
The Annals of Applied Probability
2016, Vol. 26, No. 2, 1111–1146
DOI: 10.1214/15-AAP1113
© Institute of Mathematical Statistics, 2016
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In several implementations of Sequential Monte Carlo (SMC) methods
it is natural and important, in terms of algorithmic efficiency, to exploit the
information of the history of the samples to optimally tune their subsequent
propagations. In this article we provide a carefully formulated asymptotic
theory for a class of such adaptive SMC methods. The theoretical frame-
work developed here will cover, under assumptions, several commonly used
SMC algorithms [Chopin, Biometrika 89 (2002) 539–551; Jasra et al., Scand.
J. Stat. 38 (2011) 1–22; Schäfer and Chopin, Stat. Comput. 23 (2013) 163–
184]. There are only limited results about the theoretical underpinning of
such adaptive methods: we will bridge this gap by providing a weak law of
large numbers (WLLN) and a central limit theorem (CLT) for some of these
algorithms. The latter seems to be the first result of its kind in the litera-
ture and provides a formal justification of algorithms used in many real data
contexts [Jasra et al. (2011); Schäfer and Chopin (2013)]. We establish that
for a general class of adaptive SMC algorithms [Chopin (2002)], the asymp-
totic variance of the estimators from the adaptive SMC method is identical
to a “limiting” SMC algorithm which uses ideal proposal kernels. Our re-
sults are supported by application on a complex high-dimensional posterior
distribution associated with the Navier–Stokes model, where adapting high-
dimensional parameters of the proposal kernels is critical for the efficiency of
the algorithm.

1. Introduction. Sequential Monte Carlo (SMC) methods are amongst the
most widely used computational techniques in statistics, engineering, physics, fi-
nance and many other disciplines; see [18] for a recent overview. They are designed
to approximate a sequence {ηn}n≥0 of probability distributions of increasing di-
mension. The method uses N ≥ 1 samples (or particles) that are generated in par-
allel, and are propagated via importance sampling and resampling methods. Sev-
eral convergence results, as N grows, have been proved (see, e.g., [6, 11, 12, 16])
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along with the stability in time of the error of the algorithm [17] in the context
of filtering. SMC methods have also recently been proven to be stable in certain
high-dimensional contexts [2]. Current state of the art CLTs in SMC algorithms
can be found in [6, 8, 11, 12, 16]; in particular, Chan and Lai [6] provide a method
for online, consistent estimation of the asymptotic variance.

In this article, we are concerned with adaptive SMC methods; in an effort to
improve algorithmic efficiency, the weights and/or Markov proposal kernels can
depend upon the history of the simulated process. Such procedures appear in a
wealth of articles including [7, 14, 15, 21, 23] and have important applications
in, for example, econometrics, population genetics and data assimilation. The un-
derlying idea of these algorithms is that, using the particle approximation ηN

n of
the distribution ηn, one can exploit the induced information to build effective pro-
posals and/or to determine the next probability distribution in the sequence. This
is often achieved by using expectations of some relevant summary statistics with
respect to the current SMC approximation ηN

n . In other cases, one can use the par-
ticles to determine the next distribution in an artificial sequence of densities. Such
approaches are expected to lead to algorithms that are more efficient than their
“nonadaptive” counter-parts. Critically, such ideas also deliver more automated
algorithms by reducing the number of user-specified tuning parameters.

While the literature on adaptive MCMC methods is by now well developed,
(e.g., [1]), and sufficient conditions for an adaptive MCMC algorithm to be er-
godic are well understood, the analysis of adaptive SMC algorithms is still in its
infancy. To the best of our knowledge, a theoretical study of the consistency and
fluctuation properties of adaptive SMC algorithms is lacking in the current liter-
ature. This article aims at filling this critical gap in the theory of SMC methods.
Some preliminary results can be found, under exceptionally strong conditions, in
[10, 21]. Proof sketches are given in [15], some more realistic but limited analy-
sis can be found in [20]; it should be noted that, contrary to most of the results
presented in this article, the analysis of [20] is nonasymptotic. Some more recent
work of [5] focuses upon consistency and CLTs for a different class of adaptive
SMC algorithms, and the work there is complementary to the results proved in this
article.

1.1. Contributions. In this article we consider a sequence of target distri-
butions {ηn}n≥0 defined on a corresponding sequence of measurable spaces
(En,En)n≥0. We write ηN

n = (1/N)
∑N

i=1 δxi
n

for the particle approximation of ηn,

with δxn the Dirac measure at xn ∈ En and {xi
n}Ni=1 ∈ EN

n the collection of particles
at time n ≥ 0.

In Section 2, for each n ≥ 1 we consider a parametric family, indexed by
a parameter ξ ∈ R

d , of Markov kernels Mn,ξ :En−1 × En → R+ and poten-
tial functions Gn−1,ξ :En−1 → R+. To construct the particle approximation ηN

n ,
the adaptive SMC algorithm exploits summary statistics ξn :En−1 → R

d by
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reweighing and propagating the particle approximation ηN
n−1 through the poten-

tial Gn−1,ηN
n−1(ξn) and the Markov kernel Mn,ηN

n−1(ξn). This is a substitute for the
limiting algorithm which employs the Markov kernel Mn ≡ Mn,ηn−1(ξn) and weight
function Gn−1 ≡ Gn−1,ηn−1(ξn); in general, the exact value of ηn−1(ξn) is not avail-
able, and the limiting algorithm cannot be implemented. This set-up is relevant, for
example, in the context of sequential Bayesian parameter inference [7, 22] when
{ηn}n≥0 is a sequence of posterior distributions on a random variable(s) condi-
tional upon an increasing amount of data. In this context, the parametric family of
Markov kernels Mn,ξ is user-specified and its role is to efficiently move the parti-
cles within the state space; in many situations Mn,ξ is chosen to be reversible with
respect to the distribution ηn for any value of ξ . A random walk Metropolis kernel
that uses the estimated covariance structure of ηn for scaling its jump proposals
is a popular choice; in this case, and when working in R

p , the empirical covari-
ance matrix can be constructed through the d = p(p + 1)/2 dimensional summary
statistics ξ = (x1, . . . , xp, x1x1, x1x2, . . . , xpxp). The case when the weight func-
tion Gn−1,ξ :En−1 → R+ also depends on a parameter ξ ∈ R

d is relevant, for
instance, to particle filters [18], as described in Section 2.3.2.

Section 3 investigates situations when an additional layer of adaptivity appears
through a tempering procedure. Standard MCMC methods can be inefficient for
directly exploring complex probability distributions involving high-dimensional
state spaces, multi-modality, greatly varying scales or a combination thereof. It
is a standard approach to introduce a bridging sequence of distributions {ηn}n=n�

n=0
between a distribution η0 that is typically easy to sample from and the distribu-
tion of interest ηn� ≡ π . In accordance with the simulated tempering literature, the
probability distribution of interest is written as π(dx) = Z−1 exp(−V (x))m(dx)

for a potential V , dominating measure m(dx) and normalization constant Z;
the bridging sequence of distributions is constructed by introducing a lad-
der of temperature parameters β0 ≤ β1 ≤ · · · ≤ βn� = 1 and setting ηn(dx) =
Z(βn)

−1 exp(−βnV (x))m(dx) for a normalization constant Z(βn). The choice of
the bridging sequence of distributions is an important and complex problem; see,
for example, [19]. To avoid the task of having to pre-specify a potentially large
number of temperature parameters, an adaptive SMC method can compute them
“on the fly” [21, 23], thus obtaining a random increasing sequence of tempering
parameters {βN

n }n≥0. In this article, we adopt the following strategy: assuming the
current particle approximation

ηN

βN
n−1

= (1/N)

N∑
i=1

δxi
n−1

,

the particles are assigned weights ωi
n−1 ∝ exp{−(βN

n − βN
n−1)V (xi

n−1)} to rep-
resent the next distribution in the sequence; the tempering parameter βN

n is
chosen so that the effective sample size (ESS) of the weighted particle system
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{(ωi
n−1, x

i
n−1)}Ni=1 is larger than a pre-specified threshold. This strategy can be

efficiently implemented using a bisection method [21]. Once the tempering pa-
rameter βN

n has been determined, the weighted particle system {(ωi
n−1, x

i
n−1)}Ni=1

is resampled to generate an equally weighted family {xi
n}Ni=1 such that ηN

βN
n

=
(1/N)

∑N
i=1 δxi

n
approximates the distribution ηβN

n
; a Markov kernel Mn,ηN

n−1(ξn),βN
n

is then used to explore ηβN
n

; as before, the algorithm makes use of summary statis-
tics ξn :E →R in order to automatically tune these Markov transition kernels.

We investigate in this article the consistency and fluctuation properties of these
classes of adaptive SMC methods. We establish a WLLN for both algorithms;
for instance, this implies that one can consistently approximate normalizing con-
stants. We prove that central limit theorems hold at the usual N−1/2 Monte Carlo
rate and give explicit recursion equations for the asymptotic variances. These re-
sults establish that, in several situations of practical importance, the asymptotic
variance of the adaptive SMC algorithm is identical to the asymptotic variance of
the limiting algorithm. In these situations, this implies that the fluctuation anal-
ysis of the limiting algorithm can be used to describe the asymptotic properties
of the adaptive algorithm. Related results have been obtained in [5] for adaptive
multilevel splitting algorithms. The analysis of the SMC algorithm with adaptive
scaling and tempering is more involved than the situation where only the scaling
of the Markov kernel is adapted; in this case the fluctuations of the tempering pa-
rameters {βN

n }n≥0 and the correlation between these parameters and the particle
approximations ηN

βN
n

have to be simultaneously taken into account. For this rea-

son, the analyses of the two algorithms are presented in two separated sections.
In the last section we present two numerical applications: the first is a toy exam-
ple and the second is a complex high-dimensional posterior distribution associated
with the Navier–Stokes model (as in, e.g., [22]); in this setting, adapting the pro-
posal kernels over hundreds of different directions is critical for the efficiency of
the algorithm. The assumptions for the theoretical results of the paper to hold are
not satisfied in the second example; these experiments thus provide some evidence
that our theory could be relevant in more general scenarios.

2. Adaptive SMC via summary statistics. We begin with some notation and
a description of the algorithm for the case where the Markov kernels and weight
functions are adapted to summary statistics; we then establish asymptotic results.
The description of the adaptive tempering procedure is postponed to Section 3.

2.1. Notation and definitions. Let (En,En)n≥0 be a sequence of measurable
spaces endowed with a countably generated σ -field En. The notation Bb(En) de-
notes the class of bounded En/B(R)-measurable functions where B(R) is the Borel
σ -algebra on R. The supremum norm is written as ‖f ‖∞ = supx∈En

|f (x)|, and
P(En) is the set of probability measures on (En,En). We will consider nonneg-
ative operators K :En−1 × En → R+ such that for each x ∈ En−1 the mapping
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A �→ K(x,A) is a finite nonnegative measure on En, and for each A ∈ En the
function x �→ K(x,A) is En−1/B(R)-measurable; the kernel K is Markovian if
K(x, dy) is a probability measure for every x ∈ En−1. For a finite measure μ on
(En−1,En−1) and Borel test function f ∈ Bb(En), we define

μK :A �→
∫

K(x,A)μ(dx); Kf :x �→
∫

f (y)K(x, dy).

We use the notation oP(1) to indicate a quantity that converges to zero in probabil-
ity. Finally, we will use the following notion of continuity in several places in this
article.

