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1. Introduction

Let π denote a probability distribution having support X ⊆ Rd, d ≥ 1. If W ∼ π
and g : X → R is measurable, set V = g(W ). We consider estimation of quantiles
of the distribution of V . Specifically, if 0 < q < 1 and FV denotes the distribution
function of V , then our goal is to obtain

ξq := F−1
V (q) = inf{v : FV (v) ≥ q}.

We will assume throughout that FV (x) is absolutely continuous and has contin-
uous density function fV (x) such that 0 < fV (ξq) <∞. Notice that this means
ξq is the unique solution y of FV (y−) ≤ q ≤ FV (y).

Typically, it is not possible to calculate ξq directly. For example, a common
goal in Bayesian inference is calculating the quantile of a marginal posterior
distribution. In these settings, the quantile estimate is typically based upon
Markov chain Monte Carlo (MCMC) simulation methods and is almost always
reported without including any notion of the simulation error. Raftery and Lewis
(1992) consider quantile estimation using MCMC, but their method is based on
approximating the MCMC process with a two-state Markov chain, and does not
produce an estimate of the simulation error; see also Brooks and Roberts (1999)
and Cowles and Carlin (1996) who study the properties of the method proposed
by Raftery and Lewis (1992). In contrast, our work enables practitioners to
rigorously assess the simulation error, and hence increase the reliability of their
inferences.

The basic MCMC method entails simulating a Markov chainX = {X0, X1, . . .}
having invariant distribution π. Define Y = {Y0, Y1, . . .} = {g(X0), g(X1), . . .}.
If we observe a realization of X of length n and let Yn(j) denote the jth order
statistic of {Y0, . . . , Yn−1}, then we estimate ξq with

ξ̂n,q := Yn(j) where j − 1 < nq ≤ j. (1)

We will see that ξ̂n,q is strongly consistent for ξq. While this justifies the use

of ξ̂n,q, it will be more valuable if we can also assess the unknown Monte Carlo

error, ξ̂n,q − ξq. We address this in two ways. The first is by finding a function
b : N× (0,∞) → [0,∞) such that for all ǫ > 0

Pr
(

|ξ̂n,q − ξq| > ǫ
)

≤ b(n, ǫ). (2)

We also assess the Monte Carlo error through its approximate sampling distri-
bution. We will show that under a mixing condition on X , a quantile central
limit theorem (CLT) will obtain; this mixing condition is much weaker than the
mixing conditions required for a CLT for a sample mean (Jones, 2004). For now,
assume there exists a constant γ2(ξq) > 0 such that, as n→ ∞,

√
n(ξ̂n,q − ξq)

d→ N(0, γ2(ξq)). (3)
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Note that γ2(ξq) must account for the serial dependence present in a non-trivial
Markov chain and hence is more difficult to estimate well than when X is a
random sample. However, if we can estimate γ2(ξq) with, say γ̂2n, then an interval
estimator of ξq is

ξ̂n,q ± t∗
γ̂n√
n

where t∗ is an appropriate quantile. Such intervals, or at least, the Monte Carlo
standard error (MCSE), γ̂n/

√
n, are useful in assessing the reliability of the

simulation results as they explicitly describe the level of confidence we have in
the reported number of significant figures in ξ̂n,q. For more on this approach see
Flegal and Gong (2014), Flegal et al. (2008), Flegal and Jones (2011), Geyer
(2011), Jones et al. (2006) and Jones and Hobert (2001).

We consider three methods for implementing this recipe, all of which produce
effective interval estimators of ξq. The first two are based on the CLT at (3)
where we consider using the method of batch means (BM) and the subsampling
bootstrap method (SBM) to estimate γ2(ξq). Regenerative simulation (RS) is
the third method, but it requires a slightly different quantile CLT than that in
(3). Along the way we show that significantly weaker conditions are available
for the RS-based expectation estimation case previously studied in Hobert et al.
(2002) and Mykland et al. (1995).

The remainder is organized as follows. We begin in Section 2 with a brief
introduction to some required Markov chain theory. In Section 3 we consider
estimation of ξq with ξ̂n,q, establish a CLT for the Monte Carlo error, and con-
sider how to obtain MCSEs using BM and SBM. In Section 4, we consider RS,
establish an alternative CLT and show how an MCSE can be obtained. In Sec-
tion 5, we illustrate the use of the methods presented here and investigate their
finite-sample properties in three examples. Finally, in Section 6 we summarize
our results and conclude with some practical recommendations.

2. Markov chain background

In this section we give some essential preliminary material. Recall that π has
support X and let B(X) be the Borel σ-algebra. For n ∈ N = {1, 2, 3, . . .}, let the
n-step Markov kernel associated with X be Pn(x, dy). Then if A ∈ B(X) and
k ∈ {0, 1, 2, . . .}, Pn(x,A) = Pr(Xk+n ∈ A|Xk = x). Throughout we assume
X is Harris ergodic (π-irreducible, aperiodic, and positive Harris recurrent–see
Meyn and Tweedie (2009) for definitions) and has invariant distribution π.

