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INFORMATION GEOMETRY APPROACH TO PARAMETER
ESTIMATION IN MARKOV CHAINS

BY MASAHITO HAYASHI∗,†,1 AND SHUN WATANABE‡,2

Nagoya University∗, National University of Singapore†

and Tokyo University of Agriculture and Technology‡

We consider the parameter estimation of Markov chain when the un-
known transition matrix belongs to an exponential family of transition ma-
trices. Then we show that the sample mean of the generator of the exponen-
tial family is an asymptotically efficient estimator. Further, we also define a
curved exponential family of transition matrices. Using a transition matrix
version of the Pythagorean theorem, we give an asymptotically efficient esti-
mator for a curved exponential family.

1. Introduction. Information geometry established by Amari and Nagaoka
[2] is an elegant method for statistical inference. This method provides us a very
general approach to statistical parameter estimation. Under this framework, we
easily find that the efficient estimator can be given with less calculation complexity
for exponential families and a curved exponential families under the independent
and identical distributed case. Therefore, we can expect a similar structure in the
Markov chains.

The preceding studies [3, 4, 10, 13, 19, 20, 35, 36] introduced the concept of
exponential families of transition matrices. However, in their definition, although
the maximum likelihood estimator has the asymptotic efficiency, that is, attains the
Cramér–Rao bound asymptotically, the maximum likelihood estimator is not nec-
essarily calculated with less calculation complexity. That is, the maximum like-
lihood estimator has a complex form so that it requires long calculation time in
their model. Further, it is quite difficult to calculate the Cramér–Rao bound even
with the asymptotic first-order coefficient because these papers focused only on
the limit of the inverse of the Fisher information. From a practical viewpoint, it
is needed to calculate the asymptotic first-order coefficient. So, it is strongly re-
quired to resolve these two problems for the estimation of Markovian process,
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that is, (1) to give an asymptotically efficient estimator with small calculation and
(2) to derive a formula for the asymptotic Cramér–Rao bound with small calcula-
tion.

The purpose of this paper is giving the answers for these two problems. For this
purpose, we notice another type of exponential family of transition matrices by
Nakagawa and Kanaya [27] and Nagaoka [26]. They defined the Fisher informa-
tion matrix in their sense. On the other hand, for the estimation of the probability
distribution, the class of curved exponential families plays an important role as a
wider class of distribution families than the class of exponential families. That is,
when the unknown distribution belongs to a curved exponential family, the asymp-
totic efficient estimator can be treated in the information-geometrical framework.
Therefore, to deal with these problems in a wider class of families of transition ma-
trices, we introduce a curved exponential family of transition matrices as a subset
of an exponential family of transition matrices in the sense of [26, 27]. Since any
exponential family of transition matrices is a curved exponential family, the class
of curved exponential families is a larger class of families of transition matrices
than the class of exponential families. Especially, any smooth subset of transition
matrices on a finite-size system forms a curved exponential family of transition
matrices. Our purpose is resolving the above two problems for a curved expo-
nential family as well as for an exponential family. Since any smooth parametric
subfamily of transition matrices on a finite-size system forms a curved exponential
family, our treatment for curved exponential families has a wide applicability for
the estimation of Markovian process. This is reason why we adopted the definition
of an exponential family by [26, 27].

First we show that, for an exponential family of transition matrices in the sense
of [26, 27], an estimator of a simple form asymptotically attains the Cramér–Rao
bound, which is given as the inverse of Fisher information matrix. That is, the es-
timator for the expectation parameter is asymptotically efficient and is written as
the sample mean of n + 1-observations. Since it requires only a small amount of
calculation, the problem (1) is resolved. Additionally, the problem (2) is also re-
solved for an exponential family of transition matrices because Fisher information
matrix is computable.

To show the above items, we discuss the behavior of the sample mean of n + 1
observations. Indeed, while the existing papers [17, 31] derived the form of the
asymptotic variance, this paper shows that the asymptotic variance can be written
by using the second derivative of the potential function of the generated expo-
nential family. Using this relation, we show that the sample mean asymptotically
attains the Cramér–Rao bound for the expectation parameter.

Next, we define the Fisher information matrix for a curved exponential family
with a computable form. Then, using a transition matrix version of the Pythagorean
theorem, we give an asymptotically efficient estimator for a curved exponential
family, in which, the estimator is given as a function of the above estimator in the
larger exponential family. Since the asymptotic mean square error is the inverse
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of the Fisher information matrix, the problems (1) and (2) are resolved jointly. In
the above way, we resolve the problems that were unsolved in existing papers [3,
4, 10, 13, 19, 20, 35, 36]. Further, during this derivation, we also obtain a notable
evaluation for variance of sample mean as a by product, which is summarized in
Section 2.1.

For the above discussion, we need the description of an exponential family of
transition matrices. Since the information geometrical structure for probability dis-
tributions plays important roles in several topics in information theory as well as
statistics, it is better to describe the information geometry of transition matrices so
that it can be easily applied to these topics. In fact, the authors applied it to finite-
length evaluations of the tail probability, the error probability in simple hypothesis
testing, source coding, channel coding and random number generation in Markov
chain as well as the estimation error of parametric family of transition matrices
[11, 12]. Thus, we revisit the exponential family of transition matrices [26, 27] in
a manner consistent with the above purpose by using Bregman divergence [1, 6].
In particular, the relative Rényi entropy for transition matrices plays an important
role in the finite-length analysis; we define the relative entropy for transition matri-
ces so that it is a special case of the relative Rényi entropy, which is different from
the definitions in the literatures [26, 27]. Although some of results in this paper
have been already stated in [26] (without detailed proof), we restate those results
and give proofs since the logical order of arguments are different from [26] and
we want to keep the paper self-contained. In particular, although the paper [26] is
written with differential geometrical terminologies, for example, Christoffel sym-
bols, this paper is written only with terminologies of convex functions and linear
algebra.

The remaining of this paper is organized as follows. Section 2 gives the brief
summary of obtained results, which is crucial for understanding the structure of
this paper. In Section 3, we define the relative entropy and the relative Rényi en-
tropy between two transition matrices In Section 4, we revisit an exponential fam-
ily of transition matrices and its properties. In Section 5, we focus on the joint
distribution when a transition matrix is given as an element of a one-parameter
exponential family and the input distribution is given as the stationary distribution.
Then we characterize the quantities given in Sections 3 and 4 by using the joint
distribution. In Section 6, we proceed to the n + 1 observation Markov process
when the initial distribution is the stationary distribution. Then we show that the
sample mean of the generator is an unbiased and asymptotically efficient estimator
under a one-parameter exponential family. In Section 7, we proceed to the n + 1
observation Markov process when the initial distribution is a nonstationary distri-
bution. We show a similar fact in this case. Section 8 extends a part of these results
to the multiparameter case and the case of a curved exponential family. In the Ap-
pendix, we address the relations with existing results by Nakagawa and Kanaya
[26], Nagaoka [26] and Natarajan [28].
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2. Summary of results. Here, we prepare notation and definitions. For two
given transition matrices W and WY over X and Y , we define

W × WY

(
x, y|x′, y′) := W

(
x|x′)WY

(
y|y′),

W×n(
xn, xn−1, . . . , x1|x′) := W(xn|xn−1)W(xn−1|xn−2) · · ·W (

x1|x′),
Wn(

x|x′) := ∑
xn−1,...,x1

W×n(
x, xn−1, . . . , x1|x′).

For a given distribution P on X and a transition matrix V from X to Y , we define
V × P(y, x) := V (y|x)P (x) and V P(y) := ∑

x V × P(y, x).
A nonnegative matrix W is called irreducible when for each x, x′ ∈ X , there

exists a natural number n such that Wn(x|x′) > 0 [25]. An irreducible matrix W is
called ergodic when there are no input x′ and no integer n′ such that Wn(x′|x′) = 0
unless n is divisible by n′ [25]. The irreducibility and the ergodicity depend only
on the support X 2

W := {(x, x′) ∈ X 2|W(x|x′) > 0} for a nonnegative matrix W

over X . Hence, we say that X 2
W is irreducible and ergodic when a nonnegative

matrix W is irreducible and ergodic, respectively. Indeed, when a subset of X 2
W is

irreducible and ergodic, the set X 2
W is also irreducible and ergodic, respectively. It

is known that the output distribution WnP converges to the stationary distribution
of W for a given ergodic transition matrix W [8, 17, 25]. Although the main result
is asymptotic estimation for an exponential family and a curved exponential family,
we also have additional results as Sections 2.1 and 2.2.

2.1. Asymptotic behavior of sample mean. Assume that the random variables
Xn+1 := (Xn+1, . . . ,X1) obey the Markov process with the irreducible and er-
godic transition matrix W(x|x′). In this paper, for an arbitrary two-input func-

tion g(x, x′), we focus on the sample mean Sn := gn(Xn+1)
n

where gn(Xn+1) :=∑n
i=1 g(Xi+1,Xi). This is because a two-input function g(x, x′) is closely related

to an exponential family of transition matrices. Indeed, the simple sample mean
can be treated in this formulation by choosing g(x, x′) as x or x′. Since the func-
tion g(x, x′) can be chosen arbitrary, the following discussion can handle the sam-
ple mean of the hidden Markov process.

Then the expectation E[Sn] and the variance V[Sn] are characterized as follows.
We denote the normalized Perron–Frobenius eigenvector of W(x|x′) by PW and
define the limiting expectation E[g(X,X′)] := ∑

x,x′ g(x, x′)W(x|x′)PW(x′). We

denote the Perron–Frobenius eigenvalue of W(x|x′)eθg(x,x′) by λθ and define the
cumulant generating function φ(θ) := logλθ . Then, when the transition matrix W

is irreducible and ergodic, the relation

E[Sn] → E
[
g
(
X,X′)](2.1)

is known. In Sections 6 and 7 of this paper, we show

nV[Sn] → d2φ

dθ2 (0)(2.2)
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while existing papers [17, 31] characterized the asymptotic variance by using the
fundamental matrix (see [12], Section 6).

In particular, when the initial distribution is the stationary distribution PW , we
have E[Sn] = E[g(X,X′)]. Then, in Section 6, using a constant C, we show that

d2φ

dθ2 (0)

(
1 − C√

n

)2

≤ nV[Sn] ≤ d2φ

dθ2 (0)

(
1 + C√

n

)2

(2.3)

for the stationary case. The concrete form of C is also given in Section 6. This
analysis is obtained via evaluations of Fisher information given in Sections 5, 6
and 7.

2.2. Cramér–Rao bound and asymptotically efficient estimator. First, for sim-
plicity, we summarize our obtained results for the one-parameter case while this
paper addresses a multiparameter exponential family. In Section 4, for a given
two-input function g(x, x′) and an irreducible and ergodic transition matrix W ,
we define the potential function φ(θ) and exponential family of transition matri-
ces {Wθ } with the generator g(x, x′). We also define its Fisher information matrix
d2φ

dθ2 (θ) and the expectation parameter η(θ) := dφ
dθ

(θ). Then we focus on the dis-
tribution family of Markov chains generated by the family of transition matrices
{Wθ } with arbitrary initial distributions. We show that the Fisher information of
the expectation parameter under the distribution family is asymptotically equal to

n
d2φ

dθ2 (θ(η))−1 + o(n) even for the nonstationary case in Section 7. Then we show
that the random variable Sn is the asymptotically efficient estimator, that is, the

mean square error is d2φ

dθ2 (θ(η))/n + o(1/n). In Section 6, we give more detailed
analysis for the stationary case. To derive the results in Sections 6 and 7, we pre-
pare evaluations of Fisher information in Section 5.

Now, we address the multiparameter case. In Section 4, we also define a multi-
parameter exponential family W�θ of transition matrices, and show the Pythagorean
theorem. Then we show the asymptotic efficiency of the sample mean in the multi-
parameter case in Sections 8.1 and 8.2. We also show that the set of all positive
transition matrices on a finite-size system forms an exponential family in Exam-
ple 1. Further, we define a curved exponential family of transition matrices, and
give its asymptotically efficient estimator in Section 8.3. Since any smooth para-
metric family of transition matrices on a finite-size system forms a curved expo-
nential family, this result has a wide applicability. These results require the techni-
cal preparations given in Sections 3, 4 and 5.

2.3. Relative entropy and relative Rényi entropy. In this paper, given two tran-
sition matrices W and V , we define the relative entropy D(W‖V ) and the rela-
tive Rényi entropy D1+s(W‖V ) in Section 3. In Section 8.3, the relative entropy
D(W‖V ) plays a crucial role in our estimator in a curved exponential family.
We also show that the Fisher information is given as the limits of the relative
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entropy and the relative Rényi entropy, which plays important roles in the proof of
the asymptotic efficiency of our estimator in a curved exponential family in Sec-
tion 8.3. Also, as discussed in [12], the relative Rényi entropy D1+s(W‖V ) plays
a central role in simple hypothesis testing as well as the relative entropy D(W‖V ).
Further, these information quantities play an central role in random number gener-
ation, data compression and channel coding [11]. In Section 3, we also give their
properties that are useful in the above applications.