DEFINITION 2.1. Let X be a set and (Y, dY), (Z, dZ) two metric spaces.
A function f :X ×Y → Z is continuous at y0 ∈ Y uniformly on X if

lim
δ→0+ sup

{
dZ
(
f (x, y), f (x, y0)

)
:x ∈X , dY(y, y0) < δ

}= 0.(2.1)

In words, a function f :X ×Y → Z is continuous at y0 ∈ Y uniformly on X if
the quantities f (x, y) and f (x, y0) can be made arbitrarily close, uniformly over
x ∈ X , by choosing y close enough to y0. Finally, for a scalar function (x,μ) �→
fμ(x), we often use the shorthand notation ∂μfμ(x) to designate the differential of
f with respect to μ and evaluated at (μ, x), that is, ∂μfμ(x)|μ=μ. The Kronecker
product u ⊗ v of two vectors u, v ∈ R

d is the matrix u · v
 ∈R
d×d .

2.2. SMC algorithm. For each n ≥ 1, we consider a family of Markov op-
erators Mn,ξ :En−1 × En → R+ and potential functions Gn−1,ξ :En−1 → R+
parametrized by a vector ξ ∈ R

d . The adaptive SMC algorithm to be described
exploits summary statistics ξn :En−1 → R

d and aims at approximating a sequence
of probability distributions {ηn}n≥0 on (En,En)n≥0 defined via their operation on
ϕn ∈ Bb(En),

ηn(ϕn) := γn(ϕn)/γn(1).(2.2)

The unnormalized measure γn on (En,En) is

γn(ϕn) := E

[{
n−1∏
p=0

Gp(Xp)

}
ϕn(Xn)

]
,(2.3)

where {Xn}n≥0 is a nonhomogeneous Markov chain with initial distribution X0 ∼
η0 ≡ γ0 and transition P(Xn ∈ A|Xn−1 = x) = Mn(x,A). We have used the sim-
plified notation

Gp−1 ≡ Gp−1,ξp
and Mp ≡ Mp,ξp

with ξp ≡ ηp−1(ξp).

In the sequel, the notation Range(ξn) ⊂ R
d denotes an open convex set such that

ξn(x) ∈ Range(ξn) for any x ∈ En−1, and we only require Gn−1,ξ and Mn,ξ to be
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well-defined for ξ ∈ Range(ξn). In practice, the expectations ξn of the summary
statistics are not analytically tractable, and it is thus impossible to sample from
the Markov chain {Xn}n≥0 or evaluate the weight functions {Gn}n≥0. Neverthe-
less, for the purpose of analysis, we introduce the following idealized algorithm,
referred to as the limiting SMC algorithm in the sequel, that propagates a set of
N ≥ 1 particles over n iterations; that is, (x1:N

0 , x1:N
1 , . . . , x1:N

n ) has joint probabil-
ity distribution given by

N∏
i=1

η0
(
dxi

0
) n∏
p=1

N∏
i=1


p

(
ηN

p−1
)(

dxi
p

)
.(2.4)

The empirical distribution ηN
n = (1/N)

∑N
i=1 δxi

n
is an approximation of (2.2), and

the operator 
n : P(En−1) → P(En) is defined as


n(μ)(dy) = μ(Gn−1Mn)(dy)

μ(Gn−1)
.

Expression (2.4) is a mathematically concise way to describe a standard particle
method that begins by sampling N i.i.d. particles from the distribution η0 and,
given particles {xi

n−1}Ni=1, performs multinomial resampling according to the (un-
normalized) weights Gn−1(x

i
n−1) before propagating the particles via the Markov

kernel Mn. The particle genealogy (x1:N
0 , x1:N

1 , . . . , x1:N
n ) simulated in practice has

a joint probability law given by

N∏
i=1

η0
(
dxi

0
) n∏
p=1

N∏
i=1


p,N

(
ηN

p−1
)(

dxi
p

)
,(2.5)

for an approximate operator 
n,N , which is defined as follows: 
n,N(μ)(dy) =
μ(Gn−1,NMn,N)(dy)/μ(Gn−1,N ) with

Gn−1,N ≡ Gn−1,ηN
n−1(ξn) and Mn,N ≡ Mn,ηN

n−1(ξn).

Throughout this article we assume that the potentials are strictly positive, that is,
Gn,ξ (x) > 0 for all x ∈ En and ξ ∈ Range(ξn), so that there is no possibility for
the algorithm to collapse. The particle approximation of the unnormalized distri-
bution (2.3) is defined as

γ N
n (ϕn) =

{
n−1∏
p=0

ηN
p (Gp,N)

}
ηN

n (ϕn).(2.6)

Contrarily to the nonadaptive case [11], the quantity γ N
n (1) = ∏n−1

p=0 ηN
p (Gp,N)

is not, in general, an unbiased estimate of the normalization constant γn(1) =∏n−1
p=0 ηp(Gp). It is useful to introduce the nonnegative operator

Qn,N(x, dy) = Gn−1,N (x)Mn,N(x, dy)(2.7)
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and the limiting version Qn(x, dy) = Gn−1(x)Mn(x, dy). To emphasize the de-
pendency on the parameter ξ ∈ R

d , we will sometimes write Qn,ξ (x, dy) :=
Gn−1,ξ (x)Mn,ξ (x, dy) when no ambiguity is possible. With these definitions, the
following identities hold:

ηn(ϕn) = 
n(ηn−1)(ϕn) = ηn−1(Qnϕn)

ηn−1(Gn−1)
; γn(ϕn) = γn−1(Qnϕn).(2.8)

Similar formulas are available for the N -particle approximations. Let FN
n denote

the filtration generated by the particle system up-to (and including) time n; we
have

E
[
ηN

n (ϕn)|FN
n−1
]= 
n,N

(
ηN

n−1
)
(ϕn),

E
[
γ N
n (ϕn)|FN

n−1
]= γ N

n−1(Qn,Nϕn).

In the sequel, we use the expressions En[·] and Varn[·] to denote the conditional
expectation E[·|FN

n ] and conditional variance Var(·|FN
n ), respectively. We use

the standard notation 〈u, v〉 to denote the Euclidean scalar product between two
vectors u and v.

2.3. Motivating examples. We motivate the above structure for {ηn}n≥0 via
two examples.

2.3.1. Sequential Bayesian parameter inference. We consider Bayesian infer-
ence for a parameter x ∈ E, associated to observations yi ∈ Y and prior measure
η0(dx). Assuming that all the distributions have a density with respect to a rel-
evant dominating measure, the posterior density ηn given y1:n ∈ Yn is ηn(x) ∝
η0(x)p(y1:n|x). The approach in [7] fits into the framework described in Sec-
tion 2.2 with state spaces En = E and potential functions Gn(x) = p(yn+1|y1:n, x).
For an MCMC kernel Mn ≡ Mn,ηn−1(ξn) with invariant measure ηn, the posterior
distribution ηn is given by ηn(ϕn) = γn(ϕn)/γn(1) where the unnormalized mea-
sure γn is defined as in (2.3). As described in Section 1.1, a popular choice for
Mn,ηn−1(ξn) corresponds to a random walk Metropolis kernel that is reversible with
respect to ηn and a jump covariance structure matching the one of ηn−1.

While such an example is quite simple, it is indicative of more complex appli-
cations in the literature. Kantas, Beskos and Jasra [22] consider a state-space with
dimension p ≈ 104 and dimension of adapted statistic of about d ≈ 5 ·102. In such
a setting, pre-specifying the covariance structure of the random walk Metropo-
lis proposals is impractical; the adaptive SMC strategy of Section 2.2 provides a
principled framework for automatically setting this covariance structure; see also
Section 4.2.
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2.3.2. Filtering. This section illustrates the case of an adaptive weight func-
tion. Consider a state-space model with observations y1:n ∈ Yn, unobserved
Markov chain U0:n ∈ Un+1 and joint density with respect to a dominating mea-
sure λ⊗n

Y ⊗ λ⊗n+1
U given by

η0(u0)

n∏
p=1

gp(up, yp)fp(up−1, up).

The density η0 describes the prior distribution for the initial state of the unob-
served Markov chain, gp(up, yp), the conditional observation density at time p

and fp(up−1, up), the dynamics of the unobserved Markov process. A standard
particle filter with proposal at time p distributed according to the Markov kernel
mp(up−1, up)λU (dup) uses importance weights of the form

Gp(xp) = gp(up, yp)fp(up−1, up)

mp(up−1, up)
,

where here xp ≡ (x
(1)
p , x

(2)
p ) ≡ (up−1, up). The process {Xp}np=1 is Markovian

with transition

Mp(xp−1, dxp) = δ
x

(2)
p−1

(
dx(1)

p

)
mp

(
x

(2)
p−1, x

(2)
p

)
λU
(
dx(2)

p

)
.

In this setting the marginal of the distribution ηp on the x
(2)
p -component is the

filtering distribution. In practice, the choice of the proposal kernel mn is critical
to the efficiency of the algorithm, and one may want to exploit the information
contained in the distribution ηn−1 in order to build efficient proposal kernels; ap-
proximating the filter mean is a standard strategy. In these cases, both the Markov
kernel Mn and the weight function Gn−1 depend upon the distribution ηn−1; this
is covered by the framework of Section 2. See [18] and the references therein for
ideas associated to such approaches.

2.4. Assumptions. Our results make use of Assumptions 1 and 2 below [writ-
ten (A1) and (A2) below as shorthand]. Recall that Range(ξn) ⊂ R

d denotes an
open convex set that contains the range of the statistic ξn :En−1 →R

d .

ASSUMPTION 1. For each n ≥ 1 the statistic ξn :En−1 →R
d is bounded, and

for any test function ϕ ∈ Bb(En) the functions (x, ξ) �→ Gn−1,ξ (x) and (x, ξ) �→
Qn,ξϕ(x) are bounded and continuous at ξn = ηn−1(ξn) uniformly over x ∈ En−1.

ASSUMPTION 2. For each n ≥ 1 and ϕ ∈ Bb(En), the function (x, ξ) �→
∂ξQn,ξϕ(x) is well defined on En−1 × Range(ξn) and is bounded and continu-
ous at ξn uniformly over x ∈ En−1.
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Assumptions 1 and 2 are reasonably weak in comparison to some assumptions
frequently used in the SMC literature, such as those in [11], but are certainly not
the weakest adopted for the WLLN and CLTs; see, for example, [8]. The continuity
assumptions in Assumption 2 are associated to the use of a first-order Taylor ex-
pansion. We have defined Range(ξp) as a convex set because we need to compute
integrals along segments between elements of Range(ξp). We expect that these as-
sumptions can be relaxed to accommodate unbounded test functions at the cost of
increased length and complexity of the proofs.

2.5. Weak law of large numbers. In this section we establish a WLLN. We
first state a slightly stronger result that will be repeatedly used in the fluctuation
analysis presented in Section 2.6.

THEOREM 2.1 (WLLN for SMC with adaptive scaling). Assume (A1). Let V
be a Polish space and {VN }N≥0 a sequence of V-valued random variables that
converges in probability to v ∈ V. Let n ≥ 0 and ϕn ∈ Bb(En × V) be a bounded
function, continuous at v ∈ V uniformly on En. We have

ηN
n

[
ϕn(·,VN)

] P−→ ηn

[
ϕn(·, v)

]
.

COROLLARY 1. Assume (A1). Let n ≥ 0 and ϕn ∈ Bb(En). We have

ηN
n (ϕn)

P−→ ηn(ϕn).

PROOF OF THEOREM 2.1. The proof is by induction on n. The initial case
n = 0 is a direct consequence of the WLLN for i.i.d. random variables and Def-
inition 2.1. For notational convenience, in the rest of the proof we write ϕn(·)
instead of ϕn(·, v). We assume the result at rank (n − 1) and proceed to the induc-

tion step. Since VN
P−→ v ∈ V, Definition 2.1 implies that it suffices to prove that

[ηN
n − ηn](ϕn)

P−→ 0. We use the decomposition [ηN
n − ηn](ϕn) = A(N) + B(N)

with

A(N) = [ηN
n − ηn

]
(ϕn) − E

[[
ηN

n − ηn

]
(ϕn)|FN

n−1
]

= [ηN
n − 
n,N

(
ηN

n−1
)]

(ϕn),

B(N) = E
[[

ηN
n − ηn

]
(ϕn)|FN

n−1
]= [
n,N

(
ηN

n−1
)− ηn

]
(ϕn).