Let ‖ · ‖ denote the total variation norm. Further, let M : X 7→ R
+ with

EπM <∞ and ψ : N 7→ R+ be decreasing such that

‖Pn(x, ·) − π(·)‖ ≤M(x)ψ(n). (4)

Polynomial ergodicity of order m where m > 0 means (4) holds with ψ(n) =
n−m. Geometric ergodicity means (4) holds with ψ(n) = tn for some 0 < t < 1.
Uniform ergodicity means that X is geometrically ergodic and M is bounded.
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An equivalent characterization of uniform ergodicity is often more convenient
for applications. The Markov chain X is uniformly ergodic if and only if there
exists a probability measure φ on X, λ > 0, and an integer n0 ≥ 1 such that

Pn0(x, ·) ≥ λφ(·) for each x ∈ X. (5)

When (5) holds we have that (Meyn and Tweedie, 2009, p. 392)

‖Pn(x, ·) − π(·)‖ ≤ (1 − λ)⌊n/n0⌋. (6)

See Jones and Hobert (2001) for an accessible introduction to methods for es-
tablishing (5) and further discussion of the methods for establishing (4).

3. Quantile estimation for Markov chains

Recall Y = {Y0, Y1, . . .} = {g(X0), g(X1), . . .} and set Fn(y) = n−1
∑n−1

i=0 I(Yi ≤
y). By the Markov chain version of the strong law of large numbers (see e.g. Meyn
and Tweedie, 2009) for each y, Fn(y) → FV (y) with probability 1 as n → ∞.
Using this, the proof of the following result is similar to the proof for when Y is
composed of independent and identically distributed random variables (see e.g.
Serfling, 1981) and hence is omitted.

Theorem 1. With probability 1, ξ̂n,q → ξq as n→ ∞.

While this result justifies the use of ξ̂n,q as an estimator of ξq, it does not

allow one to assess the unknown Monte Carlo error ξ̂n,q − ξq for any finite n. In
Section 3.1 we establish conditions under which (2) holds, while in Section 3.2
we examine the approximate sampling distribution of the Monte Carlo error.

3.1. Monte Carlo error under stationarity

We will consider (in this subsection only) a best-case scenario where X0 ∼ π,
that is, the Markov chain X is stationary. We begin with a refinement of a
result due to Wang et al. (2011) to obtain a useful description of how the Monte
Carlo error decreases with simulation sample size and the convergence rate of
the Markov chain. The proof is given in Appendix B.1.

Proposition 1. Suppose the Markov chain X is polynomially ergodic of order
m > 1. If δ ∈ (9/(10+8m), 1/2), then, with probability 1, for sufficiently large n,

there is a positive constant C0 such that ξ̂n,q ∈ [ ξq −C0n
−1/2+δ

√
log logn, ξq +

C0n
−1/2+δ

√
log logn ].

For the rest of this section we consider finite sample properties of the Monte
Carlo error in the sense that our goal is to find an explicit function b : N ×
(0,∞) → [0,∞) such that (2) holds. There has been some research on this in the
context of estimating expectations using MCMC (e.g.  Latuszyński and Niemiro,
2011;  Latuszyński et al., 2012; Rudolf, 2012), but this has not been considered
in the quantile case. The proofs of the remaining results in this section can be
found in Appendix B.2.
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Theorem 2. If X satisfies (4), then for any integer a ∈ [1, n/2] and any ǫ > 0
and 0 < δ < 1

Pr
(

|ξ̂n,q − ξq| > ǫ
)

≤ 8 exp

{

−aγ
2

8

}

+ 22a

(

1 +
4

γ

)1/2

ψ
(⌊ n

2a

⌋)

EπM,

where γ = γ(δ, ǫ) = min{FV (ξq + ǫ) − q, δ(q − FV (ξq − ǫ))}.

To be useful Theorem 2 requires bounding ψ(n)EπM . There has been a
substantial amount of work in this area (see e.g. Baxendale, 2005; Fort and
Moulines, 2003; Rosenthal, 1995), but these methods have been applied in only
a few practically relevant settings (see e.g. Jones and Hobert, 2001, 2004). How-
ever, in the uniformly ergodic case we have the following easy corollary.

Corollary 1. If X satisfies (5), then we have for any a ∈ [1, n/2], any ǫ > 0
and any 0 < δ < 1

Pr
(

|ξ̂n,q − ξq| > ǫ
)

≤ 8 exp

{

−aγ
2

8

}

+ 22a

(

1 +
4

γ

)1/2

(1 − λ)⌊n/2an0⌋,

where γ = γ(δ, ǫ) = min{FV (ξq + ǫ) − q, δ(q − FV (ξq − ǫ))}.

