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Starting from a parallel between some minimax adaptive tests of a single
null hypothesis, based on aggregation approaches, and some tests of multiple
hypotheses, we propose a new second kind error-related evaluation criterion,
as the core of an emergent minimax theory for multiple tests. Aggregation-
based tests, proposed for instance by Baraud [Bernoulli 8 (2002) 577–606],
Baraud, Huet and Laurent [Ann. Statist. 31 (2003) 225–251] or Fromont and
Laurent [Ann. Statist. 34 (2006) 680–720], are justified through their first
kind error rate, which is controlled by the prescribed level on the one hand,
and through their separation rates over various classes of alternatives, rates
which are minimax on the other hand. We show that some of these tests can
be viewed as the first steps of classical step-down multiple testing proce-
dures, and accordingly be evaluated from the multiple testing point of view
also, through a control of their Family-Wise Error Rate (FWER). Conversely,
many multiple testing procedures, from the historical ones of Bonferroni and
Holm, to more recent ones like min-p procedures or randomized procedures
such as the ones proposed by Romano and Wolf [J. Amer. Statist. Assoc. 100
(2005) 94–108], can be investigated from the minimax adaptive testing point
of view. To this end, we extend the notion of separation rate to the multi-
ple testing field, by defining the weak Family-Wise Separation Rate and its
stronger counterpart, the Family-Wise Separation Rate (FWSR). As for non-
parametric tests of a single null hypothesis, we prove that these new concepts
allow an accurate analysis of the second kind error of a multiple testing proce-
dure, leading to clear definitions of minimax and minimax adaptive multiple
tests. Some illustrations in classical Gaussian frameworks corroborate several
expected results under particular conditions on the tested hypotheses, but also
lead to new questions and perspectives.

1. Introduction. Following the Neyman–Pearson principle in single null hy-
potheses testing problems, the main concern in multiple testing problems is gener-
ally to construct procedures controlling a chosen first kind error-related criterion.

Many first kind error-related criteria for multiple tests have been introduced in
the statistical literature, generalizing or relaxing the traditional Family-Wise Error
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Rate (FWER) defined as the probability of one or more false discoveries (true null
hypotheses that are rejected). Thus, the Per-Family Error Rate (PFER) suggested
by Spjotvoll [34] corresponds to the average number of false discoveries, while
the k − FWER introduced by Hommel and Hoffman [17] and further studied by
Korn et al. [21], Lehmann and Romano [24], Romano and Shaikh [28] or Romano
and Wolf [30, 31], is the probability of k or more false discoveries. Like Genovese
and Wasserman [14], many of these authors also focused on the False Discovery
Proportion (FDP), whose expected value is the very popular False Discovery Rate
(FDR) introduced by Benjamini and Hochberg [3].

Up to now, however, very few articles deal with the optimality of multiple tests
in terms of second kind error. The articles by Lehmann, Romano and Shaffer [25],
and by Romano, Shaikh and Wolf [27] both give maximin type optimality results,
but each with a different notion of maximin optimality. While Lehmann, Romano
and Shaffer [25] consider the minimum probability of rejecting at least one false
hypothesis when at least one hypothesis deviates from the truth at a given degree,
Romano, Shaikh and Wolf [27] consider the minimum probability of rejecting at
least one hypothesis when the hypotheses are not all true simultaneously.

We propose here new second kind error-related criteria to evaluate multiple pro-
cedures whose FWER is controlled by a prescribed level α in (0,1). These criteria
are inspired by the minimax theory for nonparametric tests of a single null hypoth-
esis. The minimax testing theory was historically introduced by Ingster in his se-
ries of papers [19] from a purely asymptotic point of view. This asymptotic theory
does not seem to be the most adequate to import in multiple testing frameworks,
as the asymptotics there should concern the number of tested hypotheses as well
as the sample size, leading to consider how the number of hypotheses grows with
respect to the sample size. We therefore turned toward the nonasymptotic theory
introduced by Baraud in [1], which is based on the notion of uniform separation
rate over a class of alternatives. Considering a single null hypothesis H0 and a
class of alternatives Q, the uniform separation rate of a level α test over Q with
prescribed second kind error rate β in (0,1) is defined as the minimal distance
between the underlying distributions in Q and H0 which guarantees that the sec-
ond kind error rate of the test is at most equal to β (a more precise expression is
given later on). The test is then said to be minimax over Q if its uniform separation
rate over Q achieves the lowest possible value, possibly up to a multiplicative con-
stant. Furthermore, it is said to be minimax adaptive over a collection of classes of
alternatives if it is minimax or nearly minimax over every class of the collection.

The literature on minimax and minimax adaptive testing is huge, and provides
a now well known and convenient framework to study the theoretical performance
of nonparametric tests of single null hypotheses. Beyond the founding articles by
Ingster [19] and Baraud [1], many others are devoted to the computation of min-
imax separation rates over various classes of alternatives, and the construction of
minimax or minimax adaptive tests in many statistical models. For the present
concerns, one can cite, for instance, [2, 9, 11, 20, 35] or [12].
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Our purpose here is to provide such a framework in the multiple testing con-
text. Most of minimax adaptive tests of a single null hypothesis H0 are constructed
from the aggregation of a collection of minimax tests for different single null hy-
potheses, all including H0. Therefore, we first investigate the parallel that can be
drawn between such minimax adaptive tests, and some classical single-step or step-
down multiple testing procedures. We prove in particular that some of the minimax
adaptive tests proposed in [2, 9, 11] or [12] for instance are closely related to the
Bonferroni-type single-step multiple testing procedures, while others correspond
to the first step of a min-p procedure, as defined in [6]. Conversely, a multiple test
may be associated with an aggregated test of a null hypothesis contained in all the
tested hypotheses, test that can be studied using the minimax theory. This parallel
motivates the definition of the first criterion we introduce here: the weak Family-
Wise Separation Rate denoted by wFWSR, and a stronger second criterion: the
(strong) Family-Wise Separation Rate denoted by FWSR. This second criterion is
in fact the key point to lay the foundations of a minimax theory for multiple tests
whose FWER is controlled by a prescribed level α. The FWSR and its correspond-
ing benchmark, the minimax Family-Wise Separation Rate, presented in this arti-
cle, are thus new tools to evaluate the second kind error performance of a multiple
test. Considering simple multiple testing problems in Gaussian regression frame-
works, we prove for instance that in some cases, the FWSR of all the Bonferroni,
Holm and min-p procedures are optimal from this minimax point of view, whereas
in other cases, the Bonferroni procedure is clearly sub-optimal. Beyond the eval-
uation of a multiple test itself, the minimax Family-Wise Separation Rate can also
be viewed as an indicator of the difficulty or complexity of the considered testing
problem. In particular, we exhibit general conditions on the considered hypothe-
ses, which guarantee that the minimax Family-Wise Separation Rate for multiple
tests is lower bounded by the classical minimax Separation Rate for single tests,
thus formalizing the intuition that multiple testing is more difficult than single test-
ing. Through our illustrations in Gaussian regression frameworks, we furthermore
prove that when these general conditions are not satisfied, the minimax Family-
Wise Separation Rate for multiple tests may be smaller than the classical minimax
Separation Rate for single tests, which may suggest, looking at things superficially,
that multiple testing may be easier than single testing in some cases. This apparent
counter-intuitive result in fact leads to a deeper analysis of the introduced criteria,
and to a further reflection about the basic nature of a multiple testing problem, fo-
cusing on its fundamental differences with single testing problems. The emphasis
is here placed on the importance attached, in a multiple testing problem, to each
individual tested hypotheses, contrary to an aggregation-based single testing prob-
lem where only a single null hypothesis contained in all the tested hypotheses has
to be taken into account. These considerations convince us that there is still work
to do and encourage us to further develop the minimax theory for multiple tests in
future works.
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This article is organized as follows. Section 2 contains notation and prelimi-
nary results, which may seem obvious for the minimax community on the one
hand, for the multiple testing community on the other hand. This review is how-
ever useful to join the theories from both communities. In Section 3, we investigate
the parallel that can be drawn between aggregation-based minimax adaptive tests
and some classical multiple testing procedures, leading to the definitions of the
wFWSR and the FWSR for multiple testing procedures. We present general re-
sults, as well as a careful study of simple multiple testing problems in Gaussian
regression frameworks. Perspectives are finally given in Section 4, and the main
proofs are postponed to Section 5.

2. Preliminaries. Notation. Let X be an observed random variable taking val-
ues in a measurable space (X,X ), whose unknown distribution P belongs to a set
P of possible probability distributions on (X,X ).

Following Goeman and Solari [15], a hypothesis H is a subset of P and H is
true under P if P belongs to H , and false under P otherwise.

Given a finite collection H of such hypotheses, the aim is simultaneously testing
H against P \ H , for every H in H, which is equivalent to simultaneously testing
“H is true under P ” against “H is false under P ”, or “P ∈ H ” against “P /∈ H ”,
for every H in H.

The sets of true and false hypotheses under P are respectively defined by

T (P ) = {H ∈ H,P ∈ H } and F(P ) = H \ T (P ) = {H ∈H,P /∈ H }.
A multiple testing procedure or a multiple test is a statistic given by a collection
of rejected hypotheses R ⊂ H, only depending on the observed random variable
X, whose goal is to infer the set F(P ) of false hypotheses under P in H. In the
following, ∩H is an abbreviation for

⋂
H∈H H .