The proof consists of showing that each of these terms converges to zero in prob-
ability.

• Proof that A(N)
P−→ 0.

Since the expected value of A(N) is zero, it suffices to prove that its moment of
order two also converges to zero as N goes to infinity. This follows as

En−1
[
A(N)2]= 1

N
En−1

[(
ϕ
(
x1
n

)− En−1
[
ϕ
(
x1
n

)])2]≤ 4‖ϕ‖2∞
N

.
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• Proof that B(N)
P−→ 0.

The definition of 
n,N(ηN
n−1) yields B(N) = B1(N) + B2(N) + B3(N) with⎧⎪⎪⎨⎪⎪⎩

B1(N) = ηN
n−1

{[Qn,N − Qn](ϕn)
}
/ηN

n−1(Gn−1,N ),

B2(N) = [ηN
n−1 − ηn−1

]
(Qnϕn)/η

N
n−1(Gn−1,N ),

B3(N) = ηn−1[Qnϕn] × {1/ηN
n−1(Gn−1,N ) − 1/ηn−1(Gn−1)

}
.

We prove that Bi(N) → 0, in probability, for i = 1,2,3. (All limits below are in
probability.) From the induction hypothesis, we directly get that ηN

n−1(ξn) → ξn.
By (A1), the bounded function (x, ξ) �→ Gn−1,ξ (x) is continuous at ξ = ξn

uniformly on En−1; therefore, the induction hypothesis applies, and we have
that ηN

n−1(Gn−1,N ) → ηn−1(Gn−1). Similarly, since Qn(ϕn) ∈ Bb(En−1) is
bounded by the boundedness of ϕn, we get ηN

n−1[Qn(ϕn)] → ηn−1[Qn(ϕn)].
By Slutsky’s lemma, both B2(N) and B3(N) converge to zero in probabil-
ity. By (A1) the bounded function (x, ξ) �→ Qn,ξϕn(x) is continuous at ξ =
ξn uniformly on En−1 so that the induction yields that ηN

n−1[Qn,N(ϕn)] →
ηn−1[Qn(ϕn)] and ηN

n−1[Qn(ϕn)] → ηn−1[Qn(ϕn)]; it follows that

ηN
n−1
{[Qn,N − Qn](ϕn)

} P−→ 0.

Consequently, the quantity B1(N) also converges to zero in probability. �

As a corollary, one can establish a similar consistency result for the sequence of
unnormalized approximations γ N

n (ϕn) defined in equation (2.6).

COROLLARY 2. Assume (A1). For n ≥ 0 and test function ϕn ∈ Bb(En), we
have

γ N
n (ϕn)

P−→ γn(ϕn).

PROOF. Since γ N
n (ϕn) = γ N

n (1)ηN
n (ϕn) and γn(ϕn) = γn(1)ηn(ϕn), by Corol-

lary 1 it suffices to prove that γ N
n (1) =∏n−1

p=0 ηN
p (Gp,N) converges in probability

to γn(1) =∏n−1
p=0 ηp(Gp). Due to the regularity conditions for (x, ξ) �→ Gn,ξ (x)

in (A1), Theorem 2.1 applies so that ηN
p (Gp,N) → ηp(Gp), in probability, for any

index p ≥ 0. The conclusion follows. �

2.6. Central limit theorems. In this section, for ϕn :En → R, we carry out
a fluctuation analysis of the particle approximations γ N

n (ϕn), ηN
n (ϕn) around their

limiting values. We establish that CLTs hold at the usual Monte Carlo rate and give
explicit expressions for the asymptotic variances. More precisely, we show that
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there exist asymptotic variance functionals Vγ
n :Bb(En) →R

+ and V
η
n :Bb(En) →

R
+ such that for any test function ϕn ∈ Bb(En), we have

N1/2[γ N
n − γn

]
(ϕn)

D−→ N
{
0,Vγ

n (ϕn)
}
,(2.9)

N1/2[ηN
n − ηn

]
(ϕn)

D−→ N
{
0,Vη

n(ϕn)
}
.(2.10)

The variance functionals are such that Vγ
0 (ϕ) = V

η
0(ϕ) = Varη0(ϕ) and{

V
γ
n (ϕn) = γn(1)2 × Varηn(ϕn) +V

γ
n−1(Lnϕn),

V
η
n(ϕn) = Varηn(ϕn) +V

η
n−1

(
Ln

(
ϕn − ηn(ϕn)

))
/η2

n−1(Gn−1)
(2.11)

for n ≥ 1; the linear operator Ln :Bb(En) → Bb(En−1) is given by

Lnϕn = 〈ηn−1[∂ξn
Qn,ξϕn], ξn − ξn

〉+ Qnϕn.

Indeed, replacing Ln by L ∞
n ≡ Qn in (2.11) yields the standard expression for

the asymptotic variances of nonadaptive SMC methods [11].

THEOREM 2.2 (CLTs for SMC with adaptive scaling). Assume (A1)–(A2).
For n ≥ 0 and ϕn ∈ Bb(En), equations (2.9) and (2.10) hold, and the asymptotic
variance functionals Vγ

n and V
η
n satisfy (2.11).

PROOF. We first establish equation (2.9); we proceed by induction and prove
that equation (2.9) holds for any index n ≥ 0 and any test function ϕn ∈ Bb(En).
The case n = 0 follows from the usual CLT for i.i.d. random variables. To prove
the induction step we use the decomposition [γ N

n − γn](ϕn) = P(N)+R(N) with

P(N) = E
[[

γ N
n − γn

]
(ϕn)|FN

n−1
]
, R(N) = [γ N

n − γn

]
(ϕn) − P(N).

It then suffices to prove that for any t ∈ R we have

E
[
exp
{
iN1/2tR(N)

}|FN
n−1
] P−→ exp

{
− t2

2
γn(1)2 Varηn(ϕn)

}
(2.12)

and that the quantity P(N) is such that

N1/2P(N) = N1/2[γ N
n−1 − γn−1

]
(Lnϕn) + oP(1).(2.13)

Equations (2.12), (2.13) and the induction hypothesis imply that the characteristic
function of N1/2[P(N) + R(N)] converges point-wise to the characteristic func-
tion of a Gaussian variable with variance γn(1)2 Varηn(ϕn) + V

γ
n−1(Lnϕn). The

conclusion follows from Levy’s characterization of convergence in distribution.
We finish the proof of equation (2.9) by establishing these two results:

• Proof of equation (2.12). We have that

R(N) = γ N
n (1)

(
N∑

i=1

UN,i − E
[
UN,i |FN

n−1
])/

N,
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where the variables {UN,i}Ni=1 are, conditionally upon FN
n−1, independent and

identically distributed as ϕn(XN,n) with

P
(
XN,n ∈ dx|FN

n−1
)= N∑

i=1

Gn−1,N (xi
n−1)∑N

j=1 Gn−1,N (x
j
n−1)

Mn,N

(
xi
n−1, dx

)
.(2.14)

By Theorem A.3 of [16] and since γ N
n (1)

P−→ γn(1), to prove equation (2.12) it
suffices to verify that for any ε > 0, the following two conditions hold:⎧⎪⎨⎪⎩

Var
(
UN,i |FN

n−1

) P−→ Varηn(ϕn),

E
[
U2

N,iI|U2
N,i |>Nε|FN

n−1

] P−→ 0.
(2.15)

Let us start by proving the first condition. Standard algebraic manipulations
show that the conditional variance is

Var
(
UN,i |FN

n−1
)= ηN

n−1[Qn,ηN
n−1(ξn)ϕ

2
n]

ηN
n−1[Gn−1,ηN

n−1(ξn)]
−
{ηN

n−1[Qn,ηN
n−1(ξn)ϕn]

ηN
n−1[Gn−1,ηN

n−1(ξn)]
}2

.

By (A1), the functions (x, ξ) �→ Gn−1,ξ (x), (x, ξ) �→ Qn,ξϕn(x) and (x, ξ) �→
Qn,ξϕ

2
n(x) are bounded and continuous at ξn ≡ ηn−1(ξn) uniformly on En−1; it

thus follows from Theorem 2.1 and Slutsky’s Lemma that

Var
(
UN,i |FN

n−1
) P−→ ηn−1[Qnϕ

2
n]

ηn−1(Gn)
−
{
ηn−1[Qnϕn]
ηn−1(Gn)

}2

= Varηn(ϕn).

This completes the proof of the first condition of (2.15). The second condition
directly follows from the boundedness of the function ϕn.

• Proof of equation (2.13). We have

P(N) = γ N
n−1(1) × ηN

n−1[Qn,N − Qn](ϕn) + [γ N
n−1 − γn−1

]
(Qnϕn).(2.16)

The fundamental theorem of calculus yields that

ηN
n−1[Qn,N − Qn](ϕn)

= 〈ηN
n−1
[
ω
(·, ηN

n−1(ξn)
)]

,
[
ηN

n−1 − ηn−1
]
(ξn)
〉
,(2.17)

where the function ω is given by

ω(x, v) =
∫ 1

0
∂ξQn,ξϕn(x)

∣∣∣
ξ=ξ(λ)

dλ with ξ(λ) ≡ ξn + λ{v − ξn}.
Under (A2), the function (x, v) �→ ω(x, v) is bounded and continuous at v = ξn,
uniformly over x ∈ En−1; by Theorem 2.1, it then follows that the quantity
ηN

n−1[ω(·, ηN
n−1(ξn))] converges in probability to ηn−1[∂ξn

Qn,ξ (ϕn)]. The in-
duction hypothesis, Slutsky’s Lemma and standard manipulations yield that

N1/2P(N) = N1/2[γ N
n−1 − γn−1

]
(Lnϕn) + oP(1),

as required.
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This completes the proof of equation (2.9). The proof of equation (2.10) is a con-
sequence of equation (2.9). Indeed, one can verify that the normalized measure ηN

n

is related to the unnormalized measure γ N
n through the identity ([11], page 301),

[
ηN

n − ηn

]
(ϕn) = 1

γ N
n (1)

[
γ N
n − γn

](
ϕn − ηn(ϕn)

)
.(2.18)

By Corollary 2 we have γ N
n (1)

P−→ γn(1), so Slutsky’s Lemma and equation (2.9)
yield that

N1/2[ηN
n − ηn

]
(ϕn)

D−→ N
{
0,Vη

n(ϕn)
}

with V
η
n(ϕn) = V

γ
n (ϕn − ηn(ϕn))

γn(1)2 .

Since ηn−1[Ln(ϕn − ηn(ϕn))] = 0, the second part of (2.11) follows. �

Note that a straightforward induction argument based on equation (2.11) yields
that the asymptotic variances can also be expressed as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V
γ
n (ϕn) =

n∑
p=0

γp(1)2 Varηp(Lp:nϕn),

V
η
n(ϕn) =

n∑
p=0

{
γp(1)/γn(1)

}2 Varηp

(
Lp:n[ϕn − ηnϕn])

with the shorthand notation Ln:n = Id and Lp:n = Lp+1 ◦ · · · ◦ Ln.

2.7. Stability. Theorem 2.2 shows that the asymptotic variance of the SMC
with adaptive scaling is described by the linear operator

Lnϕn = 〈ηn−1[∂ξn
Qn,ξϕn], ξn − ξn

〉+ Qnϕn.