Example 1. Let

π(x, y) =
4√
2π
y3/2 exp

{

−y
(

x2

2
+ 2

)}

I(0 < y <∞). (7)

Then Y |X = x ∼ Gamma(5/2, 2 + x2/2) and marginally X ∼ t(4)–Student’s t
with 4 degrees of freedom. Consider a linchpin variable sampler (Acosta et al.,
2014) which first updates X with a Metropolis-Hastings independence sampler
having the marginal of X as the invariant distribution using a t(3) proposal
distribution, then updates Y with a draw from the conditional of Y |X . Letting
P denote the Markov kernel for this algorithm we show in Appendix B.3 that
for any measurable set A

P ((x, y), A) ≥
√

9375

32π

∫

A

π(x′, y′) dx′dy′

and hence the Markov chain satisfies (5) with n0 = 1 and λ =
√

9375/32π.

Set δ = .99999, a = n/16 and consider estimating the median of the marginal
of X , i.e. t(4). Then q = 1/2 and ξ1/2 = 0 so that γ = 0.037422. Suppose we
want to find the Monte Carlo sample size required to ensure that the probability
ξ̂n,1/2 is within .10 of the truth is approximately 0.9. Then Corollary 1 gives

Pr
(

|ξ̂4×105,1/2 − ξ1/2| > .1
)

≤ 0.101.

We can improve upon the conclusion of Corollary 1.
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Table 1

Simulation length for each of 500 independent replications, counts of sample medians more
than .1 away from 0 in absolute value and, P̂r(|ξ̂n,1/2 − ξ1/2| > .1)

Length 500 1000 4700
Count 60 9 0

P̂r .12 .018 0

Theorem 3. If X satisfies (5), then for every ǫ > 0 and 0 < δ < 1

Pr
(

|ξ̂n,q − ξq| > ǫ
)

≤ 2 exp

{

−λ
2(nγ − 2n0/λ)2

2nn2
0

}

,

for n > 2n0/(λγ) where γ = min{FV (ξq + ǫ) − q, δ(q − FV (ξq − ǫ))}.

Example 2 (Continuation of Example 1). Theorem 3 yields that

Pr
(

|ξ̂4700,1/2 − ξ1/2| > .1
)

≤ 0.101 (8)

which clearly shows that the bound given in Example 1 is conservative.

We now compare the bound in (8) to the results of a simulation experiment.
We performed 500 independent replications of this MCMC sampler for each of 3
simulation lengths and recorded the number of estimated medians for each that
were more than .1 in absolute value away from the median of a t(4) distribution.
The results are presented in Table 1 and Figure 1. The results in Table 1 show
that the estimated probability in (8) is somewhat conservative. On the other
hand, from Figure 1 it is clear that the estimation procedure is not all that
stable until n = 4700.

3.2. Central limit theorem

We consider the asymptotic distribution of the Monte Carlo error ξ̂n,q − ξq. Let

σ2(y) := VarπI(Y0 ≤ y) + 2

∞
∑

k=1

Covπ [I(Y0 ≤ y), I(Yk ≤ y)] . (9)

The proof of the following result is in Appendix B.4.

Theorem 4. If X is polynomially ergodic of order m > 1 and if σ2(ξq) > 0,
then, as n→ ∞,

√
n(ξ̂n,q − ξq)

d→ N(0, σ2(ξq)/[fV (ξq)]2). (10)

To obtain an MCSE we need to estimate γ2(ξq) := σ2(ξq)/[fV (ξq)]2. We
consider two methods for doing this–in Section 3.2.1 we consider the method of
batch means while in Section 3.2.2 we consider subsampling.
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Fig 1. Histograms of 500 sample medians for each of 3 simulation lengths.

3.2.1. Batch Means

To estimate γ2(ξq), we substitute ξ̂n,q for ξq and estimate fV (ξ̂n,q) and σ2(ξ̂n,q).

Consider estimating fV (ξ̂n,q). Consistently estimating a density at a point has
been studied extensively in the context of stationary time-series analysis (see
e.g. Robinson, 1983) and many existing results are applicable since the Markov
chains in MCMC are special cases of strong mixing processes. In our examples
we use kernel density estimators with a Gaussian kernel to obtain f̂V (ξ̂n,q), an

estimator of fV (ξ̂n,q).
The quantity σ2(y), y ∈ R is familiar. Notice that

√
n(Fn(y) − FV (y))

d→ N(0, σ2(y)) as n→ ∞

by the usual Markov chain CLT for sample means (Jones, 2004). Moreover, we
show in Corollary 4 that σ2(y) is continuous at ξq. In this context, estimating
σ2(y) consistently is a well-studied problem and there are an array of methods
for doing so; see Flegal et al. (2008), Flegal and Jones (2010), Flegal and Jones
(2011) and Jones et al. (2006). Here we focus on the method of batch means

for estimating σ2(ξ̂n,q). For BM the output is split into batches of equal size.
Suppose we obtain n = anbn iterations {X0, . . . , Xn−1} and for k = 0, . . . , an −
1 define Ūk(ξ̂n,q) = b−1

n

∑bn−1
i=0 I(Ykbn+i ≤ ξ̂n,q). Then the BM estimator of
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σ2(ξ̂n,q) is

σ̂2
BM (ξ̂n,q) =

bn
an − 1

an−1
∑

k=0

(

Ūk(ξ̂n,q) − Fn(ξ̂n,q)
)2

. (11)

Putting these two pieces together we estimate γ2(ξq) with

γ̂2(ξ̂n,q) :=
σ̂2
BM (ξ̂n,q)

[f̂V (ξ̂n,q)]2

and we can obtain an approximate 100(1 − α)% confidence interval for ξq by

ξ̂n,q ± zα/2
γ̂(ξ̂n,q)√

n
, (12)

where zα/2 is a standard Normal quantile.

