
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