It is a standard result [11] that the asymptotic variances, Vγ,∞
n and V

η,∞
n , of the

limiting SMC algorithm that does not use summary statistics, satisfy the same re-
cursive equation (2.11) with the only difference that the operator Ln has to be re-
placed by its nonadaptive version L ∞

n ≡ Qn; in other words, the effect of adaptive
scaling is incorporated into the term 〈ηn−1[∂ξn

Qn,ξϕn], ξn−ξn〉. It should be noted

that, in general, the asymptotic variance functionals (V
γ
n ,V

η
n) and (V

γ,∞
n ,V

η,∞
n )

cannot be compared; for example, for some test function ϕn ∈ Bb(En), we have
V

η
n(ϕn) < V

η,∞
n (ϕn) while for some other choices of a test function the inequality

is reversed. Nevertheless, the next result shows that there are important classes of
algorithms where the asymptotic variances are in fact equal, Vη

n(ϕn) = V
η,∞
n (ϕn)

and/or Vγ
n (ϕn) = V

γ,∞
n (ϕn). Results of the same flavor have been obtained in [5]

for adaptive multilevel splitting algorithms.
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THEOREM 2.3 (Stability). Assume (A1)–(A2).

(1) Suppose that for any index n ≥ 1 there exists a constant Cn > 0 such that
for any parameter ξ ∈ Range(ξn), we have

ηn−1(Gn−1,ξMn,ξ ) = Cnηn.(2.19)

Then for any test function ϕn ∈ Bb(En), we have V
γ
n (ϕn) = V

γ,∞
n (ϕn) and

V
η
n(ϕn) = V

η,∞
n (ϕn).

(2) Suppose that for any index n ≥ 1 and any parameter ξ ∈ Range(ξn), we
have

ηn−1(Gn−1,ξMn,ξ )

ηn−1(Gn−1,ξ )
= ηn.(2.20)

Then for any ϕn ∈ Bb(En), we have V
η
n(ϕn) = V

η,∞
n (ϕn).

PROOF. Let us prove the two results separately.

(1) To prove the first statement, it suffices to show that ηn−1[∂ξQn,ξϕn] = 0 for
any ϕn ∈ Bb(En) once (2.19) is satisfied. By differentiation under the integral sign,
we have

ηn−1(∂ξQn,ξϕn) = ∂ξ

{
ηn−1(Qn,ξϕn)

}= ∂ξ

{
Cnηn(ϕn)

}= 0,

hence the conclusion.
(2) Here, it suffices to show that ηn−1(∂ξQn,ξ [ϕn − ηn(ϕn)]) = 0 for any test

function ϕn ∈ Bb(En) once (2.20) is satisfied. By differentiation under the integral
sign, we have

ηn−1
(
∂ξQn,ξ

[
ϕn − ηn(ϕn)

])= ∂ξ

{
ηn−1

(
Qn,ξ

[
ϕn − ηn(ϕn)

])}
= ∂ξ

{
ηn−1(Gn−1,ξ )ηn

[
ϕn − ηn(ϕn)

]}
.

Since ηn{ϕn − ηn(ϕn)} = 0, the conclusion follows. �

Condition (2.19) is strictly stronger than (2.20), as can be seen by considering
parametric families of potentials of the type Gn,ξ (x) = f (ξ)g(x). Condition (2.19)
is very general and applies to the large class of adaptive SMC samplers [13], where
for each value of the parameter ξ ∈ Range(ξn), the Markov kernel Mn,ξ lets the
distribution ηn be invariant and where the potentials do not actually depend on
the parameter ξ ; see, for example, Section 2.3.1. This insensitivity to errors in the
estimation of the summary statistics means that errors in the estimation of the dis-
tributions ηn do not propagate; this stability is the main reason behind the equiv-
alence between the adaptive and nonadaptive variance functionals. Without this
stability property, as is typically the case in the setting of McKean–Vlasov diffu-
sions described below, errors can quickly propagate, and the asymptotic variances
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are generally different. Note that condition (2.19) also applies to the example of
Section 2.3.2 where the weight functions also depend on the summary statistics.

There are important classes of algorithms, though, where the above stability
result does not apply. For example, consider the problem of approximating the ex-
pectation E[ϕ(XT )] where ϕ :R→R is a test function and {Xs}Ts=0 is a McKean–
Vlasov diffusion of the type dXt = b(Xt , ηt [ξ ]) dt + dWt , where b :R × R → R

is a drift function, ξ :R→R is a given function and ηt (dx) = P(Xt ∈ dx) denotes
the law of the process X at time t . A standard approach consists of using a particle
algorithm with a Euler–Maruyama discretization with time step � � 1; this yields
to the class of algorithms described in Section 2 with the underlying Markov chain

Xk+1 ∼ Xk + b
(
Xk,ηk(ξ)

)
� + N(0,�).

In this setting, conditions (2.19) and (2.20) are typically not satisfied, and in gen-
eral, the asymptotic variance of the adaptive SMC algorithm is indeed different
from the limiting algorithm.

2.8. Verifying the assumptions. We consider the sequential Bayesian parame-
ter inference framework of Section 2.3.1 where a parameter x ∈ E = R

p has to be
estimated from noisy observations yi ∈ Y ; we assume a prior measure with den-
sity η0(x) with respect to the Lebesgue measure and suppose that the following
assumptions hold.

ASSUMPTION 3. For each n ≥ 1 the function Gn(x) = p(yn+1|y1:n, x) is
bounded and strictly positive. The statistics ξn :E → R

d are bounded: there ex-
ists an open and bounded convex K such that ξn(x) ∈ K for any index n ≥ 1 and
x ∈ E.

For each index n ≥ 1, the adaptive SMC algorithm makes use of a parametric
family Mn,ξ , for ξ ∈ Range(ξn), of random walk Metropolis–Hastings kernels with
symmetric proposal density q :Rm × Range(ξn) →R

+,

q(z, ξ) = q(−z, ξ).

The SMC algorithm targets the sequence ηn(x) ∝ η0(x)p(x|y1:n). At step n ≥ 1,
move xi

n �→ yi
n is accepted with probability min(1, ηn(y

i
n)/ηn(x

i
n)). We assume the

following second-order regularity conditions on the symmetric proposal kernel q:

ASSUMPTION 4. The first and second derivatives of the kernel density
(z, ξ) �→ q(z, ξ) are uniformly bounded in L1(E),

sup
{∥∥z �→ ∂ξ0q(z, ξ)

∥∥
L1(E) + ∥∥z �→ ∂2

ξ0
q(z, ξ)

∥∥
L1(E) : ξ0 ∈ K

}
< ∞.
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(A3) is weak and satisfied by many statistical models. Consider, for example,
the problem of Bayesian parameter estimation for state space models; a vector
x ∈ E ⊂ R

p parametrizes the underlying dynamics of a hidden Markov process
{uk}k≥0 and noisy observations distributed as yn|u1:n ∼ g(un, yn) dyn are col-
lected. If the conditional density functions (u, y) �→ g(u, y) are bounded, as
is, for example, the case when the observations are Gaussian additive perturba-
tions of the latent Markov process with known covariance structure, the weight
functions Gn are bounded. The situation where the statistics ξn :E → R

d are
bounded is also common. It is, for example, the case when regularized estimates
of the mean and covariance matrix are obtained through the summary statistics
R

p � x �→ T (xi) and R
p � x �→ T (xixj ) for 1 ≤ i, j ≤ p and a threshold func-

tion T :R → R; a standard choice is T (x) = α(1x≥α − 1x≤α) + x1|x|<α for a
given threshold α � 1. Similarly, it is straightforward to construct proposals veri-
fying (A4). Adopting a scalar context (d = 1), one can, for example, show that for
a bounded interval K and a precision function S :K → R+ that is bounded away
from zero with bounded first and second derivatives, the Gaussian proposal density
q(z, ξ) ∝ S 1/2(ξ) exp{−S (ξ)z2/2} satisfies (A4). Multi-dimensional extensions
of this setting are readily constructed.

PROPOSITION 2.1. Assume (A3)–(A4). The parametric family of Markov ker-
nels {Mn,ξ }n≥1,ξ∈K and potential functions {Gn}n≥0 satisfy (A1)–(A2).

PROOF. By assumption, the potentials {Gn}n≥0 are bounded and strictly pos-
itive, and the statistics ξn :E → R

d are bounded. To verify that (A1)–(A2) are
satisfied, it suffices to prove that for any test function ϕ ∈ Bb(E), the first and
second derivatives of (x, ξ) �→ Mn,ξϕ(x) exist and are uniformly bounded. The
Metropolis–Hastings accept–reject ratio of proposal x �→ x + z is r(x, z) :=
min(1, ηn(x + z)/ηn(x)). Consequently, we have Mn,ξϕ(x) = ϕ(x) + ∫

Rm[ϕ(x +
z) − ϕ(x)]r(x, z)q(z, ξ) du, and differentiation under the integral sign yields that

∂α
ξ Mn,ξϕ(x) =

∫
Rm

(
ϕ(x + z) − ϕ(x)

)
r(x, z)∂α

ξ q(z, ξ) dz

for α ∈ {1,2}. The conclusion follows from (A4). �

3. Adaptive tempering. We now look at the scenario when one uses the in-
formation in the evolving particles population to adapt a sequence of distributions
by means of a tempering parameter β ∈ R.

3.1. Algorithmic set-up. For clarity, we first describe a nonadaptive version of
the algorithm we are interested in. In many situations in Bayesian inference, one
seeks to sample from a probability distribution π defined on a measurable space
E of the form

π(dx) = 1

Z
e−V (x)m(dx),
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where Z is a normalization constant, m(dx) a dominating measure and V :E →R

a potential function. A frequently invoked algorithm involves forming a sequence
of tempered probability distributions

ηn(dx) = 1

Z(βn)
e−βnV (x)m(dx)

for parameters β0 ≤ β1 ≤ · · · ≤ βn� = 1. For consistency with the notation of Sec-
tion 2, and without loss of generality, we assume that Z(β0) = 1. The associated
unnormalized measures are defined as

γn(dx) = e−βnV (x)m(dx) and γ (dx) = e−V (x)m(dx).

Particles are propagated from ηn−1 to ηn through a Markov kernel Mn that pre-
serves ηn. In other words, the algorithm corresponds to the SMC approach dis-
cussed in Section 2 with potential functions

Gn(x) = e−(βn+1−βn)V (x)

and Markov kernels Mn. For a test function ϕ ∈ Bb(E), the N -particles approxima-
tions of the quantities ηn(ϕn) and γn(ϕn) are given by ηN

n (ϕ) = (1/N)
∑N

i=1 ϕ(xi
n)

and γ N
n (ϕ) = γ N

n (1)ηN
n (ϕ) with

γ N
n (1) =

n−1∏
p=0

ηN
p (Gp).

Let us now describe the adaptive version of the above algorithm. In most sce-
narios of practical interest, it can be difficult or even undesirable to decide a priori
upon the tempering sequence {βn}n�

n=0. For example, if the chosen sequence of
tempering parameters features large gaps, the variance of the resulting weights
may potentially be very large due to important discrepancies between consecutive
elements of the bridging sequence of probability distributions. At the other ex-
treme, computational time is wasted if the gaps between the tempering parameters
are too small. Knowing what constitutes “large” or “small” with regards to the
temperature gaps can be very problem specific. Thus an automated procedure for
determining the tempering sequence is of great practical importance. The adap-
tive version of the above described algorithm constructs the (random) tempering
sequence {βN

n }n≥0 iteratively. The effective sample size (ESS) is used as measure
of diversity; recall that for a measure η on a measurable space E and a weight
function ω :E → (0,∞), the ESS is defined by

ESS(η,ω) := η(ω)2/η
(
ω2).