3.2.2. Subsampling

It is natural to consider the utility of bootstrap methods for estimating quan-
tiles and the Monte Carlo error. Indeed, there has been a substantial amount of
work on using bootstrap methods for stationary time-series (e.g. Bertail and
Clémençon, 2006; Bühlmann, 2002; Carlstein, 1986; Datta and McCormick,
1993; Politis, 2003). However, in our experience, MCMC simulations are typ-
ically sufficiently long so that standard bootstrap methods are prohibitively
computationally expensive.

We focus on the subsampling bootstrap method (SBM) described in general
by Politis et al. (1999) and, in the context of MCMC, by Flegal (2012) and Flegal
and Jones (2011). The basic idea is to split X into n− b+ 1 overlapping blocks
of length b. We then estimate ξq over each block resulting in n− b+1 estimates.
Consider the ith subsample of Y , {Yi−1, . . . , Yi+b−2}. Define the corresponding
ordered subsample as {Y i∗

b(1), . . . , Y
i∗
b(b)} and quantile estimator as

ξ∗i = Y i∗
b(j) where j − 1 < bq ≤ j for i = 1, . . . , n− b+ 1.

If

ξ̄∗ =
1

n− b+ 1

n−b+1
∑

i=1

ξ∗i ,

then the SBM estimator of γ2(ξq) is given by

γ̂2S =
b

n− b + 1

n−b+1
∑

i=1

(ξ∗i − ξ̄∗)2.

Note that SBM avoids having to estimate the density fV (ξ̂n,q). An approximate
100(1 − α)% confidence interval for ξq is given by

ξ̂n,q ± zα/2
γ̂S(ξ̂n,q)√

n
, (13)

where zα/2 is an appropriate standard Normal quantile.
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4. Quantile estimation for regenerative Markov chains

Regenerative simulation (RS) provides an alternative estimation method for
Markov chain simulations. RS is based on simulating an augmented Markov
chain and Theorem 4 will not apply. We derive an alternative CLT based on
RS and consider a natural estimator of the variance in the asymptotic Normal
distribution.

Recall X has n-step Markov kernel Pn(x, dy) and suppose there exists a
function s : X → [0, 1] with Eπs > 0 and a probability measure Q such that

P (x,A) ≥ s(x)Q(A) for all x ∈ X and A ∈ B. (14)

We call s the small function and Q the small measure. Define the residual
measure

R(x, dy) =







P (x, dy) − s(x)Q(dy)
1 − s(x)

s(x) < 1

Q(dy) s(x) = 1
(15)

so that
P (x, dy) = s(x)Q(dy) + (1 − s(x))R(x, dy). (16)

We now have the ingredients for constructing the split chain,

X ′ = {(X0, δ0), (X1, δ1), (X2, δ2), . . .}
which lives on X× {0, 1}. Given Xi = x, then δi and Xi+1 are found by

1. Simulate δi ∼ Bernoulli(s(x))
2. If δi = 1, simulate Xi+1 ∼ Q(·); otherwise Xi+1 ∼ R(x, ·).

Two things are apparent from this construction. First, by (16) the marginal
sequence {Xn} has Markov transition kernel given by P . Second, the set of n for
which δn−1 = 1, called regeneration times, represent times at which the chain
probabilistically restarts itself in the sense that Xn ∼ Q(·) does not depend on
Xn−1.

The main practical impediment to the use of regenerative simulation would
appear to be the means to simulate from the residual kernel R(·, ·), defined at
(15). Interestingly, as shown by Mykland et al. (1995), this is essentially a non-
issue since there is an equivalent update rule for the split chain which does not
depend on R. Given Xk = x, find Xk+1 and δk by

1. Simulate Xk+1 ∼ P (x, ·)
2. Simulate δk ∼ Bernoulli(r(Xk, Xk+1)) where

r(x, y) =
s(x)Q(dy)

P (x, dy)
.

RS has received considerable attention in the case where either a Gibbs sam-
pler or a full-dimensional Metropolis-Hastings sampler is employed. In particu-
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lar, Mykland et al. (1995) give recipes for establishing minorization conditions
as in (14), which have been implemented in several practically relevant statis-
tical models; see e.g. Doss and Tan (2014); Gilks et al. (1998); Hobert et al.
(2006); Jones et al. (2006); Jones and Hobert (2001); Roy and Hobert (2007).

