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Identifying causal parameters from observational data is fraught with
subtleties due to the issues of selection bias and confounding. In addition,
more complex questions of interest, such as effects of treatment on the treated
and mediated effects may not always be identified even in data where treat-
ment assignment is known and under investigator control, or may be identi-
fied under one causal model but not another.

Increasingly complex effects of interest, coupled with a diversity of causal
models in use resulted in a fragmented view of identification. This fragmen-
tation makes it unnecessarily difficult to determine if a given parameter is
identified (and in what model), and what assumptions must hold for this to be
the case. This, in turn, complicates the development of estimation theory and
sensitivity analysis procedures.

In this paper, we give a unifying view of a large class of causal effects
of interest, including novel effects not previously considered, in terms of a
hierarchy of interventions, and show that identification theory for this large
class reduces to an identification theory of random variables under interven-
tions from this hierarchy. Moreover, we show that one type of intervention in
the hierarchy is naturally associated with queries identified under the Finest
Fully Randomized Causally Interpretable Structure Tree Graph (FFRCISTG)
model of Robins (via the extended g-formula), and another is naturally asso-
ciated with queries identified under the Non-Parametric Structural Equation
Model with Independent Errors (NPSEM-IE) of Pearl, via a more general
functional we call the edge g-formula.

Our results motivate the study of estimation theory for the edge g-formula,
since we show it arises both in mediation analysis, and in settings where
treatment assignment has unobserved causes, such as models associated with
Pearl’s front-door criterion.

1. Introduction. The goal of the empirical sciences is discerning cause-effect
relationships by experimentation and analysis. This is made difficult by the ubig-
uity of hidden variables, and the difficulty of collecting data free from confounding
and selection bias. Two useful frameworks for addressing these difficulties have
been potential outcomes, introduced by Neyman [8], and expanded by Rubin [21],
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and causal graphical models, first used in linear models by Wright [35], and later
expanded into a general framework (see, e.g., [30] and [11]). There exists a modern
synthesis of these two frameworks, where causal models based on nonparametric
structural equations are defined on potential outcome random variables, and as-
sumptions defining these models can be represented by (absences) of arrows in a
graph. See [11], Chapter 7, and [13] for a detailed treatment.

Potential outcome random variables represent outcomes under a hypothetical
intervention operation, which corresponds to an idealized randomized control trial.
Concepts such as the overall causal effect of a treatment can be represented as
causal parameters on appropriate potential outcomes, and as statistical estimands
if appropriate assumptions hold.

The synthesis of potential outcomes and graphs has been instrumental in much
of the recent work on identification of various types of causal parameters such as
total effects [14, 25-27, 33], and mediated effects [1, 10, 24].

Nevertheless, the existing literature suffers from three problems. First, a single
graph may correspond to different causal models, which means a particular causal
parameter may be identified under one causal model, but not under another, even
though the models share the same graph. Second, different types of causal pa-
rameters seem to have different key issues underlying their identification, which
makes it difficult to determine the specific assumptions that must hold for identi-
fication. For instance, certain types of unobserved confounding must be absent in
order for overall effects to be identifiable, while even completely unconfounded
mediated effects may be unidentified [1]. Finally, because of the complex nature
of identification theory for causal parameters, existing conventional wisdom on
what is identifiable is too conservative. For example, it is often assumed that a
mediator and outcome must remain completely unconfounded in order to obtain
identification of mediated causal effects. However, this is not true [24].

These issues make it difficult to determine if a particular causal parameter is
identified, and under what model, what assumptions underlie this identification,
and what the corresponding statistical parameter is. This complicates estimation
theory, the development of parametric relaxations that permit identification and
sensitivity analysis procedures.

1.1. Outline of the paper. The contents of the paper can be summarized by a
picture in Figure 1. In Section 2, we introduce our notation, necessary graph the-
ory, standard interventions (which we call node interventions in this manuscript)
and potential outcomes, which are responses to node interventions. We also in-
troduce the FFRCISTG model of Robins, which in this paper we call the “single
world model (SWM),” and the NPSEM-IE of Pearl, which is a submodel of the
FFRCISTG model, and which we call the “multiple worlds model (MWM).” The
reasons for these names will become clear when these models are defined. The
subset relationship of these two models is shown explicitly in Figure 1. Finally,
we discuss targets of interest in causal inference known as total effects, which are
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FIG. 1. A hierarchy of responses to interventions defined with respect to features of a causal graph,
the relationship of this hierarchy to targets of interest in causal inference, such as path-specific effects
(PSEs), effects of treatments on the multiply treated (ETMTs), and new targets such as effects of
treatments on the indirectly treated (ETITs) and identifiability under causal models defined in the
literature.

defined in terms of node interventions, and discuss identification theory for these
targets under the SWM via the extended g-formula.

In Section 3, we define additional types of interventions, that we term edge
and path interventions, and responses to these types of interventions via recursive
substitution. Responses to node, edge and path interventions form an inclusion
hierarchy in the sense that responses to node interventions are a special case of
responses to edge interventions, which are in turn a special case of responses to
path interventions. This inclusion is denoted by the subset relations in Figure 1.
We also discuss how targets of inference in mediation analysis known as direct
and indirect effects are defined in terms of edge interventions.

In Section 4, we show how we can express a wide variety of targets of interest in
causal inference, such as path-specific effects (PSEs) or effects of treatment on the
multiply treated (ETMTs) as responses to path interventions. In addition, we show
that path interventions are general enough to accommodate novel targets which
combine features of PSEs and ETMTs, which we call effects of treatment on the
indirectly treated (ETITs). Our results then imply novel identification results for
these targets, and others not previously considered in the literature, but expressible
as path interventions.

In Section 5, we show that there is a natural correspondence between causal
models and intervention types we discuss in the following sense. We show that
responses to node interventions are identified under the SWM, and responses to
edge interventions are identified under the MWM. Furthermore, we show that if a
response to an edge intervention cannot be expressed as a node intervention, then
it is not identified under the SWM, and if a response to a path intervention cannot
be expressed as an edge intervention, then it is not identified under the MWM.
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The identification of node interventions under the SWM is via the well-known
extended g-formula [13, 18], which we give as equation (2). The identification of
edge interventions under the MWM is via a generalization of (2), which we call
the edge g-formula, and give as equation (5).

We also give examples of targets of interest in causal inference that do not cor-
respond to responses to path interventions, as well as an example of a submodel of
the MWM where even path interventions not ordinarily identified under the MWM
are identified.

In Section 6, we briefly discuss the relationship of our results to Single World
Intervention Graphs (SWIGs) [13].

Section 7 shows that a certain class of functionals that identify causal effects in
latent variable causal models [25, 33] corresponds to functionals derived from the
edge g-formula. This implies, in particular, that functionals that arise for treatment
effects with unobserved causes of treatments, such as the front-door functional,
also arise in mediation analysis.

In Section 8, we illustrate the connection of our work to existing estimation
theory for causal parameters, and suggest avenues of future work, by giving a
known example of an estimator for a parameter derived from a special case of the
edge g-formula.

What the overall picture implies is that once we solve the identification problem
for the responses to interventions in our hierarchy, as we do here, we immediately
reduce the identification problem for a wide class of targets of interest to the much
easier problem of translating those targets into responses to path interventions.
Once that translation is complete, the question of what is identified under what
model is immediately settled. In addition, our developments imply that estimation
theory for functionals derived from the edge g-formula is relevant for a large class
of inference targets identified under the MWM, including path-specific effects,
effects of treatment on the multiply treated, and certain total causal effects with
unobserved causes of treatments.

In the interests of space, the vast majority of arguments for our results appear in
the Appendices in the supplementary materials [29]. In addition, the supplemen-
tary materials contains our rationale for the use of path interventions, rather than
simpler or more algebraic representations of causal inference targets.

2. Notation and definitions. We introduce graph theory terms, potential out-
comes and statistical and causal graphical models.

2.1. Graphs and random variables. We will associate random variables with
vertices in graphs. We will denote both a single vertex and a single corresponding
random variable as an uppercase Roman letter, for example, A. Sets of vertices
(and corresponding random variables) will be denoted by uppercase bold letters,
for example, A.
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For a random variable V, let Xy be the state space of V. For example, if V
is binary, then Xy = {0, 1}. We denote elements of a set X4 (values of A) by
lowercase Roman letters: a € X 4. The state space of a set V of random variables
is simply the Cartesian product of the individual state spaces: Xy = X yoy(Xvy).

Sets of values corresponding to sets of random variables will be denoted by low-
ercase bold letters, for example, a € Xo. Sometimes we will denote a restriction
of a set of values by a set subscript. That is, if v is a set of values of V,and A CV,
then vy is a restriction of v to A.

An edge in a graph is a vertex adjacency coupled with an orientation.
A path in a directed graph is a (possibly empty) sequence of nodes of the form
(A1A2A3--- Ap_1Ay), where each node in the sequence occurs exactly once, and
each A;, A;41 share an edge. The first vertex in a path sequence is called the
source, and the last vertex is called the sink. A path with two vertices (A1 A3) is
just an edge.

A subpath of a path is a subsequence of edges in a path that themselves form
a path. A suffix subpath of (AjA2---A;;—1A; - Ax—1Ag) is a subpath of the
form (Apu—1An - - Ax—1Ag), while a prefix subpath is a subpath of the form
(A1Az - Ap—1An). A directed path from A to Ag has edges for every i of the
form A; — A; 1. We will denote a directed path as (A1A>--- Ar)—s, and also by
Greek letters, for example, o, and sets of directed paths by bold Greek letters, for
example, a. A source vertex of o will be written sog(«), and the sink vertex will
be written sinkg (c).