When η is a probability measure and η(ω) < ∞, the quantity ESS(η,ω) can be
thought of as a measure of discrepancy between η and the probability measure ηω

whose Radon–Nikodym derivative with respect to η is proportional to ω; a small
value of ESS(η,ω) indicates a large discrepancy between η and ηω. This measure
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of discrepancy is widely used in the SMC literature since normalization constants
are not required, and it elegantly deals with probability measures described as
weighted particles systems. In our setting, it is natural to fix a threshold α ∈ (0,1)

and determine the next temperature in the sequence by imposing that the effective
sample size stays above α; some discussion on setting α is in [21]. More precisely,
the adaptive tempering scheme is defined as follows: the initial tempering parame-
ter βN

0 is set to a prescribed value β0 < 1, typically chosen so that the distribution
η0(dx) = e−β0V (x)m(dx) is straightforward to sample from. When the tempering
parameter βN

n ∈ R and the approximation ηN
n = (1/N)

∑N
i=1 δxi

n
to the probabil-

ity measure [1/Z(βN
n )]e−βN

n V (x)m(dx) have been computed, the next tempering
parameter βN

n+1 is determined through the equation

βN
n+1 = inf

{
β :β > βN

n ,ESS
(
ηN

n , e−(β−βN
n )V )= α

}
,(3.1)

and the next distribution is ηN
n+1(dx) ∝ e−βN

n+1V (x)m(dx). Indeed, the adaptive
tempering algorithm approximates an SMC algorithm that uses a deterministic
tempering sequence {βn}n≥0 given by the analogue of (3.1),

βn+1 = inf
{
β :β > βn,ESS

(
ηn, e

−(β−βn)V )= α
}
.(3.2)

This nonadaptive algorithm for βn’s as in (3.2) will be referred to as the limiting
algorithm. The following result guaranties that under mild assumptions, the effec-
tive sample size functional β �→ ESS(ηn, e

−(β−βn)V ) is continuous and decreasing.
The proof is deferred to Appendix A.

LEMMA 3.1. Let η be a probability measure on the measurable space E and
V :E → R be a bounded potential. Then the function λ �→ ESS(η, e−λV ) is con-
tinuous and decreasing on [0,∞). Furthermore, if the random variable V (X) is
not almost-surely constant for X ∼ η, the function is strictly decreasing.

Lemma 3.1 shows that the tempering parameter βN
n+1 can be efficiently com-

puted by a standard bisection method. Once the tempering parameter βN
n+1

is computed according to (3.1), the particle approximation ηN
n+1 to the law

exp{−βN
n+1V (x)}m(dx) is constructed as follows. The particle system {xi

n}Ni=1 is
re-sampled according to a multinomial scheme with weights proportional to

Gn,N(x) := e−(βN
n+1−βN

n )V (x)

and then evolves via an adaptive Markov kernel Mn+1,N that preserves the prob-
ability distribution ηN

n+1(dx) ∝ exp{−βN
n+1V (x)}m(dx). We have assumed, simi-

larly to the previous section, that at each index n a member Mn,N = Mn,θN
n

of a
parametric family of Markov kernel {Mn,θ }θ∈�n is used with

θN
n = (βN

n−1, β
N
n , ηN

n−1(ξn)
) ∈ �n ≡ [β0,∞) × [β0,∞) × Range(ξn).
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The function ξn :E → R
d is a summary statistic that takes values in an open

convex set Range(ξn) ⊂ R
d , and Mn,θN

n
is a Markov kernel that lets ηN

n (dx) ∝
exp{−βN

n V (x)}m(dx) be invariant. For convenience, we set

Mn ≡ Mn,θn
, Gn = exp

{−(βn+1 − βn)V
}
, θn = (βn−1, βn, ηn−1(ξn)

)
.

As in the previous section, we define

Qn,N(x, dy) ≡ Gn−1,N (x)Mn,N(x, dy)

and Qn(x, dy) ≡ Gn−1(x)Mn(x, dy). With this notation, equation (2.5) holds.
When the context is clear and in accordance with the previous section, for em-
phasizing the dependence upon the parameter θ , we sometimes use the notation
Mn,θ , Gn,θ and Qn,θ . For a function � depending on θ , we use the following
shorthand notation: ∂θ�|θ=θn

= (∂βn−1�,∂βn�, ∂ξn
�).

In practice, even if equation (3.1) defines an infinite sequence of tempering pa-
rameter {βN

n }n≥0, the algorithm finishes after a finite number of steps. We have
introduced the infinite sequence {βN

n }n≥0 only to facilitate the presentation of the
convergence analysis of the adaptive algorithm. The adaptive tempering algorithm
terminates after τN steps, with

τN = inf
{
k :k ≥ 1, βN

k ≥ 1
}
.(3.3)

The ideal limiting algorithm stops after a number of steps τ = inf{k :k ≥ 0, βk ≥
1}. For convenience, we assume in the remainder of this section that the following
condition holds.

ASSUMPTION 5. The deterministic tempering sequence {βn}n≥0 for the lim-
iting algorithm is such that

βτ > 1.(3.4)

This condition holds in most realistic scenarios; indeed in [21, 23] this occurs
in quite complex examples. As proved in Theorem 3.2, (A5) ensures that the stop-
ping time τN converges in probability, as N → ∞, to the deterministic number
of steps τ ∈ N. The output of the adaptive SMC algorithm is a particle approx-
imation πN = (1/N)

∑N
i=1 δxi

�
of the probability distribution π obtained as fol-

lows. (We describe the last step of the algorithm; earlier steps are obtained in the
standard way.) Particles {xi

τN−1}Ni=1 are resampled with weights proportional to

G�(x
i
τN−1, β

N
τN−1), where the function G� :E × [β0,1] → R is defined as

G�(x,β) = exp
{−(1 − β)V (x)

}
,(3.5)

and evolve via a Markov kernel M�,N ≡ M�,θN
�

that leaves π invariant to obtain

the set of particles {xi
�}Ni=1, where θN

� = (βN
τN−1, η

N
τN−1(ξτN )) ∈ �� ⊂R×R

d . For



1130 BESKOS, JASRA, KANTAS AND THIERY

a test function ϕ :E →R, the quantity

πN(ϕ) = (1/N)

N∑
i=1

ϕ
(
xi
�

)
(3.6)

is an approximation of π(ϕ), and the unnormalized quantity

γ N(ϕ) = γ N
τN−1(1) × ηN

τN−1

[
G�

(·, βN
τN−1

)]× πN(ϕ)(3.7)

approximates γ (ϕ).
We prove in Sections 3.3 and 3.4 that under mild assumptions, the output of the

SMC algorithm with adaptive tempering sequence and adaptive Markov kernels
satisfies a weak law of large numbers (Theorem 3.1) and a central limit theorem
(Theorem 3.4). For a test function ϕ ∈ Bb(E),

πN(ϕ)
P−→ π(ϕ) and N1/2{πN(ϕ) − π(ϕ)

} D−→ N
(
0, Ṽπ(ϕ)

)
.

The variance functional Ṽπ :Bb(E) →R
+ is discussed in Section 3.4.

3.2. Assumptions. The results to be presented in the next section make use of
the following hypotheses:

ASSUMPTION 6. The potential V :E → R and the summary statistics
ξn :E → R

d are bounded on E. For each n ≥ 1 and test function ϕ ∈ Bb(E),
the functions (x, θ) �→ Gn−1,θ (x) and (x, θ) �→ Qn,θϕ(x) are continuous at θn

uniformly on E.

ASSUMPTION 7. For each n ≥ 1 and test function ϕ :E → R, the function
(x, θ) �→ ∂θQn,θϕ(x) is well defined, bounded and continuous at θn uniformly
on E.

These assumptions are analogous to (A1)–(A2). As previously mentioned, we
believe that these conditions could be relaxed to accommodate unbounded test
functions at the cost of considerable technical complications in the proofs.

3.3. Weak law of large numbers. In this section we prove that the adaptive
tempering procedure is consistent. To do so, we first establish that the empirical

tempering parameters are such that βN
n

P−→ βn and that for any test function ϕ ∈
Bb(E), we have ηN

n (ϕ)
P−→ ηn(ϕ). These results are then used to establish that

τN P−→ τ and πN(ϕ)
P−→ π(ϕ).

THEOREM 3.1 (WLLN for SMC with adaptive scaling and adaptive tempering).
Assume (A6). For any n ≥ 0 we have

βN
n

P−→ βn.(3.8)
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For a Polish space V, sequence {VN }N≥0 of V-valued random variables such that

VN
P−→ v ∈ V and bounded measurable function ϕn :E × V → R continuous at

v ∈ V uniformly on E, we have

ηN
n

[
ϕn(·,VN)

] P−→ ηn

[
ϕn(·, v)

]
.(3.9)

COROLLARY 3. Assume (A6). For a test function ϕn ∈ Bb(E) we have

ηN
n (ϕn)

P−→ ηn(ϕn) and γ N
n (ϕn)

P−→ γn(ϕn).

PROOF OF THEOREM 3.1. The proof is by induction on the rank n ≥ 0 that

βN
n

P−→ βn and that equation (3.9) holds for any test function ϕ :E × V → R

bounded and continuous at v ∈ V uniformly on E. The initial case n = 0 is a direct
consequence of WLLN for i.i.d. random variables and Definition 2.1. We assume
the result at rank n − 1 and proceed to the induction step:

• We first focus on proving that βN
n

P−→ βn. Note that βN
n can also be expressed

as

βN
n = inf

{
β :β > β0,

ζN
1,n−1(β)

ζN
2,n−1(β)

= α

}

for the functionals ζN
1,n−1(β) = ηN

n−1[e−max(0,β−βN
n−1)V ]2 and ζN

2,n−1(β) =
ηN

n−1[e−2 max(0,β−βN
n−1)V ]. Indeed, the limiting temperature βn can also be ex-

pressed as

βn = inf
{
β :β > β0,

ζ1,n−1(β)

ζ2,n−1(β)
= α

}
,

where ζ1,n−1(β) and ζ2,n−1(β) are the limiting values of ζN
1,n−1(β) and

ζN
2,n−1(β). The dominated convergence theorem now implies that the mappings

β �→ ζN
1,n−1(β)/ζN

2,n−1(β) and β �→ ζ1,n−1(β)/ζ2,n−1(β) are continuous; it is
thus sufficient to prove that on any compact set [β0, β+], where β+ is any real
number, we have

sup
{
ζN

1,n−1(β)

ζN
2,n−1(β)

− ζ1,n−1(β)

ζ2,n−1(β)
:β ∈ [β0, β+]

}
P−→ 0.(3.10)

Lemma 3.1 shows that the function β �→ ζN
1,n−1(β)/ζN

1,n−1(β) is decreasing
on [β0, β+] for any n,N ≥ 1. By Dini’s theorem, on a compact interval, if
a sequence of decreasing functions converges pointwise toward a continuous
function, then the convergence is also uniform; it follows that for proving
equation (3.10), it suffices to show that for any fixed parameter β ∈ [β0, β+],
the difference ζN

1,n−1(β)/ζN
2,n−1(β) − ζ1,n−1(β)/ζ2,n−1(β) converges to zero in
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probability. Indeed, one can focus on proving that ζN
i,n−1(β) converges in prob-

ability to ζi,n−1(β) for i ∈ {1,2}. We present the proof for i = 2, the case i = 1
being similar. The difference ζN

2,n−1(β) − ζ2,n−1(β) decomposes as

ηN
n−1
[
e−2 max(0,β−βN

n−1)V − e−2 max(0,β−βn−1)V
]

(3.11)
+ (ηN

n−1 − ηn−1
)[

e−2 max(0,β−βn−1)V
]
.

For any fixed β , since βN
n−1

P−→ βn−1 and the potential function V is bounded,
the first term in (3.11) goes to zero in probability. The induction hypothesis
yields that the second term also goes to zero in probability.

• Since βN
n

P−→ βn, ηN
n−1(ξn)

P−→ ηn−1(ξn) and Vn
P−→ v, the same approach

as the one used in the proof of Theorem 2.1 shows that ηN
n [ϕn(·,VN)] →

ηn[ϕn(·, v)] in probability. �

We conclude this section by proving that the output (3.6) of the adaptive SMC
algorithm with adaptive tempering sequence is consistent.