For these applications, we need to address the relative entropy D(W‖V ) and the
relative Rényi entropy D1+s(W‖V ) in a unified way. More precisely, the relative
entropy D(W‖V ) is needed to be defined as the limit of the relative Rényi entropy
D1+s(W‖V ). Indeed, the existing paper [26] defined the relative entropy D(W‖V )

in a different way. However, the definition by [26] cannot yield the definition of
the relative Rényi entropy in a unified way. Appendix A summarizes the detailed
relation between the results in this part and existing results.

3. Relative entropy and relative Rényi entropy. In this section, in order to
investigate geometric structure for transition matrices, we define the relative en-
tropy and the relative Rényi entropy. For this purpose, we prepare the following
lemma, which is shown after Lemma 5.2.

LEMMA 3.1. Consider an irreducible transition matrix W over X and a real-
valued function g on X ×X . Define φ(θ) as the logarithm of the Perron–Frobenius
eigenvalue of the matrix:

Wθ

(
x|x′) := W

(
x|x′)eθg(x,x′).(3.1)

Then the function φ(θ) is convex. Further, the following conditions are equivalent:

(1) No real-valued function f on X satisfies that g(x, x′) = f (x) − f (x ′) + c

for any (x, x′) ∈ X 2
W with a constant c ∈ R.

(2) The function φ(θ) is strictly convex, that is, d2φ

dθ2 (θ) > 0 for any θ .

(3) d2φ

dθ2 (θ)|θ=0 > 0.

Using Lemma 3.1, given two distinct transition matrices W and V , we define the
relative entropy D(W‖V ) and the relative Rényi entropy D1+s(W‖V ) as follows.
For this purpose, we denote the logarithm of the Perron–Frobenius eigenvalue of
the matrix W(x|x′)1+sV (x|x′)−s by ϕ(1 + s) under the condition given below.
When X 2

W ⊂ X 2
V and X 2

W is irreducible, we define

D(W‖V ) := dϕ

ds
(1), D1+s(W‖V ) := ϕ(1 + s)

s
(3.2)

for s > 0. The relative Rényi entropy D1+s(W‖V ) with s ∈ (−1,0) is defined
by (3.2) when X 2

W ∩X 2
V is irreducible, which is a weaker assumption. When X 2

W ∩
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X 2
V is irreducible and the condition X 2

W ⊂ X 2
V does not hold, the relative entropy

D(W‖V ) and the relative Rényi entropy D1+s(W‖V ) with s > 0 are regarded
as the infinity. Note that the limit lims→0 D1+s(W‖W ′) equals D(W‖W ′). When
X 2

W ⊂ X 2
V and X 2

W is irreducible, the function log W(x|x′)
V (x|x′) satisfies the condition for

the function g in Lemma 3.1 because W and V are distinct. Hence, the function
s �→ sD1+s(W‖V ) is strictly convex. So, the relative Rényi entropy D1+s(W‖V )

is strictly monotone increasing with respect to s.
From the property of Perron–Frobenius eigenvalue, we immediately obtain the

following lemma.

LEMMA 3.2. Given two transition matrices WX and VX (WY and VY ) on X
(Y), respectively, we have

D(WX‖VX) + D(WY ‖VY ) = D(WX × WY ‖VX × VY ),

D1+s(WX‖VX) + D1+s(WY ‖VY ) = D1+s(WX × WY ‖VX × VY )

for s ∈ (−1,0) ∪ (0,∞).

THEOREM 3.3. Transition matrices W1, W2 and W satisfy

pD(W1‖W) + (1 − p)D(W2‖W) ≥ D
(
pW1 + (1 − p)W2‖W )

,(3.3)

pD(W‖W1) + (1 − p)D(W‖W2) ≥ D
(
W‖pW1 + (1 − p)W2

)
(3.4)

for p ∈ (0,1).

Equation (3.3) can be directly shown from Lemma 4.5 given later. The proof
of (3.4) will be given after (5.5).

4. Information geometry for transition matrices.

4.1. Exponential family. In the following, we treat only irreducible transition
matrices. Hence, an irreducible transition matrix is simply called a transition ma-
trix. We define an exponential family for transition matrices. We focus on a tran-
sition matrix W(x|x′) from X to X . Then a set of real-valued functions {gj } on
X × X is called linearly independent under the transition matrix W(x|x′) when
any linear nonzero combination of {gj } satisfies the condition in Lemma 3.1. For
�θ = (θ1, . . . , θd) and linearly independent functions {gj }, we define the matrix
W�θ (x|x′) from X to X in the following way:

W �θ
(
x|x′) := W

(
x|x′)e∑d

j=1 θj gj (x,x′)
.(4.1)

Using the Perron–Frobenius eigenvalue λ�θ of W �θ , we define the potential function
φ(�θ) := logλ�θ .
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Note that, since the value
∑

x W �θ (x|x′) generally depends on x′, we cannot
make a transition matrix by simply multiplying a constant with the matrix W �θ . To
make a transition matrix from the matrix W �θ , we recall that a nonnegative matrix
V from X to X is a transition matrix if and only if the vector (1, . . . ,1)T is an
eigenvector of the transpose V T . In order to resolve this problem, we focus on
the structure of the matrix W �θ . We denote the Perron–Frobenius eigenvectors of

W �θ and its transpose W
T
�θ by P

2
�θ and P

3
�θ . Then, similar to [27], (16); [26], (2), we

define the matrix W�θ (x|x′) as

W�θ
(
x|x′) := λ−1

�θ P
3
�θ (x)W �θ

(
x|x′)P 3

�θ
(
x′)−1

.(4.2)

The matrix W�θ (x|x′) is a transition matrix because the vector (1, . . . ,1)T is an
eigenvector of the transpose WT

�θ . The stationary distribution of the given transi-
tion matrix W�θ is the Perron–Frobenius normalized eigenvector of the transition
matrix W�θ , which is given as

P
1
�θ (x) := P

3
�θ (x)P

2
�θ (x)∑

x′′ P
3
�θ (x′′)P 2

�θ (x′′)
(4.3)

because

∑
x′

W�θ
(
x|x′)P 1

�θ
(
x′) = P

3
�θ (x)

λ�θ
∑

x′′ P
3
�θ (x′′)P 2

�θ (x′′)

∑
x′

W �θ
(
x|x′)P 2

�θ
(
x′)

= P
3
�θ (x)P

2
�θ (x)∑

x′′ P
3
�θ (x′′)P 2

�θ (x′′)
= P

1
�θ (x).

In the following, we call the family of transition matrices E := {W�θ } an exponential
family of transition matrices generated by W with the generator {g1, . . . , gd}.

Since the generator {g1, . . . , gd} is linearly independent, due to Lemma 3.1,∑
i,j cicj

∂2φ

∂θi ∂θj = d2φ(�ct)
dt2 is strictly positive for an arbitrary nonzero vector �c =

(c1, . . . , cd). That is, the Hesse matrix H�θ [φ] = [ ∂2φ

∂θi ∂θj ]i,j is positive.
Using the potential function φ(θ), we discuss several concepts for transition

matrices based on Lemma 3.1, formally. We call the parameter (θ1, . . . , θd) the
natural parameter, and the parameter ηj (�θ) := ∂φ

∂θj (�θ) the expectation parameter.

For �η = (η1, . . . , ηd), we define θ1(�η), . . . , θd(�η) as ηj (θ
1(�η), . . . , θd(�η)) = ηj .

For a given transition matrix W , we define a linear subspace N (X 2
W) of the

space G(X 2
W) of all two-input functions as the set of functions f (x) − f (x′) + c.

Then we obtain the following lemma.

LEMMA 4.1. The following are equivalent for the generator {gj } and the tran-
sition matrix W :
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(1) The set of functions {gj } are linearly independent in the quotient space
G(X 2

W)/N (X 2
W).

(2) The map �θ → �η(�θ) is one-to-one.
(3) The Hesse matrix H�θ [φ] is strictly positive for any �θ , which implies the strict

convexity of the potential function φ(�θ).
(4) The Hesse matrix H�θ [φ]|�θ=0 is strictly positive.
(5) The parametrization �θ �→ W�θ is faithful for any �θ .

PROOF. Applying Lemma 3.1 to φ(�ct) for an arbitrary nonzero vector �c =
(c1, . . . , cd), we obtain the equivalence among (1), (3) and (4). (3) ⇒ (2) is trivial.

Now, we show (2) ⇒ (1) by showing the contraposition. If (1) does not holds.
There exists a nonzero vector �c = (c1, . . . , cd) such that

∑
i cigi(x, x′) = f (x) −

f (x′) + C. Hence, we have d2φ(�ct)
dt2 = 0. Hence, (2) does not hold.

Now, we show (1) ⇒ (5) by showing the contraposition. When W �θ ′ = W�θ ,
considering the logarithm, there exist a function f and a constant C such that∑

j θ ′j gj (x, x′) − ∑
j θjgj (x, x′) = f (x) − f (x′) + C for (x, x′) ∈ X 2

W .
Now, we show (5) ⇒ (1) by showing the contraposition. If a set of real-valued

functions {gj } on X ×X is not linearly independent, there exist a function f and
a constant C such that

∑
j θ ′j gj (x, x′) − ∑

j θjgj (x, x′) = f (x) − f (x′) + C. In

this case, choosing P
3
�θ ′(x) = P

3
�θ (x)ef (x) and λ �θ ′ = λ�θ e−C , P

3
�θ ′ and λ �θ ′ are the

Perron–Frobenius eigenvector and eigenvalue of the transition matrix W �θ ′ . Then
we have W �θ ′ = W�θ . �

Now, we introduce the notation WX ,W := {V |V is a transition matrix and X 2
W =

X 2
V }. Any element W ′ ∈ WX ,W can be written as W ′(x|x′) = W(x|x′)eg(x,x′) by

using an element g ∈ G(X 2
W) because of log W ′(x|x′)

W(x|x′) ∈ G(X 2
W). Hence, if and

only if the set of two-input functions {gj } form a basis of the quotient space
G(X 2

W)/N (X 2
W), the set WX ,W coincides with the exponential family generated

by W with the generator {gj }. This fact shows that WX ,W is an exponential family.
In particular, when W is a positive transition matrix, the subspace N (X 2

W) does
not depend on W and is abbreviated to N (X 2). In this case, WX ,W is the set of
positive transition matrices. Then it does not depend on W , and is abbreviated
to WX .

We define the Fisher information matrix for the natural parameter by the Hesse

matrix H�θ [φ] := [ ∂2φ

∂θi ∂θj (�θ)]i,j . The Fisher information matrix for the expectation

parameter is given as H�θ [φ]−1. Further, for fixed values θk+1
o , . . . , θd

o , we call the
subset {W�θ ∈ E |�θ = (θ1, . . . , θk, θk+1

o , . . . , θd
o )} an exponential subfamily of E .

The following are examples of an exponential family.

EXAMPLE 1. Now, we assume that X = {0,1, . . . ,m} and W is a positive
transition matrix, that is, X 2

W = X 2. Define gi,j (x, x′) = δx,iδx′,j for i = 1, . . . ,m
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and j = 0,1, . . . ,m. Then the m2 + m functions gi,j form a basis of the quotient
space G(X 2)/N (X 2). Therefore, the set of positive transition matrices forms an
exponential family with the above choice of gi,j .

EXAMPLE 2. For a given subset S ⊂ X 2 for X = {0,1, . . . ,m}, we choose
a transition matrix W whose support is S . Define the subset S̃ as {(i, j) ∈ S|i is
not minimum integer satisfying (i, j) ∈ S for a fixed j}. We define gi,j (x, x′) =
δx,iδx′,j for (i, j) ∈ S̃ . Then the set WX ,W is an exponential family generated
by {gi,j }(i,j)∈S̃ . However, the set WX ,W is not an exponential subfamily of the
set of positive transition matrices because it is not included in the set of positive
transition matrices.

REMARK 1. The above-defined exponential families contain exponential fam-
ilies of distributions as follows. For a given exponential family of distributions Pθ

on X with the generator f (x), we define the transition matrix W(x|x′) as P0(x)

and the generator g(x, x′) as f (x). Then the exponential family Wθ(x|x′) is Pθ(x).
The given potential function and the given expectation parameter (defined in the
next subsection) are the same as those in the case with the exponential family of
distributions {Pθ }.

REMARK 2. The papers [3, 10, 13, 20] called a family of transition matrices
{Wθ(x|x′)} an exponential family when Wθ(x|x′) has the form

Wθ

(
x|x′) = eC(x,x′)+θg(x,x′)−ψ(θ,x′).(4.4)

The papers [19, 35, 36] extended the above definition to the continuous-time case.
However, our exponential family is written as [26]

Wθ

(
x|x′) = eC(x,x′)+θg(x,x′)+ψ(θ,x)−ψ(θ,x′)−φ(θ)(4.5)

by choosing C(x, x′) and ψ(θ, x) as logW(x|x′) and logP
3
�θ (x), respectively. So,

the traditional definition (4.4) is different from ours. The advantage of our model
over their model is explained in Remark 3.