We say a directed cycle exists in a graph if it contains a path (A1 Ay A3z --- Ag)—
and an edge (AxA1)— . A directed graph lacking directed cycles is called acyclic,
abbreviated as DAG.

2.2. Causal models of a DAG. For a subset A of random variables V, and a
value assignment a to A, we denote a forced assignment of A to an element of
XA as a node intervention. A node intervention which maps A to a € X will
be denoted by v,. Pearl denoted node interventions v, by do(a), and Robins by
g = a. We use alternative notation in this paper to avoid ambiguity, because we
will consider other types of interventions. It is also possible to consider more com-
plex types of interventions on nodes, known as dynamic treatment regimes, where
assigned values to A are not constants, but functions of variables assigned and ob-
served in the past [6, 7, 14]. Although generalizations of our results to this setting
are possible, we do not pursue them in the interests of space.

For arandom variable Y € V,and a € X foraset A C 'V, we denote a (random)
response to a node intervention v, as Y (a). These random variables are also called
potential outcomes, because Y is often an outcome of interest, and the intervention
is often hypothetical, rather than actually occurring. Given a set Y = {Y71, ..., Yk}
of random variables, we denote {Y1(a), ..., Yx(a)} by Y(a) or {Y}(a).

Let pag(V) be the set of parents of V in G, that is, the set {W|(WV)_, is in
G}. Following [13], given a DAG G with vertices V, we will assume the exis-
tence of V(Vpag(v)) for every V € V, and for all Vpag (V) € %pag(V)a as well as a
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(a)

FI1G. 2. (a) A simple causal graph. (b) The transitive closure with respect to blue arrows of this
graph is a causal graph representing two time slices of a longitudinal study in HIV research.

well-defined joint distribution over these random variables, and use these potential
outcomes, and the associated joint, to define others using recursive substitution.
In particular, for any A C V, and any a € X, we define for every V € V

(1) V(@) = V(apagv), {pag(V) \ A}(a)).

In words, this states that the response of V to v, is defined as the potential outcome
where all parents of V which are in A are assigned an appropriate value from a, and
all other parents are assigned whatever value they would have attained under a node
intervention v, (these are defined recursively, and the definition terminates because
of the lack of directed cycles in G). For example, in the graph in Figure 2(a),
Y(a)=Y(a, M(a)).

It is possible to construct additional types of potential outcomes other than
those that are responses to node interventions. We will discuss some such po-
tential outcomes later. However, responses to node interventions are sufficient to
define causal models. Just as a statistical model is a set of distributions over V
defined by some restriction, we view a causal model as a set of distributions over
{V(Vpag(v)) |V € V} defined by some restriction. We will call elements of a causal
model causal structures, and denote them as ¢(V, G), by analogy with p(V), but
indexed by a graph. In this paper, we will consider two causal models.

We adopt the definitions presented in [13]. We define the finest fully randomized
causally interpretable structured tree graph (FFRCISTG) model associated with a
DAG G with vertices V, as the set of all possible potential outcome responses
subject to the restriction that the variables in the set

{V(Vpag(V))|V € V}

are mutually independent for every v € Xy. We define the nonparametric struc-
tural equation model with independent errors (NPSEM-IE) associated with a DAG
G with vertices V, as the set of all possible potential outcome responses subject to
the restriction that the sets of variables

{{V(av)|av € :fpag(v)”V € V}

are mutually independent. The NPSEM-IE associated with a particular graph is
a submodel of the FFRCISTG model associated with the same graph, because it
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always places at least as many restrictions on potential outcome responses, and in
most cases many more.

For example, the binary FFRCISTG model associated with the DAG in Fig-
ure 2(a) asserts that variables W, A(w), M (a, w), Y (a, m) are mutually indepen-
dent for any a, m, w € {0, 1}, while the binary NPSEM-IE model associated with
the same DAG asserts that sets {W}, {A(w)|w € {0, 1}}, {M (a, w)|a € {0, 1}, w €
{0, 1}}, {Y (a, m)|a € {0, 1}, m € {0, 1}} are mutually independent. The FFRCISTG
model always imposes restrictions on a set of variables under a single set of inter-
ventions (a “single world”), while the NPSEM-IE may also impose restrictions
on variables across multiple conflicting sets of interventions simultaneously. To
emphasize this, we will refer to the FFRCISTG model as a “single world model”
(SWM), and to the NPSEM-IE as a “multiple worlds model” (MWM) in the re-
mainder of this paper.

A crucial difference between the SWM and the MWM is that the assumptions
of the former are possible to test, at least in principle, by checking independences
in a distribution of responses in an idealized randomized controlled trial. That is,
if we wanted to check if W is independent of A(w), we could check independence
in a joint distribution obtained from recording, for a set of units, the values of W
immediately before treatment w is assigned and the response values of A under
that assignment. However, checking if M (a) is independent of Y (a’, m) would
entail somehow knowing how the response M of a unit behaves under assigned
treatment a, and simultaneously how the response Y of the unit behaves under a
conflicting treatment a” (and m). One may be able to argue for explicit construction
of such joint responses in certain designs [5], or for certain types of units, for
instance logic gates in a digital circuit. However, in general, assumptions defining
the MWM are not experimentally testable.

2.3. Identification of node interventions. Responses to interventions of var-
ious types can be used to define targets of interest, discussed in more detail in
Section 4. However, in order for these definitions to be useful, they must be linked
to actually observed data. If such a link can be provided, that is, if a particular
response can be expressed as a functional of the observed joint distribution p(V)
for any element of a causal model, we say that the response is identified under that
causal model from p(V).

In causal models, this link is typically provided via the consistency assumption,
which is sometimes informally stated as “in the subpopulation where A = a, Y(a)
behaves as Y.” Under the definition of the SWM (and the MWM), consistency is
implied by (1); see [13], page 21. Thus, consistency is “folded in” to the model
definition. Thus, we will describe identification in terms of a particular model,
and not mention consistency itself. Note that (1) is an assumption defined using a
particular graph. If we are mistaken about the true graph, for instance, due to the
presence of unaccounted hidden variables, then some parts of (1), and thus some
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parts of the consistency assumption, may not be justifiable under the true causal
model.

Identification theory for node interventions in causal DAG models is well under-
stood. Given a DAG G with vertices V, and two arbitrary subsets A, Y of V (not
necessarily disjoint), the distribution p(Y(a)) for any value assignment a € X
can be identified under the SWM as a functional of the observed distribution p(V)
using the extended g-formula [18], given by

) p(Y@=vy)= Y ] POVlapagv)na: Vpag(vna),
YV\Y VeV

where v € Xy. A recent proof of this appears in [13]. Special cases of (2) where A
and Y are disjoint are known as the g-formula [14], the manipulated distribution
[30] or the truncated factorization [11]. Because the MWM is a causal submodel
of the SWM, (2) also holds under the MWM.

2.4. Total effects as responses to node interventions. Node interventions are
used to represent causal effects of treatments as a contrast of potential outcome
responses to different treatment assignments. By considering an intervention, we
remove the impact of confounding via assignment policy. For example, consider
the simple causal graph shown in Figure 2(a), representing an observational study
with a single application of one of two treatments m, m’. Variable M is assigned
to either m or m’ based on (observed) patient health status (A, W), and survival
Y is measured. Doctors follow a known policy p(M|A, W) in assigning M where
sicker patients are more likely to get m. Note that p(alive|m) < p(alive|m’) may
hold simply due to the assignment policy in the study which introduces confound-
ing by health status, even if m is a better drug.

One appropriate contrast that adjusts for the influence of confounding by health
status on the effect of interest can be expressed via node interventions, and is
known as the average causal effect (ACE): E[Y (m)] — E[Y (m')]. This contrast
can be computed from the distribution p(Y (m)) for all m € X, which is equal,
under (2), to

p(Ym)= > p(Y|m,a,w)p(m'la,w)pla,w) =" p(Y|m,a, w)p(a, w).

w,a,m’

This recovers the well-known back-door formula [11].

Consider now a more complex example corresponding to the following prob-
lem from HIV research. In a longitudinal study, HIV patients were put on an an-
tiretroviral drug regimen, where the specific level of drug exposure over time was
controlled by a known policy, which was based on covariates observed for each
patient. However, the outcome of the study has been disappointing. The question
is whether this was due to the drug itself performing poorly, or whether patient’s
adherence was poor. Consider a causal graph representing two time slices of this
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longitudinal study. To avoid cluttering the figure with too many edges, we repre-
sent the causal graph schematically by its transitive reduction with respect to blue
edges, shown in Figure 2(b). That is, the true graph G* contains a blue arrow be-
tween any pair of nodes A, B connected by a blue directed path in Figure 2(b) (and
inherits all red edges as well).

Here, Cy is a vector of observed baseline confounders, A{, A, are exposures
over time, Wy, W, are drug toxicity levels at each exposure time, C, C; are adher-
ence levels at each time, Y|, Y5 are outcomes, and U is an unobserved confounder.
Both red and blue arrows represent direct causation. In general, a reasonable causal
graph will contain unobserved common causes of most vertices, but in this exam-
ple we assume adherence C1, C5, and treatments Ay, A, are only directly affected
by the observed variables in the past, such as the toxicity level of the drug, and not
by U. These assumptions are represented graphically by the absence of red edges
from U to Ay, Ay, Cq, Cy.