Most of the tests presented here are based on test statistics, for which the follow-
ing formalism is needed. For any real valued statistic T , it is classical to consider
its cumulative distribution function (c.d.f.) F , which is càdlàg, and its generalized
inverse c.d.f. or quantile function F−1, which is càglàd. In the sequel, we also
focus on the càglàd c.d.f. of T , F−, defined by

∀t ∈ R F−(t) = P(T < t).

Its generalized inverse function F−1− is then a càdlàg function defined by

∀u ∈ (0,1) F−1− (u) = sup
{
t,F−(t) ≤ u

}
.

2.1. Tests of a single null hypothesis and p-values. A test of a single null
hypothesis H0 is usually formalized as a statistic taking values in {0,1}, whose
value 1 amounts to rejecting H0.

There are two classical ways of defining such a test, either by giving a test
statistic and the corresponding critical values, or by giving a p-value. The fol-
lowing preliminary result allows us to precisely go back and forth between the
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“multiple tests” literature used to p-values, and the “aggregated tests” literature,
exclusively using test statistics and critical values. Notice that a part of the state-
ments of this result can be proved with Lemma 1.1. in [24]. We nevertheless give
a comprehensive and self-contained proof in the supplementary material [13].

LEMMA 1. Let T be a real-valued test statistic of a single null hypothesis H0

whose distribution does not depend on P provided that P belongs to H0. Denote
by F and F− the (càdlàg) c.d.f. and the càglàd c.d.f. of this distribution under
H0, and by F−1 and F−1− their respective generalized inverse functions as defined
above. Let p(T ) = 1 − F−(T ), and for any α in (0,1),

φ = 1{T >F−1(1−α)}, φ− = 1{T >F−1− (1−α)} and φp = 1{p(T )≤α}.

Then all those three tests are of level α and their associated p-value (i.e. the limit
level α at which they pass from acceptance to rejection) is p(T ), which satisfies
for all P in H0, P(p(T ) ≤ α) ≤ α. Moreover,

T > F−1− (1 − α) ⇔ p(T ) < α and φ− ≤ φ ∧ φp.(1)

Most of the time, c.d.f. are continuous and in this case the three tests φ, φ− and
φp are almost surely equal. However, when atoms are present in the distribution,
the most powerful one is the test φp based on the p-value, which is not completely
equivalent to the more classical test φ based on the test statistic. This can be espe-
cially useful when bootstrap or permutation procedures are used since, in this case,
Lemma 1 can be applied to the conditional bootstrapped or permuted c.d.f. given
the observed random variable, which is naturally noncontinuous (see [29–31] for
instance).

Authors using p-values generally consider the test φp , while authors used to
test statistics and critical values generally consider the test φ. In order to more
conveniently go back and forth between p-values on the one hand, test statistics
and critical values on the other hand, regarding the first equivalence stated in (1),
we focus all along the paper on tests in the form of

φ− = 1{T >F−1− (1−α)} = 1{p(T )<α}.

In particular, when we refer in the sequel to well-known procedures such as Bon-
ferroni or Holm’s ones, we in fact refer to the versions of these procedures written
in the form of φ− above.

Note that the test φp can also be expressed using test statistics and critical values
(see Corollary 14 in the supplementary material [13]), but at the price of a much
more intricate formula.
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2.2. Multiple tests and the Family-Wise Error Rate. The weak Family-Wise
Error Rate of a multiple test R, denoted by wFWER(R), is defined by

wFWER(R) = sup
P,T (P )=H

P
(
R∩ T (P ) 
= ∅

)
.(2)

Controlling the wFWER is generally too weak in applications, as some of the
hypotheses in H may actually be false under P . A control of the probability
P(R ∩ T (P ) 
= ∅), for any possible P , is therefore more appropriate. This leads
to the following definition of the (strong) Family-Wise Error Rate of R, denoted
by FWER(R):

FWER(R) = sup
P∈P

P
(
R∩ T (P ) 
= ∅

)
.(3)

Given a prescribed level α in (0,1), the main concern then becomes to construct a
multiple test R such that

FWER(R) ≤ α,(4)

which obviously also implies that wFWER(R) ≤ α.
A large number of multiple tests satisfying (4) have been constructed, among

them the historical procedures of Bonferroni and Holm [16, 33], and the more re-
cent min-p type procedures (see [6] for instance). Many of these procedures can
be described through the general sequential rejection scheme proposed by Goe-
man and Solari [15], which consists in iteratively rejecting hypotheses through an
application N from the set of all subsets of H to itself, as follows:⎧⎨

⎩
1. Start with R0 = ∅.
2. For any n ≥ 0, build Rn+1 = Rn ∪N (Rn).
3. Define R = limn→∞Rn.

(5)

Notice that the sequence (Rn)n≥0 is always convergent in the present framework
since H is assumed to be finite. For any prescribed α in (0,1), Goeman and Solari
([15], Theorem 1) proved that sequential rejective procedures satisfy (4), as soon
as the two conditions below are true:

∀S ⊂ S ′ ⊂ H N (S) ⊂ S ′ ∪N
(
S ′),(Monotonicity)

∀P ∈ P P
(
N

(
F(P )

) ⊂F(P )
) ≥ 1 − α.(Single-Step)

Let us focus on generic examples, the min-p procedures, assuming that a set H
of hypotheses and their corresponding p-values pH , for H in H, are given, such
that for all P in H , u in (0,1), P(pH ≤ u) ≤ u.

For any subset G of H, and any α in (0,1), let qmp,G,α be a nonincreasing
function of G such that

∀P ∈ ∩G P
(

min
H∈G pH < qmp,G,α

)
≤ α.
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Then a min-p procedure is defined as a sequential rejective procedure with the
application N equal to

Nmp : S �→ {H ∈H \ S,pH < qmp,H\S,α}.
As it satisfies (Monotonicity) and (Single-Step), by [15], Theorem 1, a min-p pro-
cedure has a FWER controlled by α.

It is always possible to use qmp,G,α = α/#G, where #G denotes the cardinal of G.
The obtained multiple test is due to Holm [16], so we denote it by RHolm and the
corresponding application by NHolm. The first step of this procedure corresponds
to the well-known Bonferroni multiple test and is denoted by RBonf := NHolm(∅).

A more precise choice can be done as follows. If the distribution of minH∈G pH

(with c.d.f. FG and càglàd c.d.f. FG,−) does not depend on P in ∩G and is known,
one can take qmp,G,α = F−1

G,−(α). The resulting rejection set is then denoted by
Rmp. Note that this multiple testing procedure is less conservative than RHolm, as
it contains RHolm. If FG is unknown, the quantiles may be replaced by random
quantiles, depending on X, based on permutation or bootstrap approaches [29–
31], at the possible price of an asymptotic control of the FWER instead of an exact
control.

These procedures may be extended to weighted min-p procedures by defining

Nwmp : S �→ {H ∈ H \ S,pH < wHqwmp,H\S,α},
where (wH )H∈H is a family of positive weights satisfying

∑
H∈H wH = 1, and

where qwmp,G,α satisfies for any α in (0,1),

∀P ∈ ∩G P
(

min
H∈G w−1

H pH < qwmp,G,α

)
≤ α.

When the distribution of minH∈G w−1
H pH (with càglàd c.d.f. Fw,G,−) does not de-

pend on P in ∩G and is known, one can take qwmp,G,α = F−1
w,G,−(α), which defines

multiple tests denoted by Rwmp. Note that such procedures are very close to the
balanced procedure of Romano and Wolf [31].

2.3. Aggregated tests and the First Kind Error Rate. Considering the problem
of testing a single null hypothesis H0 against the alternative P \ H0, we sketch a
general methodology for the construction of aggregated tests, and then focus on a
classical example.

The idea of aggregated tests comes from the minimax adaptivity theory. Indeed,
the construction of minimax adaptive tests, as defined by Spokoiny [35], often
consists in the aggregation of a finite collection of initial minimax (nonadaptive)
individual tests. In general, a finite collection of hypotheses H is chosen such that
H0 ⊂ ∩H, and so that the final aggregated test achieves some expected minimax
adaptivity properties. For each hypothesis H in the collection H, an individual test
φH of the null hypothesis H against the alternative P \ H is constructed, that is a
statistic with values in {0,1}, whose value 1 amounts to rejecting H . The collection
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of tests is denoted �H = {φH ,H ∈ H}. Then the corresponding aggregated test
�̄H consists in rejecting H0 if at least one H in H is rejected with φH , that is,

�̄H = sup
H∈H

φH .(6)

Notice that in the original works, the φH ’s are not presented as individual tests
of H against P \ H , but as some of numerous tests of the original single null
hypothesis H0 against the alternative P \ H0.

Many frameworks have been studied, among them of course Gaussian regres-
sion frameworks (see [2, 7, 23, 35] for instance), density or Poisson processes
frameworks (see [8, 9, 11, 20, 32]), or more complex ones corresponding to two-
sample type problems (see [5, 10, 12]). We mainly focus here on the most simple
Gaussian regression framework considered in [1], to illustrate things as clearly as
possible.

A Gaussian regression framework.
The observed random variable is a random vector X = (X1, . . . ,Xn)

′ whose
distribution P = Pf is an n-dimensional Gaussian distribution with mean f , and
covariance matrix σ 2In (n ≥ 1). The mean f = (f1, . . . , fn)

′ is unknown, while
σ 2 > 0 is assumed to be known.