4.2. Mixture family. In the following, we assume that the functions {gj } satis-
fies the condition of Lemma 4.1. For fixed values ηo,1, . . . , ηo,k , we call the subset
{W�θ ∈ E |�η(�θ) = (ηo,1, . . . , ηo,k, ηk+1, . . . , ηd)} a mixture subfamily of E . Given a
transition matrix W , real-valued functions gj on X 2, and real numbers bj , we
say that the set {V ∈ WX ,W |∑x,x′ gj (x, x′)V (x|x′)PV (x′) = bj ∀j} is a mixture
family on X 2

W generated by the constraints {gj = bj }. Note that a mixture family
on X 2

W does not necessarily contain W because its definition depends on the real
numbers bj . When W is a positive transition matrix, it is simply called a mixture
family generated by the constraints {gj = bj } because WX ,W is the set of positive
transition matrices. For a given transition matrix W and two mixture families M1
and M2 on X 2

W , the intersection M1 ∩M2 is also a mixture family on X 2
W .
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LEMMA 4.2. The intersection of the mixture family on X 2
W generated by the

constraints {gj = bj }j=1,...,k and the exponential family WX ,W is the mixture sub-
family {W�θ ∈ WX ,W |�η(�θ) = (b1, . . . , bk, ηk+1, . . . , ηd)} of the exponential family
WX ,W .

Lemma 4.2 will be shown after Lemma 5.1 in Section 5. Here, we give examples
for mixture families.

EXAMPLE 3. A transition matrix W on X ×Y is called nonhidden for X when
WX(x|x′) := ∑

y∈Y W(x,y|x′, y′) does not depend on y′ ∈ Y . For a transition ma-
trix W on X ×Y , the set WX |X×Y,W := {V ∈ WX×Y,W |V is non-hidden for X on
X ×Y} is a mixture family on (X ×Y)2

W . Hence, the set WX |X×Y,W ∩WY|X×Y,W

is also a mixture family on X 2
W .

EXAMPLE 4. The set of bistochastic matrices on X = {0,1, . . . ,m} forms a
mixture family as follows. For a permutation σ , we define the transition matrix
Wσ(x|x′) = δx,σx′ . Then we focus on the set T of transpositions (i, j) and the
subset H of cyclic permutations with length 3 defined by H := {(0, i, j)|0 < i <

j ≤ m}. Then |T ∪H | = |T |+ |H | = m(m+1)
2 + m(m−1)

2 = m2. As will be shown in
Appendix B, The set of bistochastic matrices on X = {0,1, . . . ,m} is parametrized
as {W�η}�η∈E , where

W�η := ∑
σ∈T ∪H

ησWσ +
(

1 − ∑
σ∈T ∪H

ησ

)
Wid,(4.6)

E := {
η ∈ R

m2 |W�η
(
x|x′) ≥ 0 for ∀x, x′ ∈ X

}
.(4.7)

We define the functions

gi

(
x, x′) := δx,i − δx,0 for i = 1, . . . ,m,(4.8)

ĝσ

(
x, x′) := Wσ

(
x|x′) − Wid

(
x|x′).(4.9)

As will be shown in Appendix B, the set {gi}mi=1 ∪ {ĝσ }σ∈T ∪H is linearly indepen-
dent. Then the matrix A = (aσ,σ ′) given as follows is invertible:

aσ,σ ′ := ∑
x,x′

ĝσ ′
(
x, x′)ĝσ

(
x, x′) 1

m + 1
.(4.10)

Then, using the inverse matrix B = A−1, we can define the functions {gσ }σ∈T ∪H

as the dual basis in the following way:

gσ ′ := ∑
σ∈T ∪H

bσ,σ ′ ĝσ ,(4.11)
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which implies that

∑
x,x′

gσ ′
(
x, x′)ĝσ

(
x, x′) 1

m + 1
= δσ,σ ′ .(4.12)

Hence, the set of functions {gi}mi=1 ∪ {gσ }σ∈T ∪H is linearly independent. We can
employ the mixture parameter under the above set of functions. Since the station-
ary distribution of W�η is the uniform distribution and

∑
gi

(
x, x′)W�η

(
x|x′) 1

m + 1
= 0 for i = 1, . . . ,m,(4.13)

∑
gσ

(
x, x′)W�η

(
x|x′) 1

m + 1
= ησ for σ ∈ T ∪ H,(4.14)

the transition matrix W�η(x|x′) is the expectation parameter (0, . . . ,0, ησ ). That
is, the set of bistochastic matrices on X is the mixture family generated by the
constraints {gj = 0}j=1,...,m.

4.3. Relation with relative entropy and relative Rényi entropies. The relative
entropy and the relative Rényi entropies are characterized by using the potential
function φ(�θ) as follows.

LEMMA 4.3. Two transition matrices W�θ and W�θ ′ satisfy

D(W�θ‖W�θ ′) =
d∑

j=1

(
θj − θ ′j ) ∂φ

∂θj
(�θ) − φ(�θ) + φ

(�θ ′),(4.15)

D1+s(W�θ‖W�θ ′) = φ((1 + s)�θ − s �θ ′) − (1 + s)φ(�θ) + sφ(�θ ′)
s

.(4.16)

PROOF. Let ϕ(1 + s) be the logarithm of the Perron–Frobenius eigenvalue
of the matrix W�θ (x|x′)1+sW�θ ′(x|x′)−s . Since W�θ (x|x′)1+sW�θ ′(x|x′)−s exp((1 +
s)φ(�θ) − sφ(�θ ′)) equals W �θ (x|x′), we have ϕ(1 + s) = φ((1 + s)�θ − s �θ ′) −
(1 + s)φ(�θ) + sφ(�θ ′). Hence, we obtain (4.16). Taking the limit s → 0, we ob-
tain (4.15). �

The Fisher information matrix H�θ [φ] can be characterized by the limits of the
relative entropy and relative Rényi entropy as follows. That is, taking the limits
in (4.15) and (4.16) in Lemma 4.3, we can show the following lemma.

LEMMA 4.4. For �c = (c1, . . . , cd), we have

lim
t→0

2

t2 D(W�θ‖W�θ+�ct ) = lim
t→0

2

t2 D(W�θ+�ct‖W�θ ) = ∑
i,j

H�θ [φ]i,j cicj ,(4.17)
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lim
t→0

2

t2 D1+s(W�θ‖W�θ+�ct ) = lim
t→0

2

t2 D1+s(W�θ+�ct‖W�θ )
(4.18)

= (1 + s)
∑
i,j

H�θ [φ]i,j cicj .

The right-hand side of (4.15) can be regarded as the Bregman divergence [6]3 of
the strictly convex function φ(�θ). In the following, we derive several properties of
the relative entropy by using Bregman divergence. That is, the following proper-
ties follow only from the strong convexity of φ(�θ) and the properties of Bregman
divergence.

Using [1], (40), we have another expression of D(W�θ‖W�θ ′) as

D(W�θ(�η)‖W�θ(�η′)) = ∑
j

θ
(�η′)j (

η′
j − ηj

) − ν
(�η′) + ν(�η),(4.19)

where ν(�η) is defined as Legendre transform of φ(�θ) as

ν(�η) := max
�θ

∑
i

θ iηi − φ(�θ) = ∑
i

θ i(�η)ηi − φ
(�θ(�η)

)
.

Since ν(�η) is convex as well as φ(�θ), we have the following lemma.

LEMMA 4.5. (1) For a fixed �θ , the maps �θ ′ �→ D(W�θ‖W�θ ′) and D1+s(W�θ‖
W�θ ′) are convex for s > 0. (2) For a fixed �θ ′, the map �η �→ D(W�θ(�η)‖W�θ ′) is convex.

4.4. Pythagorean theorem. It is known that Bregman divergence satisfies the
Pythagorean theorem for [1], (34). Applying this fact, we have the following
proposition as the Pythagorean theorem.

PROPOSITION 4.6 (Nagaoka [26], (23)). We focus on two points �θ ′ =
(θ ′1, . . . , θ ′d) and �θ ′′ = (θ ′′1, . . . , θ ′′d). We choose the exponential subfamily of
E whose natural parameters θk+1, . . . , θd are fixed to θ ′′k+1

, . . . , θ ′′d , and the
mixture subfamily of E whose expectation parameters η1, . . . , ηk are fixed to

η(�θ ′)1, . . . , η(�θ ′)k . Let �̃θ = (θ̃1, . . . , θ̃ d) be the natural parameter of the inter-
section of these two subfamilies of E . That is, θ̃ j = θ ′′j for j = k + 1, . . . , d and

ηj ( �̃θ) = ηj (�θ ′) for k = 1, . . . , k. Then we have

D(W�θ ′‖W�θ ′′) = D(W�θ ′‖W �̃θ ) + D(W �̃θ‖W�θ ′′).(4.20)

3Amari–Nagaoka [2] also defined the same quantity as the Bregman divergence with the name
“canonical divergence.” They showed that the canonical divergence satisfies the Pythagorean theo-
rem and (4.19) via the concept of the dually flat. Recently, Amari [1] showed these properties by
a calculation of the convex function φ(�θ), which does not require Christoffel symbols calculation.
Since the derivations by [1] more directly explain the relation between the convex function φ(�θ) and
these properties, we refer the paper [1] for these properties.
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Indeed, Nagaoka [26] showed (4.20) in a more general form by showing the
dually flat structure [2] via Christoffel symbols calculation. Using (4.20) and
Lemma 4.2, we obtain the following corollary.

COROLLARY 4.7. Given a transition matrix V and a mixture family M on
X 2

V with constraints {gj = bj }kj=1, we define V ∗ := argminW∈M D(W‖V ).

(1) Any transition matrix W ∈ M satisfies D(W‖V ) = D(W‖V ∗) +
D(V ∗‖V ).

(2) The transition matrix V ∗ is the intersection of the mixture family M on X 2
V

and the exponential family generated by V and the generator {gj }kj=1.

PROOF. First, we notice that the exponential family WX ,V contains V and
includes M. Choose an element Ṽ in the intersection of the mixture family M on
X 2

V and the exponential family EV generated by V and the generator {gj }kj=1. We
apply (4.20) to the mixture family M and the exponential family EV . Then any
transition matrix W ∈ M satisfies that D(W‖V ) = D(W‖Ṽ ) + D(Ṽ ‖V ). Since
D(W‖Ṽ ) > 0 except for W = Ṽ , we have minW∈M D(W‖V ) = D(Ṽ ‖V ), which
implies that V ∗ = Ṽ , that is, (2). Hence, we obtain (1). �

Similarly, we have another version of the above corollary.

COROLLARY 4.8. Given a transition matrix W and an exponential family E ⊂
WX ,W with the generator {gj }, we define W∗ := argminV ∈E D(W‖V ). Assume
that

∑
x,x′ gj (x, x′)W∗(x|x′)PW∗(x

′) = bj .

(1) Any transition matrix V ∈ E satisfies D(W‖V ) = D(W‖W∗) + D(W∗‖V ).
(2) The transition matrix W∗ is the intersection of the exponential family E and

the mixture family on X 2
W with the constraints {gj = bj }.

EXAMPLE 5. We choose transition matrices VX and VY on X and Y , re-
spectively. We also choose a transition matrix W on X × Y whose support
is (X × Y)2

VX×VY
. When a set of two-input functions {gX|i} forms a basis of

G(X 2
VX

)/N (X 2
VX

), the exponential family generated by VX × VY with the gen-
erator {gX|i} is {V ′

X × VY |V ′
X ∈WX ,VX

}. When a set of two-input functions {gY |j }
forms a basis of G(Y2

VY
)/N (Y2

VY
), the exponential family generated by VX × VY

with the generator {gX|i} ∪ {gY |j } is {V ′
X × V ′

Y |V ′
Y ∈ EX ,VX

,V ′
Y ∈ EY,VY

}. Hence,
when a transition matrix W belongs to a mixture family with the constraints
{gX|i = ai} ∪ {gY |j = bj }, the intersection between the exponential family and
the mixture family consists of one points, which is denoted by W ′

X × W ′
Y . Apply-

ing (4.20), we obtain

D(W‖VX × VY ) = D
(
W‖W ′

X × W ′
Y

) + D
(
W ′

X × W ′
Y ‖VX × VY

)
.(4.21)
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In particular, when W is nonhidden for X (for the definition, see Example 3), WX

satisfies the same constraint {gX|i = ai} because the stationary distribution PWX

is the marginal distribution of the stationary distribution PW . Hence, W ′
X = WX .

Thus, W ′
X can be regarded as a marginalization of a transition matrix W that is not

necessarily nonhidden.