We first consider the total effect of the two exposures on outcome Y, formal-
ized as the two-exposure version of ACE. We consider more complex effects in-
volving mediation by adherence in subsequent sections. The ACE contrast is de-
fined with respect to active treatment levels, which we denote ay, a», and base-
line treatment levels, which we denote ag , aé. In our case, the contrast is equal to
ACE =E[Y2(a1, az)] — E[Y2(a}, ay)]. If we were able to randomize treatment as-
signment to A, Az, we could evaluate the ACE directly from experimental data.
However, our data comes from an observational longitudinal study and, therefore,
we must properly adjust for observed confounders of the exposures. Robins [14]
noted that in cases like these, assuming the underlying SWM represented by our
graph is correct, we can get a bias-free estimand of the ACE from observational
data using the g-computation algorithm, which in this case gives

ACE= > E[V2az, y1,c1,wi, a1, colp(yi. c1, wilai, co) p(co)

Y1,€1,W1,€0

— > E[Yalay, yi.c1, wi,ay, co)p(y1, c1, wilay, co) plco).
Y1,€1,W1,€0

This is, yet again, a special case of (2). This estimand can be estimated via either
the parametric g-formula [15], inverse weighting methods [17] or doubly robust
methods [20].

In the following section, we introduce intervention types that generalize node
interventions, and consider other types of causal effects which may be represented
as responses to such intervention types.

3. Edge and path interventions. We consider two additional types of inter-
ventions defined on graphical features, edge and path interventions, and define
responses to these interventions using recursive substitution in a natural way. As
we shall see, responses to path interventions include many targets of interest in
causal inference, including effects of treatment on the treated, mediated effects,
and even novel effects that combine features of both.
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3.1. Edge interventions. For a set of edges a in a DAG ¢, define X, =
f{sog(a). In other words, X, is a Cartesian product of the state spaces of source
variables of all directed edges in «.

The state space of a given vertex in G may occur multiple times in X, if multiple
edges in « share the same source vertex. We denote members of X, by lowercase
Frankfurt font: a € X,. We do so to emphasize that elements of X, may contain
multiple conflicting value assignments to the same random variable, unlike ele-
ments of X4. For example, consider the graph in Figure 2(a), where X4 = {0, 1}.
Then if ¢« = {(AM)_,, (AY)_}, a valid element a of X, associates 0 with the
variable associated with the parent vertex A of (AM)_, and 1 with the variable
associated with the parent vertex A of (AY)_,. Unlike elements of Xj,, it is not
immediately clear what set of edges a is referring to, so we will subscript the set
of edges, if necessary, like so: a,.

We call a forced assignment of variables corresponding to source vertices of
edges from « to an element of Xy an edge intervention. An edge intervention
which assigns « to an element a, € Xy will be denoted by 7ng,. As with elements
of XA, we denote a restriction of a by a set subscript. That is, if a4 € Xy, and
B € «, then ag is a restriction of a to variables corresponding to source vertices
of 8.

We define responses of outcomes to edge interventions in the natural way using
recursive substitution, the potential outcomes of the form V(Vpag(v)), and a joint
distribution over these potential outcomes. For every V € V, a set of edges & in a
DAG @G, and an element a4 € Xy, we define the response of V to g, as

3) V(ag) = V(aiv)_ ea)» {Pag (V) }ag)),

where pad (V) = {A € pag(V)|(AV)_ ¢ a}.

In words, this states that the response of V' to ng,, where aq € X is defined
as the potential outcome where all parents of V along edges in « are assigned an
appropriate value from a,, and all other parents are assigned whatever value they
would have attained under an edge intervention 7, (these are defined recursively,
and the definition terminates because of the lack of directed cycles in G).

As before, given a set Y = {Y|,..., Yy} of random variables, we denote

{Y1(ag), ..., Yi(ag)} by Y(ag) or {Y}(aq).

3.2. Direct and indirect effects as responses to edge interventions. Just as re-
sponses to node interventions can be used to represent total causal effects, so can
responses to edge interventions be used to represent direct and indirect effects.
Consider again Figure 2(a), but now assume A is the treatment (one of two drugs
a,a’), Y is the outcome (survival), and M is a dangerous side effect that mediates
some of the effect of Aon Y.

We may be interested in how much of the total effect, as formalized via the ACE
contrast E[Y (a)] —E[Y (a’)], can be attributed to the direct effect of the drugson Y,
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and how much to the mediated effect via the side effect M. To formalize this, we
want to consider how Y varies if we can set treatments separately for the purposes
of the direct causal pathway represented by (AY)_, and the pathway mediated
by M, represented by (AM)_,. This is precisely what edge interventions allow
us to do. Consider n, that sets (AM)_, to a and (AY)_ to a’. Then (3) implies
Y(a) =Y (d’, M(a)). We can use this type of response to define the direct effect
as the contrast E(Y (a)) — E[Y (a’, M(a))], and the indirect effect as the contrast
E[Y (a’, M (a))] — E[Y (a")]. Note that the ACE is a sum of the direct and indirect
effect contrasts above.

The idea of using nested responses like Y (a’, M (a)) to represent direct and indi-
rect effects for mediation analysis appears in [16], and is discussed in the context
of graphical causal models in [10]. Our contribution is to aid interpretability of
such nested responses by viewing them as responses to interventions associated
with edges; graphical features intuitively associated with effects we are trying to
formalize.

Just as it is good practice to only discuss node interventions in settings where
it is possible, at least in principle, to assign treatment by fiat, so it is good prac-
tice to only discuss edge interventions in settings where it is possible, at least in
principle, to conceive of assigning only those components of the overall treatment
that influences a particular direct consequence. For instance, if smoking affects
cardiovascular disease only by means of nicotine content, then we might simulate
the absence of smoking, but only for the purposes of cardiovascular disease, by
assigning the “treatment” of nicotine-free cigarettes. In this paper, we leave the
issues of applicability of edge interventions and mediation analysis in particular
settings aside [19], and consider, in subsequent sections, questions of identifica-
tion and the form of resulting functionals.

3.3. Path interventions. We are going to define responses to path interven-
tions, which associate a set of directed paths with values of sources of every path
in the set. A response to a path intervention will behave as if the source of a path
were set to a particular value, but only for the purposes of a particular outgo-
ing directed path. This behavior generalizes the behavior of edge interventions,
where vertices may behave differently with respect to different outgoing edges.
Path interventions serve as a very general, graphical representation of counterfac-
tual quantities associated with causal pathways that generalizes both edge and path
interventions. The supplementary materials [29] contain our rationale for the use
of path interventions versus simpler or more algebraic approaches to representing
counterfactuals of interest.

To make sure we end up with well-defined responses, we insist on a property
for sets of directed paths called properness. A set of directed paths « in a DAG
G is called proper if no path in « is a prefix subpath of another path in a. A set
consisting of a single path is always proper, as is a set of length 1 paths (e.g., a set
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of edges). In the remainder of the paper, when we say “a set of paths &,” we mean
a proper set of directed paths.

For a set of paths & in a DAG G, define X, = %Sog(a). In other words, X, is a
Cartesian product of the state spaces of source variables of all directed paths in a.
Since sets of paths clearly generalize sets of edges, the same issue occurs where a
single vertex in G may occur multiple times in X,. As before, to emphasize this,
we will denote elements of X, by lowercase Frankfurt font: a, possibly indexed
by a path set subscript: a,.

We denote a forced assignment of variables corresponding to source vertices of
paths from « to an element of X, as a path intervention. A path intervention which
assigns o to an element ay € Xy will denoted by 74, . As with elements of X4, we
denote a restriction of a by a set subscript. That is, if ay € X, and B C e, then ag
is a restriction of a to variables corresponding to source vertices of f8.

As was the case with node and edge interventions, our definition of path in-
terventions will be inductive. To get the induction to work, we need to consider
how treatments affect the response via pathways that end in a particular edge. We
use the following definition to formalize this. Given a set of paths o in a DAG
G, and an edge (WY)_,, define a funnel operator <\(wy)_ which maps from « to
the set of paths <I(wy)_, (er) obtained from a by replacing any path of the form
(A,...,W,Y)_, by (A,..., W)_,, by removing all paths containing W but no
suffix (WY)_,, and keeping all other paths intact.

LEMMA 3.1. If a is proper, then for any edge (WY)_,, so is <(wy)_ (a).

Given a path intervention 7 that assigns o to a,, and a funnel operator <(wy)_ ,
we consider funneled path interventions on <l(wy)_, (e). For every a such that
<wy)_ (@) = a, the funneled path intervention assigns o to a, that is it keeps
the same value assignment as the original path intervention. For the path o =
(A---W,Y)_, the funneled path intervention assigns <(wy)_, (&) to aa..wy)_ ,
that is assigns the value given by the original intervention to (A--- WY)_,. We
denote such an assignment by a4y, (a)-

Our insistence on « being proper, together with Lemma 3.1, means that there is
never any ambiguity in defining the funneled path intervention. That is, it is never
the case that two distinct paths in & are of the form (A---W)_, and (A---WY)_,.
If such a pair of paths were allowed, the difficulty would then be that these paths
can both reasonably be claimed to represent an effect of setting A along the path
(A---WY)_,, while potentially disagreeing on what that setting is.

We are now ready to define responses to path interventions. For every V € V, a
set of paths & in a DAG G, and an element a, € X4, we define the response of V
to 77q, as

(4) V(ae) = V(apy)_ ca {W(@agy,_ @)W € pag(V)}),
where pa%(V) = {W € pag(V)|[(WV)_, ¢ a}.
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In words, this states that the response of V to m,,, where aq € X is defined
as the potential outcome where all parents of V along edges which are (length 1)
paths in « are assigned an appropriate value from ag, and all other parents W
are assigned whatever value they would have attained under the funneled path
intervention associated with a funnel operator for the edge between that parent W
and V. Note that the definition is inductive for such parents, with the result of
applying a funnel operator serving as the new set of paths. Lemma 3.1 ensures that
properness propagates to this set, and thus the overall response is well defined.