We consider the problem of testing the single null hypothesis H0 = {P0} against
the alternative P \ {P0}, with P = {Pf ,f ∈ Rn}, that is testing “f = 0” against
“f 
= 0.”

From a fixed collection S of vectorial subspaces S of Rn, a collection of tests
φS of H0 against P \H0 is constructed, where φS equals 1 when the norm ‖�SX‖
of the orthogonal projection �SX of X onto S (w.r.t. the Euclidean distance)
takes large values. Considering the individual hypothesis HS = {Pf ,�Sf = 0} =
{Pf ,f ∈ S⊥}, φS may also be viewed as an individual test of HS against P \ HS ,
and can thus be denoted by φHS

. For H = {HS,S ∈ S}, the aggregated test of
the null hypothesis H0 = {P0} against P \ {P0}, based on the collection of tests
�H = {φHS

, S ∈ S} is then defined as in (6) by �̄H = supHS∈H φHS
.

Notice that if the collection S is not rich enough, then H0 � ∩H.
More concretely, in the following, two different collections of hypotheses are

considered, that can be defined from the canonical basis {e1, . . . , en} of Rn.
The first one is given by H = {HSi

, i = 1, . . . , n}, where for every i in
{1, . . . , n}, Si = Vect(ei) and

HSi
= {Pf ,fi = 0} = {

Pf ,f ∈ S⊥
i

}
.

The second one is given by H = {HS̄i
, i = 1, . . . , n}, where for every i in

{1, . . . , n}, S̄i = Vect(e1, . . . , ei), so

HS̄i
= {Pf ,f1 = · · · = fi = 0} = {

Pf ,�S̄i
f = 0

}
.

Although such collections of nested hypotheses have already been used in the mul-
tiple tests framework (as in the second ANOVA problem with ordered alternatives
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of [26]), they are more usual in the aggregated tests framework. Considering for
instance that each fi = 〈f, ϕi〉 is the ith coefficient in the expansion of a signal f
on a basis (ϕi)i like the Fourier basis, the testing issue then amounts to detecting
the smallest frequency present in the signal.

Note that both collections in particular satisfy ∩H = {P0} = H0.
First kind error rate of aggregated tests. The first kind error rate of an aggre-

gated test �̄H of the single null hypothesis H0 is defined as usual by

ER(�̄H,H0) = sup
P∈H0

P(�̄H = 1) = sup
P∈H0

P
(

sup
H∈H

φH = 1
)
.

This criterion should be controlled by a prescribed level α in (0,1). For any hy-
pothesis H of the collection H, the individual test φH is usually defined from
a test statistic TH , whose distribution does not depend on P provided that P

belongs to H0. Respectively denoting by FH,− and F−1
H,− the càglàd c.d.f. and

càdlàg quantile function of this distribution under H0, φH is then defined as
1{TH >F−1

H,−(1−uH,α)}, where uH,α is chosen so that the aggregated test is actually

of level α, that is,

ER(�̄H,H0) ≤ α.

The most obvious choice for uH,α is a Bonferroni-type choice uH,α = α/N ,
where N = #H is the number of hypotheses in H. This leads to the Bonferroni-
type aggregated test �̄Bonf

H based on the collection

�Bonf
H = {

φBonf
H = 1{TH >F−1

H,−(1−α/N)},H ∈H
}
.

A weighted Bonferroni-type choice uH,α = wHα is also proposed in [11]
and [12], where (wH )H∈H is a family of positive weights such that

∑
H∈H wH ≤ 1.

This leads to the weighted Bonferroni-type aggregated test �̄wBonf
H based on

�wBonf
H = {

φwBonf
H = 1{TH >F−1

H,−(1−wH α)},H ∈ H
}
.

A less conservative choice and still guaranteeing a level α is proposed by Ba-
raud, Huet and Laurent [2]. It consists in taking uH,α = wHuα , where

uα = sup
{
u, sup

P∈H0

P
(∃H ∈ H, TH > F−1

H,−(1 − wHu)
) ≤ α

}
.

This leads, when wH = 1/N , to the aggregated test �̄BHL
H based on

�BHL
H = {

φBHL
H = 1{TH >F−1

H,−(1−uα/N)},H ∈ H
}
,

or, in the general case, to the aggregated test �̄wBHL
H based on

�wBHL
H = {

φwBHL
H = 1{TH >F−1

H,−(1−wH uα)},H ∈ H
}
.
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3. Main results. In this section, we first study the main correspondences be-
tween both theories: multiple tests and aggregated tests. To do so, we always as-
sume that a finite collection of hypotheses H and a single null hypothesis H0 such
that H0 ⊂ ∩H are given.

From any collection �H = {φH ,H ∈ H} of tests φH of the single hypothesis H

defining an aggregated test, a multiple test of H is constructed as

R(�H) = {H ∈ H, φH = 1}.
Conversely, from any multiple test R of H, we construct

�̄(R) = 1{R 
=∅},

which can be seen as an aggregated test of the single null hypothesis H0.

3.1. First kind error and first identifications. First notice that the weak
Family-Wise Error Rate of R(�H) is equal to

wFWER
(
R(�H)

) = sup
P∈∩H

P
(
R(�H) 
= ∅

) = ER(�̄H,∩H).

In the same way, one has

wFWER(R) = ER
(
�̄(R),∩H)

.(7)

Since H0 ⊂ ∩H, wFWER(R(�H)) ≥ ER(�̄H,H0) and wFWER(R) ≥
ER(�̄(R),H0). Except when H0 = ∩H, controlling wFWER(R(�H)) or
wFWER(R) is thus more difficult than controlling ER(�̄H,H0) or ER(�̄(R),

H0), respectively.
Next, assume that for every H in H, a test statistic TH , whose distribution does

not depend on P provided that P belongs to H , is given and denote by pH its
corresponding p-value, as defined by Lemma 1.

PROPOSITION 2. With the notation of Sections 2.2 and 2.3, the following iden-
tifications hold:

R
(
�Bonf

H
) = RBonf and �̄Bonf

H = �̄(RBonf) = �̄(RHolm).

If additionally the distribution of minH∈H w−1
H pH does not depend on P provided

that P belongs to ∩H, then

Nwmp(∅) = R
(
�wBHL

H
)

and �̄wBHL
H = �̄(Rwmp).

In particular, the first step of the classical min-p procedure is equivalent to the
practical procedure introduced by Baraud, Huet and Laurent [2] in the aggregated
tests framework.
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3.2. From Separation Rates to Family-Wise Separation Rates. Let d be a dis-
tance on P . For any P in P , and Q ⊂ P , we set d(P,Q) := infQ∈Q d(P,Q).

Separation rates for aggregated tests. Separation rates are second kind error-
related quality criteria of a test of H0 ⊂ P against P \ H0. Because P is in general
too large to define separation rates over the whole set P properly, particularly
in nonparametric frameworks, these quantities are first defined on a subset Q of
P . The question of adaptivity with respect to Q can then be treated. More pre-
cisely, we use the following definition due to Baraud [1], which can be viewed as
a nonasymptotic version of Ingster’s work [19].

DEFINITION 1. Given β in (0,1), a class of probability distributions Q ⊂ P ,
and a test �̄ of a null hypothesis H0 ⊂ P , the uniform separation rate of �̄ over Q
with prescribed second kind error rate β is defined by

SRβ
d (�̄,Q,H0) = inf

{
r > 0, sup

P∈Q,d(P,H0)≥r

P (�̄ = 0) ≤ β
}

= inf
{
r > 0, inf

P∈Q,d(P,H0)≥r
P (�̄ = 1) ≥ 1 − β

}
.

Note that this definition holds for any null hypothesis, that is any subset of P , and
in particular for ∩H. Hence, when H0 ⊂ ∩H,

SRβ
d (�̄,Q,H0) ≥ SRβ

d (�̄,Q,∩H).

The corresponding minimax separation rate over Q with prescribed level α and
second kind error rate β is defined as

mSRα,β
d (Q,H0) = inf

�̄,ER(�̄,H0)≤α
SRβ

d (�̄,Q,H0),

where the infimum is taken over all possible level α tests.
A level α test �̄ is said to be minimax over Q if SRβ

d (�̄,Q,H0) achieves

mSRα,β
d (Q,H0), possibly up to a multiplicative constant depending on α and β .

It is said to be adaptive in the minimax sense over a collection C of classes Q if
SRβ

d (�̄,Q,H0) achieves, or nearly achieves, mSRα,β
d (Q,H0), for all the classes Q

in C simultaneously, without knowing in advance the class to which the distribution
P belongs.

Weak Family-Wise Separation Rates for multiple tests. Let us now consider a
multiple testing procedure R and the corresponding aggregated test �̄(R). Given
β in (0,1) and a class Q ⊂ P , according to Definition 1,

SRβ
d

(
�̄(R),Q,∩H) = inf

{
r > 0, inf

P∈Q,d(P,∩H)≥r
P (R 
= ∅) ≥ 1 − β

}
.

This notion is closely related to the maximin optimality criterion considered by
Romano, Shaikh and Wolf ([27], Theorem 4.1), whose aim is to find procedures
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maximizing the power infP∈Q⊂P\∩H P(R 
= ∅). Here, the question is reversed:
the aim is to determine a minimal distance r between P (in Q) and ∩H which
guarantees a minimal level of power (1 − β) for a given procedure. This notion of
minimal distance r is considered as a rate of testing (in the spirit of the rates of es-
timation), and may enable to compare the performance of two testing procedures.