5. Stationary two-observation case.

5.1. Relative entropies and expectation. In the previous section, we formally
defined several information quantities from the convex function φ(�θ) in the multi-
parameter case. In this section, we consider the relation with the structure of prob-
abilities in the one-parameter case. That is, we will see how the information quan-
tities reflect the conventional information quantities. For this purpose, we assume
that the input distribution is the stationary distribution of the given transition ma-
trix.

Since the stationary distribution of the given transition matrix Wθ is P
1
θ given

in (4.1), we can define the joint distribution

Wθ × P
1
θ

(
x, x′) := Wθ

(
x|x′)P 1

θ

(
x′) = P

3
θ (x)Wθ(x|x′)P 2

θ (x
′)

λθ

∑
x′′ P

3
�θ (x′′)P 2

�θ (x′′)
(5.1)

on X × X . Now, we focus on the probability distribution family {Wθ × P
1
θ }, and

denote the expectation and the variance under the distribution Wθ × P
1
θ by Eθ

and Vθ . These are simplified to E and V when θ = 0.

LEMMA 5.1 ([26], Theorem 4, [27], (28)). For θ ∈ R, we have

η(θ) = dφ

dθ
(θ) = Eθ

[
g
(
X,X′)] = ∑

x,x′
P

1
θ

(
x′)Wθ

(
x|x′)g(

x, x′).(5.2)

The lemma shows the reason why we call the parameter η the expectation pa-
rameter.

PROOF OF LEMMA 5.1. From the definition of Wθ , we have

d

dθ
logWθ

(
x|x′) = − d

dθ
logλθ + d

dθ
log

P
3
θ (x)

P
3
θ (x

′)
+ g

(
x, x′).(5.3)

Taking the average of the both hand sides with respect to the distribution Wθ ×P
1
θ ,

we have 0 = − d
dθ

logλθ + ∑
x,x′ P

1
θ (x

′)Wθ(x|x′)g(x, x′). �

Lemma 5.1 shows Lemma 4.2 as follows.
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PROOF OF LEMMA 4.2. In this proof, we consider the multiparameter case.
Replacing the derivative by the partial derivative in Lemma 5.1, we have

ηj (�θ) = ∂φ

∂θj

(�θ) = ∑
x,x′

P
1
�θ
(
x′)W�θ

(
x|x′)gj

(
x, x′).(5.4)

Choose the generator {g1, . . . , gk} of the mixture family on X 2
W . There exist two-

input functions gk+1, . . . , gl such that the set of two-input functions {g1, . . . , gl}
form a basis of G(X 2

W)/N (X 2
W), Hence, due to (5.4), we see that the intersec-

tion of the mixture family on X 2
W generated by the constraints {gj = bj }j=1,...,k

and the exponential family WX ,W is the mixture subfamily {W�θ ∈ WX ,W |�η(�θ) =
(b1, . . . , bk, ηk+1, . . . , ηd)} of the exponential family WX ,W . �

Now, we introduce the conditional relative entropy for transition matrices W

and V from X to Y and a distribution P on X as follows:

D(W‖V |P) := D(W × P‖V × P),

where the relative entropy between two distributions P and P ′ is defined in the
conventional way as D(P‖P ′) := ∑

x P (x) log P(x)
P ′(x)

. Hence, the relative entropy
defined in the previous section is characterized as follows [26], (24):

D(Wθ‖Wθ ′) = (
θ − θ ′)dφ

dθ
(θ) − φ(θ) + φ

(
θ ′)

= ∑
x,x′

P
1
θ

(
x′)Wθ

(
x|x′) log

Wθ(x|x′)
Wθ ′(x|x′)

− φ(θ) + φ
(
θ ′)

(5.5)

= ∑
x,x′

P
1
θ

(
x′)Wθ

(
x|x′) log

Wθ(x|x′)
Wθ ′(x|x′)

− log
P

3
θ (x)

P
3
θ ′(x)

+ log
P

3
θ (x

′)
P

3
θ ′(x′)

(a)= ∑
x,x′

P
1
θ

(
x′)Wθ

(
x|x′) log

Wθ(x|x′)
Wθ ′(x|x′)

= D
(
Wθ‖Wθ ′ |P 1

θ

)
,

where (a) follows from the fact that P
1
θ (x) = ∑

x′ Wθ(x|x′)P 1
θ (x

′).

PROOF OF (3.4). Since the map W ′ �→ −∑
x,x′ P

1
θ (x

′)Wθ(x|x′) logW ′(x|x′)
is convex for a given θ , (5.5) guarantees (3.4). �

5.2. Fisher information and variance. Using the Fisher information J 1
θ of the

family {P 1
θ }θ of stationary distributions, we discuss the Fisher information J 2

θ of

the family {Wθ × P
1
θ }θ of joint distributions in the following lemma.
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LEMMA 5.2. The Fisher information J 2
θ can be written as

J 2
θ = d2φ

dθ2 (θ) + J 1
θ .(5.6)

LEMMA 5.3. The second derivative d2φ

dθ2 (θ) is calculated as

d2φ

dθ2 (θ) = Vθ

[
g
(
X,X′) − dφ

dθ
(θ) + d

dθ
logP

3
θ (X) − d

dθ
logP

3
θ

(
X′)].(5.7)

In particular, when θ = 0,

d2φ

dθ2 (0) = V0
[
g
(
X,X′)] + 2

∑
x,x′

W
(
x|x′)g(

x, x′)dP
2
θ (x

′)
dθ

∣∣∣∣
θ=0

.(5.8)

Proofs of Lemmas 5.2 and 5.3 are given in Appendix C. Further, the quan-

tity d2φ

dθ2 (0) has another form [12], Theorem 6.6. Using Lemma 5.3, we can show
Lemma 3.1 as follows.

PROOF OF LEMMA 3.1. Due to (5.7), the nonnegativity of variance implies
that φ(θ) is convex. Since Condition (2) trivially implies Condition (3), it is
enough to show that Condition (1) implies Condition (2) and Condition (3) im-
plies Condition (1).

Assume Condition (1). Then, the random variable g(X,X′) − dφ
dθ

(θ) +
d
dθ

logP
3
θ (X)− d

dθ
logP

3
θ (X

′) is not a constant on X 2
W . Hence, the variance in (5.7)

is strictly greater than zero, which implies Condition (2).
Conversely, we assume that Condition (1) does not hold, that is, g(x, x′) =

f (x) − f (x′) + C for any (x, x′) ∈ X 2
W with a constant C ∈ R. Then, we can

find that the Perron–Frobenius eigenvalue of Wθ(x|x′) = W(x|x′)eθf (x)−θf (x′)+θC

is λθ = eθC and its right eigenvector is P
2
θ . Thus, we have d2φ(θ)

dθ2 = 0, that is,
Condition (3) does not hold. Hence, Condition (3) implies Condition (1). �

6. Stationary n + 1-observation case.

6.1. Information quantities. Similar to the previous section, this section also

discusses the one-parameter case with the stationary initial distribution P
1
θ . Now,

we consider the distribution W×n
θ × P

1
θ on X n, which is defined as

W×n
θ × P

1
θ (xn, . . . , x1) := Wθ(xn+1|xn) · · ·Wθ(x2|x1)P

1
θ (x1).(6.1)

We also define the random variable gn(Xn+1) := ∑n
k=1 g(Xk+1,Xk) for Xn+1 :=

(Xn+1, . . . ,X1). In this section, we denote the expectation and the variance under
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the distribution Wn
θ × P

1
θ by Eθ and Vθ . Then the cumulant generating function

φn(θ) := log E0[exp(θgn(Xn+1))] satisfies

dφn

dθ
(θ) = Eθ

[
gn(

Xn+1)] = nη(θ).(6.2)

Now, we calculate information quantities. Similar to Lemma 5.2, the Fisher
information can be calculated as follows.

LEMMA 6.1. The Fisher information Jn+1
θ of the family {W×n

θ ×P
1
θ }θ can be

written as

Jn+1
θ = n

d2φ

dθ2 (θ) + J 1
θ .(6.3)

The proof can be done in the same way as Lemma 5.2. The conditional relative
entropy is characterized by the Bregman divergence defined by the convex function
φ(θ) as follows:

D
(
W×n

θ ‖W×n
θ ′ |P 1

θ

) := D
(
W×n

θ × P
1
θ‖W×n

θ ′ × P
1
θ

)
= n

((
θ − θ ′)dφ

dθ
(θ) − φ(θ) + φ

(
θ ′))(6.4)

= nD(Wθ‖Wθ ′).

6.2. Asymptotically efficient estimator. The relation (6.2) implies that gn(Xn+1)
n

is an unbiased estimator for the parameter η. The variance of gn(Xn+1) is evalu-
ated as follows.

LEMMA 6.2. The inequalities

n
d2φ

dθ2 (θ)

(
1 − 2

√
V̂θ

/
n
d2φ

dθ2 (θ)

)2

≤ Vθ

[
gn(

Xn+1)]
(6.5)

≤ n
d2φ

dθ2 (θ)

(
1 + 2

√
V̂θ

/
n
d2φ

dθ2 (θ)

)2

hold, where V̂θ := Vθ [ d
dθ

logP
3
θ (X)] = ∑

x P
1
θ (x)( d

dθ
logP

3
θ (x))2.

Hence, we obtain

Vθ

[
gn(Xn+1)

n

]
= Vθ [gn(Xn+1)]

n2 = d2φ

dθ2 (θ)
/

n + O

(
1

n
√

n

)
.(6.6)
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The Fisher information J̃ n+1
η(θ) for the expectation parameter η of the family

{W×n
θ × P

1
θ }θ is

J̃ n+1
η(θ) = Jn+1

θ

/(
dη(θ)

dθ

)2

=
(
n
d2φ

dθ2 (θ) + J 1
θ

)(
d2φ

dθ2 (θ)

)−2

= n(1 + J 1
θ /n

d2φ

dθ2 (θ))

(
d2φ

dθ2 (θ))
.

That is, the lower bound of the variance of the unbiased estimator given by

Cramér–Rao inequality is d2φ

dθ2 (θ)/n(1 + J 1
θ /n

d2φ

dθ2 (θ)). Hence, any unbiased es-
timator Zn for the expectation parameter η satisfies

Vθ [Zn] ≥
d2φ

dθ2 (θ)

n(1 + J 1
θ /n

d2φ

dθ2 (θ))
=

d2φ

dθ2 (θ)

n
− J 1

θ

n2 + o

(
1

n2

)
.(6.7)

The relation (6.6) shows that the unbiased estimator gn(Xn+1)
n

realizes the optimal
performance with the order 1

n
.

PROOF OF LEMMA 6.2. Remember that Lemma 5.3 was shown by the com-
bination of (C.1) and (C.2). In the n + 1-observation case, combining Lemma 6.1

and the n + 1-observation version of (C.2), we can similarly show that n
d2φ

dθ2 (θ) is

the variance of [−n
dφ
dθ

(θ)+ d
dθ

logP
3
θ (Xn+1)− d

dθ
logP

3
θ (X1)+gn(Xn+1)] under

the distribution Wn
θ × P

1
θ .

Now, we define the 2-norm of the random variable f (Xn+1) as ‖f ‖2 :=√∑
xn+1 Wn

θ × Pθ(xn+1)f (xn+1)2. Then we have√
n
d2φ

dθ2 (θ) =
∥∥∥∥gn(

Xn+1) − n
dφ

dθ
(θ) + d

dθ
logP

3
θ (Xn+1) − d

dθ
logP

3
θ (X1)

∥∥∥∥
2

≤
∥∥∥∥gn(

Xn+1) − n
dφ

dθ
(θ)

∥∥∥∥
2
+

∥∥∥∥ d

dθ
logP

3
θ (Xn+1)

∥∥∥∥
2

+
∥∥∥∥ d

dθ
logP

3
θ (X1)

∥∥∥∥
2

=
√

Vθ

[
g
(
Xn+1

)] + 2
√

V̂θ ,

which implies (

√
n

d2φ

dθ2 (θ) − 2
√

V̂θ )
2 ≤ Vθ [g(Xn+1)]. Then we obtain the first in-

equality because n
d2φ

dθ2 (θ)(1 − 2

√
V̂θ /n

d2φ

dθ2 (θ))2 = (

√
n

d2φ

dθ2 (θ) − 2
√

V̂θ )
2. Simi-

larly, since ‖gn(Xn+1) − n
dφ
dθ

(θ) + d
dθ

logP
3
θ (Xn+1) − d

dθ
logP

3
θ (X1)‖2 ≥
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‖gn(Xn+1)−n
dφ
dθ

(θ)‖2 −‖ d
dθ

logP
3
θ (Xn+1)‖2 −‖ d

dθ
logP

3
θ (X1)‖2, we obtain the

second inequality because d2φ

dθ2 (θ)(1 + 2

√
V̂θ /n

d2φ

dθ2 (θ))2 = (

√
n

d2φ

dθ2 (θ) + 2V̂θ )
2.