THEOREM 3.2. Assume (A5)–(A6). Consider a test function ϕ ∈ Bb(E). We
have

τN P−→ τ and πN(ϕ)
P−→ π(ϕ).

PROOF. By Theorem 3.1 and Assumption 5, we have βN
τ−1

P−→ βτ−1 < 1 and

βN
τ

P−→ βτ > 1, from which it directly follows that τN P−→ τ . For proving that

πN(ϕ)
P−→ π(ϕ), it is enough to notice that the convergence τN P−→ τ yields that

for any test function h ∈ Bb(E), we have ητN−1(h)
P−→ ητ−1(h), from which the

conclusion readily follows by the definition of πN and the same arguments used
in the proof of Theorem 2.1. �

3.4. Central limit theorem. Here we extend the fluctuation analysis of Sec-
tion 2.6 to the adaptive tempering setting. We show that the differences N1/2(βN

n −
βn) and N1/2[γ N

n − γn](ϕn) satisfy a joint CLT and then use these results to ob-
tain a CLT for the outputs πN(ϕ) and γ N(ϕ) of the adaptive SMC algorithm.
The proofs are more intricate than the proof of Theorem 2.2 since the correla-
tion between the fluctuations of (βN

n − βn) and [γ N
n − γn](ϕn) have to be taken

into account. Theorem 3.3 states that under mild assumptions, for any index n ≥ 0
there exist variance functionals Ṽ

γ
n , Ṽ

η
n :R × Bb(E) → R

+ such that for any test
function ϕn ∈ Bb(E) and scalar α ∈ R,⎧⎨⎩N1/2{α(βN

n − βn

)+ [γ N
n − γn

]
(ϕn)
} D−→ N

(
0, Ṽ

γ
n (α,ϕn)

)
,

N1/2{α(βN
n − βn

)+ [ηN
n − ηn

]
(ϕn)
} D−→ N

(
0, Ṽ

η
n(α,ϕn)

)
.

(3.12)



CONVERGENCE OF ADAPTIVE SMC 1133

The variance functionals are such that Ṽη
0(α,ϕ) = Ṽ

γ
0 (α,ϕ) = Varη0(ϕ) and for

any n ≥ 1,{
Ṽ

η
n(α,ϕn) = Ṽ

η
n−1

(
α + �n(ϕn),αHn−1 + L̃nϕn

)+ γ 2
n (1)Varηn(ϕn),

Ṽ
γ
n (α,ϕn) = Ṽ

γ
n

(
α,
[
ϕn − ηn(ϕn)

]
/γn(1)

)
.

(3.13)

The operators L̃n :Bb(En) → Bb(En−1) and �n :Bb(En) →R are defined as{
L̃nϕn = γn−1(∂βnQn,θϕn)(Hn−1) + Qnϕn,

�n(ϕn) = γn−1
[
(∂βn + ∂βn−1)Qn,θϕn

]
,

(3.14)

where we have defined, for convenience, the quantity

Hn = 1

γn−1(1)

ηn(e
−2�nV )e−�nV − ηn(e

−�nV )e−2�nV /2

ηn(e−2�nV )ηn(V e−�nV ) − ηn(e−�nV )ηn(V e−2�nV )
(3.15)

∈ Bb(E)

and its centered version Hn = Hn −ηn(Hn); also �n ≡ βn+1 −βn. Equation (A.1)
readily implies that Hn is well defined as soon as the potential V is not π -almost
surely constant. Indeed, equation (3.12) yields that for any test function ϕn ∈
Bb(E), we have ⎧⎨⎩N1/2[ηN

n − ηn

]
(ϕn)

D−→ N
(
0, Ṽ

η
n(ϕn)

)
,

N1/2[γ N
n − γn

]
(ϕn)

D−→ N
(
0, Ṽ

γ
n (ϕn)

)
,

(3.16)

with the shorthand notation Ṽ
γ
n (ϕn) ≡ Ṽ

γ
n (0, ϕn) and Ṽ

η
n(ϕn) ≡ Ṽ

η
n(0, ϕn). The

induction formula (3.14) shows that, in the spirit of Section 2.7, since no derivative
with respect to ξ is present, the adaptivity of the Markov kernel does not influence
the asymptotic variance functionals; only the adaptivity of the tempering scheme
matters. As explained in Section 2.7, the main reason behind this phenomenon is
that for any value ξ of the summary statistics, the Markov kernels Mn,(βN

n−1,β
N
n ,ξ)

leave the probability with the density proportional to exp{−βN
n V } invariant.

THEOREM 3.3 (CLTs for SMC with adaptive scaling and adaptive tempering).
Assume (A6)–(A7). For n ≥ 0 and ϕn ∈ Bb(En), the equations in (3.12) hold, and
the asymptotic variance functionals Ṽγ

n and Ṽ
η
n satisfy (3.13).

PROOF. Let us first prove the result for the unnormalized measures γ N
n . We

proceed by induction on the index n ≥ 0. The case n = 0 follows from the usual
CLT for i.i.d. random variables. To prove the induction step we decompose the
random vector (βN

n − βn, [γ N
n − γn](ϕn))


 as P(N) + R(N) with

P(N) = E
[{

βN
n − βn[

γ N
n − γn

]
(ϕn)

} ∣∣∣FN
n−1

]
,

R(N) =
{

βN
n − βn[

γ N
n − γn

]
(ϕn)

}
− P(N).



1134 BESKOS, JASRA, KANTAS AND THIERY

To establish (3.13) one can verify that for any vector t = (u, v)
 ∈ R
2,

E
[
exp
{
iN1/2〈t,R(N)

〉}|FN
n−1
] P−→ exp

{
−v2

2
γn(1)2 Varηn(ϕn)

}
,(3.17)

and the random vector P(N) is such that

N1/2P(N) = N1/2
{ (

βN
n−1 − βn−1

)+ [γ N
n−1 − γn−1

]
(Hn−1)

�n(ϕn) × (βN
n−1 − βn−1

)+ [γ N
n − γn

]
(L̃nϕn)

}
(3.18)

+ oP(1).

Equation (3.13) immediately follows from equations (3.17) and (3.18) and Levy’s
characterization of convergence in distribution. We now prove that equations (3.17)
and (3.18) hold:

• Proof of equation (3.18).
We first deal with the first coordinate of P(N) and start by noting that
En−1[βN

n − βn] = βN
n − βn. For convenience, we set �n−1 ≡ βn − βn−1

and �N
n−1 ≡ βN

n − βN
n−1. The equation ESS(ηN

n−1, e
−�N

n−1V ) = α = ESS(ηn−1,

e−�n−1V ) can then be re-arranged to obtain that

ηn−1
(
e−�n−1V

)2{
ηN

n−1
(
e−2�N

n−1V
)− ηn−1

(
e−2�n−1V

)}
(3.19)

= ηn−1
(
e−2�n−1V

){
ηN

n−1
(
e−�N

n−1V
)2 − ηn−1

(
e−�n−1V

)2}
.

The term ηN
n−1(e

−2�N
n−1V ) − ηn−1(e

−2�n−1V ) decomposes as the sum of

ηN
n−1(e

−2�N
n−1V − e−2�n−1V ) and [ηN

n−1 − ηn−1](e−2�n−1V ). The boundedness
of potential V and Theorem 3.1 yield that [we use the notation ηN

n−1(x �→ ϕ(x))

to represent ηN
n−1(ϕ), as this clarifies some calculations]

ηN
n−1
(
e−2�N

n−1V − e−2�n−1V
)
/
(
�N

n−1 − �n−1
)

= ηN
n−1

(
x �→

∫ λ=1

λ=0

d

ds
e−2sV (x)

∣∣∣∣
s=�n−1+λ(�N

n−1−�n−1)

dλ

)
(3.20)

= −2ηn−1
(
V e−2�n−1V

)+ oP(1).

It follows that the difference ηN
n−1(e

−2�N
n−1V ) − ηn−1(e

−2�n−1V ) equals{−2ηn−1
(
V e−2�n−1V

)+ oP(1)
}(

�N
n−1 − �n−1

)
(3.21)

+ [ηN
n−1 − ηn−1

](
e−2�n−1V

)
.

Similarly, the difference ηN
n−1(e

−�N
n−1V )2 − ηn−1(e

−�n−1V )2 equals{−2ηn−1
(
e−�n−1V

)
ηn−1

(
V e−�n−1V

)+ oP(1)
}× (�N

n−1 − �n−1
)

(3.22)
+ {2ηn−1

(
e−�n−1V

)+ oP(1)
}[

ηN
n−1 − ηn−1

](
e−�n−1V

)
.
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Since (�N
n−1 − �n−1) equals (βN

n − βn) − (βN
n−1 − βn−1), standard algebraic

manipulations, Slutsky’s lemma, equations (3.19), (3.21), (3.22) and the induc-
tion hypothesis yield that

N1/2(βN
n − βn

)= N1/2(βN
n−1 − βn−1

)
+ N1/2[ηN

n−1 − ηn−1
](

γn−1(1) × Hn−1
)+ oP(1)(3.23)

= N1/2(βN
n−1 − βn−1

)+ N1/2[γ N
n−1 − γn−1

]
(Hn−1) + oP(1),

where the functions {Hn}n≥0 are defined in equation (3.15). This completes the
proof of the first coordinate of equation (3.18). For dealing with the second
coordinate of P(N), we use

En−1
[(

γ N
n − γn

)
(ϕn)
]

(3.24)
= γ N

n−1(1)ηN
n−1[Qn,N − Qn](ϕn) + [γ N

n−1 − γn−1
]
(Qnϕn).

(A6)–(A7), Theorem 3.1 and the same approach as that used to prove (3.20)
show that the term ηN

n−1[Qn,N − Qn](ϕn) equals{
ηn−1[∂βn−1Qnϕn] + oP(1)

}(
βN

n−1 − βn−1
)

+{ηn−1[∂βnQnϕn] + oP(1)
}(

βN
n − βn

)
.

Note that there is no term involving the derivative with respect to the value of
the summary statistics; indeed, this is because for any value of ξ ∈ Range(ξn),
the Markov kernel Mn,θ , with θ = (βn−1, βn, ξ), preserves ηn so that one can
readily check that ηn−1[∂ξn

Qn,θϕn] = 0. Equation (3.23), Slutsky’s lemma and
equation (3.24) yield that

N1/2En−1
[(

γ N
n − γn

)
(ϕn)
]= N1/2�n(ϕn) × (βN

n−1 − βn−1
)

+ N1/2[γ N
n−1 − γn−1

]
(L̃nϕn) + oP(1).

The operators L̃n and �n are defined in equation (3.14). This completes the
proof of (3.18).

• Proof of equation (3.17).
Since βN

n ∈ FN
n−1, the first coordinate of R(N) is zero, and proving equa-

tion (3.17) is equivalent to showing that for any v ∈ R, we have

E
[
exp
{
iN1/2vR1(N)

}|FN
n−1
] P−→ exp

{−1
2v2γn(1)2 Varηn(ϕn)

}
with R1(N) = γ N(ϕn) − E[γ N(ϕn)|FN

n−1]; this quantity can also be expressed
as R1(N) = γ N

n (1){∑N
i=1 UN,i − E[UN,i |FN

n−1]}/N where the random vari-
ables {UN,i}Ni=1 are, conditionally on FN

n−1, independent and identically dis-
tributed as ϕn(XN,n) with XN,n distributed as described in (2.14). The proof of
equation (3.17) is thus identical to the proof of equation (2.12), and thus omitted.
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The proof of the CLT for the normalized measures γ N
n is complete. The proof

of the CLT for the normalized measures ηN
n then directly follows from equa-

tion (2.18). �

We conclude this section by proving that the output of the adaptive SMC algo-
rithm with adaptive tempering sequence also satisfies a CLT. Because the last step
of the adaptive tempering algorithm is slightly different from the other steps, the
final parameter β being known (and equal to one) and not empirically determined
through equation (3.1), in order to state the next result, we need to introduce some
notation. Let γ N

� be the random unnormalized measure γ N
� = γ N

� (1)πN
� with

γ N
� (1) = γ N

τ−1(1) × ηN
τ−1
[
G�

(·, βN
τ−1
)];

the random probability measure πN
� = (1/N)

∑N
i=1 δxi

�
is obtained from the mea-

sure ηN
τ−1 = (1/N)

∑N
i=1 δxi

τ−1
after a multinomial re-sampling step with weights

proportional to G�(x
i
τ−1, β

N
τ−1) and a Markovian transport step with kernel

M�,βN
τ−1,η

N
τ−1(ξτ ). Note the subtle difference between (πN

� , γ N
� ) and (πN, γ N): the

former are obtained after τ steps of the adaptive SMC algorithm while the later are
computed after τN steps. We have γ N

� (ϕ) = γ N
τ−1(Q�,Nϕ) with

Q�,N(x, dy) = G�

(
x,βN

τ−1
)
M�,βN

τ−1,η
N
τ−1(ξτ )(x, dy).