Suppose we start X ′ with X0 ∼ Q; one can always discard the draws pre-
ceding the first regeneration to guarantee this, but it is frequently easy to draw
directly from Q (Hobert et al., 2002; Mykland et al., 1995). We will write EQ to
denote expectation when the split chain is started with X0 ∼ Q. Let 0 = τ0 <
τ1 < τ2 < · · · be the regeneration times so that τt+1 = min{i > τt : δi−1 = 1}.
Assume X ′ is run for R tours so that the simulation is terminated the Rth time
that a δi = 1. Let τR be the total length of the simulation and Nt = τt − τt−1

be the length of the tth tour. Let h : X → R, Vi = h(Xi) and define

St =

τt−1
∑

i=τt−1

Vi for t = 1, . . . , R.

The split chain construction ensures that the pairs (Nt, St) are independent and
identically distributed. It is straightforward to show (Hobert et al., 2002; Meyn
and Tweedie, 2009; Mykland et al., 1995) that if EQN

2
t < ∞ and EQS

2
t < ∞,

then as R→ ∞,

hτR =

∑R
t=1 St

∑R
t=1Nt

=
S

N
→ Eπh with probability 1 (17)

and, if Γ = EQ[(S1 −N1Eπh)2]/[EQ(N1)]2, then

√
R(hτR − Eπh)

d→ N(0,Γ). (18)

Moreover, there is an easily calculated consistent estimator of Γ; see Hobert et al.
(2002). However, the required moment conditions, EQN

2
t <∞ and EQS

2
t <∞,

are difficult to check in practice. Hobert et al. (2002) showed that these moment
conditions will hold if the Markov chain X is geometrically ergodic and there
exists δ > 0 such that Eπ|h|2+δ <∞. Our next result significantly weakens the
required mixing conditions. The proof can be found in Appendix B.5.

Theorem 5. If X is polynomially ergodic of order m > 1 and there exists
δ > 2/(m− 1) such that Eπ|h|2+δ <∞, then EQN

2
t <∞ and EQS

2
t <∞.

Remark 1. If h is bounded, then EQN
2
t < ∞ and EQS

2
t < ∞ when X is

polynomially ergodic of order m > 1

In the sequel we use Theorem 5 to develop an RS-based CLT for quantiles.

4.1. Quantile estimation

Recall Y = {Y0, Y1, . . .} = {g(X0), g(X1), . . .} and define

St(y) =

τt−1
∑

i=τt−1

I(Yi ≤ y) for t = 1, . . . , R.
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Note that 0 ≤ St(y) ≤ Nt for all y ∈ R, and hence EQ(St(y))2 ≤ EQ(Nt)
2. For

each y ∈ R set

Γ(y) = EQ

[

(S1(y) − FV (y)N1)
2
]

/ [EQ(N1)]
2
,

which exists under the conditions of Theorem 5.
Let j = τRq+o(

√
τR) as R → ∞ and consider estimating ξq with YτR(j), that

is, the jth order statistic of Y1, . . . , YτR . The proof of the following CLT is given
in Appendix B.6.

Theorem 6. If X is polynomially ergodic of order m > 1, then, as R→ ∞,

√
R
(

YτR(j) − ξq
) d→ N

(

0,Γ (ξq) /f2
V (ξq)

)

.

Since ξ̂τR,q requires j such that 0 ≤ j − τRq < 1 we have the following
corollary.

Corollary 2. If X is polynomially ergodic of order m > 1, then, as R → ∞,

√
R(ξ̂τR,q − ξq)

d→ N
(

0,Γ (ξq) /f2
V (ξq)

)

.

To obtain an MCSE we need to estimate γ2R(ξq) := Γ(ξq)/f2
V (ξq). We sub-

stitute ξ̂τR,q for ξq and separately consider Γ(ξ̂τR,q) and fV (ξ̂τR,q). Of course,

we can handle estimating fV (ξ̂τR,q) exactly as before, so all we need to concern

ourselves with is estimation of Γ(ξ̂τR,q).
We can recognize Γ(y) as the variance of an asymptotic Normal distribution.

Let F̂R(y) =
∑R

t=1 St(y)/
∑R

t=1Nt. Then, using (17), we have that, with prob-

ability 1, as R → ∞, F̂R(y) → FV (y) for each fixed y. Moreover, using (18), for
each y ∈ R, as R → ∞,

√
R(F̂R(y) − FV (y))

d→ N (0,Γ(y)) .

We can consistently estimate Γ(y) for each y with

Γ̂R(y) =
1

RN̄2

R
∑

t=1

(St(y) − F̂R(y)Nt)
2.

Letting f̂V (ξ̂τR,q) denote an estimator of fV (ξ̂τR,q) we estimate γ2R(ξq) with

γ̂2R(ξ̂τR,q) :=
Γ̂(ξ̂τR,q)

f̂V (ξ̂τR,q)
.