Following the idea of the definition of the weak Family-Wise Error Rate
wFWER of R, which is in fact equal to the first kind error rate of �̄(R) for
the null hypothesis ∩H [see (7)], a natural idea would be to define a notion of
weak Family-Wise Separation Rate as SRβ

d (�̄(R),Q,∩H). However, in this sec-
ond kind error criterion, only alternatives deviating from the intersection ∩H with
a certain distance are taken into account. Considering such a definition would thus
amount to confuse multiple tests with their corresponding aggregated tests, seeing
all the tested hypotheses as only intermediate hypotheses to an ultimate one: ∩H.
This would depart from the multiple testing philosophy, where each tested hypoth-
esis has its own significance and has to be taken into account by itself. In order to
address this requirement, instead of alternatives P in Q such that “d(P,∩H) ≥ r”,
are considered alternatives P in Q such that “∃H ∈ H, d(P,H) ≥ r .” So, we con-
sider the set Fr (P ) of false hypotheses under P at least at distance r from P ,
which can be visualized on Figure 1, and which is defined as

Fr (P ) = {
H ∈ H, d(P,H) ≥ r

}
.

Note in particular that Fr (P ) 
= ∅ implies that d(P,∩H) ≥ r .

DEFINITION 2. Given β in (0,1) and a class of probability distributions
Q ⊂ P , the weak Family-Wise Separation Rate of a multiple test R over Q with
prescribed second kind error rate β is defined by

wFWSRβ
d (R,Q) = inf

{
r > 0, sup

P∈Q,Fr (P ) 
=∅

P(R = ∅) ≤ β
}

= inf
{
r > 0, inf

P∈Q,Fr (P ) 
=∅
P(R 
= ∅) ≥ 1 − β

}
.

The quantity π1 = infP∈Q,Fr (P ) 
=∅ P(R 
= ∅) involved in the above definition
is related to β#H,1(α, r) considered in [25], and which can be written here as
π2 = infP∈Q,Fr (P ) 
=∅ P(R ∩ F(P ) 
= ∅). In [25], Lemmas 3.1 and 4.1, the au-
thors prove that for step-up and step-down procedures, under some assumptions
on P , π1 is equal to π2, and is maximized by the same step-up and step-down pro-
cedures, whatever the distance r . Here, following the spirit of the minimax theory
for single tests, we propose to fix a minimal level 1 − β for π1, and to find which
distance r can guarantee its achievement. The notion of weak Family-Wise Sepa-
ration Rate, thus defined, is linked to the classical one of uniform separation rate
thanks to the following result.
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FIG. 1. Visualization of a multiple testing problem with two hypotheses H1 and H2, which are
represented with darker colors. Their r-neighborhoods are of lighter shade. The r-neighborhood of
H1 ∩H2 is hatched. A hypothesis H0 is strictly included in H1 ∩H2. Point a corresponds to a distri-
bution P such that T (P ) = {H1} and F(P ) = Fr (P ) = {H2}. Point b corresponds to a distribution
P such that T (P ) = ∅ and F(P ) = Fr (P ) = {H1,H2}. Point c corresponds to a distribution P

such that T (P ) = ∅, F(P ) = {H1,H2}, Fr (P ) = ∅ but d(P,H1 ∩ H2) ≥ r . Point d corresponds
to a distribution P such that T (P ) = {H1,H2} and F(P ) = Fr (P ) =∅ but P /∈ H0.

PROPOSITION 3. For any subset Q of P and β in (0,1),

wFWSRβ
d (R,Q) ≤ SRβ

d

(
�̄(R),Q,∩H)

,

with an equality if the collection of hypotheses H and the distance d satisfy

∀r > 0 Fr (P ) 
= ∅ if and only if d(P,∩H) ≥ r.(8)

Looking at Figure 1, it is clear that the above inequality may be strict
when condition (8) is not satisfied: for example, the point c is considered in
SRβ

d (�̄(R),Q,∩H) but not in wFWSRβ
d (R,Q). It may therefore be strictly more

difficult to control SRβ
d (�̄(R),Q,∩H) than wFWSRβ

d (R,Q), the alternative set
being smaller in the last case.

Note that if the collection H is closed (under intersection), that is,

H ∈ H and H ′ ∈ H ⇒ H ∩ H ′ ∈ H,

then condition (8) is always satisfied. For instance, in the Gaussian regression
framework considered in Section 2.3, the collection H = {HS̄i

, i = 1, . . . , n} is
closed and condition (8) is satisfied.
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Furthermore, in the same Gaussian regression framework, with H = {HSi
, i =

1, . . . , n} (which is not closed), if d is taken as d = d∞, with

d∞(Pf ,Pg) = ‖f − g‖∞ = max
i=1,...,n

|fi − gi |,(9)

then condition (8) is also satisfied. But this is not true when using any other dis-
tance ds for s ≥ 1 defined by

ds(Pf ,Pg) =
(

n∑
i=1

|fi − gi |s
)1/s

.(10)

See also Figure 1 drawn with d2. In this case, a more general result, based on a
more general equivalence property, can be used.

PROPOSITION 4. Let d be a distance on P , and Q be a subset of P . If there
exists some distance d ′ on P such that

∀P ∈ Q,∀r > 0 Fr (P ) 
= ∅ if and only if d ′(P,∩H) ≥ r,(11)

then for every β in (0,1),

wFWSRβ
d (R,Q) = SRβ

d ′
(
�̄(R),Q,∩H)

.

In the above Gaussian regression framework with H = {HSi
, i = 1, . . . , n}, if

the distance d is equal to any distance ds (s ≥ 1) defined by (10), then condi-
tion (11) is actually satisfied with d ′ = d∞. Thus, for every multiple test R of H,
every subset Q of P , and every s in [1,∞],

wFWSRβ
ds

(R,Q) = SRβ
d∞

(
�̄(R),Q, {P0}).

Family-Wise Separation Rates for multiple tests. We now introduce a stronger
notion of Family-Wise Separation Rate, which defines a new second kind error-
related quality criterion for multiple tests. It allows us to develop a minimax ap-
proach in the multiple testing set-up, by bringing it closer to the well developed
minimax theory for classical tests of a single null hypothesis.

DEFINITION 3. Given β in (0,1) and a class of probability distributions Q ⊂
P , the Family-Wise Separation Rate of a multiple test R over Q with prescribed
second kind error rate β is defined by

FWSRβ
d (R,Q) = inf

{
r > 0, sup

P∈Q
P

(
Fr (P ) ∩ (H \R) 
= ∅

) ≤ β
}

= inf
{
r > 0, inf

P∈QP
(
Fr (P ) ⊂ R

) ≥ 1 − β
}
.
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Remark that computing the Family-Wise Separation Rate requires to control
the probability that at least one false hypothesis under P at a distance r from P

is accepted. As for the weak Family-Wise Separation Rate, this criterion is thus
uniformly valid for each of the tested hypotheses, and does not only make sense
for their intersection.

By definition, for fixed Q, FWSRβ
d (R,Q) is monotonous in R, that is,

R ⊂R′ a.s. ⇒ FWSRβ
d

(
R′,Q

) ≤ FWSRβ
d (R,Q).(12)

In the same way, for fixed R, FWSRβ
d (R,Q) is monotonous in Q, that is,

Q ⊂Q′ ⇒ FWSRβ
d (R,Q) ≤ FWSRβ

d

(
R,Q′).

The Family-Wise Separation Rate is naturally a stronger quality criterion than
the weak Family-Wise Separation Rate, as stated in the following result.

PROPOSITION 5. For any distance d , any subset Q of P , any multiple test R,
and β in (0,1),

wFWSRβ
d (R,Q) ≤ FWSRβ

d (R,Q).

Minimax Family-Wise Separation Rates. Let us now introduce the correspond-
ing minimax approach for multiple tests.

DEFINITION 4. Given α and β in (0,1), a class of probability distributions
Q ⊂ P , the minimax Family-Wise Separation Rate over Q with prescribed FWER
α and prescribed second kind error rate β is defined by

mFWSRα,β
d (Q) = inf

R,FWER(R)≤α
FWSRβ

d (R,Q),

where the infimum is taken over all possible multiple tests with a FWER controlled
by α.

A multiple test R, whose FWER is controlled by α, is said to be minimax
over Q if FWSRβ

d (R,Q) achieves mFWSRα,β
d (Q), possibly up to a multiplicative

constant depending on α and β . It is said to be adaptive in the minimax sense
over a collection C of classes Q if FWSRβ

d (R,Q) achieves, or nearly achieves,

mFWSRα,β
d (Q), for all the classes Q in C simultaneously, without knowing in

advance the class to which the distribution P belongs.

From the monotonicity properties of FWSRβ
d , we deduce that

Q ⊂Q′ ⇒ mFWSRα,β
d (Q) ≤ mFWSRα,β

d

(
Q′).
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It is furthermore to be underlined that when H is reduced to a single hypothesis
H0, for any multiple test R and any subset Q of P ,{

wFWER(R) = FWER(R) = ER
(
�̄(R),H0

)
,

wFWSRβ
d (R,Q) = FWSRβ

d (R,Q) = SRβ
d

(
�̄(R),Q,H0

)
.