Corollary 3 yields that γ N
� (1) → γ (1) = Z(1)/Z(β0) = Z. The next result shows

that under mild assumptions, for any test function ϕ ∈ Bb(E), we have⎧⎨⎩N1/2[γ N − γ
]
(ϕ)

D−→ N
(
0, Ṽγ (ϕ)

)
,

N1/2[πN − π
]
(ϕ)

D−→ N
(
0, Ṽπ(ϕ)

)
,

(3.25)

where the variance functionals Ṽγ , Ṽπ :Bb(E) →R are defined as{
Ṽ

γ (ϕ) = Ṽ
γ
τ−1

(
γτ−1(∂βτ−1Q�ϕ),Q�ϕ

)+ Z2 Varπ(ϕ),

Ṽ
π(ϕ) = Ṽ

γ
([

ϕ − π(ϕ)
]
/Z
)
,

(3.26)

where Q�(x, dy) = G�(x,βτ−1)M�,βτ−1,ητ−1(ξτ )(x, dy).

THEOREM 3.4. Assume (A5)–(A7). For any test function ϕn ∈ Bb(E) the con-
vergence in distribution (3.25) holds. The variance functional Ṽπ satisfies equa-
tion (3.26).

PROOF. Since τN P−→ τ and the rescaled output of the algorithm can be ex-
pressed as

N1/2{γ N(ϕ) − γ (ϕ)
}= N1/2{γ N(ϕ) − γ (ϕ)

}
I
(
τN = τ

)+ oP(1),
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to prove Theorem 3.2, it is enough to prove that N1/2[γ N
� −γ ](ϕ) and N1/2[πN

� −
π ](ϕ) converge in distribution toward centered Gaussian distribution with vari-
ance Ṽ

γ (ϕ) and Ṽ
π(ϕ). The same computations as those presented in the proof of

Theorem 3.3 yield that

N1/2P�(N)

= N1/2{γτ−1(∂βτ−1Q�ϕ)
(
βN

τ−1 − βτ−1
)+ [γ N

τ−1 − γτ−1
]
(Q�ϕ)

}+ oP(1)

and

E
[
exp
{
iN1/2tR�(N)

}|FN
τ−1
] P−→ exp

{−1
2 t2Z2(1)Varπ(ϕ)

}
with P�(N) = E[(γ N

� − γ )(ϕ)|FN
τ−1] and R�(N) = [γ N

� − γ ](ϕ) − P�(N), which
readily implies that N1/2[γ N

� − γ ](ϕ) → N(0, Ṽγ (ϕ)), in distribution. The weak
convergence for the sequence N1/2[πN

� − γ ](ϕ) follows from the identity [πN
� −

π ](ϕ) = {γ N
� (1)}−1[γ N

� − γ ](ϕ − π(ϕ)). �

4. Applications.

4.1. A simple numerical example. To investigate the impact of our CLT, we
consider an SMC algorithm which adapts the scale of the proposal in an MCMC
kernel, by using the sample covariance of the previous target. Let x ∈R

p , and con-
sider the Gaussian target distribution ηn with density with respect to the Lebesgue
measure in R

p given by

ηn(x) ∝ exp
{−1

2

〈
x,�−1

n x
〉}
.

The covariance matrices are given by �n = LnL


n for Ln = (10(1 − n/99) +

0.1n/99)I + 0.5nJ/99, where I is an identity matrix, and J is a lower tri-
angular matrix with Ji,j = 1, for i ≤ j − 1. This particular sequence starts at
n = 0 with a Gaussian distribution whose components are independent with vari-
ance 10, and as n grows, so do the correlations among the p coordinates. We
implement SMC with adaptive scaling and the ideal (limiting) SMC algorithm
that uses perfect scaling for two cases: p ∈ {5,10}. Here, for n ≥ 1 we have
Gn(x) = exp{−1

2〈x, (�−1
n+1 − �−1

n )x〉}; for this example, (A1)–(A2) can be ver-
ified by using (A3)–(A4) and Proposition 2.1.

For n = 0, . . . ,50 we run both the adaptive SMC and the limiting algo-
rithms and compute an estimate of N × E([ηN

n (ϕ) − ηn(ϕ)]2) for ϕ(x) = x1 and
ϕ(x) = x2

1 as well as an estimate of the variance of the normalizing constant,
N × E([γ N

n (1) − γn(1)]2). The estimates are computed in each case by averag-
ing over 500 independent replications of the SMC algorithm. For large N this
quantity is an approximation of the asymptotic variance in the CLT described in
Theorem 2.2. In Figure 1 we present the results using N = 104 and N = 106. In
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FIG. 1. Ratio of estimated asymptotic variances of adaptive to limiting algorithms against n. We
are estimating the asymptotic variance for the estimate of the first moment (left panels), second
moment (middle panels) both in the first coordinate of x and the normalising constant (right panels).
Top panels are for p = 5 and bottom for p = 10. In the simulations we used N = 104 (dotted line),
N = 106 (solid lines) and 500 independent runs.

each panel of Figure 1 we show the ratio of the estimated asymptotic variance
of the adaptive algorithm over the one of the limiting algorithm against n. The
top panels are for p = 5 and the lower ones for p = 10. The results show that the
adaptive and limiting algorithms behave very similarly in terms of the Monte Carlo
variance. This is in agreement with the theoretical result in Theorem 2.3. In addi-
tion, it appears that the increase in dimension does not lead to a loss of efficiency
in estimation. Note that when p = 5 the adaptive algorithm has to estimate d = 15
quantities per time step, but this grows to d = 55 for p = 10. We believe this is due
to using a very high number of particles compared to d and will be investigated
later on in the article.
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4.2. Adaptive SMC in high dimensions. In a large number of statistical prob-
lems, inference involves calibrating a posterior defined as a change of measure
from a Gaussian prior η0 = N(0,C) on infinite-dimensional function spaces; see,
for example, [3, 9]. It is convenient to work with the Karhunen–Loéve representa-
tion of η0. That is, given the eigen-decomposition {λ2

k,ψk}k∈K of C, for some rele-
vant set K, we expand the function-valued parameter of interest u as u =∑k ukψk ,
with uk = 〈u,ψk〉, so that a priori under η0 we have uk ∼ N(0, λ2

k) independently
over k. The arriving observations can be informative for a high number of uk’s,
and the task is to infer their posterior distribution. Within this high-dimensional
setting, we look at a Bayesian parameter inference problem (as in Section 2.3.1)
involving the 2D Navier–Stokes partial differential equation (PDE). The PDE de-
scribes the evolution in time/space of a velocity field, say v(x, t) ∈ R

2, with t ≥ 0
denoting time and x denoting space with x ∈ T = [0,2π) × [0,2π), a 2D-torus.
The parameter of interest u ∈ E is the initial condition u = v(·,0) of the PDE. The
field is observed at discrete times and locations. We apply an SMC sampler that
uses adaptive tempering and scaling. The SMC method and model are described
in detail in [22]. Here we focus on the estimation of the normalizing constant,
not considered in [22], and highlight the algorithmic challenges and usefulness of
the adaptive SMC methodology when applied in high dimensions. This motivates
some theoretical results presented in Section 4.3 where the stability properties of
SMC are investigated in a particular scenario when the dimension d of the adaptive
statistic is large.

In more detail, following [22], we choose the prior covariance operator as
β2�−α , for hyper-parameters β > 0, α > 1 and the Laplacian �. This gives the
representation

η0 = ⊗
k∈Z2\{0,0}

N
(
0, β2|k|−2α).(4.1)

Each k = (k1, k2) can be thought of as a bivariate frequency in a Fourier expansion.
Data correspond to measurements yj,m = v(xm, tj ) + εζj,m at times tj = jδ for
δ > 0 and locations on a fixed grid (x1, . . . , xM) ∈ T, for an i.i.d. sequence ζj,m ∼
N(0, I2) and some known ε > 0. Assuming that � :E × [0,∞) → E denotes the
semigroup solution operator for the Navier–Stokes PDE, so that v = v(x, t) =
�(u, t), the likelihood of each observation is

p(yj,m|u) = 1

2πε2 exp
{
− 1

2ε2

∥∥yj,m − [�(u, tj )
]
(xm)
∥∥2
}
.(4.2)

Let n = (j − 1)M + m. We will use SMC to sample from the sequence of laws
{ηn}M×T

n=0 defined as

dηn

dη0
(u) = 1

Zn

j−1∏
l=0

m∏
j=1

p(yj,m|u),(4.3)
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where Zn denotes the unknown normalization constant. In this context Gn =
dηn/dηn−1 for n ≥ 1, and Mn,· is the ηn-invariant MCMC mutation steps used
for propagating the N -particles system.

A priori, the Fourier coefficients uk have known scales, but a posteriori, they can
have widely varying unknown scales with the posterior being more informative
for the low frequencies than the high ones. This information is contained in the
particle population and can be used to construct effective proposals. Indeed, given
the current particle approximation {ui}Ni=1 of ηn, we estimate the marginal mean
and covariance μN

k , �N
k for frequency k

μN
k = 1

N

N∑
i=1

ui
k; �N

k = 1

N − 1

N∑
i=1

(
ui

k − μN
k

)⊗ (ui
k − μN

k

)
.

Then, for a current position u =∑ukψk , an MCMC proposal ũ =∑ ũkψk can be
defined as

ũk = μN
k + ρ

(
uk − μN

k

)+ (1 − ρ2)1/2N
(
0,�N

k

)
,

for a global scaling parameter ρ > 0 and Gaussian noise N(0,�N
k ) independent

over k. This proposal is accepted with the relevant Metropolis–Hastings ratio,
given in [22]. The challenge here is that the number of important frequencies k

to be tuned can be large; for example, the actual total number of frequencies when
truncating the expansion at kmax = 32 is 4096. Kantas, Beskos and Jasra [22] sug-
gest using adaptation only on a “window” {k ∈ Z

2 \ {0,0} : max(k1, k2) ≤ K}, for a
user-specified threshold K ≥ 1. For higher frequencies, only the information con-
tained in the prior distribution is used; thus we set μk = 0 and �N

k = |k|−2αI2.
The full algorithm also uses adaptive tempering as in Section 3, between every
pair ηn−1, ηn. We found this to be important for avoiding weight degeneracy and
getting a stable algorithm. As in Section 3, the temperatures are determined on the
fly, according to a minimum requirement for ESS (we choose α = 1

3 ).
We present some results on estimating the normalization constant with the adap-

tive SMC algorithm when N = 500 and K = 7. Figure 2 shows a plot of an esti-
mate of the variance of ZN

n /Zn against n, where ZN
n is the N -particle’s approxi-

mation of Zn. In this complex setting, the numerical results seem to confirm the
theoretical asymptotic results of Theorem 2.3, and the estimated asymptotic vari-
ance seems to grow linearly with n, as one would expect for the ideal SMC algo-
rithm that uses the correct (constant) variances (see [4]). Notice that the asymptotic
behavior predicted in Theorem 2.3 is likely to hold in far more general contexts,
as in this application, for instance, the regularity conditions of the theorem are not
satisfied.