Finally, if tR−1,α/2 is a quantile from a Student’s t distribution with R − 1
degrees of freedom, a 100(1 − α)% confidence interval for ξq is

ξ̂τR,q ± tR−1,α/2
γ̂R(ξ̂τR,q)√

R
. (19)



MCMC estimation of quantiles 2459

5. Examples

In this section, we investigate the finite-sample performance of the confidence
intervals for ξq defined at (12), (13), and (19) corresponding to BM, SBM and
RS, respectively. While each of our examples are quite different, the simulation
studies were conducted using a common methodology. In each case we perform
many independent replications of the MCMC sampler. Each replication was
performed for a fixed number of regenerations, then confidence intervals were
constructed on the same MCMC output. For the BM-based and SBM-based
intervals we always used bn = ⌊n1/2⌋, which has been found to work well in
other settings (Jones et al., 2006; Flegal and Jones, 2010; Flegal, 2012). In order
to estimate coverage probabilities we require the true values of the quantiles of
interest. These are available in only one of our examples. In the other example
we estimate the truth with an independent long run of the MCMC sampler. The
details are described in the following sections.

5.1. Polynomial target distribution

Jarner and Roberts (2007) studied MCMC for heavy-tailed target distributions.
A target distribution is said to be polynomial of order r if its density satis-
fies f(x) = (l(|x|)/|x|)1+r , where r > 0 and l is a normalized slowly varying
function—a particular example is Student’s t-distribution. We consider esti-
mating quantiles of Student’s t-distribution t(v) for degrees of freedom v = 3,
6, and 30; the t(v) distribution is polynomial of order v. We use a Metropolis
random walk algorithm with jump proposals drawn from a N(0, σ2) distribution.
By Proposition 3 of Jarner and Roberts (2007), a Metropolis random walk for
a t(v) target distribution using any proposal kernel with finite variance is poly-
nomially ergodic of order v/2. Thus the conditions of Theorem 4 and Corollary
2 are satisfied for v > 2.

We tuned the scale parameter σ2 in the proposal distribution in order to
minimize autocorrelation in the resulting chain (second row of Table 2); the
resulting acceptance rates varied from about 25% for t(3) with σ = 5.5, the
heaviest tailed target distribution, to about 40% for t(30) with σ = 2.5. Regen-
eration times were identified using the retrospective method of Mykland et al.
(1995); see Appendix C for implementation details, and the bottom rows of Ta-
ble 2 for regeneration performance statistics (mean and SD of tour lengths). For

Table 2

Metropolis random walk on t(v) target distribution with N(0, σ2) jump proposals, example of
Section 5.1

Target distribution
t(30) t(6) t(3)

Tuning parameter σ 2.5 3.5 5.5
Mean tour length 3.58 4.21 5.60
SD of tour lengths 3.14 3.80 5.23
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Table 3

Empirical coverage rates for nominal 95% confidence intervals for ξq , the q-quantile of the
t(v) distribution. Based on n = 104 replications of 500 or 2000 regenerations of a

Metropolis random walk with jump proposals drawn from a Normal distribution. The Monte
Carlo standard errors for the observed sample proportions fall between 1.5E-3 and 3.2E-3

Estimating ξq of t(v) distribution based on Normal Metropolis RW
500 regenerations 2000 regenerations

Quantile Method t(30) t(6) t(3) t(30) t(6) t(3)
BM 0.941 0.939 0.935 0.946 0.946 0.947

q = 0.50 SBM 0.946 0.945 0.947 0.948 0.949 0.950
RS 0.952 0.951 0.946 0.951 0.950 0.952
BM 0.935 0.931 0.932 0.946 0.939 0.945

q = 0.75 SBM 0.944 0.948 0.955 0.948 0.948 0.961
RS 0.947 0.942 0.942 0.951 0.944 0.951
BM 0.923 0.916 0.916 0.941 0.935 0.933

q = 0.90 SBM 0.926 0.942 0.957 0.948 0.955 0.976
RS 0.933 0.928 0.927 0.945 0.940 0.940
BM 0.906 0.898 0.895 0.934 0.930 0.931

q = 0.95 SBM 0.888 0.898 0.932 0.935 0.956 0.972
RS 0.914 0.909 0.906 0.938 0.936 0.935

each of the 104 replications and using each of (12), (13), and (19) we computed
a 95% confidence interval for ξq for q = 0.50, 0.75, 0.90, and 0.95.

Empirical coverage rates (percentage of the 104 intervals that indeed contain
the true quantile ξq) are shown in Table 3. We first note that, as might be
expected, agreement with the nominal coverage rate is closer for estimation
of the median than for the tail quantiles ξ.90 and ξ.95. As for comparing the
three approaches to MCSE estimation, we find that agreement with the nominal
coverage rate is closest for SBM on average, but SBM also shows the greatest
variability between cases considered, including a couple of instances (ξ.90 and ξ.95
for the t(3) target distribution) where the method appears overly conservative.
Results for BM and RS show less variability than those of SBM, with agreement
with the nominal rate being slightly better for RS.