�

7. Nonstationary n + 1-observation case. Similar to the previous section,
this section also discusses the one-parameter case. Now, we consider the non-
stationary case. Since the convergence to the stationary distribution is required,
we assume that the transition matrices Wθ are ergodic as well as irreducible. Then
we fix an arbitrary initial distributions Pθ on X such that the distribution Pθ is
smoothly parameterized by the parameter θ . In this section, we assume that Wθ is
the exponential family generated by the generator g(x, x′) and the random variable
Xn+1 := (Xn+1, . . . ,X1) is subject to W×n

θ × Pθ with the unknown parameter θ .
Then we denote the expectation and the variance under the distribution W×n

θ × Pθ

by Eθ and Vθ . In this general case, the relation (6.4) does not hold. Instead of these
relations, as is shown in [12], Lemma 5.4, we have

lim
n→∞

1

n
D

(
W×n

θ × Pθ‖W×n
θ ′ × Pθ ′

) = D(Wθ‖Wθ ′),(7.1)

lim
n→∞

1

n
D1+s

(
W×n

θ × Pθ‖W×n
θ ′ × Pθ ′

) = D1+s(Wθ‖Wθ ′).(7.2)

For a function h on R, we define the random variable g̃n(Xn+1) := gn(Xn+1)+
h(X1). When we use the random variable g̃n(Xn+1)/n as an estimator of the pa-
rameter η(θ), the error is measured by the mean square error:

MSEθ

[
g̃n(

Xn+1)] := Eθ

[(
g̃n(Xn+1)

n
− η(θ)

)2]
.(7.3)

Then we have Eθ [g̃n(Xn+1)] = Eθ [gn(Xn+1)] + Eθ [h(X1)]. In the following dis-

cussion, we employ the norm ‖f (Xn+1)‖2 :=
√

Eθ [f (Xn+1)2] for a function f on

R
n+1. Using the triangle inequality for this norm, we have√

Vθ

[
gn

(
Xn+1

)] −
√

Vθ

[
h(X1)

] ≤
√

Vθ

[
g̃n

(
Xn+1

)]
(7.4)

≤
√

Vθ

[
gn

(
Xn+1

)] +
√

Vθ

[
h(X1)

]
,

and √
Eθ

[(
gn(Xn+1)

n
− Eθ

[
gn(Xn+1)

n

])2]

−
√

Eθ

[(
h(X1)

n
+ Eθ

[
gn(Xn+1)

n

]
− η(θ)

)2]
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≤
√

Eθ

[(
g̃n(Xn+1)

n
− η(θ)

)2]
(7.5)

≤
√

Eθ

[(
gn(Xn+1)

n
− Eθ

[
gn(Xn+1)

n

])2]

+
√

Eθ

[(
h(X1)

n
+ Eθ

[
gn(Xn+1)

n

]
− η(θ)

)2]
.

It is known that for a given compact subset U ⊂ R, there exist constants 1 > ρ > 0
and γ > 0 such that ∣∣Wn

θ

(
x|x′) − Pθ

∣∣ < γρn(7.6)

for θ ∈ U [9], page 173. That is, the distribution of Xn converges to the sta-
tionary distribution in terms of variational distance, which is compact uniform

with respect to θ . So, we find that the expectation Eθ [gn(Xn+1)
n

] and the variance

Vθ [gn(Xn+1)√
n

] converge to those under the stationary distribution, whose conver-

gences are compact uniform with respect to θ . This is because maxxn+1
gn(xn+1)

n
γρn

and maxxn+1(
gn(xn+1)√

n
)2γρn go to zero. Hence, we have

lim
n→∞ Eθ

[
g̃n(Xn+1)

n

]
= lim

n→∞ Eθ

[
gn(Xn+1)

n

]
(a)= η(θ) = dφ

dθ
(θ),(7.7)

lim
n→∞nMSEθ

[
g̃n(Xn+1)

n

]
(b)= lim

n→∞ Vθ

[
g̃n(Xn+1)√

n

]
(7.8)

(c)= lim
n→∞ Vθ

[
gn(Xn+1)√

n

]
(d)= d2φ

dθ2 (θ),

where (a), (b), (c) and (d) follow from (6.2), (7.5), (7.4) and (6.5), respectively.
The above convergences are compact uniform with respect to θ . The relation (7.7)

shows that the estimator g̃n(Xn+1)
n

is asymptotically unbiased for the parameter η.

The mean square error is d2φ

dθ2 (θ) 1
n
+o( 1

n
), which implies (2.2). Further, it is shown

that the random variable
√

n(
gn(Xn+1)

n
− η(0)) asymptotically obeys the Gaussian

distribution with the variance d2φ

dθ2 (0) at θ = 0 [12], Corollary 6.2. Replacing W0 by

Wθ , we find that the random variable
√

n(
gn(Xn+1)

n
− η(θ)) asymptotically obeys

the Gaussian distribution with the variance d2φ

dθ2 (θ).

Next, for the family {W×n
θ ×Pθ }θ , we consider the Fisher information Jn

θ for the
natural parameter θ and the Fisher information J̃ n

θ for the expectation parameter η.
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LEMMA 7.1. The limit of the Fisher information Jn
θ for the natural parameter

θ is characterized as

lim
n→∞

Jn
θ

n
= d2φ

dθ2 (θ).(7.9)

Hence, the limit of the Fisher information J̃ n
θ for the expectation parameter η is

characterized as limn→∞
J̃ n
θ

n
= d2φ

dθ2 (θ)−1.

Lemma 7.1 implies that the lower bound of the Cramér–Rao inequality is
d2φ

dθ2 (θ(η)) 1
n

+ o( 1
n
). Therefore, the estimator g̃n(Xn+1)

n
attains the lower bound by

the Cramér–Rao inequality with the order 1
n

. That is, the estimator g̃n(Xn+1)
n

is
asymptotically efficient.

PROOF OF LEMMA 7.1. Similar to (C.2), we have

Jn
θ = Eθ

[(
−n

dφ

dθ
(θ) + d

dθ
logP

3
θ (Xn+1)

− d

dθ
logP

3
θ (X1) + gn(

Xn+1))2]
+ J 1

θ

(7.10)

=
∥∥∥∥−n

dφ

dθ
(θ) + d

dθ
logP

3
θ (Xn+1)

− d

dθ
logP

3
θ (X1) + gn(

Xn+1)∥∥∥∥
2

2
+ J 1

θ .

Since (7.7) and (7.8) yield that 1
n
‖gn(Xn+1) − n

dφ
dθ

(θ)‖2
2 → d2φ

dθ2 (θ), we have

1√
n

∥∥∥∥−n
dφ

dθ
(θ) + d

dθ
logP

3
θ (Xn+1) − d

dθ
logP

3
θ (X1) + gn(

Xn+1)∥∥∥∥
2

≤ 1√
n

(∥∥∥∥gn(
Xn+1) − n

dφ

dθ
(θ)

∥∥∥∥
2
+

∥∥∥∥ d

dθ
logP

3
θ (Xn+1)

∥∥∥∥
2

+
∥∥∥∥ d

dθ
logP

3
θ (X1)

∥∥∥∥
2

)
(7.11)

≤ 1√
n

∥∥∥∥gn(
Xn+1) − n

dφ

dθ
(θ)

∥∥∥∥
2
+ 2√

n
max

x

∣∣∣∣ d

dθ
logP

3
θ (x)

∣∣∣∣
→

√
d2φ

dθ2 (θ).

The combination of (7.10) and (7.11) yields that limn→∞
Jn
θ

n
≤ d2φ

dθ2 (θ). Similarly,
the opposite inequality can be shown by replacing the role of (7.11) by the follow-
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ing inequality:

1√
n

∥∥∥∥−n
dφ

dθ
(θ) + d

dθ
logP

3
θ (Xn+1) − d

dθ
logP

3
θ (X1) + gn(

Xn+1)∥∥∥∥
2

≥ 1√
n

∥∥∥∥gn(
Xn+1) − n

dφ

dθ
(θ)

∥∥∥∥
2
− 2√

n
max

x

∣∣∣∣ d

dθ
logP

3
θ (x)

∣∣∣∣ →
√

d2φ

dθ2 (θ).

Hence, we obtain (7.9). Since dθ
dη

(θ) = d2φ

dθ2 (θ)−1, (7.9) implies limn→∞
J̃ n
θ

n
=

d2φ

dθ2 (θ)−1. �

8. Estimation with multiparameter case.

8.1. Estimation with multiparameter exponential family: Stationary case. As-
sume that W�θ is a multiparameter exponential family of transition matrices with
�θ = (θ1, . . . , θd) with the generator {gj }. Then we assume that the initial dis-

tribution is the stationary distribution P
1
�θ on X of W�θ and the random variable

Xn+1 := (Xn+1, . . . ,X1) is subject to W×n
�θ × P

1
�θ with the unknown parameter �θ .

In this subsection, we denote the expectation and the variance under the distribu-

tion W×n
�θ × P

1
�θ by E�θ and V�θ .

Similar to (6.2), using �gn(Xn+1) := [gn
j (Xn+1)]j , we can show that

E�θ
[ �gn(Xn+1)

n

]
= �η(�θ),(8.1)

which implies that �gn(Xn+1) is an unbiased estimator of the expectation parameter
�η(�θ). We denote the covariance matrix of �gn(Xn+1) by Covθ [�gn(Xn+1)]. We also

denote the covariance matrix of [ ∂
∂θj logP

3
�θ (X)]j by ˆCovθ .

LEMMA 8.1. The matrix inequalities

nH�θ [φ]
(

1 − 2

√
‖H�θ [φ]−1/2 ˆCovθH�θ [φ]−1/2‖

n

)2

≤ Covθ

[�gn(
Xn+1)]

(8.2)

≤ nH�θ [φ]
(

1 + 2

√
‖H�θ [φ]−1/2 ˆCovθH�θ [φ]−1/2‖

n

)2

hold, where the matrix inequality is defined by the positive semi-definiteness.
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PROOF. First, we fix a real unit vector �a = [aj ]j . Applying (6.5) to the random
variable

∑
j ajg

n
j (Xn+1), we obtain

n�aT H�θ [φ]�a
(

1 − 2

√√√√ �aT ˆCovθ �a
n�aT H�θ [φ]�a

)2

≤ �aT Covθ

[�gn(
Xn+1)]�a(8.3)

≤ n�aT H�θ [φ]�a
(

1 + 2

√√√√ �aT ˆCovθ �a
n�aT H�θ [φ]�a

)2

.

Since �aT ˆCovθ �a
�aT H�θ [φ]�a ≤ ‖H�θ [φ]−1/2 ˆCovθH�θ [φ]−1/2‖, (8.3) implies (8.2). �

Lemma 8.1 yields that

Cov�θ
[ �gn(Xn+1)

n

]
= Cov�θ [�gn(Xn+1)]

n2 = H�θ [φ]
n

+ o

(
1

n

)
.(8.4)

Now, we denote the Fisher information matrix of the distribution family {P 1
�θ }�θ

by J 1
�θ . The Fisher information matrix J̃ n+1

�η(�θ)
for the expectation parameter �η of the

distribution family {W×n
�θ × P

1
�θ }�θ is

J̃ n+1
�η(�θ)

=
([

∂ηi(�θ)

∂θj

]T

i,j

)−1

Jn+1
�θ

([
∂ηi(�θ)

∂θj

]
i,j

)−1

= H�θ [φ]−1(
nH�θ [φ] + J 1

�θ
)
H�θ [φ]−1

= H�θ [φ]−1/2(
nI + H�θ [φ]−1/2J 1

�θ H�θ [φ]−1/2)
H�θ [φ]−1/2.

That is, the lower bound of the variance of the unbiased estimator given by
Cramér–Rao inequality is 1

n
H�θ [φ]1/2(1I + 1

n
H�θ [φ]−1/2J 1

�θ H�θ [φ]−1/2)−1H�θ [φ]1/2,
that is, the Cramér–Rao inequality is given as

Cov�θ
[ �gn(Xn+1)

n

]

≥ 1

n
H�θ [φ]1/2

(
I + 1

n
H�θ [φ]−1/2J 1

�θ H�θ [φ]−1/2
)−1

H�θ [φ]1/2(8.5)

= 1

n
H�θ [φ] + O

(
1

n2

)
.

The relation (8.4) shows that the unbiased estimator �gn(Xn+1)
n

realizes the optimal
performance with the order 1

n
.
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Therefore, we obtain an asymptotically efficient estimator for the expectation
parameter. To estimate the natural parameter, we need to solve the equation

ηj = ∂φ

∂θj
(�θ)(8.6)

for �θ . Since the function φ(�θ) is strictly convex, �θ(�η) can be derived by the maxi-
mization of the concave function as

argmax
�θ

�η · �θ − φ(�θ).(8.7)

The calculation complexity does not depend on the number n of data. Hence, when
the number d of parameters is not so large, the natural parameter can be estimated
efficiently even with a large number n of data.