Conversely, for any single test �̄ of H0,{
ER(�̄,H0) = wFWER

(
R

({�̄})) = FWER
(
R

({�̄})),
SRβ

d (�̄,Q,H0) = wFWSRβ
d

(
R

({�̄}),Q) = FWSRβ
d

(
R

({�̄}),Q)
.

Then it is easy to prove that when H is reduced to a single hypothesis H0, for
any subset Q of P , mFWSRα,β

d (Q) = mSRα,β
d (Q,H0). In this sense, the present

minimax approach for multiple tests can be viewed as a generalization of the clas-
sical minimax theory for single hypothesis tests.

When H is not reduced to a single hypothesis H0, both theories nevertheless
still have, under particular conditions, close links that are established below.

THEOREM 6. Let d be a distance on P , and Q be a subset of P . If there exists
some distance d ′ on P satisfying (11), then for every α,β in (0,1),

mFWSRα,β
d (Q) ≥ mSRα,β

d ′ (Q,∩H).(13)

The main role of the previous result is to provide straightforward lower bounds
for the minimax Family-Wise Separation Rate over some classes Q by using the
abundant literature on classical minimax testing.

As proved by Theorem 9 in the following, note that some of these lower bounds
are tight in some particular Gaussian regression frameworks.

Moreover, as a particular case of the previous result, if (8) holds, then for any
subset Q of P and α,β in (0,1),

mFWSRα,β
d (Q) ≥ mSRα,β

d (Q,∩H).(14)

This formalizes the natural idea that testing multiple hypotheses is more difficult
than testing a single hypothesis.

If condition (8) is not satisfied, inequality (14) may not hold either, as shown
with the example of Theorem 7.

3.3. Minimax Family-Wise Separation Rates in the Gaussian regression frame-
work. In this section, we investigate some (minimax) Family-Wise Separation
Rates in the classical Gaussian regression framework presented in Section 2.3, and
then in a less common, but still Gaussian, regression framework.
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3.3.1. Classical Gaussian regression framework. Consider the Gaussian re-
gression framework presented in Section 2.3, with the two collections of hypothe-
ses H, respectively equal to {HSi

, i = 1, . . . , n} and {HS̄i
, i = 1, . . . , n}.

Baraud [1] studies the minimax Separation Rates for the null hypothesis H0 =
∩H = {P0} with d = d2, over the classes of alternatives Q = Pk defined, for any
integer k ≤ n, by

Pk = {
Pf , |f |0 ≤ k

}
,(15)

where |f |0 is the number of nonzero coefficients in f . He proves in particular that
for α and β in (0,1) such that α + β ≤ 0.5 and k ≥ 1,

mSRα,β
d2

(Pk,H0) ≥ σ

(
k ln

(
1 + n

k2 ∨
√

n

k2

))1/2

,(16)

and that this lower bound is tight. Baraud, Huet and Laurent [2] then build aggre-
gated tests that are adaptive over a collection of classes Pk , when σ 2 is unknown,
and Laurent, Loubes, Marteau [23] further study the case of heteroscedasticity. In
a preliminary version [22], they also prove that

mSRα,β
d∞ (Pk,H0) ≥ σ

√
ln(1 + n),(17)

by remarking that

mSRα,β
d∞ (Pk,H0) ≥ mSRα,β

d∞ (P1,H0) = mSRα,β
d2

(P1,H0),

and using Baraud’s lower bound.
Multiple testing problem of H = {HSi

, i = 1, . . . , n}. For this problem, consider
the distance d = ds (s in [1,∞]), as defined in (9) and (10). Let k be a fixed integer
in {1, . . . , n}. Using d ′ = d∞ in Theorem 6 leads to

mFWSRα,β
ds

(Pk) ≥ mSRα,β
d∞ (Pk,H0).

From (17), we then obtain that for any α,β in (0,1) such that α +β ≤ 0.5, for any
s in [1,∞], for any k in {1, . . . , n},

mFWSRα,β
ds

(Pk) ≥ σ
√

ln(1 + n).(18)

Let us now prove that this lower bound is achieved. To do so, let us consider for
any i = 1, . . . , n, the p-value pi corresponding to the test that rejects HSi

when
Ti = |Xi |σ−1 > F−1(1 − α/2), where F is here the c.d.f. of a standard Gaussian
distribution. Notice that since the Gaussian distribution is continuous, the three
tests defined in Lemma 1 are identical, that is,

1{Ti>F−1(1−α/2)} = 1{Ti>F−1− (1−α/2)} = 1{pi≤α}.
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THEOREM 7. Let α in (0,1), and R be one of the four multiple testing proce-
dures RBonf,RHolm,Rmp and R(�BHL

H ), based on the p-values pi defined above,
such that FWER(R) ≤ α. Then for all s in [1,∞], k in {1, . . . , n}, and β in
(0,0.5),

FWSRβ
ds

(R,Pk) ≤ σ
(√

2 ln
(
k/(2β)

) +
√

2 ln(n/α)
)
.

Comments.
(i) This proves that the four considered multiple testing procedures are minimax

over the classes Pk with a Family-Wise Separation Rate of order σ(lnn)1/2, up to
a multiplicative constant when α +β ≤ 0.5. Since the considered multiple tests do
not depend on the value of k, they are moreover adaptive in the minimax sense over
the collection of all the classes Pk , for k = 1, . . . , n. Notice that asymptotically,
there is here no additional price to pay for adaptation, and that such a phenomenon
is rather rarely observed in minimax adaptive testing problems: to our knowledge,
only three cases are identified in [11, 12] and [23].

(ii) This also proves at the same time that the minimax Family-Wise Separa-
tion Rate over Pk is of order σ(lnn)1/2. By comparison, the minimax Separa-
tion Rate mSRα,β

d2
(Pk,H0) is of order σnγ/2(lnn)1/2 when k is proportional to

nγ for γ in (0,1/2) [see (16)], which is much larger than this minimax Family-
Wise Separation Rate. This could let think that, when considering the distance
d = d2, performing a multiple testing procedure may be much easier than per-
forming a test of a single hypothesis, which would be completely counterintuitive.
However, making such a comparison consists of comparing quantities that are not
comparable at all. When d = d2, we indeed noticed (see comments below Proposi-
tion 4) that the set of alternatives considered in the definition of wFWSRβ

d2
(R,Pk)

of any multiple test R is smaller than the set of alternatives in the definition of
SRβ

d2
(�̄(R),Pk,H0), but exactly equal to the one in SRβ

d∞(�̄(R),Pk,H0). This

explains why mFWSRα,β
d2

(Pk), and more generally mFWSRα,β
ds

(Pk) (s ∈ [1,∞]),
are of the same order as the minimax Separation Rate mSRα,β

d∞ (Pk,H0) derived
in [22].

(iii) Under H0, the observations are n i.i.d. centered Gaussian variables with
variance σ and their maximum is in expectation of order σ(lnn)1/2. It is therefore
quite expected that no signal with infinite norm smaller than this bound can be
detected.

(iv) When H is reduced to a single hypothesis HSi
, then mFWSRα,β

ds
(Pk) =

mSRα,β
ds

(Pk,HSi
), both being of order σ . In this sense, (lnn)1/2 can be viewed as

the price to pay for multiplicity.
(v) It may be surprising or disappointing that the considered procedures are all

minimax adaptive, though we may expect that the Bonferroni one appears as less
performing than the three other procedures, constructed through step-down meth-
ods, known to give better performance from a second kind error point of view
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(see [25]). We guess that the gain in Family-Wise Separation Rates of such step-
down procedures, probably minor when the Gaussian vector X has such present
independent components, is in fact hidden in multiplicative constants. Such a phe-
nomenon is also well known when studying the FWER of Bonferroni, Holm and
more general min-p procedures. This gain actually become clearly visible when
X is assumed to have a particular dependence structure, as in the example treated
in Section 3.3.2.

(vi) If α ≤ n/5 and β ≤ 0.1, using [18], Theorem 2.1, instead of (23) in the proof
of Theorem 7 would lead to a much sharper bound for moderate size n. However,
this argument would deteriorate the bound from an asymptotic point of view.

The study of the present Gaussian framework highlights another interesting
point. Baraud’s [1] result gives that when

√
n ≤ k ≤ n, mSRα,β

d2
(Pk,H0) is of order

σn1/4. We prove in the next proposition that although RBonf achieves an optimal
FWSRβ

d2
over any class Pk , its corresponding aggregated test �̄(RBonf) does not

necessarily satisfy similar minimax optimality properties.

PROPOSITION 8. For any α,β in (0,1) such that α ≤ n/5 and α +β < 1, and
any k such that

√
n ≤ k ≤ n,

SRβ
d2

(
�̄(RBonf),Pk,H0

)
≥ σ

√
k

(√
2 ln(2n/α) − ln(4 ln(2n/α)) + 2

2
√

2 ln(2n/α)
−

√
2 ln

(
k/(1 − α − β)

))
.