Table 4 shows the mean and standard deviation of interval half-widths for the
three cases (defined by the quantile q and number of regenerations R) in which
all empirical coverage rates were at least 0.935. The most striking result here is
the huge variability in the standard errors as computed by SBM, particularly for
the heaviest tailed target distribution. Results for BM and RS are comparable,
with RS intervals being slightly wider and having slightly less variability. The
SBM intervals are generally as wide or wider, demonstrating again the apparent
conservatism of the method.

5.2. Probit regression

van Dyk and Meng (2001) report data which is concerned with the occurrence of
latent membranous lupus nephritis. Let yi be an indicator of the disease (1 for
present), xi1 be the difference between IgG3 and IgG4 (immunoglobulin G), and
xi2 be IgA (immunoglobulin A) where i = 1, . . . , 55. Let Φ denote the standard
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Table 4

Mean and standard deviation for half-widths of 95% confidence intervals for ξq , in 104

replications of Normal Metropolis random walk with R regenerations

q = 0.50, R = 500
Target distribution

MCSE Method t(30) t(6) t(3)
BM 0.120 (0.022) 0.127 (0.023) 0.134 (0.025)
SBM 0.121 (0.016) 0.129 (0.021) 0.146 (0.099)
RS 0.124 (0.015) 0.131 (0.017) 0.140 (0.020)

q = 0.50, R = 2000
Target distribution

MCSE Method t(30) t(6) t(3)
BM 0.061 (0.008) 0.064 (0.008) 0.068 (0.008)
SBM 0.060 (0.005) 0.064 (0.006) 0.072 (0.066)
RS 0.062 (0.004) 0.065 (0.005) 0.069 (0.006)

q = 0.75, R = 2000
Target distribution

MCSE Method t(30) t(6) t(3)
BM 0.066 (0.009) 0.072 (0.009) 0.080 (0.011)
SBM 0.066 (0.006) 0.074 (0.012) 0.094 (0.095)
RS 0.067 (0.005) 0.073 (0.006) 0.082 (0.008)

normal distribution function and suppose

Pr(Yi = 1) = Φ (β0 + β1xi1 + β2xi2)

and take the prior on β := (β0, β1, β2) to be Lebesgue measure on R3. Roy and
Hobert (2007) show that the posterior π(β|y) is proper. Our goal is to report
a median and an 80% Bayesian credible region for each of the three marginal
posterior distributions. Denote the qth quantile associated with the marginal

for βj as ξ
(j)
q for j = 0, 1, 2. Then the vector of parameters to be estimated is

Ξ =
(

ξ
(0)
.1 , ξ

(0)
.5 , ξ

(0)
.9 , ξ

(1)
.1 , ξ

(1)
.5 , ξ

(1)
.9 , ξ

(2)
.1 , ξ

(2)
.5 , ξ

(2)
.9

)

.

We will sample from the posterior using the PX-DA algorithm of Liu and
Wu (1999), which Roy and Hobert (2007) prove is geometrically ergodic. For a
full description of this algorithm in the context of this example see Flegal and
Jones (2010) or Roy and Hobert (2007).

We now turn our attention to comparing coverage probabilities for estimating
elements of Ξ based on the confidence intervals at (12), (13), and (19). We
calculated a precise estimate from a long simulation of the PX-DA chain and
declared the observed quantiles to be the truth–see Table 5. Roy and Hobert
(2007) implement RS for this example and we use their settings exactly with 25
regenerations. This procedure was repeated for 1000 independent replications
resulting in a mean simulation effort of 3.89E5 (2400). The resulting coverage
probabilities can be found in Table 6. Notice that for the BM and SBM intervals
all the coverage probabilities are within two MCSEs of the nominal 0.95 level.
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Table 5

Summary for Probit regression example of calculated “truth”. These calculations are based
on 9E6 iterations where the MCSEs are calculated using a BM procedure

q 0.1 0.5 0.9
β0 -5.348 (7.21E-03) -2.692 (4.00E-03) -1.150 (2.32E-03)
β1 3.358 (4.79E-03) 6.294 (7.68E-03) 11.323 (1.34E-02)
β2 1.649 (2.98E-03) 3.575 (5.02E-03) 6.884 (8.86E-03)

Table 6

Summary for estimated coverage probabilities and observed CI half-widths for Probit
regression example. CIs reported have 0.95 nominal level with MCSEs equal ranging from

6.5E-3 to 7.9E-3

Probability Half-Width
q 0.1 0.5 0.9 0.1 0.5 0.9

β0

BM 0.956 0.948 0.945 0.0671 (0.007) 0.0377 (0.004) 0.0222 (0.002)
RS 0.942 0.936 0.934 0.0676 (0.015) 0.0384 (0.008) 0.0226 (0.005)
SBM 0.952 0.947 0.955 0.0650 (0.006) 0.0375 (0.004) 0.0232 (0.003)

β1

BM 0.948 0.943 0.948 0.0453 (0.005) 0.0720 (0.007) 0.1260 (0.013)
RS 0.942 0.936 0.934 0.0459 (0.010) 0.0733 (0.016) 0.1270 (0.028)
SBM 0.954 0.942 0.940 0.0464 (0.005) 0.0716 (0.007) 0.1230 (0.012)

β2

BM 0.949 0.950 0.950 0.0287 (0.003) 0.0474 (0.005) 0.0825 (0.009)
RS 0.938 0.940 0.937 0.0292 (0.006) 0.0481 (0.010) 0.0831 (0.018)
SBM 0.955 0.948 0.948 0.0297 (0.003) 0.0470 (0.005) 0.0801 (0.008)

However, for RS only 7 of the 9 investigated settings are within two MCSEs of
the nominal level. In addition, all of the results using RS are below the nominal
0.95 level.