However, the conventional algorithm for the maximization of the concave func-
tion [5] requires the calculation of the derivative. Since the convex function φ(�θ)

is given as the logarithm of the Perron–Frobenius eigenvalue of the matrix Wθ , the
calculation of the derivative is not so easy. To overcome this kind of difficulty, we
can employ derivative-free optimization algorithms [7, 23] represented by Nelder–
Mead method [29]. A derivative-free optimization algorithm maximizes a concave
function without calculating the derivative only with calculating the outcomes with
several inputs. In particular, it is expected that such an algorithm enables us to nu-
merically derive �θ(�η) for a given �η.

8.2. Estimation with multiparameter exponential family: Nonstationary case.
Next, similar to Section 7, we consider the nonstationary case and assume that the
transition matrices W�θ are ergodic as well as irreducible. Then we fix an arbitrary
initial distributions P�θ on X such that the distribution P�θ is smoothly parameter-
ized by the natural parameter �θ . This assumption contains the special case when
the distribution P�θ does not depend on the parameter �θ .

In this subsection, we denote the expectation, the variance, and the covariance
matrix under the distribution W×n

�θ × P�θ by E�θ , V�θ and Cov�θ . Then we employ

the random variable �gn(Xn+1) := (gn
j (Xn+1)). When we use the random variable

�gn(Xn+1)/n as an estimator of the parameter �θ , the error is measured by the mean
square error matrix:

MSEθ

[ �gn(Xn+1)

n

]
i,j

:= Eθ

[(
gn

i (Xn+1)

n
− ηi(�θ)

)(gn
j (Xn+1)

n
− ηj (�θ)

)]
.

Similar to (7.7), we can show that

lim
n→∞ E�θ

[ �gn(Xn+1)

n

]
= �η(�θ) =

[
∂φ

∂θj
(�θ)

]
j

.(8.8)
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For any vector �c = (ci), the application of (7.8) to θ = �c · �θ implies that

lim
n→∞n�cT MSE�θ

[ �gn(Xn+1)

n

]
�c = lim

n→∞n�cT Cov�θ
[ �gn(Xn+1)

n

]
�c

(8.9)
= �cT H�θ [φ]�c.

Here, the convergences in (8.8) and (8.9) are compact uniform with respect
to �θ because (7.6) can be extended to multiparametric case. Hence, combining
Lemma 8.1, we obtain the following theorem in the same way as (7.7) and (7.8).

THEOREM 8.2. The compact uniform convergences with respect to �θ

lim
n→∞nMSE�θ

[ �gn(Xn+1)

n

]
= lim

n→∞nCov�θ
[ �gn(Xn+1)

n

]
= H�θ [φ](8.10)

hold.

The relation (8.8) shows that the estimator �gn(Xn+1)
n

is asymptotically unbiased
for the expectation parameter �η. The above theorem implies that the mean square
error is 1

n
H�θ [φ] + o( 1

n
).

Next, for the family {W×n
�θ × P�θ }�θ , we consider the Fisher information matrix

Jn
�θ for the natural parameter �θ and the Fisher information matrix J̃ n

�θ for the expec-
tation parameter �η.

LEMMA 8.3. The limit of the Fisher information matrix Jn
�θ for the natu-

ral parameter �θ is characterized as limn→∞
Jn

�θ
n

= H�θ [φ]. Hence, the limit of the

Fisher information matrix J̃ n
�θ for the expectation parameter �η is characterized as

limn→∞
J̃ n

�θ
n

= H�θ [φ]−1.

PROOF. We fix a real unit vector �a = [aj ]j . The application of the rela-

tion (7.9) to θ = �c · �θ yields that limn→∞
�aT J n

�θ �a
n

= �aT H�θ [φ]�a, which implies

limn→∞
Jn

�θ
n

= H�θ [φ]. Since [ ∂ηi(�θ)
∂θj

]i,j is H�θ [φ], we obtain limn→∞
J̃ n

�θ
n

= H�θ [φ]−1.
�

Lemma 8.3 implies that the lower bound of the Cramér–Rao inequality is
1
n

H�θ [φ] + o( 1
n
). Therefore, the estimator �gn(Xn+1)

n
attains the lower bound by the

Cramér–Rao inequality with the order 1
n

. That is, the estimator �gn(Xn+1)
n

is asymp-
totically efficient.

Similar to the one-parameter case, we can show that the random variable√
n(

�gn(Xn+1)
n

− �η(�θ)) converges to the Gaussian distribution with the covariance
matrix H�θ [φ].
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8.3. Estimation with multiparameter curved exponential family. Next, we pro-
ceed to estimation with a multiparameter curved exponential family. Given a d-
dimensional exponential family E = {W�θ }�θ∈�, we choose an injective smooth

function �θCRV from a subset � ⊂ R
d ′

to a subset � ⊂ R
d . Then a d ′-parameter

subset Ẽ = {W�θCRV(�ξ)}�ξ of transition matrices is called a curved exponential fam-
ily of transition matrices. For example, a mixture family defined in Section 4.2 is
also a curved exponential family. As explained in Example 1, the set of all positive
transition matrices on a finite-size system forms an exponential family. Hence, any
smooth subfamily of transition matrices on a finite-size system forms a curved ex-
ponential family. Then we define the Fisher information matrix H̃�ξ as the metric

of the submanifold. Assume that the Jacobian matrix A := [ ∂ηi

∂ξj
|�ξ=�ξo

]i,j has the

rank d ′. When the potential function of the exponential family is φ, the Fisher
information matrix is written as H̃�ξo

= AT H�θCRV(�ξo)
[φ]−1A because the Fisher in-

formation matrix for the expectation parameter η at �θCRV(�ξo) is H�θCRV(�ξo)
[φ]−1.

In the following, we assume that the exponential family E is generated by gj .
Given n + 1 observations Xn+1, as Figure 1, we define the estimator �ξn(Xn+1) :=
argmin�ξ D(W�θ(

�gn(Xn+1)
n

)
‖W�θCRV(�ξ)) for the curved exponential family Ẽ . Then, sim-

ilar to the case of a curved exponential family of probability distributions [2],
Section 4.4, we can show that the estimator �ξn(Xn+1) is asymptotically effi-
cient. That is, the mean square error matrix is asymptotically approximated to
1
n

H̃�ξ [φ]−1 + o( 1
n
) as follows.

THEOREM 8.4. The random variable �ξn(Xn+1)− �ξo asymptotically obeys the
Gaussian distribution with the covariance matrix 1

n
H̃�ξo

[φ]−1. Also, when the set �

is bounded, the mean square error matrix of our estimator �ξn(Xn+1) is asymptot-
ically approximated to 1

n
H̃�ξ [φ]−1 + o( 1

n
).

PROOF. One-parameter case: For simplicity, we first consider the case with

d ′ = 1. When ξ is close to ξo, �ηCRV(ξ) is �ηo + d �η(�θCRV)
dξ

|ξ=ξo(ξ − ξo) + o(ξ − ξo),

FIG. 1. Estimator for the curved exponential family.
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where �ηo := �η(�θCRV(ξo)) and �ηCRV(ξ) := �η(�θCRV(ξ)). Hence, given an observed

value �gn(Xn+1)
n

close to the true parameter �ηo, we have

ξn(
Xn+1) = ξo + 〈 �gn(Xn+1)

n
− �ηo,

d �ηCRV
dξ

|ξ=ξo〉ξo

〈d �ηCRV
dξ

|ξ=ξo ,
d �ηCRV

dξ
|ξ=ξo〉ξo

(8.11)

+ o

(∥∥∥∥ �gn(Xn+1)

n
− �ηo

∥∥∥∥
)
,

where 〈v,u〉ξo := ∑
i,j (H�θCRV(�ξo)

[φ]−1)i,j viuj because the minimization
minξ ′ D(W�θ(

�gn(Xn+1)
n

)
‖W�θCRV(ξ ′+ξo)

) can be approximated to

min
ξ ′

1

2

〈 �gn(Xn+1)

n
−

(
�ηo + d �ηCRV

dξ

∣∣∣∣
ξ=ξo

ξ ′
)
,

(8.12)
�gn(Xn+1)

n
−

(
�ηo + d �ηCRV

dξ

∣∣∣∣
ξ=ξo

ξ ′
)〉

ξo

.

That is, ξn(Xn+1) − ξo can be approximated by
〈 �gn(Xn+1)

n
−�ηo,

d �ηCRV
dξ

|ξ=ξo 〉ξo
〈 d �ηCRV

dξ
|ξ=ξo ,

d �ηCRV
dξ

|ξ=ξo 〉ξo
when

�gn(Xn+1)
n

is close to the true parameter �ηo := �η(�θCRV(ξo)). Since

lim
n→∞nE�θCRV(ξo)

[(〈 �gn(Xn+1)

n
− �ηo,

d �ηCRV

dξ

∣∣∣∣
ξ=ξo

〉
ξo

)2]

=
〈
d �ηCRV

dξ

∣∣∣∣
ξ=ξo

,
d �ηCRV

dξ

∣∣∣∣
ξ=ξo

〉
ξo

= H̃ξo[φ],
we have

n

〈
d �ηCRV

dξ

∣∣∣∣
ξ=ξo

,
d �ηCRV

dξ

∣∣∣∣
ξ=ξo

〉−2

ξo

× E�θCRV(ξo)

[(〈 �gn(Xn+1)

n
− �ηo,

d �ηCRV

dξ

∣∣∣∣
ξ=ξo

〉
ξo

)2]
(8.13)

→ H̃ξo[φ]−1.

Since the probability that this approximation asymptotically does not hold ap-
proaches zero, we can apply the central limit theorem for Markovian process

[15, 18, 24] to 〈 �gn(Xn+1)
n

− �ηo,
d �ηCRV

dξ
|ξ=ξo〉ξo . So, we find that the random variable

ξn(Xn+1)− ξo asymptotically obeys the Gaussian distribution with the covariance
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1
n

H̃ξo[φ]−1. The above discussion shows only the weak convergence to the Gaus-
sian distribution.

To show the second statement, we need more careful discussion. Rewriting the
argument (8.11) in a more precise form, we obtain the following argument. For
any small real number ε > 0, there exists δ > 0 satisfying the following condition.
When ∥∥∥∥ �gn(Xn+1)

n
− �ηo

∥∥∥∥ < δ,(8.14)

we have

ξn(
Xn+1) − ξo = 〈 �gn(Xn+1)

n
− �ηo,

d �ηCRV
dξ

|ξ=ξo〉ξo

〈d �ηCRV
dξ

|ξ=ξo ,
d �ηCRV

dξ
|ξ=ξo〉ξo

(8.15)

+ εt
(
Xn+1)∥∥∥∥ �gn(Xn+1)

n
− �ηo

∥∥∥∥,
where |t (Xn+1)| ≤ 1.

In the following, we denote the set {xn+1|‖ �gn(xn+1)
n

− �ηo‖ < δ} by �
(n)
δ . Then,

we denote the conditional expectation under the condition (8.14) by E�θCRV(ξo)|�(n)
δ

.

Hence, using (8.13) we have

C
(n)
1,δ := nP�θCRV(ξo)

(
�

(n)
δ

)
E�θCRV(ξo)|�(n)

δ

[(〈 �gn(Xn+1)
n

− �ηo,
d �ηCRV

dξ
|ξ=ξo〉ξo

〈d �ηCRV
dξ

|ξ=ξo ,
d �ηCRV

dξ
|ξ=ξo〉ξo

)2]

≤ nH̃�ξ [φ]−2E�θCRV(ξo)

[(〈 �gn(Xn+1)

n
− �ηo,

d �ηCRV

dξ

∣∣∣∣
ξ=ξo

〉
ξo

)2]
(8.16)

→ H̃ξo[φ]−1,

C
(n)
2,δ := nP�θCRV(ξo)

(
�

(n)
δ

)
E�θCRV(ξo)|�(n)

δ

[
t
(
Xn+1)2

∥∥∥∥ �gn(Xn+1)

n
− �ηo

∥∥∥∥
2]

≤ nP�θCRV(ξo)

(
�

(n)
δ

)
E�θCRV(ξo)|�(n)

δ

[∥∥∥∥ �gn(Xn+1)

n
− �ηo

∥∥∥∥
2]

(8.17)

≤ n
∑
i

E�θCRV(ξo)

[( �gn(Xn+1)

n
− �ηo

)2

i

]

(a)→ C2 := ∑
i

HθCRV(ξo)[φ]i,i ,

where (a) follows from Theorem 8.2. Since (α + εβ)2 = α2 + 2εαβ + ε2β2 ≤
α2 + ε(α2 + β2) + ε2β2 = (1 + ε)α2 + (ε + ε2)β2 for two real numbers α and β ,
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(8.15), (8.16) and (8.17) imply that

nP�θCRV(ξo)

(
�

(n)
δ

)
E�θCRV(ξo)|�(n)

δ

[(
ξn(

Xn+1) − ξo

)2]
(8.18)

≤ (1 + ε)C
(n)
1,δ + (

ε + ε2)
C

(n)
2,δ .