Notice that the above lower bound for SRβ
d2

(�̄(RBonf),Pk,H0) is of order

σnγ/2(lnn)1/2 when k = nγ with 1/2 ≤ γ < 1 and n is large enough. Hence,
for such a choice of k, with n large, whereas RBonf is minimax over Pk , �̄(RBonf)

is suboptimal from the minimax point of view over the same Pk .
Conversely, it is easy to show, using the control of non-central chi-square quan-

tiles in [4] for instance, that the test rejecting H0 when
∑n

i=1 X2
i > σ 2q1−α

(n) , where

q1−α
(n) is the (1 − α) quantile of the χ2(n) distribution, is minimax over any class

Pk . This single test can always be viewed as an aggregated test of n times itself, so
that the corresponding multiple test contains all the HSi

’s if
∑n

i=1 X2
i > σ 2q1−α

(n) ,
none of them otherwise. Such a multiple test does not even control its FWER and,
therefore, cannot be considered as optimal from the present minimax point of view.

Multiple testing problem of H = {HS̄i
, i = 1, . . . , n}. Since the collection H is

closed, condition (8) [or (11) with d = d ′] is always satisfied, and from Theorem 6,
we deduce that for any distance d ,

mFWSRα,β
d (Pk) ≥ mSRα,β

d (Pk,H0).
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In particular, for d = d2, from (16), the following lower bound is easily derived:
for α and β in (0,1) such that α + β ≤ 0.5, for k in {1, . . . , n},

mFWSRα,β
d2

(Pk) ≥ σ

(
k ln

(
1 + n

k2 ∨
√

n

k2

))1/2

.(19)

We now introduce a multiple testing procedure, which does not depend on
the knowledge of k and whose Family-Wise Separation Rate over Pk however
achieves this lower bound, up to possible multiplicative constants depending on α

and β .
As in the above paragraph, let us consider again for any i in {1, . . . , n}, the p-

value pi associated, thanks to Lemma 1, with the single test that rejects the null
hypothesis HSi

= {Pf ,fi = 0} when Ti = |Xi |σ−1 takes large values. We then
introduce the multiple test

R̄ =
{
HS̄i

,min
j≤i

pj ≤ α/n
}
.(20)

As the c.d.f. F of the standard Gaussian distribution is continuous,

R̄ =
{
HS̄i

,max
j≤i

Tj > F−1(
1 − α/(2n)

)}
.

This procedure corresponds to a particular basic case of the variant of the clo-
sure method of [26] introduced by Romano and Wolf in [29], Algorithm 1 (ideal-
ized step-down method), and [29], Theorem 1, when critical values satisfy a mono-
tonicity assumption. In the notation of Romano and Wolf, here Tn,i = maxj≤i Tj

and dn,{1,...,i} = F−1(1 − α/(2n)) for all i in {1, . . . , n}.

THEOREM 9. Given α in (0,1), let R̄ be the multiple test defined in (20). Then
FWER(R̄) ≤ α, and for any k in {1, . . . , n}, β in (0,0.5),

FWSRβ
d2

(R̄,Pk) ≤ σ
√

k
(√

2 ln(n/α) +
√

−2 ln(2β)
)
.

Comments.
(i) For k proportional to nγ with γ ∈ [0,1/2), notice that this upper bound co-

incides with the lower bound obtained in (19), up to constants. Hence, in this case
at least, mFWSRα,β

d2
(Pk) is of order σ(nγ lnn)1/2, so the multiple test R̄ defined

by (20) is adaptive in the minimax sense over the considered classes. Notice that
there is again here no price to pay for adaptation.

(ii) This result proves that the considered procedure, derived from the sharp
variant closure method introduced in [29], but here with basically constant critical
values which are a priori not expected to give optimality from a second kind error
point of view, is however adaptive in the minimax sense. This may be a bit dis-
turbing. Once again, we guess that the loss in FWSR of such a basic procedure, as
compared for instance with sharper procedures involving really monotonous and
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more precise critical values than α/n for the minj≤i pj ’s (like the ones actually
taken in [29]), is hidden in multiplicative constants. We also guess that this loss
would become more visible if the Gaussian vector X had a strong dependence
structure, as in the next section.

3.3.2. Gaussian regression framework with a strong dependence structure. In
this section, we show that Bonferroni procedures are not always optimal and can
be outperformed by optimal min-p procedures in the minimax sense. As the gap
in FWER between one-step procedures such as Bonferroni ones, and step-down
procedures such as min-p ones, is usually more perceptible when the considered
p-values are dependent, we here follow this idea, and introduce a somewhat ar-
tificial, but determinative, dependent Gaussian regression framework. The chosen
dependence structure is quite extreme, so that lower bounds for mFWSRs can be
deduced as in the classical minimax theory for single hypothesis tests.

Let n ≥ 1 and τ be a partition of {1, . . . , n}. Let X = (X1, . . . ,Xn)
′ be a random

vector whose distribution P = Pf,τ is an n-dimensional Gaussian distribution with
mean f = (f1, . . . , fn)

′, and described as follows. For every t in τ , every i in t ,
Xi = fi + σεt , (εt )t∈τ being i.i.d. standard Gaussian random variables.

We endow P = {
Pf,τ , f ∈ Rn, τ partition of {1, . . . , n}} with a distance d such

that d(Pf,τ ,Pf ′,τ ′) = ‖f − f ′‖∞ + #τ�τ ′, where τ�τ ′ denotes the symmetric
difference between the partitions τ and τ ′.

We consider the collection of hypotheses H = {HSi
, i = 1, . . . , n}, with HSi

here defined as
{
Pf,τ , fi = 0

}
, and for any i = 1, . . . , n, the p-value pi corre-

sponding to the test that rejects HSi
when Ti = |Xi |σ−1 takes large values, as

defined in Lemma 1. Focusing on the class Pk,T defined for T , k in {1, . . . , n} by

Pk,T = {
Pf,τ , f ∈ Rn, |f |0 ≤ k and #τ = T

}
,

the three following statements hold.

PROPOSITION 10. For any α,β in (0,1) such that α + β ≤ 0.5,

mFWSRα,β
d (Pk,T ) ≥ σ

√
lnT .

PROPOSITION 11. Let α,β in (0,1). Let Rmp and R(�BHL
H ) respectively be

the min-p procedure and the multiple test associated with �BHL
H based on the p-

values pi ’s defined above, whose FWER is controlled by α. Then

FWSRβ
d (Rmp,Pk,T ) ≤ FWSRβ

d

(
R

(
�BHL

H
)
,Pk,T

)
(21)

and

FWSRβ
d

(
R

(
�BHL

H
)
,Pk,T

) ≤ σ
(√

2 ln
(
(k ∧ T )/β

) +
√

2 ln(T /α)
)
.

Note that a sharper result could be obtained for α and β in (0,0.2) as above, by
using the bound for standard Gaussian quantiles of [18], Theorem 2.1.
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PROPOSITION 12. Let α,β be fixed levels in (0,1) such that α ≤ n/5, and
let RBonf be the Bonferroni procedure based on the p-values pi ’s defined above,
whose FWER is controlled by α. Then

FWSRβ
d (RBonf,Pk,T )

≥ σ

(√
2 ln(2n/α) − ln(4 ln(2n/α)) + 2

2
√

2 ln(2n/α)
−

√
(−2/k) ln(1 − β)

)
.

In particular, as soon as n is large enough, FWSRβ
d (RBonf,Pk,T ) is lower

bounded by σ(lnn)1/2, up to a multiplicative constant. Therefore, the min-p pro-
cedure or the multiple test associated with �BHL

H , that are both not agnostic with
respect to the underlying distribution, are able in the present dependent set-up to be
minimax over Pk,T with respect to d , and to outperform the Bonferroni procedure
as soon as lnT � lnn.

4. Perspectives. The aim of the present work is to lay some foundations of a
minimax theory for multiple testing, and in this sense, it has to be viewed as only
a starting point for future studies of multiple tests from the minimax point of view.

Lots of emerging issues remain unsolved, encouraging us to pursue this path.
We have proved that the present theory may legitimate one-step and step-down

procedures, such as the Bonferroni, Holm or min-p ones for simple multiple
testing problems in a very basic Gaussian regression model, where p-values are
clearly independent. Our results, and in particular the lower bounds for the mini-
max Family-Wise Separation Rates, were obtained using classical tools and results
from the existing minimax theory for single hypothesis tests. We then have consid-
ered another Gaussian regression model, where p-values are roughly dependent,
where the Bonferroni procedure is clearly suboptimal from the minimax point of
view, contrary to the min-p procedure which is proved to be adaptive in the mini-
max sense. The present strong dependence structure enables us to use again known
results in the classical minimax theory for single hypothesis tests.

Studying some multiple testing problems in other frameworks, typically involv-
ing more reasonable dependence structures, will be challenging, all the more as
very few works deal with minimax single testing in dependence models. Consid-
ering more complex classes of alternatives than the ones introduced here would
also be an interesting matter. All this could probably allow to validate already ex-
isting sophisticated multiple tests from the second kind error angle, but would also
maybe make necessary the construction of new optimal multiple tests.

Questions and problems known to appear in high dimension, which is inherent
to many multiple testing problems, will also have to be investigated within the
present minimax theory.

Finally, and this is actually closely related to the above question of high di-
mension, extending the criteria developed here, which are exclusively dedicated to
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multiple tests controlling the FWER, to multiple tests controlling the False Dis-
covery Rate would be a major progress. It seems to be definitely more difficult, as
no parallel between multiple tests controlling the FDR and aggregated tests can be
established as clearly as in the present work.