For example, if w4 assigns w to (WAMY)_, in Figure 2(a), then Y (a) is de-
fined by (4) to equal Y (M (A(w)), A). We will use a notational shorthand for re-
sponses to path interventions, where rather than listing nested responses in paren-
theses after the response, we list the paths with the source node replaced by the
intervened on value. For example, we write Y (a) = Y (M (A(w)), A) above as
Y(wAMY)_,). We use the same shorthand for responses to edge interventions.

As before, given a set Y = {Yy,..., Yy} of random variables, we denote

{Y1(ae), . ... Yi(ag)} by Y(ae) or {Y}(a).

3.4. Responses to path interventions to natural values. So far, we have defined
path interventions as a mapping from a proper set of directed paths & to values in
X«. However, we might be interested in considering responses to interventions that
assign a variable not to a specific constant value, but to a value the variable would
have attained under a no intervention regime. For instance, this might happen if
the baseline exposure is one received by the general population, not a specific ex-
posure level assigned by the experimenter, or if the effect of multiple treatments
on the treated is of interest. In the context of node interventions, this situation was
discussed in [4]. In order for responses to path interventions to include this case,
we must extend the definition of path interventions to include intervening to nat-
ural values, that is values attained by variables under no interventions. Allowing
arbitrary variables to be set to natural values may lead to identification difficulties
even in very simple cases. Consider the following response to a node intervention
in the MWM given by Figure 2(a), {A, Y}(A, w). In words, this is the joint re-
sponse of A and Y to an intervention where W is set to value w, and A is set to the
natural value it attains under no interventions. The definition of responses to node
interventions via recursive substitution shows that {A, Y}(A, w) = Y (A), A(w).
However, the distribution p(A, A(w)) is not identified under the MWM for the
graph in Figure 2(a); see Lemma 5.8, and thus neither is the joint response in
question.

To avoid this difficulty, we consider only a special subset of path interventions
containing settings on natural values. This special subset can safely be rephrased
in such a way that only interventions on constants remain explicit. To define this
special subset, we need a few preliminary definitions.

For a node A, and a directed path (or an edge) o with source A, define the
extended state space as follows X% = X4 U {A}, and X}, = X, U {A}. We define
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the extended state space for sets of nodes, edges and paths via a Cartesian product
as before. An intervention on an extended state space is allowed on either any
constant value, or on the “natural value.”

Given a set of paths « and a response set Y, we call a directed path o relevant
forY givena if o =(A---Y)_, where Y €Y, and no path in « is a subpath of «
except possibly a prefix of «. We denote the set of all relevant paths for Y given «
in G by relg(Y|a).

Paths relevant for Y given « are those paths consisting of vertices that follow
a particular recursive sequence of invocations of definition (4). For example, as-
sume we are interested in the singleton response set {Y'} and a singleton path set
{(WAMY)_} in Figure 2(a). Then defining Y (wAMY)_,) for a particular w via
(4) entails defining intermediate responses M ((wAM)_,) and A((wA)_). The se-
quence of vertices (A, M, Y) are all linked by directed edges by (4), and (AMY)_,
is relevant for {Y'} given {( WAMY)_,}. Similarly, ( WAMY)_, and (WAY)_, are
relevant for {Y'} given {( WAMY)_, }.

We now give two useful results about relevant paths.

LEMMA 3.2. Ifa erelg(Y|a), then B € relg(Y|a) for any suffix subpath B
of .

LEMMA 3.3. If B C«, then for any Y, relg(Y|a) C relg(Y|B).

A set of interventions may not all have an effect on a response, due to constraints
of the model. For instance, since Y (a,m,w) # Y(a’',m,w) but Y(a,m, w) =
Y(a,m,w’) for any m,a, w,a’, w' in Figure 2(a), A has an effect on Y, but W
does not, given that we also intervene on A and M. We extend this notion to path
interventions, and call those paths with sources that actually have an effect on the
response, given interventions on other paths, live. More precisely, given a proper
set of paths « and a response set Y, we call a path o € & live for Y given « if there
is an element of relg(Y|a) containing « as a prefix.

Consider the maximal subset of & consisting of paths in & live for Y given «, or
ay = {o € a|a live for Y given a}. We say a set of directed paths « is live for Y if
o = ay. When discussing path interventions, we can always restrict our attention
to sets of paths live for Y without loss of generality, due to the following result.

LEMMA 3.4. For any Y and o proper for Y, relg(Y|a) = relg(Y|ay),
(ay)y = ay, and in addition, for any ay, p(Y(aq)) = p(Y(aay)).

We now show that we can either ignore interventions to natural values in a
response to a path intervention, or the response is not identified under the MWM.
The set of paths for which the former is true for the response Y will be called
natural for Y. Due to this result, we do not need to consider interventions to natural
values explicitly.
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DEFINITION 1. Let a be live for Y. Let i, be a path intervention in G where
a subset a* C « is assigned constant values, and & \ o is assigned natural values.
Then if no element of relg(Y|e*) with a prefix subpath in &™ contains a subpath in
o\ a*, we say 7 is natural for Y.

LEMMA 3.5. Let g, be a path intervention natural for Y, and o™ C a is all
paths assigned constant values by . Then p(Y(ay)) = p(Y(ag*)).

LEMMA 3.6. If m,, is not natural for Y in G, then p(Y(ay)) is not identified
under the MWM for G.

Lemma 3.5 does not guarantee that a response to a natural path intervention is
identifiable, merely that it can be expressed as a response to an intervention only
setting to constant values.

4. Causal inference targets as responses to path interventions. In this sec-
tion we consider how a number of targets of interest in causal inference, including
novel targets not previously considered in the literature, may be expressed as re-
sponses to path interventions.

We use as our running example the two time point fragment of a longitudinal
study in HIV research, described in Section 2.4. We consider path-specific effects
that arise in mediation analysis, and effects of treatment on the multiply treated,
which are of interest in tort cases (since these are effects of the exposure on those
actually exposed), and in epidemiology if natural exposure levels carry information
about the causal effect of the exposure. We also describe a novel inference target
that combines features of mediated effects, and effects of treatment on the treated,
that we call effect of treatment on the indirectly treated. It is not straightforward to
see whether these types of effects are identifiable, and under what model, nor is it
obvious whether there is a single unifying principle which governs identification
for these effects.

By translating the effect types above into responses to path interventions, we
show that such responses form a very general class of causal inference targets.
Thus, the advantage of path interventions is that we can use them to give a single
characterization for a wide variety of targets of interest at once. The close rela-
tionship between effects of treatment on the treated and mediated effects hinted
by their common generalization as responses to path interventions is currently not
widely known.

We will define a special set of directed paths important for our translation
scheme. Given a treatment set A and an outcome set Y (that possibly intersect)
in a DAG G, define the set aa y g to be the set of all directed paths with a source
in A, a sink in A U'Y and which do not intersect A U'Y except at the source and
sink. Since A and Y are allowed to intersect, the names “treatment” and “outcome”
are slightly misleading. We allow the intersection to admit cases such as effect of
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treatment on the treated (ETT) where some treatments are also treated as outcomes
for the purposes of certain paths.

LEMMA 4.1. aa y,g is always proper.

4.1. Effects of treatment on the treated. We consider an effect on the mean
difference scale where we condition on the naturally observed treatment levels.
This is known as the effect of treatment on the treated (ETT), and in our two time
point HIV example, it is defined as follows:

ETT =E[Y (a1, a2)|a1, az] — E[Y (a, a5)|ai1, az].

This contrast is often of interest to epidemiologists. It also arises in cases where
interventions are functions of the natural value of the exposure. For example, we
may be interested in outcome for people who were encouraged to exercise for 30
more minutes than they normally would, which is a random variable of the form
Y(A+30) =Y (a+30)|A = a. These types of interventions are discussed in [36],
in particular sufficient conditions for identification under the SWM, in terms of the
extended g-formula (2) are given there and in [13].

Assume Aj is a binary variable (only two treatment levels). If we consider,
instead, the ETT with respect to only the exposure A, we obtain the following
derivation for the second term in the contrast

, p(Ya(ay),a))  p(Ya(ay)) — p(Ya(ay), ay)
Y = -
palalan) === 05 plar)

where the first identity is by definition, and the second by the binary treatment
assumption. Since consistency implies p(Y2(a1), a;) = p(Y2, ap) for any value ay,
the ETT for a single binary exposure A can be identified if p(Y>(a1)) is identified.

However, if the exposure is not binary, or if there are multiple exposures, as in
our example, we cannot use the same algebraic trick to obtain identification, and
we must proceed by exploiting additional assumptions in our causal model.

In our case, the first conditional mean in the contrast can be readily identified via
consistency: E[Y (a1, az)|ar, az] = E[Y a1, az]. However, the second conditional
mean presents a problem, because it contains a conflict between the naturally ob-
served exposures, and the assigned exposures. Here, we show how to represent
the underlying joint distribution over potential outcomes, p(Y2(ai, a2), A1, Az),
in terms of path interventions, and then attack the identification problem for all
responses to path interventions, which would then include the problematic second
term of the ETT.

We consider all directed paths from A; to Y>, which we assign a value as, all
directed paths from A; to ¥; not through A, which we assign a value aj, and all
directed paths from A to A,, which we assign the natural value of A;. Note that
this set of paths is simply a4, 4,}.{v,},¢ for G that is the transitive closure with
respect to blue edges of the graph in Figure 2(b), and thus is proper by Lemma 4.1.

’
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We then consider the response of Ay, A, Y> to the path intervention so defined,
or {Ay, Az, Y2}(ay). By our definition, all paths set to a value ancestral for Ay, A»
are set to natural values. Thus, {A1, A2}(a) is defined in terms of natural values
of its direct causal parents, or as A1(Co) = Ay and A, (Y1, Cy, Wy, Ay, Cp) = Aj.