On the other hand, the large deviation theory of Markov chain [8, 12] guarantees
that the probability P�θCRV(ξo)

(�
(n)
δ

c
) goes to zero exponentially. So, we have

lim
n→∞nE�θCRV(ξo)

[(
ξn(

Xn+1) − ξo

)2]
= lim

n→∞
(
nmax

ξ

(
ξn(

Xn+1) − ξo

)2P�θCRV(ξo)

(
�

(n)
δ

c)

+ nP�θCRV(ξo)

(
�

(n)
δ

)
E�θCRV(ξo)|�(n)

δ

[(
ξn(

Xn+1) − ξo

)2])
(8.19)

= lim
n→∞nP�θCRV(ξo)

(
�

(n)
δ

)
E�θCRV(ξo)|�(n)

δ

[(
ξn(

Xn+1) − ξo

)2]
(a)≤ (1 + ε)H̃ξo[φ]−1 + (

ε + ε2)
C2,δ,

where (a) follows from (8.16), (8.17) and the limit of (8.18). Since ε is arbitrary,

lim
n→∞nE�θCRV(ξo)

[(
ξn(

Xn+1) − ξo

)2] ≤ H̃ξo[φ]−1,(8.20)

which implies the second statement.

Multiparameter case: The random variable �gn(Xn+1)
n

− �ηo asymptotically obeys
the Gaussian distribution with the covariance matrix 1

n
H�θCRV(�ξo)

[φ], where �ηo :=
�η(�θCRV(�ξo)). Since the neighborhood of �ξn(Xn+1) in Ẽ can be approximated to the
tangent space at the true point �ξo, due to Corollary 4.8, the point �θCRV(�ξn(Xn+1))

can be approximately regarded as the projection to the tangent space at �ξo from the

observed point �θ(
�gn(Xn+1)

n
).

To see the asymptotic covariance matrix of the random variable �ξn(Xn+1)− �ξo,
we choose a d × d ′ matrix B1 and a d × (d − d ′) matrix B2 such that the d × d

matrix B = (B1,B2) satisfies that B is invertible and

BT H�θCRV(�ξo)
[φ]−1B = I and BT

2 H�θCRV(�ξo)
[φ]−1A = 0.(8.21)

Then BT
1 H�θCRV(�ξo)

[φ]−1A is invertible. So,

AT H�θCRV(�ξo)
[φ]−1A

= (
BT

1 H�θCRV(�ξo)
[φ]−1A

)T
BT

1 H�θCRV(�ξo)
[φ]−1B1

(
BT

1 H�θCRV(�ξo)
[φ]−1A

)
= (

BT
1 H�θCRV(�ξo)

[φ]−1A
)T (

BT
1 H�θCRV(�ξo)

[φ]−1A
)
.
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Now, we introduce the new parameter �τ(�η) := B−1�η under which, the metric is
given as Cartesian inner product. Hence, the covariance matrix of the estimator

B−1(
�gn(Xn+1)

n
) for the parameter �τ(�η) approaches the matrix 1

n
I . More precisely,

Theorem 8.2 guarantees that

lim
n→∞nCov�θ

(
B−1

( �gn(Xn+1)

n

))
= I .(8.22)

We denote the vector (τ1, . . . , τd ′)T by �τ ′(�η). Since the parameter �ξ is approx-
imately identified with the element of the tangent space, we have A(�ξ − �ξo) =
�η − �ηo + o(1) = B(�τ(�η) − �τ(�ηo)) + o(1). Hence, (8.21) implies that

BT
1 H�θCRV(�ξo)

[φ]−1A(�ξ − �ξo) = BT
1 H�θCRV(�ξo)

[φ]−1B
(�τ (�η(�ξ)

) − �τ(�ηo)
) + o(1)

= BT
1 H�θCRV(�ξo)

[φ]−1B1
(�τ ′(�η(�ξ)

) − �τ ′(�ηo)
) + o(1)

= �τ ′(�η(�ξ)
) − �τ ′(�ηo) + o(1).

Thus,

�ξ − �ξo = (
BT

1 H�θCRV(�ξo)
[φ]−1A

)−1(�τ ′(�η(�ξ)
) − �τ ′(�ηo)

) + o(1).

In this approximation, our estimator �ξn(Xn+1) for �ξ is characterized as

�ξn(
Xn+1) − �ξo

(8.23)

= (
BT

1 H�θCRV(�ξo)
[φ]−1A

)−1
B−1

( �gn(Xn+1)

n
− �ηo

)
+ o(1).

Thus, due to (8.22), the covariance matrix of our estimator is calculated as

Cov�θ
((

BT
1 H�θCRV(�ξo)

[φ]−1A
)−1

B−1
( �gn(Xn+1)

n

))

= (
BT

1 H�θCRV(�ξo)
[φ]−1A

)−1Cov�θ
(
B−1

( �gn(Xn+1)

n

))

× ((
BT

1 H�θCRV(�ξo)
[φ]−1A

)T )−1

(8.24)

= (
BT

1 H�θCRV(�ξo)
[φ]−1A

)−1 I

n

((
BT

1 H�θCRV(�ξo)
[φ]−1A

)T )−1

= 1

n

((
BT

1 H�θCRV(�ξo)
[φ]−1A

)T (
BT

1 H�θCRV(�ξo)
[φ]−1A

))−1

= 1

n

(
AT H�θCRV(�ξo)

[φ]−1A
)−1 = 1

n
H̃�ξo

[φ]−1.

Since the probability that this approximation asymptotically does not hold ap-
proaches zero, we can apply the central limit theorem for Markovian process [15,
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18, 24] to the random variable given in RHS of (8.23). So, we find that the random
variable �ξn(Xn+1) − �ξo asymptotically obeys the Gaussian distribution with the
covariance matrix 1

n
H̃�ξo

[φ]−1.
To show the second statement, we apply the same discussion as the latter part

of the one-parameter case by replacing (8.11) by (8.23). In this discussion, the role
of (8.24) plays the role of (8.13). More precisely, for any vector �a, we apply the
same discussion to

�aT (�ξn(
Xn+1) − �ξo

)
(8.25)

= �aT (
BT

1 H�θCRV(�ξo)
[φ]−1A

)−1
B−1

( �gn(Xn+1)

n
− �ηo

)
+ o(1).

So, we obtain

lim
n→∞n�aT MSE�θCRV(�ξo)

[�ξn(
Xn+1)]�a = �aT H̃�ξo

[φ]−1�a.(8.26)

Since �a is arbitrary, we obtain the second statement. �

REMARK 3. The papers [3, 10, 13, 19, 20, 35, 36] showed that the maximum
likelihood estimator (MLE) is asymptotically efficient in the exponential family
with their definition (4.4). Since the definition (4.4) is different from ours (4.1),
the results in this section are different from theirs. Further, since our asymptoti-
cally efficient estimator is given as the sample mean of g, the required calculation
amount is smaller than theirs. Even in the case of a curved exponential family, the
Pythagorean theorem (4.20) enables us to calculate our asymptotically efficient es-
timator with small amount of calculation. However, their MLE does not have so
simple form because their exponential family does not have such a geometrical
structure, for example, expectation parameter and the Pythagorean theorem, etc.
Hence, it requires large calculation amounts.

Indeed, when the matrix entries of the transition matrix is to be estimated, the
literature [34] showed that the sample mean is the same as the maximum likelihood
estimator. However, this fact holds only for such a specific parameter, and cannot
be applied to the parameter estimation of our exponential family, in general. Our
method can be applied to any parameter of an exponential family in our sense.

8.4. Implementation of our estimator for curved exponential family. In this
subsection, we consider how to calculate our estimator �ξn(Xn+1). This calculation
depends on the type of parametrization of the transition matrix W�θCRV(�ξ). We can
consider two cases as follows:

(1) The entries of the transition matrix W�θCRV(�ξ) are calculated directly from �ξ
with small calculation complexity.

(2) The entries of the transition matrix W�θCRV(�ξ) are calculated by (4.2) via the

calculation of �θCRV(�ξ). In this case, the calculation of these entries has large cal-
culation complexity.
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For example, Example 4 belongs to Case (1) because W�η is directly calculated
from the parameter �η.

In the calculation of the estimator �ξn(Xn+1), first we obtain the estimate �η′ of
the larger exponential family E with the expectation parameter. Then we calculate
its natural parameter �θ ′ by the method given in the end of Section 8.1. The follow-
ing steps depend on the above case. In Case (1), we can implement the minimiza-
tion by employing the final expression in (5.5) with small calculation complexity
due to the following reason. The final expression in (5.5) needs only the entries of
the transition matrices W�θ ′ and W�θCRV(�ξ) and the Perron–Frobenius eigenvector of
W�θ ′ . In this case, it is enough to calculate the Perron–Frobenius eigenvalue and the
Perron–Frobenius eigenvector of W�θ ′ only at the first step. At each step of the min-
imization, we do not have any difficult calculation. Therefore, the final expression
in (5.5) brings us an easy implementation of the minimization in Case (1).

However, in Case (2), it is better to employ (4.15) instead of the final expres-
sion in (5.5) due to the following reason. When the final expression in (5.5) is
employed, the calculation of the transition matrix W�θCRV(�ξ) requires the calcula-
tions of the Perron–Frobenius eigenvalue and the Perron–Frobenius eigenvector of
the matrix given in (4.1) as in (4.2). To calculate the RHS of (4.15), we need to
calculate the partial derivative ∂φ

∂θj (�θ ′) and the Perron–Frobenius eigenvalues φ(�θ ′)
and φ(�θCRV(�ξ)). Fortunately, the partial derivative ∂φ

∂θj (�θ ′) coincides with the ex-
pectation parameter �η′, which is first obtained. Also, it is enough to calculate the
Perron–Frobenius eigenvalue φ(�θ ′) only once. Hence, at each step of the mini-
mization, we need to calculate only the Perron–Frobenius eigenvalue φ(�θCRV(�ξ)),
that is, we do not need to calculate the Perron–Frobenius vector. Therefore, (4.15)
requires less calculation complexity than the final expression in (5.5) in Case (2).

9. Conclusion. We have revisited the information geometrical structure (the
exponential family, the natural parameter, the expectation parameter, relative en-
tropy, relative Rényi entropy, Fisher information matrix and the Pythagorean the-
orem) of transition matrices by using the convex function φ(θ) defined by the
Perron–Frobenius eigenvalue of the matrix W �θ defined by (4.1). Then we have
shown that the sample mean of the generating function is an asymptotically effi-
cient estimator for the expectation parameters in the exponential family of tran-
sition matrices. Combining this property and the Pythagorean theorem, we have
given an asymptotically efficient estimator for a curved exponential family of tran-
sition matrices. As a consequence, we have characterized the asymptotic variance
of the sample mean in the Markovian chain by using the second derivative of the
convex function φ(θ).

In this paper, we have assumed that our system consists of finite elements. On
the other hand, in Markov chain Monte Carlo (MCMC) methods, it is also im-
portant to evaluate the variance of the sample mean, and several approaches to
approximately evaluate the variance of the sample mean have been proposed [16,
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21, 22, 30, 32, 33]. Our finite-length bound in equation (6.5) in Lemma 6.2 may be
an useful alternative approach for the stationary process with the finite state space.
However, the most interesting application of MCMC methods is for a nonstation-
ary process and/or a continuous state space; as is reported in the literature [16, 21,
22, 30, 32, 33], there are some difficulties to evaluate the empirical variance of the
sample mean for continuous state space even with discrete time Markov chains.
Thus, it is desirable to extend our approach for continuous state space. In fact, we
do not use the finiteness of the cardinality of state space so explicitly. Therefore,
it seems that there is no essential obstacle for extension to the continuous case
under a proper regularity condition. Such an extension will bring us an alternative
approach to evaluate the variance of the sample mean even for a continuous case.
Also, this extension will enable us to handle several Gaussian Markovian chains in
a simple way. Also, extending our result evaluation to a nonstationary case is also
an interesting problem.

Further, the obtained version of the Pythagorean theorem will be helpful for
the hierarchy of exponential families of transition matrices. For an example, a
hierarchy of exponential families can be constructed by changing the degree of
Markovian chain, it might be interesting to investigate this example.

APPENDIX A: RELATION WITH EXISTING RESULTS

As mentioned in Introduction, some of results in this paper for relative entropy
and exponential family have been already stated in [26] (without detailed proof)
and we restate those results and give proofs to keep the paper self-contained. For
deeper understanding, we summarize the relation with those papers in this Ap-
pendix.

Our definition (3.2) for the relative entropy D(W‖V ) has the following relation
with those by [26–28]. Natarajan [28] and Nakagawa and Kanaya [27] defined
the relative entropy D(W‖V ) by the final term of (5.5). However, Nagaoka [26]
defined the relative entropy D(W‖V ) by (4.15) and showed the equivalence with
the final term of (5.5). If we consider only the relative entropy D(W‖V ), the def-
inition by the final term of (5.5) is natural. However, the relative Rényi entropy
D1+s(W‖V ) cannot define in the same way. Hence, in order to treat the relative
entropy D(W‖V ) and the relative Rényi entropy D1+s(W‖V ) in a unified way, we
adopt the definition (3.2) for the relative entropy D(W‖V ) instead of the final term
of (5.5). Our definition clarifies the relation between the relative entropy D(W‖V )

and the relative Rényi entropy D1+s(W‖V ), which is helpful when we apply these
quantities to simple hypothesis testing [12], random number generation, data com-
pression and channel coding [11] in Markov chain.