5. Proofs of the main results.

5.1. Proof of Proposition 2. The first part of Proposition 2 is a straightforward
consequence of (1). Then remark that

P
(∃H ∈H, TH > F−1

H,−(1 − wHu)
) = P

(∃H ∈ H,w−1
H pH < u

) = F−(u),

where F− is the càglàd c.d.f. of minH∈H w−1
H pH , which does not depend on P in

∩H. So uα = F−1− (α), and from (1) again, we derive the second part.

5.2. Proofs of Propositions 3 and 4. If Fr (P ) 
= ∅, then there exists H in H
such that d(P,H) ≥ r , that is, such that for any Q in H , d(P,Q) ≥ r . In particular,
this is true for every Q in ∩H ⊂ H , so d(P,∩H) ≥ r . Therefore,{

r > 0, sup
P∈Q,d(P,∩H)≥r

P (R =∅) ≤ β
}

⊂
{
r > 0, sup

P∈Q,Fr (P ) 
=∅

P(R = ∅) ≤ β
}
,

which leads to the first inequality. But of course under condition (8), both sets
are equal and the inequality becomes an equality. This completes the proof of
Proposition 3. Proposition 4 is deduced in the same way, just noticing that under
condition (11), {

r > 0, sup
P∈Q,d ′(P,∩H)≥r

P (R = ∅) ≤ β
}

=
{
r > 0, sup

P∈Q,Fr (P ) 
=∅

P(R = ∅) ≤ β
}
.

5.3. Proof of Proposition 5. The result follows from{
r > 0, sup

P∈Q
P

(
Fr (P ) ∩ (H \R) 
= ∅

) ≤ β
}

⊂
{
r > 0, sup

P∈Q,Fr (P ) 
=∅

P(R = ∅) ≤ β
}
,

which is easily obtained by noticing that for r > 0,

sup
P∈Q,Fr (P ) 
=∅

P(R =∅) ≤ sup
P∈Q,Fr (P ) 
=∅

P
(
Fr (P ) ∩ (H \R) 
= ∅

)
≤ sup

P∈Q
P

(
Fr (P ) ∩ (H \R) 
= ∅

)
.



2556 M. FROMONT, M. LERASLE AND P. REYNAUD-BOURET

5.4. Proof of Theorem 6. Since for any multiple testing procedure R,
FWER(R) ≥ wFWER(R) = ER(�̄(R),∩H) by (7), one has that

mFWSRα,β
d (Q) ≥ inf

R,ER(�̄(R),∩H)≤α
FWSRβ

d (R,Q).

By Proposition 5, this leads to

mFWSRα,β
d (Q) ≥ inf

R,ER(�̄(R),∩H)≤α
wFWSRβ

d (R,Q),

which is, from Proposition 4, equivalent, when condition (11) is satisfied, to

mFWSRα,β
d (Q) ≥ inf

R,ER(�̄(R),∩H)≤α
SRβ

d ′
(
�̄(R),Q,∩H)

.

This allows to conclude, as a �̄(R) is a particular single test of ∩H.

5.5. Proof of Theorem 7. By construction, RBonf ⊂RHolm ⊂Rmp. By Propo-
sition 2, one also has: RBonf = NHolm(∅) ⊂ Nmp(∅) = R(�BHL

H ). It is therefore

sufficient to upper bound FWSRβ
ds

(RBonf,Pk) by (12). So, the aim here is to find
a r0 such that for any r ≥ r0 and for any Pf in Pk ,

Pf

(
Fr (Pf ) ⊂ RBonf

) ≥ 1 − β.

By independence, since ds(Pf ,HSi
) = infPg∈HSi

ds(Pf ,Pg) = |fi |,
Pf

(
Fr (Pf ) ⊂RBonf

) = Pf

(∀i s.t. ds(Pf ,HSi
) ≥ r,HSi

∈ RBonf
)

= Pf

(∀i s.t. |fi | ≥ r,pi ≤ α/n
)

= ∏
i,|fi |≥r

Pf (pi ≤ α/n).

Moreover, denoting by F the c.d.f. of a standard Gaussian variable, and by
(ε1, . . . , εn) a sample of n i.i.d. standard Gaussian variables such that Xi =
fi + σεi , for all i in {1, . . . , n}, recall that

pi = 2F
(−σ−1|Xi |) = 2F

(−|fi/σ + εi |).
One can easily prove that for all real numbers a, b,

F
(|a| − b

) ≤ P
(|a + εi | > b

) ≤ 2F
(|a| − b

)
.(22)

Therefore,

Pf

(
Fr (Pf ) ⊂ RBonf

) = ∏
i,|fi |≥r

Pf

(∣∣∣∣fi

σ
+ εi

∣∣∣∣ ≥ −F−1
(

α

2n

))

≥ ∏
i,|fi |≥r

(
F

( |fi |
σ

+ F−1
(

α

2n

)))

≥
(
F

(
r

σ
+ F−1

(
α

2n

)))#Fr (Pf )

.
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Hence, Pf (Fr (Pf ) ⊂ RBonf) ≥ 1 − β if

r ≥ σ
(
F−1(

(1 − β)1/#Fr (Pf )) − F−1(
α/(2n)

))
.

Note that for u in (0,1) and δ in [0,1], then −F−1(u) = F−1(1 − u), and

F−1(
(1 − u)δ

) ≤ F−1(1 − δu).

Therefore, Pf (Fr (Pf ) ⊂ RBonf) ≥ 1 − β if

r ≥ σ
(
F−1(

1 − β/#Fr (Pf )
) + F−1(

1 − α/(2n)
))

.

Since for every u > 0, 1 − F(u) ≤ e−u2/2/2,

∀u ∈ (0,0.5) F−1(1 − u) ≤ √−2 ln(2u).(23)

Finally, Pf (Fr (Pf ) ⊂ RBonf) ≥ 1 − β (with β in (0,0.5)) if

r ≥ σ
(√

2 ln
(
#Fr (Pf )/(2β)

) +
√

2 ln(n/α)
)
.

This gives the result, as #Fr (Pf ) ≤ k when Pf belongs to Pk .

5.6. Proof of Proposition 8. Let f be the vector such that fi = r/
√

k for i =
1, . . . , k and fi = 0 for i ≥ k + 1. Then d2(Pf ,P0) = r . We want to choose r such
that

Pf (∃i,HSi
is rejected) < 1 − β.

With the notation of the above proof of Theorem 7, a union bound gives

Pf (∃i,HSi
is rejected) ≤

n∑
i=1

Pf (HSi
is rejected)

≤ (n − k)
α

n
+ kPf

(∣∣∣∣ r

σ
√

k
+ εi

∣∣∣∣ ≥ F−1
(

1 − α

2n

))

≤ α + 2kF

(
r

σ
√

k
− F−1

(
1 − α

2n

))
,

where the last inequality comes from (22).
Hence, we only have to choose r such that

r < σ
√

k
(
F−1(

1 − α/(2n)
) − F−1(

1 − (1 − α − β)/(2k)
))

.

From (23), we get

−F−1(
1 − (1 − α − β)/(2k)

) ≥ −
√

2 ln
(
k/(1 − α − β)

)
.

From the lower bound of [18], Theorem 2.1, we deduce that when α ≤ n/5,

F−1(
1 − α/(2n)

) ≥
√

2 ln(2n/α) − ln(4 ln(2n/α)) + 2

2
√

2 ln(2n/α)
.
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Hence, Pf (∃i,HSi
is rejected) < 1 − β as soon as

r < σ
√

k

(√
2 ln(2n/α) − ln(4 ln(2n/α)) + 2

2
√

2 ln(2n/α)
−

√
2 ln

(
k/(1 − α − β)

))
.

This completes the proof.

5.7. Proof of Theorem 9. Let us first prove that FWER(R̄) ≤ α. For any f , let
i0 be the largest integer i such that f1 = · · · = fi = 0. Then

Pf

(
R̄∩ T (Pf ) 
=∅

) = Pf (∃i ≤ i0,∃j ≤ i, pj ≤ α/n)

≤ Pf (∃j ≤ i0,pj ≤ α/n)

≤ α.

Considering d = d2, the goal is now to find a positive real number r0 such that
for any r ≥ r0 and for any Pf in Pk ,

Pf

(
Fr (Pf ) ⊂ R̄

) ≥ 1 − β.

Assume that Pf belongs to Pk . Given r > 0,

Fr (Pf ) = {
HS̄i

, d2(Pf ,HS̄i
) ≥ r

} =
{
HS̄i

,
∑

j∈{1,...,i}
f 2

j ≥ r2
}
.

Then, if
∑n

j=1 f 2
j < r2, Pf (Fr (Pf ) ⊂ R̄) = 1. Otherwise, let i0 be now the small-

est integer in {1, . . . , n} such that
∑i0

j=1 f 2
j ≥ r2. As this sum has at most i0 ∧ k

nonzero terms, there exists j0 in {1, . . . , i0} such that f 2
j0

≥ r2/(i0 ∧ k) ≥ r2/k.
Furthermore,

Pf

(
Fr (Pf ) ⊂ R̄

) = Pf

(
∀i s.t.

∑
j∈{1,...,i}

f 2
j ≥ r2, min

j∈{1,...,i}pj ≤ α/n

)
.

If pj0 ≤ α/n, then minj=1,...,i0 pj ≤ α/n, and for every i in {1, . . . , n} such that∑i
j=1 f 2

j ≥ r2, one has that i ≥ i0 ≥ j0, and minj=1,...,i pj ≤ α/n.