Finally, we consider all paths ancestral for Y>. Since A1 and A; are parents
of Y, in G*, the single edge paths (A;Y2)—. and (A,Y>)_, are in our set, thus
we substitute a; and a» into the potential outcome answer. Furthermore, for other
parents of Y>, namely Co, U, W1, C1, Y1, W5 and C;, we consider an appropriate
set derived from «. For example, for the node W;, we replace the path A, —
W, — Y, by a path A, — W, (while keeping the assignment a,). We proceed in
this way recursively until we obtain the response for Y5, which is

Yz(al,az, U,Co,Wi(a1,...),Ci(ay,...), Yi(al,...),
Wa(ay, az,...), Ca(ar, a, ...)),

where ... is a shorthand that means “include all earlier potential outcomes.” For
example, Cy(ay, ...) means Ci(ai, Wi(ay, U, Cp), U, Cp). By definition of node
intervention responses, this counterfactual is equal to Y2(ay, az), and our overall
joint distribution over the responses is p(Y2(ay, az), A1, Az).

For arbitrary sets of treatments A and outcomes Y, and active treatment val-
ues a, we may still represent ETT as a single mean difference, for example,
ELfWMIipvayan — ELf (D]ipy )y, for some function f(y).

Note that though ETT resembles the total effect, it is in fact a more complex kind
of counterfactual. This is because we are simultaneously interested in “outcome re-
sponses” Y, and “treatment responses” A. Defining these treatment responses may
introduce conflicts among intermediate counterfactual responses, not well repre-
sented by node interventions, which is why we represent ETT as a response to a
path intervention.

The ETT path intervention n‘?uAyg simply assigns all paths in aa y g to the

appropriate value. That is, paths from A to A are assigned the appropriate natural
value, and paths from A to Y are assigned the appropriate value in a. Given this
definition, either the ETT is not identified, or the joint distribution from which ETT
is obtained corresponds to the joint response of YU A to the ETT path intervention.

LEMMA 4.2. If there exists A € A such that Al y g) 7 A, p(Y(@a),A)
is not identified under the MWM for G. If there does not exist such an A,

p(Y(@),A) = p({Y UA}(ay y o).

If p(Y(a), A) is expressible as a response to a path intervention, it may still not
be identifiable under the MWM.

Our subsequent results on identification of path interventions under the MWM
complement identification results in [13, 36]. In particular, our results imply the
distribution p(Y (a,m)|A, M) is identified under the MWM for Figure 2(a), but
not under the SWM for Figure 2(a).
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4.2. Path-specific effects. Next, we consider the mediated effect of A, Ay on
Y, through C1, C7; in other words, the effect of exposures on outcome mediated by
adherence. Originally these kinds of effects were considered in [3] in the context
of linear models, and were generalized to a form not restricted by particular para-
metric models in [16]. We discuss a simple version of mediated effects in the graph
in Figure 2(a), known as natural direct and indirect effects [10, 16] in Section 3.2,
where we represented them as responses to edge interventions.

In our case, we are interested in a more complicated effect, but we can represent
it using a similar idea using paths rather than edges—paths we are interested in
are assigned active treatment values ai, ap, while paths we are not interested in
are assigned baseline treatment values a}, a). The paths we are interested in are
all directed paths with the first edges are one of {(A1C()—, (A1C2)—, (A2C2)- 1},
which end in Y>, and which do not proceed through A, if started at A;. The paths
we are not interested in are all other paths which start with A, or Ay (and do
not proceed through Aj) and end in Y,. Call this assignment a;. Note that the
assignment a; is on the set of paths that is precisely equal to a(4,, 4,} (v}, for G
that is the transitive closure with respect to blue edges of the graph in Figure 2(b),
and thus is proper.

We apply our definition to obtain a response of Y5 to this intervention. We must
substitute a value for every parent of Y;. The values for A, A> will be the baseline
a}, ab, while the values for Co, U will just be the natural values of those variables.
Complications arise for other parents, due to the recursive nature of the definition.
We proceed recursively:

Y2(a1) = Ya(ay, a5, {Ca, Wa, Yy, C1, Wy, Col(ay), U),
Ca(a1) = Ca(ay, az, {Wa, Y1, C1, Wi, Co} (1), U),
Wa(ay) = Wa(ay, ay, {Y1, C1, Wi, Co}(ap), U),

Yi(a1) =Yi(ay. {C1, Wi, Co}(a1), U),

Ci(ar) = Ci(ar, {W1, Co}(ap)),

Wi(ay) = Wi(aj, Co(ar), U),

Co(ar) = Co(U) = Co.

In the matter similar to direct and indirect effects, we can use this response
along with the total effect responses to define “the effect along paths we want”
as E[Y(a;)] — E[Y(a},a})], and “the effect along paths we do not want” as
E[Y (a1, a2)] — E[Y (a1)]. As before, the ACE additively decomposes into these
two effect measures. This definition (without the use of path interventions) ap-
pears in [24].

We may also consider a response of Y, where the paths we are not interested
in are assigned the natural values, as discussed in Section 3.4, rather than fixed
baseline values. Such an effect is defined similarly.
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Consider a set of active treatment values a of A, a set of fixed baseline treatment
values a’, and a subset B of @ y,g (which contains “paths of interest”). Define the
a.p

AY.G
appropriate active values in a to sources in B and appropriate baseline values in a’
to sources of all paths in &z vy g \ B.

fixed baseline PSE path intervention rraa as a path intervention that assigns

a,p

Similarly, we call an intervention naa AYG that assigns active values in a to

sources of paths in § and appropriate natural values to sources of all paths in
oA Y.G \ B the average baseline PSE path intervention.
Path specific effects along all paths in 8 (with a fixed baseline) can then be

defined on the mean difference scale as E[Y(az’:_/"f gl — E[Y(a")], and along all

paths not in 8 as E[Y(a)] — E[Y(az’f_;é g)]- Average baseline path specific effects
on the difference scale are defined similarly.

4.3. Effects of treatment on the indirectly treated. In this section, we show that
the language of path interventions is general enough to incorporate novel targets
not currently considered in the literature. Our results immediately settle identifica-
tion questions for any such target.

We consider a seemingly innocuous ETT with two treatments that in fact can
only be represented by a path intervention, not an edge intervention, and variations
of this target that are identified under the SWM and the MWM. Assume Figure 2(a)
represents a simple two time point partially randomized observational study, where
W and M are treatments at the first and second time points, respectively, A is an
intermediate health measure, and Y is the outcome. We make very strong assump-
tions about this study. In particular, W is randomized, while M is only assigned
based on A, W. Finally, no unobserved confounding exists anywhere, including
between W, M and Y. We are interested in the effect of treatments W, M on the
treated in this study. To obtain this contrast, we need to identify p(Y (m, w)|W, M)
which is identified if and only if p(Y (m, w), W, M) is. It is not difficult to show
that

p(Y(m,w), W, M) = p({Y. M, W}(wAY), (mY)—))
= p(Y(m, A(w)), M(A(W), W), W).

As we will show in the next section, there is no way to express this response
as a response to an edge intervention, and it is not identified under the MWM.
This is the case despite the fact that there is no unobserved confounding in this
study. The difficulty is that the response is defined in terms of A(w) and A jointly,
and the distribution p(A(w), A) is not identified under the MWM without more
assumptions.

To obtain a target that is identified under the SWM in this case, we may
consider the response Y (w,m) on the treated to the natural value W, and the
value of M occurring under the intervention setting W to w. This results in
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p(Y (m,w), W, M(w)) = p(Y(m, A(M(w))), M(A(w)), W) which is then iden-
tified under the SWM. To obtain identification, we gave up on conditioning on the
natural value of the second treatment M. This may not be “in the spirit” of the ETT
target.

One compromise is to assume a stronger model, the MWM and allow the
response M to be “as natural as possible” while still retaining identification.
This would correspond to defining a contrast in terms of p({Y, W, M}((mY)_,,
(wAY)-,(wAM)_,)), which in turn is equivalent to p({Y, W, M}((mY)_,,
(wA)-)). A conditional distribution p(Y((mY)-,(wA)-)M(wA)—,
(w'M)_)=m', W = w’) represents the response Y (w, m) among those individu-
als for whom the value for W is naturally w’ (untreated), and for whom the value
for M would have been m’ (untreated) under the situation where W acts as if set
to treatment value w for paths shared by ¥ and M, and acts as if set to untreated
value w’ otherwise.

We can define a contrast based on this quantity as follows:

E[Y ((mY)—, (wA)_)M((wA), (wM)_)=m',W=u']
—E[Y((m'Y)_, (wA)_)IM((w'A)_,(wM)_ )=m' W=uv],

which we call “the effect of treatment on the indirectly treated (ETIT).” The name
is due to the fact that we consider people whose natural treatment value W is un-
treated, and whose followup treatment M assumes the untreated value if viewed
as a response to the indirect effect of the first treatment. Such a quantity would
be difficult to conceive of without a direct representation of effects along path-
ways, something path interventions provide. Our results also directly imply that
this quantity is identified under the MWM, but not SWM.

5. Identification of edge and path interventions. Having established a cor-
respondence between responses to path interventions and a variety of targets of
interest in causal inference, we now consider what assumptions are necessary to
express path interventions as edge interventions, edge interventions as node inter-
ventions and edge and node interventions as functions of the observed data.

As we showed in Section 3.4, we can restrict our attention to path interventions
that only assign paths to constant values, since paths that are assigned natural val-
ues either can be dropped from the intervention without affecting the response, or
the overall response is not identified.