4.3. Algorithmic stability in large-scale adaptation. In the Navier–Stokes ex-
ample implementation we use K = 7, so d ≈ 2 × (2K + 1)2 = 450. In this case,
and potentially in other scenarios, it is of interest to investigate the effect of a large
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FIG. 2. Estimated variance for the estimate of the normalizing constant of adaptive SMC. The
“true” normalizing constant is estimated from 1000 independent runs with N = 500 and the relative
variance is estimated when N = 500 over 500 independent runs. The crosses are the estimated values
of the relative variance.

d on the performance of the SMC method. We make a first modest attempt to shed
some light on this issue via a very simple modeling structure motivated by the
Navier–Stokes example and allow for some simple calculations.

For each n ≥ 1 we assume a product form Gaussian target on En = R
∞,

ηn =
∞⊗

j=1

N
(
0, σ 2

j

)
,

for variances {σ 2
j }∞j=1 that do not depend on n ≥ 1. Thus the weights Gn(x) are

assumed small enough to be irrelevant for the study of the influence of the dimen-
sion d; we have Gn(x) ≡ 1. It is assumed that the SMC has worked well up to time
(n − 1), producing i.i.d. samples {xi

n−1}Ni=1 from ηn−1. For the mutation step, we
consider an adaptive kernel Mn,ξ preserving ηn that proposes, when the current
position is x ∈ R

∞, a new position x̃ ∈ R
∞ distributed as

x̃j = ρxj + (1 − ρ2)1/2N
(
0, σ̂ 2

j

)
for 1 ≤ j ≤ d,

x̃j = ρxj + (1 − ρ2)1/2N
(
0, σ 2

j

)
for j ≥ d + 1,

(4.4)

for σ̂ 2
j := (1/N)

∑N
i=1{xi

n−1,j }2; thus we adapt ξn(x) = (x2
1 , . . . , x2

d). The d first
coordinates are adapted to the estimated marginal variance while the ideal variance
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is used for the rest. We will investigate the effect of the amount of adaptation
on the accuracy of ηN

n (ϕ) for a bounded ϕ that only depends on the (d + 1)th
coordinate, ϕ(x) = ϕ(xd+1). In this simplistic scenario the proposal for the ideal
kernel Mn,ηn−1(ξn) preserves ηn and is always accepted. Thus any deviation from a
O(N−1/2) rate of convergence for the estimator ηN

n (ϕ) will be due to the effect of
the adaptation.

Following the proof of Theorem 2.1 we use the decomposition[
ηN

n − ηn

]
(ϕ) = A(N) + B1(N) + B2(N),

where A(N) = [ηN
n − 
n,N(ηN

n−1)](ϕ), B1(N) = ηN
n−1[Qn,N − Qn](ϕ), B2(N) =

[ηN
n−1 −ηn−1](Qnϕ). Denoting by ‖·‖2 the L2-norm of random variables and con-

ditioning upon FN
n−1, we have that ‖A(N)‖2

2 = 1
N

E[Var[ϕ(x1
n)|FN

n−1]] = O( 1
N

).
For B2(N) one can notice that Qn(ϕ) is a bounded mapping from R

∞ to R, thus
‖B2(N)‖2

2 = 1
N

Varηn−1[Qn(ϕ)] = O( 1
N

). The critical term with regards to the ef-
fect of the dimension d on the magnitude of the difference [ηN

n −ηn](ϕ) is B1(N).
An approach similar to equation (2.17) in the proof of Theorem 2.2 yields

B1(N) = ηN
n−1[Qn,N − Qn](ϕ) = ηN

n−1
([Mn,N − Mn](ϕ)

)
= ηN

n−1[∂ξMnϕ] · [ηN
n−1 − ηn−1

]
(ξn) + R =: B̃1(N) + R,

for a random variable term R containing second (or higher) order derivatives in the
Taylor expansion. Controlling the R term poses enormous technical challenges,
and we restrict our analysis to the first term in the Taylor expansion B̃1(N), as we
feel this will give an impression for the choice of N as a function of d . The proof
of the following result is provided in the Appendix.

PROPOSITION 4.1. The term B̃1(N) satisfies∥∥B̃1(N)
∥∥

2 = O
(√

d

N

)
+O
(

d

N3/2

)
.

Proposition 4.1, combined with the earlier results, suggests that in a high-
dimensional setting with d � 1, it is reasonable to choose N of order O(d), yield-
ing a mean squared error of order O(1/d). Even if this choice of N should be
thought of as a minimum requirement for the complete sequential method, it could
potentially explain the fairly accurate SMC estimates of the marginal expectation
obtained in the Navier–Stokes example when N = 500 and d ≈ 500.

5. Summary. This article studies the asymptotic properties of a class of adap-
tive SMC algorithms; weak law of large numbers and a central limit theorems are
established in several practical settings. There are several potential directions for
extension to the work in this article. One could relax the boundedness assumptions
used in the paper; our proof technique, also used in [8], is particularly amenable to
this. Also, one can extend the analysis to the context of adaptive resampling.
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APPENDIX A: PROOF OF LEMMA 3.1

The case where the random variable V (X) is almost surely constant is trivial.
Let us thus consider the case where V (X) is not almost surely constant and prove
that λ �→ ESS(η, e−λV ) is continuous and strictly decreasing. Let X and Y be two
independent random variables distributed according to η. The dominated conver-
gence theorem implies that the function λ �→ ESS(η, e−λV ) is continuous, with a
continuous derivative. Standard manipulations show that the derivative is strictly
negative if η(V e−λV )η(e−2λV ) > η(e−λV )η(V e−2λV ), which is equivalent to the
condition

E
[
e−λ{V (X)+V (Y )} × {V (X) − V (Y )

}× {e−λV (X) − e−λV (Y )}]< 0.(A.1)

This last condition is satisfied since for any x, y ∈ R and any λ > 0, we have
the inequality {V (x) − V (y)}{e−λV (x) − e−λV (y)} < 0, with strict inequality for
V (x) �= V (y), and we assume that the random variable V (X) is not almost surely
constant.

APPENDIX B: PROOF OF PROPOSITION 4.1

First of all, notice that without loss of generality we can assume that σ 2
j is a

constant. We have that

B̃1(N) =
√

d

N
×

d∑
j=1

{∑N
i=1 ∂ξj

Mn,ξ (ϕ)(xi
n−1)|ξ=ηn−1(ξn)√

N

× √
N
(
ηN

n−1 − ηn−1
)
(ξn,j )

}/√
d(B.1)

≡
√

d

N
×

d∑
j=1

[√
NηN

n−1(�n,j ) · √NηN
n−1(ξn,j )

]
/
√

d,

where we have set �n,j (x) = ∂ξj
Mn,ξ (ϕ)(x)|ξ=ηn−1(ξn) and ξn,j (x) = ξn,j (x) −

ηn−1(ξn,j ). Clearly, the expectation of the latter variable over ηn−1 is zero, but the
same is also true for the former. Initially, we will focus on the term �n,j (x) as
it has some structure which will be exploited in subsequent calculations. Indeed,
considering Mn,ξj

(ϕ)(x), for an arbitrary ξj and the rest ξk , k �= j , at their limiting
“correct” values, we have that

Mn,ξj
(ϕ)(x) = E

[
ϕ
(
x′
d+1
)|x]

(B.2)
= ϕ(xd+1) + E

[
a(xj , ξj ,Zj )|xj

]
�ϕ(xd+1),

where we have set �ϕ(xd+1) = E[ϕ(x′
d+1) − ϕ(xd+1)|xd+1]; x′

d+1 denotes the
Metropolis–Hastings proposal for the (d + 1)th co-ordinate as specified in (4.4);
a(xj , ξj ,Zj ) denotes the Metropolis–Hastings acceptance probability, which de-
pends only on the current position xj , the (arbitrary) scaling choice ξj and the
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noise Zj ∼ N(0,1) for simulating the proposal for the j th coordinate, assuming a

scaling ξj (i.e., x′
j = ρxj +

√
1 − ρ2ξ

1/2
j Zj ). We will give the explicit formula

for a(·) below. Notice that due to the proposal for xd+1 preserving the target
marginally at the (d + 1)th coordinate, we have that Eηn−1[�ϕ(xd+1)] = 0. Re-
call �n,j (x) = ∂ξj

Mn,ξj
(ϕ)(x)|ξj=ηn−1(ξn,j ). Thus to check for the differentiability

of ξj �→ E[a(xj , ξj ,Zj )|xj ] we can only resort to analytical calculations, starting
with the fact that (after some algebraic manipulations)

a(xj , ξj ,Zj )

= min
(
1, exp

{−1
2

(
ξ−1
j − σ−2

j

)(
x2
j − {ρxj +

√
1 − ρ2ξ

1/2
j Zj

}2)})
.

After several analytic calculations (which are omitted for brevity) we can in-
tegrate out variable Zj and find that: (i) the derivative D(xj , ηn−1(ξn,j )) =
∂ξj

E[a(xj , ξj ,Zj )|xj ]|ξj=ηn−1(ξn,j ) exists; (ii) D(xj , ηn−1(ξn,j )), with xj ∼
N(0, σ 2

j ), has a finite second moment. Thus, continuing from (B.2), we have

�n,j (x) = ∂ξj
Mn,ξj

(ϕ)(x)|ξj=ηn−1(ξn,j ) = D
(
xj , ηn−1(ξn,j )

)
�ϕ(xd+1).(B.3)

The factorization in (B.3) will be exploited in the remaining calculations.
Continuing from (B.1), we now have that∥∥∥∥ N√

d
B̃1(N)

∥∥∥∥2

2

= 1

d

d∑
j=1

N2E
[{

ηN
n−1(�n,j )

}2{
ηN(ξn,j )

}2]
(B.4)

+ 1

d

∑
j,k=1,2,...,d

j �=k

N2E
[
ηN

n−1(�n,j )η
N
n−1(ξn,j )η

N
n−1(�n,k)η

N
n−1(ξn,k)

]

=: T1 + T2.

The following zero-expectations obtained for terms involved in T1, T2 are a direct
consequence of the fact that ξn,j (x) only depends on xj and has zero expectation
under ηn−1, and that �n,j (x) only depends on xj , xd+1 through the product form
in (B.3) with the xd+1-term having zero-expectation; critically, recall that particles
xi
n−1,j are independent over both i, j . Focusing on the T1-term and the expectation

E[{ηN
n−1(�n,j )}2{ηN

n−1(ξn,j )}2], we note that all 4-way product terms arising after
replacing ηN

n−1 with its sum-expression will have expectation 0, except for those

that involve cross-products of the form {�n,j (x
i
n−1)}2 × {ξn,j (x

i′
n−1)}2, thus

T1 = 1

d

d∑
j=1

N2 · 1

N4 ·O(N2)= O(1).(B.5)
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Moving on to T2, notice that all 4-way products in E[ηN
n−1(�n,j )η

N
n−1(ξn,j ) ×

ηN
n−1(�n,k)η

N
n−1(ξn,k)] have expectation 0, except for the products involving the

same particles, that is, except for the terms �n,j (x
i
n−1)ξn,j (x

i
n−1)�n,k(x

i
n−1) ×

ξn,k(x
i
n−1). Thus we have that

T2 = 1

d

d∑
j,k=1,j �=k

N2 · 1

N4 ·O(N) = O
(

d

N

)
.

Thus overall we have that∥∥B̃1(N)
∥∥

2 = O
(√

d

N

)
+O
(

d

N3/2

)
.(B.6)

Results (B.5), (B.6), used within (B.4) complete the proof.
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