Next, we address the convexity of the function φ(�θ). Nakagawa and Kanaya
[27], Section III, and Nagaoka [26] showed the convexity φ(�θ) in their respec-
tive cases. Nagaoka [26] also showed the equivalence between (1) and (5) in
Lemma 4.1. However, they did not clearly consider the relation with the other
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conditions in Lemma 4.1. In fact, these equivalence relations are essential for the
condition of a generator of an exponential family and also for applications to finite-
length evaluations of the tail probability, the error probability in simple hypothesis
testing [12], source coding, channel coding and random number generation [11] in
the Markov chain.

Now, we proceed to the definition of an exponential family for transition matri-
ces. Our logical order of arguments in this definition is different from that by Na-
gaoka [26] and Nakagawa and Kanaya [27]. We first define the potential function
φ(�θ) from a given transition matrix W and a given generator {gj } Then we give the
parametric transition matrices although their papers [26, 27] gave the parametric
transition matrices first. The potential function φ(�θ) for a transition matrix W and
a generator {gj } produces several information quantities, which play the central
roles when we apply the exponential family for transition matrices to finite-length
evaluations of the tail probability and the above applications [11, 12] in Markov
chain. To characterize these information quantities, we employ an exponential fam-
ily of transition matrices. So, our logical order adapts such an application. Further,
this paper introduces a mixture family while the existing papers [26, 27] did not
define a mixture family.

Indeed, Kontoyiannis and Meyn [18], (11), gave a one-parameter family of tran-
sition matrices with the same logical order. However, they did not use the terminol-
ogy “exponential family” and did not show the convexity of the potential function
φ(�θ). Ito and Amari [14] discussed the geometrical structure of an exponential
family of transition matrices only for WX in the same definition as ours. However,
they did not treat this set as an exponential family of transition matrices.

Our formula (4.20) in Pythagorean theorem (Proposition 4.6) has the following
relation with Nakagawa and Kanaya [27]. Nakagawa and Kanaya [27], Lemma 5,
showed (4.20) with k = 1. Hence, our relation (4.20) can be regarded as a gen-
eralization of Nakagawa and Kanaya [27], Lemma 5. Indeed, the motivation of
Nakagawa and Kanaya ([27], Lemma 5) is related to the exponent of simple hy-
pothesis testing. That is, their purpose is to show the relation

min
W :D(W‖W1)≤r

D(W‖W0) = min
θ :D(Wθ‖W1)≤r

D(Wθ‖W0).(A.1)

However, the multiparametric extension (4.20) is essential for estimation in a
curved exponential family, which is discussed in Section 8.3.

APPENDIX B: SET OF POSITIVE BISTOCHASTIC MATRICES

To discuss Example 4 in the detail, we investigate the set of bistochastic matri-
ces on X = {0,1, . . . ,m}. First, we divide the linear space of (m + 1) × (m + 1)

matrices into two linear spaces:

A := {
(vx + wy)x,y |(vx)x, (wx)x ∈ R

m+1}
,(B.1)

B :=
{
(ax,y)x,y

∣∣∣∣
m∑

x′=0

ax′,y =
m∑

y′=0

ax,y′ = 0 for x, y = 0,1, . . . ,m

}
.(B.2)
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In the following, any two-input function g(x, x′) is regarded as an (m + 1) ×
(m + 1) matrix. For an arbitrary nonidentical permutation σ ∈ SX , the function
ĝσ belongs to B. The function gj belongs to A. Also, when a function h satisfies
h(x, y) = c + vx − vy with a constant c and a vector (vx) ∈ R

m+1, the function
h belongs to A. Any nonzero linear combination of {gj }mj=1 cannot be written by
the above function h. Thus, to show the linear independence of the set of functions
{gj }mj=1 ∪ {ĝσ }σ∈T ∪H , it is enough to show the following lemma.

LEMMA B.1. The set {ĝσ }σ∈T ∪H is linearly independent in the linear
space B.

The number of elements of the set {gj }mj=1 ∪ {ĝσ }σ∈T ∪H is m2, which equals
the dimension of B. So, the set {gj }mj=1 ∪ {ĝσ }σ∈T ∪H spans the linear space B.
For any bistochastic matrix W , we have W − Wid ∈ B. Hence, W − Wid can be
written as a linear combination of {ĝσ }σ∈T ∪H , that is,

∑
σ∈T ∪H ησ ĝσ . Therefore,

W = Wid + ∑
σ∈T ∪H ησ ĝσ = W�η.

PROOF OF LEMMA B.1. Now, we prepare notation. For a two-input func-
tion g, we define the symmetric matrix S[g]x,x′ := g(x, x′) + g(x′, x) and the
anti-symmetric matrix A[g]x,x′ := g(x, x′) − g(x′, x).

Due to the constraint for B, the diagonal entries of an element of S(B) are deter-
mined by other entries. Fixed 0 ≤ i ′ < j ′ ≤ m, only the matrix S[ĝ(i′,j ′)] has a non-
zero (i′, j ′)th entry among the set {S[ĝ(i,j)]}(i,j)∈T . Hence, the set {S[ĝ(i,j)]}(i,j)∈T

is linearly independent in the linear space S[B].
Due to the constraint for B, the (0, i)th entry and (i,0)th entry of an element

of A(B) are determined by other entries. Fixed 0 < i′ < j ′ ≤ m, only the ma-
trix A[ĝ(0,i′,j ′)] has a nonzero (i ′, j ′)th entry among the set {A[ĝ(0,i,j)]}(0,i,j)∈H .
Hence, the set {A[ĝ(0,i,j)]}(0,i,j)∈H is linearly independent in the linear space
A[B]. Therefore, the set {ĝ(0,i,j)}(0,i,j)∈H is linearly independent in the linear
space B. Since A[ĝ(i,j)] = 0 for (i, j) ∈ T , the set {ĝσ }σ∈T ∪H is linearly inde-
pendent in the linear space B. �

APPENDIX C: PROOFS OF LEMMAS 5.2 AND 5.3

The Fisher information J 2
θ can be written as

J 2
θ = ∑

x,x′
Wθ × P

1
θ

(
x, x′)[− d2

dθ2 logWθ

(
x|x′)P 1

θ

(
x′)]

= ∑
x,x′

Wθ × P
1
θ

(
x, x′)[− d2

dθ2 logWθ

(
x|x′) − d2

dθ2 logP
1
θ

(
x′)]

= ∑
x,x′

Wθ × P
1
θ

(
x, x′)[− d2

dθ2 logWθ

(
x|x′)]
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+ ∑
x′

P
1
θ

(
x′)[− d2

dθ2 logP
1
θ

(
x′)]

(C.1)

= ∑
x,x′

Wθ × P
1
θ

(
x, x′)[− d2

dθ2 logWθ

(
x|x′)] + J 1

θ

= ∑
x,x′

Wθ × P
1
θ

(
x, x′)[− d2

dθ2 log
1

λθ

− d2

dθ2 log
P

3
θ (x)

P
3
θ (x

′)

− d2

dθ2 logW
(
x|x′) − d2

dθ2 θg
(
x, x′)] + J 1

θ

(a)= ∑
x,x′

Wθ × P
1
θ

(
x, x′)[− d2

dθ2 log
1

λθ

]
+ J 1

θ = d2φ

dθ2 (θ) + J 1
θ ,

where (a) follows from the relation
∑

x,x′ Wθ × P
1
θ (x, x′) d2

dθ2 log P
3
θ (x)

P
3
θ (x′)

= 0,

which is shown by the following fact: The expectations of d2

dθ2 logP
3
θ (X) and

d2

dθ2 logP
3
θ (X

′) are the same because the marginal distributions of X and X′ are

the same. Hence, we obtain (5.6). The Fisher information J 2
θ is also written as

J 2
θ = ∑

x,x′
Wθ × P

1
θ

(
x, x′)( d

dθ
logWθ

(
x|x′)P 1

θ

(
x′))2

= ∑
x,x′

Wθ × P
1
θ

(
x, x′)[(

d

dθ
logWθ

(
x|x′))2

+ 2
(

d

dθ
logWθ

(
x|x′))(

d

dθ
logP

1
θ

(
x′)) +

(
d

dθ
logP

1
θ

(
x′))2]

= ∑
x,x′

Wθ × P
1
θ

(
x, x′)[(

d

dθ
logWθ

(
x|x′))2

+ ∑
x′

P
1
θ

(
x′)( d

dθ
logP

1
θ

(
x′))2]

(C.2)

+ 2
∑
x,x′

(
d

dθ
logWθ

(
x|x′))Wθ

(
x|x′)( d

dθ
logP

1
θ

(
x′))P

1
θ

(
x′)

= ∑
x,x′

Wθ × P
1
θ

(
x, x′)[ d

dθ
logWθ

(
x|x′)]2

+ J 1
θ
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= ∑
x,x′

Wθ × P
1
θ

(
x, x′)[−dφ

dθ
(θ) + d

dθ
logP

3
θ (x)

− d

dθ
logP

3
θ

(
x′) + g

(
x, x′)]2

+ J 1
θ .

Combining (5.6) and (C.2), we have

d2φ

dθ2 (θ) = Vθ

[(
g
(
x, x′) − dφ

dθ
(θ)

)
+ d

dθ
logP

3
θ (x) − d

dθ
logP

3
θ

(
x′)]

(C.3)
> 0,

which implies (5.7). Since(
d2φ

dθ2 (θ) +
(

d

dθ
φ(θ)

)2)
eφ(θ)

= d2

dθ2 eφ(θ) = ∑
x,x′

d2

dθ2 W
(
x|x′)eθg(x,x′)P

2
θ

(
x′)

= ∑
x,x′

W
(
x|x′)eθg(x,x′)P

2
θ

(
x′)g(

x, x′)2

+ 2W
(
x|x′)eθg(x,x′) dP

2
θ (x

′)
dθ

g
(
x, x′) + W

(
x|x′)eθg(x,x′) d

2P
2
θ (x

′)
dθ2 ,

we have another expression of d2φ

dθ2 (θ) as follows:

d2φ

dθ2 (θ) = e−φ(θ)

[∑
x,x′

W
(
x|x′)eθg(x,x′)P

2
θ

(
x′)g(

x, x′)2

+ 2W
(
x|x′)eθg(x,x′) dP

2
θ (x

′)
dθ

g
(
x, x′)

+ W
(
x|x′)eθg(x,x′) d

2P
2
θ (x

′)
dθ2

]
−

(
d

dθ
φ(θ)

)2

.

When θ = 0,

d2φ

dθ2 (0) =
[∑
x,x′

W
(
x|x′)P 2

0
(
x′)g(

x, x′)2 + 2W
(
x|x′)g(

x, x′)dP
2
θ (x

′)
dθ

∣∣∣∣
θ=0

]

− η(0)2

= V0
[
g
(
X,X′)] + 2

∑
x,x′

W
(
x|x′)g(

x, x′)dP
2
θ (x

′)
dθ

∣∣∣∣
θ=0
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because
∑

x,x′ W(x|x′)d2P
2
θ (x′)

dθ2 = d2

dθ2

∑
x,x′ W(x|x′)P 2

θ (x
′) = 0 and η(0) =

E0[g(X,X′)]. Hence, we obtain (5.8).

APPENDIX D: TWICE DIFFERENTIABILITY

We show the twice differentiability of φ(θ), P
2
θ and P

3
θ . First, focus on the 1-

parameter case. Now, we define the function F1(θ, z) := det(Wθ − zI) with the
identity matrix I . Since λθ = eφ(θ) is the unique solution of F1(θ, z) = 0 and the
function F1(θ, z) is twice differentiable, the implicit function theorem guarantees
that λθ is twice differentiable. Hence, φ(θ) is also twice differentiable.

Next, we show that the twice-differentiability of P
2
θ and P

3
θ , which are normal-

ized eigenvector with positive entries of Wθ and W
T

θ . Now, we define the vector-

valued function F2(θ, y) := Wθy and the function F3(θ, y) := ∑
x∈X yx . Since P

3
θ

is the unique solution of F2(θ, y) = 0 and F3(θ, y) = 1 and the functions F2(θ, y)

and F3(θ, y) are twice differentiable, the implicit function theorem guarantees that

P
2
θ is twice differentiable. Replacing the role of Wθ by that of W

T

θ , we can show

the twice differentiability of P
3
θ . These discussions can be extended to the case

when θ is a d-dimensional parameter.
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[21] ŁATUSZYŃSKI, K., MIASOJEDOW, B. and NIEMIRO, W. (2013). Nonasymptotic bounds on
the estimation error of MCMC algorithms. Bernoulli 19 2033–2066. MR3129043
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