5.1. Node and edge interventions as path interventions. If node interventions
are a special case of edge interventions, which are in turn a special case of path
interventions, we ought to be able to give a path intervention the response of which
is equal to the response to an arbitrary node or edge intervention. For any such re-
sponse, there may be multiple path interventions the responses to which are iden-
tical. Here, we construct particular path interventions that work based on the set of
paths as y,g we defined earlier.
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LEMMA 5.1. Let A,Y be disjoint vertex sets in a DAG G, and a a value as-
signment to A. Let nfmA Yo assign each a € apayg 1o As05(a)- Then

P(Y(aay, y o)) = p(Y(a).

LEMMA 5.2. LetY be a vertex set in a DAG G, and & a set of edges, with ay
an assignment to o. Let A = sog(a), and oy g be a subset of aa y g consisting
of paths with an edge prefix in «. Let na"‘aYg assign each a € ay g to the value

assigned to the edge prefix of o by ag. Then’p(Y(aang)) = p(Y(ag)).

5.2. Identification of edge interventions. The difficulty with edge interven-
tions is that a single response to an edge intervention may involve other responses
with conflicting treatment assignments. It is this feature of edge interventions
which in general prevents their identification under the SWM, and which requires
the stronger assumptions of the MWM. If such a conflicting assignment is absent,
the edge intervention can be rephrased as a node intervention. We show this ab-
sence of conflict is characterized by a property we call node consistency.

A set of edges « live for Y is called consistent for Y if for every node A, the set
of prefix edges of the path set {a € relg(Y|a)|sog () = A} is either disjoint from
« or contained in «.

For a set of edges « live and consistent for Y, we call an edge intervention 1,
node consistent for Y if for every node A, all edges in @ with A as the source
node are assigned the same value (say a). Any edge intervention that is not node
consistent we call node inconsistent, including any edge intervention on a set of
edges not consistent for an outcome set of interest.

The edge set {(AY)_,} in Figure 2(a) is live but not consistent for {Y'}, thus any
edge intervention on this set (that sets to constant values) is inconsistent for {Y}.
An edge intervention corresponding to Y ((aY)_, (aM)_,) is node consistent for
Y, while an edge intervention corresponding to Y ((aY)_,, (a’M)_,) is consistent,
but not node consistent for Y.

For an edge intervention n,, node consistent for Y, define the following set of
value assignments to A =sog(a), a5 = {a|n assigns a to (AB)_, € at}. Let vy, be
the induced node intervention for ng,, .

LEMMA 5.3. Given a DAG G with vertices V, and an edge intervention 1,
node consistent for Y C 'V, p(Y(ay)) = p(Y(ay)).

PROOF. This follows by Lemmas 5.1 and 5.2. [

COROLLARY 5.1. If nq, is node consistent for Y, then p(Y(aq)) is identi-
fied as a functional of p(V) under the SWM via the appropriate marginal of the
extended g-formula (2) for the response to the corresponding induced node inter-
vention.



2454 I. SHPITSER AND E. TCHETGEN TCHETGEN
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FIG. 3. (a) A simple MWM where p(B(a), B(a')) is not identified. (b) A simple SWM where

p(B(a), C(a")) is not identified. (c), (d) Two graphs corresponding to causal structures used in the
proof of Lemma 5.4.

We next show that if an edge intervention is not node consistent, then responses
to this intervention are not identifiable from p(V) under the SWM. By this we
mean that the definition of identifiability given in Section 2.3 fails, and more
specifically that we can find two elements of a causal model, in the sense of Sec-
tion 2.2, that agree on p(V) but disagree on the distribution of the response of
interest. We start with a simple example of a nonidentified parameter in the SWM.

LEMMA 5.4. Responses p({B,C}((aB)_,(d'C)-)), p({B,C}((aB)-)),
and p({B, C}((aC)-)), are not identifiable from p(A, B, C) under the SWM for
Figure 3(b).

The proofs of this result, which appears in the Appendix, exhibits two causal
structures ¢1({A, B, C},G) and c2({A, B, C}, G) that agree on p(A, B, C), but
disagree on the above responses to (node inconsistent) edge interventions. These
two structures corresponding to graphs in Figure 3(c), (d). In particular, c¢; is con-
structed in such a way that the confounding of B and C introduced by Up and
Uc is masked under any single node intervention, but manifests if we consider
responses to multiple interventions simultaneously. This is similar in spirit to an
example in [19]. We can extend this simple example to a general result, due to the
following lemma (stated in a more general form in terms of path rather than edge
interventions).

LEMMA 5.5. Let G be a DAG, Y,A disjoint sets of vertices in G, a a set of
paths live for Y. Let G* be any edge supergraph of G, Y* any superset of Y in G*,
o™ a superset of a in G* live and proper for Y*, such that every path in a* \ a
does not exist in G. Finally, let 7, , be a path intervention. If p(Y(ag), A) is not
identified under the MWM (SWM) for G, then p(Y*(ag+), A) and p(Y(ag+), AU
Y*\'Y) are not identified under the MWM (SWM) for G*.

THEOREM 5.1. Consider a DAG G with vertices V, and a set of edges o live
for Y. Then p(Y(ay)) is identifiable from p(V) under the SWM for G if and only
if N, is node consistent. Moreover, if p(Y(ay)) is identifiable, it is equal to the
appropriate marginal of the extended g-formula (2) for p(Y(ay)), the response to
the induced node intervention.
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What we have shown is that node consistent edge interventions are identifiable
under the SWM, but an edge intervention that is node inconsistent is not, as long
as this inconsistency is “causally relevant” for some response, in the sense of there
existing causal pathways from the inconsistent edges to some responses that are
not interrupted by other parts of the edge intervention. However, if we are willing
to adopt stronger independence assumptions of the MWM, we obtain identification
of any edge intervention via a modification of the g-formula, as the following result
shows.

LEMMA 5.6 (Edge g-formula). For a DAG G with vertices V, and an edge
intervention 1q, on an edge set o, we have, under the MWM for G,

(5) p(Vaa) =v) =[] p(V =vv vy v, aiwv) . ca),
VeV

where pa% (V) = {A € pag(V)|(AV)_, ¢ a}.

For example, in the graph in Figure 2(a), we can express the distribution of the
response of Y ((a’M)_,, (aY)_,) using (5) as follows:

p(Y(a,M(@))=y)= > pGlm,a)p(mla’, w)p(a"|lw)p(w)

w,a”,m

=Y p(ylm,a)p(mla’, w)p(w).
m,w
If we are interested in a mean difference parameter, for example, E[Y (a, M (a’))] —
E[Y (a’)], and assume there are no baseline factors W, the above reduces to

Z{E[Y|m, al —E[Y|m,d']}p(m|a’)
m
which recovers the well-known mediation formula [12].

The independence assumptions which were necessary to derive this functional,
namely (Y (m,a) AL M(a’) 1L A), are implied by the MWM for the graph in Fig-
ure 2(a). It is possible to consider such assumptions independently of a graph.
However, the advantage of graphs is their ability to encode assumptions of this
type systematically, which allowed us to derive such functionals for a wide variety
of problems, and moreover, to give simple visual characterizations of when such
derivations are possible.

5.3. Identification of path interventions. As we saw in the previous section,
identification of responses to edge interventions under the SWM requires node
consistency, while any joint response to any edge intervention is identified under
the MWM. In this section, we show that path interventions are identified under
the MWM as long as edge consistency holds, that is, as long as a path interven-
tion can be expressed as an edge intervention. Lack of edge consistency will result
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in nonidentification under the MWM. The presence of a “recanting witness” in a
path-specific effect [1] can be viewed as a special case of the lack of edge consis-
tency.

A set of paths « live for Y is called consistent for Y if for every edge (AB)_,
that is an edge prefix of o € «, if (AB)_ isin B € relg(Y|e), then (AB)_, is an
edge prefix of a prefix subpath of 8 in «.

For a set of paths o live and consistent for Y, we call a path intervention 7,
edge consistent for Y if for every edge (AB)_,, all paths in o with (AB)_, as a
prefix are assigned the same value (say a). Any path intervention that is not edge
consistent we call edge inconsistent, including any path intervention on a set of
paths not consistent for an outcome set of interest.

The path set {(WAMY)_,} in Figure 2(a) is live but not consistent for {Y},
thus any path intervention on this set is inconsistent for {¥'}. A path intervention
corresponding to Y (wWAMY)_,, (wAY)_,) is edge consistent for Y, while a path
intervention corresponding to Y ((wAMY)_,, (w'AY)_,) is consistent for Y, but
not edge consistent for Y.

For a path intervention ., edge consistent for Y, define the set of edges o] =
{(AB)_.|(AB)_, is a prefix for o € a}. Let Nag, be the induced edge intervention
for mq,, where n assigns (AB)_, € o] to the value assigned by m to all o € «
which have (AB)_, as an edge prefix.

LEMMA 5.7. Given a DAG G with vertices V, and a path intervention g,
edge consistent for Y C 'V, p(Y(aq)) = p(Y(aq,)).

COROLLARY 5.2. If mq, is edge consistent for Y, then the distribution
p(Y(ay)) is identified as a functional of p(V) under the MWM model via the
appropriate marginal of the edge g-formula for the response to the corresponding
induced edge intervention.

We will show that responses to edge inconsistent path interventions are not iden-
tifiable under the MWM using the same strategy as we used for node inconsistent
edge interventions. First, we reproduce a result stating that a joint response to a
conflicting exposure is not identifiable. Then we extend this result to the general
case we need.

LEMMA 5.8. The distributions p(B(a), B(a")) and p(B(a), B) are not iden-
tifiable from p(A, B) under the MWM for the DAG in Figure 3(a).