The event {∀i s.t.
∑i

j=1 f 2
j ≥ r2,minj=1,...,i pj ≤ α/n} thus contains the event

{pj0 ≤ α/n}. Hence, with the notation of the proof of Theorem 7,

Pf

(
Fr (Pf ) ⊂ R̄

) ≥ Pf (pj0 ≤ α/n)

≥ Pf

(
2F

(−σ−1|Xj0 |
) ≤ α/n

)
≥ Pf

(
2F

(−|fj0/σ + εi |) ≤ α/n
)
.

By (22), it follows that

Pf

(
Fr (Pf ) ⊂ R̄

) ≥ F
(|fj0 |/σ + F−1(

α/(2n)
))

≥ F
(
r/(

√
kσ) + F−1(

α/(2n)
))

.
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Therefore, Pf (Fr (Pf ) ⊂ R̄) ≥ 1 − β as soon as

r ≥ σ
√

k
(
F−1(

1 − α/(2n)
) + F−1(1 − β)

)
.

Finally, by (23), we derive that Pf (Fr (Pf ) ⊂ R̄) ≥ 1 −β (β ∈ (0,0.5)) as soon as

r ≥ σ
√

k
(√

2 ln(n/α) +
√

−2 ln(2β)
)
.

This completes the proof.

5.8. Proof of Proposition 10. The result is clearly satisfied when T = 1.
Let us now consider the case where T ≥ 2 and k ≤ T − 1. We introduce the

partition τ = {{1}, . . . , {T − 1}, {T , . . . , n}}, with T elements where the T − 1 first
elements are singletons. The class Pk,T then contains

P∗
k,τ = {

Pf,τ ,#{j ≤ T − 1, fj 
= 0} ≤ k and fT = · · · = fn = 0
}
,

and as mFWSRα,β
d is increasing,

mFWSRα,β
d (Pk,T )

≥ mFWSRα,β
d

(
P∗

k,τ

)
= inf

R,FWER(R)≤α
inf

{
r > 0, sup

Pf,τ ∈P∗
k,τ

Pf,τ

(
Fr (Pf,τ ) ∩ (H \R) 
= ∅

) ≤ β
}
.

Since, for every Pf,τ in P∗
k,τ and for every i ≥ T , fi = 0, with any R such

that FWER(R) ≤ α, we can associate R̄ = R ∩ {HSi
, i = 1, . . . , T − 1}. Natu-

rally FWER(R̄) is also upper bounded by α and {Fr (Pf,τ ) ∩ (H \ R) 
= ∅} =
{Fr (Pf,τ ) ∩ (H \ R̄) 
=∅}. Hence,

Pf,τ

(
Fr (Pf,τ ) ∩ (H \R) 
=∅

) = Pf,τ

(
Fr (Pf,τ ) ∩ (H \ R̄) 
=∅

)
.

Therefore,

inf
R,FWER(R)≤α

inf
{
r > 0, sup

Pf,τ ∈P∗
k,τ

Pf,τ

(
Fr (Pf,τ ) ∩ (H \R) 
=∅

) ≤ β
}

= inf
R̄,FWER(R̄)≤α

R̄∩{HSi
,i≥T }=∅

inf
{
r > 0, sup

Pf,τ ∈P∗
k,τ

Pf,τ

(
Fr (Pf,τ ) ∩ (H \ R̄) 
=∅

) ≤ β
}
.

Now introduce the set of distributions

P̃k,T = {
Pf = N

(
f,σ 2IT −1

)
, f ∈ RT −1, |f |0 ≤ k

}
.

With Pf,τ in P∗
k,τ we associate P

f̃
in P̃k,T such that for j ≤ T − 1, f̃j = fj .

Moreover, consider the hypotheses (H̃Sj
)j=1,...,T −1, subsets of P̃k,T , defined

by H̃Sj
= {P

f̃
, f̃j = 0}. When Pf,τ ∈ P∗

k,τ , it is clear that, for j ≤ T − 1

d(Pf,τ ,HSj
) = d∞(P

f̃
, H̃Sj

).
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With any R̄, we can associate R̃, a multiple test of the collection of hypotheses
H̃ = {H̃Sj

, j = 1, . . . , T − 1} which contains H̃Sj
when R̄ contains HSj

. Hence,

inf
R̄,FWER(R̄)≤α

R̄∩{HSi
,i≥T }=∅

inf
{
r > 0, sup

Pf,τ ∈P∗
k,τ

Pf,τ

(
Fr (Pf,τ ) ∩ (H \ R̄) 
=∅

) ≤ β
}

= inf
R̃ associated with a
R̄,FWER(R̄)≤α

inf
{
r > 0, sup

P
f̃
∈P̃k,T

P
f̃

(
Fr (Pf̃

) ∩ (H̃ \ R̃) 
= ∅
) ≤ β

}

≥ inf
R,FWER(R)≤α

inf
{
r > 0, sup

P
f̃
∈P̃k,T

P
f̃

(
Fr (Pf̃

) ∩ (H̃ \R) 
=∅
) ≤ β

}
,

Fr (Pf̃
) being defined w.r.t. d∞, and the last inequality being a consequence of

FWER(R̃) = FWER(R̄). Therefore, by (18),

mFWSRα,β
d (Pk,T ) ≥ mFWSRα,β

d

(
P∗

k,τ

) ≥ mFWSRα,β
d∞ (P̃k,T ) ≥ σ

√
lnT .

Finally, in the case where T ≥ 2 and k ≥ T , Pk,T contains PT −1,T , so

mFWSRα,β
d (Pk,T ) ≥ mFWSRα,β

d (PT −1,T ) ≥ σ
√

lnT .

5.9. Proof of Proposition 11. Inequality (21) is just a consequence of the
fact that R(�BHL

H ) ⊂ Rmp. Moreover, R(�BHL
H ) contains every hypothesis HSi

such that the p-value pi = 2F(−|Xi |/σ) is smaller than the α quantile of
mini=1,...,n pi = mini=1,...,n(2F(−|Xi |/σ)) under the distribution P0. Since when
f = 0, mini=1,...,n pi = mint∈τ 2F(−|εt |), R(�BHL

H ) contains Rα/T
Bonf = {HSi

,pi ≤
α/T }.

For any f in Rn and any partition τ of {1, . . . , n}, d(Pf,τ ,HSi
) = |fi |. There-

fore, HSi
∈Fr (Pf,τ ) if and only if |fi | ≥ r , and

Pf,τ

(
Fr (Pf,τ ) ⊂ Rα/T

Bonf

)
= ∏

t∈τ

Pf,τ

(∀i ∈ t s.t. |fi | ≥ r, |fi/σ + εt | ≥ −F−1(
α/(2T )

))
.

Hence,

Pf,τ

(
Fr (Pf,τ ) ⊂ Rα/T

Bonf

) ≥ ∏
t∈τ,∃i∈t,|fi |≥r

Pf,τ

(
F−1(

α/(2T )
) + r/σ ≥ |εt |).

Then, if Pf,τ belongs to Pk,T ,

Pf,τ

(
Fr (Pf,τ ) ⊂Rα/T

Bonf

) ≥
(

2F

(
r

σ
+ F−1

(
α

2T

))
− 1

)k∧T

.

Thus, Pf,τ (Fr (Pf,τ ) ⊂ Rα/T
Bonf) ≥ 1 − β if

r ≥ σ

(
F−1

(
1 + (1 − β)1/(k∧T )

2

)
+ F−1

(
1 − α

2T

))
.
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Note that for any u in (0,1), δ in [0,1],

F−1
(

1 + (1 − u)δ

2

)
≤ F−1

(
1 − δu

2

)
.

Therefore, Pf,τ (Fr (Pf,τ ) ⊂Rα/T
Bonf) ≥ 1 − β if

r ≥ σ
(
F−1(

1 − β/
(
2(k ∧ T )

)) + F−1(
1 − α/(2T )

))
.

By using (23) again, we obtain that

FWSRβ
d

(
R

(
�BHL

H
)
,Pk,T

) ≤ FWSRβ
d

(
Rα/T

Bonf,Pk,T

)
≤ σ

(√
2 ln(k ∧ T /β) +

√
2 ln(T /α)

)
.

5.10. Proof of Proposition 12. Let us take τ = {{1}, . . . , {T − 1}, {T , . . . , n}}
as in the proof of Proposition 10. Take f such that f1 = · · · = fk = r and fi = 0
for i ≥ k + 1. Then

Pf,τ

(
Fr (Pf,τ ) ⊂RBonf

) =
k∏

i=1

Pf,τ (HSi
∈RBonf)

=
k∏

i=1

Pf,τ

(∣∣∣∣ r

σ
+ εi

∣∣∣∣ ≥ F−1
(

1 − α

2n

))

≤ 2kF

(
r

σ
− F−1

(
1 − α

2n

))k

.

Therefore, Pf,τ (Fr (Pf,τ ) ⊂RBonf) < 1 − β , if

r < σ
(
F−1(

1 − α/(2n)
) + F−1(

(1 − β)1/k/2
))

,

and we conclude as in the proof of Proposition 8.
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SUPPLEMENTARY MATERIAL

Additional results and proofs for “Family-Wise Separation Rates for mul-
tiple testing” (DOI: 10.1214/15-AOS1418SUPP; .pdf). This supplement con-
tains additional results on the cumulative distribution functions and the proof of
Lemma 1.
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