THEOREM 5.2. Consider a DAG G with vertices V, and a proper set of paths
o live for Y. Then p(Y(ay)) is identifiable from p(V) under the MWM for G if and
only if g, is edge consistent. Moreover, if p(Y(ay)) is identifiable, it is equal to
the appropriate marginal of the edge g-formula for p(Y(ay,)), the response to the
induced edge intervention.
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5.4. A model where responses to path interventions are identified. Though we
have shown that responses to path interventions that cannot be expressed as re-
sponses to edge interventions are not in general identified under the MWM, there
exist submodels of the MWM where all responses to path interventions are iden-
tified. In particular, consider the linear structural equation model (SEM), which
is an MWM where the mapping from Vpag (V) € Z{pag(v) to V(Vpag(v)) is a linear
function of Vpag (V) and an error term ey, where such error terms are normally
distributed and mutually independent.

THEOREM 5.3. Let g, be a path intervention. Then p(Y(ay)) is identified
under the linear SEM.

This follows as a corollary of results in [2]. The reason even edge-inconsistent
path interventions are identified is that linearity, normality and independence are
such strong assumptions that we can directly evaluate even counterfactuals of
the form p(W(a), W(a')) using the algorithm in [2]. A fruitful open question if
whether there are other interesting (for instance maximal) submodels of the MWM
where all responses to path interventions are identified.

5.5. Targets not representable as path interventions. We have shown that a
wide class of targets of interest in causal inference can be expressed as responses to
path interventions. Nevertheless, there exist targets of interest which are known not
to be representable in this way, such as principal stratification effects. For instance,
the principal stratum direct effect (PSDE) [22, 23] is defined to be a treatment
contrast only among those individuals for whom the mediator assumes a particular
value for both active and baseline treatment levels. In Figure 2(a), the PSDE is a
contrast of the form

E[Y(a,m)|M(a) =M(a") =m] —E[Y(a',m)|M(a) = M(a') = m].

Under the MWM, we obtain independences Y (a,m) 1L {M(a), M(a’)}, and
Y(a',m) 1L {M(a), M (a’)}, which implies the PSDE is equal to the controlled di-
rect effect contrast under the MWM: E[Y (a, m)] — E[Y (a’, m)]. Under the SWM,
the PSDE contrast is not identified without more assumptions. In either case,
it is not possible to express the condition defining the principal strata, namely
M (a) = M(a’) = m as a response to a path intervention, since this will entail as-
signing conflicting values to a directed edge from A to M. This is perhaps not
surprising, since responses to path interventions are meant to encode effects along
particular causal pathways which is not something principal strata effects encode.
Note that despite this, the MWM allows us to rephrase the PSDE as a node inter-
vention.
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6. The edge g-formula and single world intervention graphs. A connection
between the SWM, node interventions, the extended g-formula and a type of graph
with split nodes called the Single World Intervention Graph (SWIG) was given
in [13].

If a set of responses V to a node intervention v, includes all variables (includ-
ing A), then, under the SWM, the response is linked to the observed distribution
via (2), and can be viewed as a kind of Markov factorization [9] of the joint re-
sponse V(a), where terms p(V|pag(V)) with pag(V) N A # & are replaced with
p(Vipag(V) \ A, apag(v)mA). SWIGs are a graphical representation of this fac-
torization, in the sense that independences in p(V(a)) can be read off from the
corresponding SWIG. Since A occurs both as a treatment and a response, SWIGs
split the vertex A into a random and fixed versions (we draw fixed vertices as
squares).

For example, the SWIG in Figure 4(a) represents p({Y, M, W, A}(a)) in the
SWM corresponding to Figure 2(a). We can check independences of counterfactu-
als in the joint p({Y, M, W, A}(a)), via a simple modification of the d-separation
criterion [9]. For instance, Y (a) 1L A|W, since all d-connected paths from Y to A
are blocked by W.

Similarly, if a set of responses V to an edge intervention 7, includes all vari-
ables (including A), then, under the MWM, the response is linked to the observed
distribution via (2), and can be viewed as a kind of Markov factorization [9] of
the joint response V(a), where terms p(V|pag(V)) with pag(V) N sog(a) # &
are replaced with p(V| pag(V), awv)_, ee)- It is possible to generalize SWIGs to
give a graphical representation of this factorization. Instead of splitting the ver-
tices into the fixed and random versions, we instead shatter every intervened-on
vertex into a set corresponding to distinct values (including the natural value)
that vertex assumes when defining the response. For example, the graph in Fig-
ure 4(b) represents p({Y, M, W, A}((wM)_,, (w'A)_, (aY)—)) in the MWM cor-
responding to Figure 2(a). We can check independences of counterfactuals in this
joint via a simple modification of d-separation: Y ((aY)_,, (wM)_,, (w'A)_) I
A((w'A)IM((w'A)—, (wM)_,) since all d-connected paths from Y to A are
blocked by M. Note that we shatter W in Figure 2(a) into three vertices, and A into
two, where the random vertex has an outgoing arrow to M. This is because there
are two treatment values for W, and W is also a response, while A is a response for

()
0 [0 ® Lo
(a) (b)

FiGg. 4. (a) A SWIG for {Y,M, W, A}(a). (b) An edge intervention version for {Y,M, W,
A} (wM)—, (w'A)—, (a¥)-).
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the purposes of the (AM)_, edge and a treatment for the purposes of the (AY)_,
edge. That responses to edge interventions factorize according to these kinds of
“shattered graphs” under the MWM (but not SWM) follows as a straightforward
generalization of the proof of proposition 11 in [13]. In fact, these shattered graphs
can be viewed as SWIGs defined on an augmented graph where a treatment vertex
is split into copies, corresponding to (individually intervenable) components of the
treatment associated with direct and indirect effects. For examples of such graphs,
and associated discussion; see [19], Section 6 and Figure 6.

Thus, the edge g-formula can be viewed as the MWM analogue of the extended
g-formula, and it is possible to construct graphs that stand in the same relation
to edge interventions, the edge g-formula, and the MWM as SWIGs do to node
interventions, the extended g-formula and the SWM. In the interest of space, we
do not derive this formally, nor pursue this connection further here.

7. The edge g-formula and causal effects in hidden variable DAGs. If
some variables in a causal model of a DAG are unobserved, not every response
to a node intervention is identified, since (2) cannot always be directly applied.
A complete theory for identifying Y(a) from p(V), where A and Y are disjoint,
was given in [25, 33]. In this section, we show that certain identifying functionals
for p(Y(a)) correspond to marginals of the edge g-formula (5).

For example, it can be shown that p(Y (a)) is identified via the front-door func-
tional 3", o p(Yla',m)p(m|a)p(a") under the SWM shown in Figure 5(a), where
H is not observable. If we replace H and its outgoing arrows by an arrow from
A to Y, we obtain the DAG in Figure 5(c). A straightforward consequence of (5)
is that p(Y ((aM)_,)) is identified via the same functional under the MWM for
Figure 5(c). In this section, we give a general condition for case when this corre-
spondence of functionals occurs.

We introduce additional terminology to help us formulate our results. Rather
than defining the identification problem on hidden variable DAGs directly, we will
define it on acyclic directed mixed graphs (ADMGs) which represent a class of
hidden variable DAGs that all share identifying functionals. An ADMG is a mixed

(H) ()
0420
(a) (®) (©) @

FI1G. 5. (a) A hidden variable DAG where the causal effect p(Y (a) = y) is identified via the front—
door formula y_,, . p(yla’,m)p(m | a)p(a’). (b) A DAG for a simple setting in mediation analysis
where multiply robust estimators for functionals derived from (5) for Y (aY)— , (a’ M)—,) are known.
(¢c) A DAG where Y ((aM)—) is identified via the front-door formula in (a). (d) A latent projection
ADMG of the DAG in (a) onto {A, M, Y}.



2460 I. SHPITSER AND E. TCHETGEN TCHETGEN

graph with directed (—) and bidirected edges («>), with no directed cycles. AD-
MGs represent classes of hidden variable DAGs via a latent projection operation
onto a graph defined only on observed variables [34]. For example, this operation
applied to Figure 5(a) results in an ADMG shown in Figure 5(d). Connected com-
ponents in a graph obtained from an ADMG G by dropping all directed edges are
called districts of G. For example, the sets {A, Y} and {M} are districts of the graph
in Figure 5(d). The set of districts of G is denoted by D(G). If a set S is in a district
of G, we denote that district by disg(S).

For an ADMG G with vertices V, and A C V, let Go be a subgraph consist-
ing only of vertices in A and edges between them. Let ang(V) = {A|A — -+ —
V isin G}. A total order <g on V in G is fopological if whenever V| <g Vs,
V2 ¢ ang(V1). For a total order < on V, for any V €V, let pre_(V) = {W €
VA{VHW < V}]L

In the remainder of this section, we will, without loss of generality, restrict
attention to identification problems where V C ang(Y), and V \ angy, , (Y) €A,
and consider responses to node interventions that yield an identifying functional
in a particular convenient form that only involves conditional distributions derived
from p(V).

DEFINITION 2. Given p(V), for any total order < on V, and v € Xy, a func-
tional of p(V) of the form Y yny [Tyey P(VISv, Vpre_(v)\sy), Where Y C V' C
V,and Sy C pre_ (V) N V'is called a g-functional.

The output of the g-computation algorithm [14], mentioned in Section 2.4, is
always a g-functional, but some identifying functionals for responses to node in-
terventions are g-functionals that cannot arise from g-computation. For instance,
consider the front-door functional 3, ., p(Yla’, m)p(m|a)p(a’), which identifies
p(Y(a)) in the graph in Figure 5(a). If we let V=V’ ' ={A,M,Y}, Y = {Y},
take < to be the topological ordering for the graph, and let Sy = {M, A} and
Sy =S4 ={}, we see that this satisfies Definition 2 and so is a functional. How-
ever, g-computation cannot be used to identify responses to node interventions
in cases where intervened on variables have unobserved causes in common with
responses, as is the case in Figure 5(a).

We give a sufficient condition on ADMGs G, and on response sets Y to node
interventions on A, such that the output is a g-functional, and then show that it
is possible to construct a DAG G from G where a certain response to an edge
intervention is identified via the same g-functional via (5).

For a particular treatment set A in G, let Dg Ao g = dngang s (S) for each S €
D(Gv\a). We will omit A and G from the subscript if they are obvious, to yield
Dg,and let Ay = A\ USeD(gV\A) Ds. In words, D(Gy\a) is the districts in a graph
where treatments A are removed. For instance, in Figure 5(d), with treatment A,
these districts are {M} and {Y'}. For each such district S, Dg is a (possibly larger)
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district containing all of S in a graph containing ancestors of S. For instance, D{y)
in Figure 5(d) is {A, Y}. Ay is all treatments not in any such Dg. Since A is the
only treatment in Figure 5(d) and is in Dy}, A y = {} in this case.

LEMMA 7.1. If(VS], S, e D(QV\A))(DSI N D52 #* ) = (S1=8y), then the
sets {Ds|S € D(Gv\a)} partition V\ A .

Given Lemma 7.1, for every V € V\ Ay, let Dy = Dg for the unique Dg such
that V € Ds.

The following lemma gives two conditions sufficient to yield an identifying g-
functional. First, any district S € Gy\A must not have parents not in S as elements
of Dg, and second the sets Dg must partition V \ Ay as in Lemma 7.1. This is
satisfied by Figure 5(d), since Dy} = {Y, A}, Dy = {M}, and pag({M}) = {A},
pag({Y}) = (M}.

LEMMA 7.2. FixA,Y, G such that:

1. (VS e D(Gv\a)), (pag(S)\ S) NDs = &, and
2. (V81,82 € D(Gv\a)), (Ds; NDs, # &) = (81 =82).

Then p(Y(a) =Yy) is identified by a g-functional

(6) Z H p(yuv)y |apre<g (V)NA\Dy), (YU V)pre<g(V)\(A\Dv))-
VVA(YUA £) VeV\Ay

Finally, given that preconditions given by Lemma 7.2 are satisfied by an
ADMG ¢, the following result claims we can modify G into a DAG G', where
there is some edge intervention with a response identified by the same g-functional
as given by lemma 7.2. This DAG for Figure 5(d) is Figure 5(c).

LEMMA 7.3. For an ADMG G with vertex set V, fix disjoint Y, A CV that
satisfy the preconditions of Lemma 7.2. Then there exists a DAG G with vertex
set 'V, and an edge intervention ng, on a set of edges o in G" such that p(Y(ay))
is identified under the MWM for G' via a margin of the functional in (5) that is
equal to the identifying g-functional for p(Y(a)) in terms of p(V) in G.

A natural question raised by Lemma 7.3 is the converse—is it the case that
every identifying functional for an edge intervention corresponds to an identifying
functional of a response to a node intervention. We leave this question for future
work.

The fact that a class of causal effects identified via a g-functional, even those
effects with unobserved causes of treatments, corresponds to responses to edge
interventions in a DAG gives an additional reason to study estimation theory of the
edge g-formula (5). Furthermore, this connection gives another setting in which
front-door type functionals may arise—the context of mediation analysis where
the baseline treatment is not a constant value, but a naturally occurring value in the
population.
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8. A multiply robust estimator for a special case of the edge g-formula.
We have shown that the edge g-formula (5) encodes a wide class of identified
targets in causal inference. Here, we give an example of how a response to an
edge-consistent path intervention is represented as an edge intervention, identified
via a marginal of (5), and reexpressed as a contrast parameter for which an esti-
mator exists which is robust to misspecification of parts of the likelihood function.
We consider discrete state spaces, but extensions to continuous state spaces are
straightforward in this case.

Consider the graph in Figure 5(b), which represents a simple mediation setting,
with A an exposure, Y an outcome, M a mediator and C a set of baseline covari-
ates. We might be interested in a direct or indirect effect of A on Y. As discussed in
Section 4, we may represent such effects as contrasts obtained from a response to a
path intervention p(Y ((aMY)_,, (a’Y)_)). This path intervention is natural, and
edge consistent, and the response of Y to it is equal to the response to an edge inter-
vention p(Y ((aM)_,, (a’Y)_,)), which is identified as a marginal of (5), namely
Y. p(Yld',m, ) p(mla, ) p(c). Let Y(a,d’,¢) = ¥, E(Y|a',m, ¢) - p(mla, c).
Then the mean response is ®(a,a’) => . Y(a,d’,c) - p(c), and the efficient in-
fluence function of ®(a,a’) under the saturated model P;, that is, the set of all
densities p(Y, A, M, C), is

/
U%&(@(a, Cl/)) _ I(A=a)p(M|a’, C)
' pa|C)p(Mla, C)
/

A=) e yie M)~ Tand €)

pa’'|C)

+Y(a,d,C)— ®(a,d),

Y —E(YI|C,M,a)}

where I(+) is the indicator function for an event [31].

To represent direct and indirect effects as contrasts, we also need to con-
sider the response of ¥ to A being set to a for the purposes of all pathways
from A to Y, which simply corresponds to p(Y (a)), which is identified via a
marginal of (2), namely Y. p(Yla, ¢) p(c). The mean response is then ®(a,a) =
> E(Yla, c)p(c). The efficient influence function of ®(a, a) under the saturated
model Ps is simply U%if(Q(a, a)), which simplifies to

I(a)
palC)
the efficient influence function derived in the context of total effects in [20].

Natural direct and indirect effects may be defined on the difference scale as
®(a,a) — ®(a,a’), and ®(a,a’) — ®(d’, a’). Alternatively, for binary outcomes
we may also define such effects in a natural way on the risk ratio or odds ratio
scale.

Estimating these parameters using an unrestricted likelihood is not a feasible
strategy in settings with a high dimensional vector of baseline covariates, which

Y —Y(a,a,C)}+7Y(a,a,C)— P(a,a),
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means we must resort to modeling. An approach in [31] is to assume models
{EPY(Y |a, m, ¢; &), fP*(m|a, c; B), fP*(a|c; )}, and use a substitution estima-
tor which solves the estimating equations

P (Up) (®(a.a))) =0,

where P, (+) is the empirical average (for sample size n), and Ug;f is equal to U%{f

evaluated at {EPY (Y |a, m, ¢; &), P (mla, c; B), fP(a|c; 7))}

The resulting estimator exhibits the property of triple robustness, that is, it re-
mains consistent in the union model where any two of the above three parametric
models is correct. This estimator is combined with a similarly defined doubly ro-
bust estimator for ®(a, a) derived in [20] to yield a triply robust estimator for
the direct and indirect parameters on the difference scale. This was extended to
the semi-parametric models for direct effects on the additive and multiplicative
scales [32].

Since our results show that the edge g-formula encompasses a wide range of
causal inference targets, including effects of treatments on the multiply treated,
path-specific effects and causal effects with unobserved causes of treatments, an
interesting avenue of future work is to generalize estimation theory for simple
instances of the edge g-formula, like above, to more general cases, for instance
longitudinal cases like that shown in Figure 2(b).

9. Discussion. We have defined an inclusion hierarchy of interventions asso-
ciated with graphical features: node interventions corresponding to standard treat-
ment interventions, edge interventions corresponding to intervening on a portion
of the treatment mechanism associated with a particular outgoing edge and path in-
terventions corresponding to intervening on a portion of the treatment mechanism
associated with a particular outgoing causal pathway. We have shown that a variety
of causal inference targets of interest, including effects of treatment on the multi-
ply treated, and path-specific effects can be viewed as special cases of responses
to path interventions. In addition, we have shown that edge interventions are in
some sense naturally associated with the MWM of Pearl as the responses to such
interventions are naturally identified under the assumptions of this model, just as
node interventions are naturally associated with the SWM of Robins. The question
of whether a particular causal inference target is identified, and under what model
thus reduces to expressing the target as a path intervention, and then considering
whether the path intervention is natural, and whether it can be reexpressed as an
edge intervention or a node intervention. This process is summarized in a flowchart
shown in Figure 6.

An obvious extension of our work is to consider identification of responses
in our hierarchy in hidden variable DAG models in terms of observed marginal
distributions. Existing results on mediation analysis [24] and ETT identification
[28] would be subsumed as special cases under this framework, but it would entail
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F1G. 6. A flowchart for identification results for path interventions under the MWM and the SWM.

novel identification results for any new target expressible as a path intervention
response. In addition, an interesting question is whether a/l identifying functionals
for responses to node interventions in a hidden variable DAG model correspond to
some sort of identified response to an edge intervention, although possibly not in
a DAG but an ADMG. If true, this would recast any identified causal effect as a
certain type of identified mediated effect.

While estimation theory of functionals derived from the extended g-formula (2)
has received attention in the literature [18], multiply robust estimators for func-
tionals obtained from the edge g-formula (5) are known only in very special cases
such as the point treatment setting we discussed in Section 8 [31]. As we have
shown in this paper, developing estimators for general functionals obtained from
the edge g-formula (5) results in estimators for a wide class of targets of interest in
causal inference, including path-specific effects, effects of treatment on the multi-
ply treated, effects of treatments on the indirectly treated and causal effects in the
presence of unobserved causes of treatments.

Our results thus not only provide a unifying view of identification, under various
models, of a large class of targets of interest in causal inference, but also motivate
the development of estimation theory for a more general functional than the g-
formula.

SUPPLEMENTARY MATERIAL

Supplement to “Causal inference with a graphical hierarchy of interven-
tions” (DOI: 10.1214/15-A0S1411SUPP; .pdf). Our supplementary materials
contain detailed arguments for most of our claims, and some auxiliary definitions.
In addition, we provide a detailed rationale for the use of path interventions.
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