Table 6 gives the empirical mean and standard deviation of the half-width
of the BM-based, RS-based, and SBM-based confidence intervals. Notice the
interval lengths are similar across the three methods, but the RS-based interval
lengths are more variable. Further, the RS-based intervals are uniformly wider
on average than the BM-based intervals even though they have uniformly lower
empirical coverage probabilities.

5.3. A hierarchical random effects model

A well known data set first analyzed by Efron and Morris (1975) consists of the
batting averages of 18 Major League Baseball players in their first 45 official
at bats of the 1970 season. Let xi denote the batting average of the ith player,
and yi =

√
45 arcsin(2xi − 1), for i = 1, . . . ,K = 18. Since this represents the

variance stabilizing transformation of a binomial distribution, it is reasonable
to suppose that

yi|θi ∼ N(θi, 1) for i = 1, . . . ,K.

Here we consider a hierarchical model proposed by Rosenthal (1996). Specifically
we further assume that

θ1, . . . , θK are i.i.d. N(µ, λ)

where
p(µ, λ) ∝ λ−(b+1)e−c/λI(λ > 0)



MCMC estimation of quantiles 2463

Table 7

Monte Carlo estimates of posterior quantiles for θ9 in example of Section 5.3, taken as the
“truth” in subsequent analysis. Based on 2E7 independent draws

q 0.1 0.3 0.5 0.7 0.9

ξ
(9)
q -4.278 -3.771 -3.428 -3.087 -2.590

MCSE (2.6E-4) (1.9E-4) (1.8E-4) (1.9E-4) (2.5E-4)

Table 8

Empirical coverage rates of nominal 95% confidence intervals for ξ
(9)
q in example of Section

5.3. Based on 5000 simulations, MCSEs range from 3.3E-3 to 3.6E-3

q

Method 0.1 0.3 0.5 0.7 0.9
BM 0.936 0.939 0.942 0.944 0.934
SBM 0.941 0.937 0.939 0.940 0.941
RS 0.932 0.938 0.940 0.940 0.931

with b and c known hyperparameters; thus µ has the flat prior and λ has an
inverse gamma prior. This results in a proper posterior having dimensionK+2 =
20. Rosenthal (1996) developed a block Gibbs sampler for simulating from the
posterior distribution of (θ1, . . . , θK , µ, λ) and proved that the resulting Markov
chain is geometrically ergodic. Jones et al. (2006) showed how to implement
regenerative simulation.

Suppose we are interested in estimating the posterior quantiles ξ
(i)
q of a par-

ticular θi, representing the “true” (transformed) batting average of a particular
ballplayer. We conduct a simulation study to assess the performance of the con-
fidence intervals at (12), (13), and (19), corresponding to BM, SBM, and RS,
respectively.

Jones et al. (2006) showed how to simulate independent draws from the
posterior distribution via rejection sampling. Setting hyperparameter values at
b = c = 2, we generated 2E7 iterations of the rejection sampler to estimate the

quantiles ξ
(9)
q —the 9th player in Efron and Morris’s (1975) data set was Ron

Santo of the Chicago Cubs—and obtained the quantiles summarized in Table
7. We then ran 5000 replications of Rosenthal’s (1996) Gibbs sampler for 50 re-
generations each. Using the regeneration recipe of Jones et al. (2006), the mean
tour length was about 28 updates, with a standard deviation of approximately
28 as well. For each realized chain, we computed 95% confidence intervals for

ξ
(9)
q using each of (12), (13), and (19). Empirical coverage rates (with the values

in Table 7 taken as the “truth”) are reported in Table 8, and interval half-widths
are summarized in Table 9.

6. Discussion

We have focused on assessing the Monte Carlo error for estimating quantiles
in MCMC settings. In particular, we established quantile CLTs and considered
using batch means, subsampling and regenerative simulation to estimate the
variance of the asymptotic Normal distributions. We also studied the finite-
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Table 9

Mean (and standard deviation) of CI half-widths for nominal 95% confidence intervals for

ξ
(9)
q in example of Section 5.3, based on 5000 replications

Method
q BM SBM RS
0.1 0.0650 (0.010) 0.0656 (0.008) 0.0651 (0.011)
0.3 0.0514 (0.008) 0.0506 (0.006) 0.0519 (0.008)
0.5 0.0490 (0.007) 0.0479 (0.006) 0.0494 (0.008)
0.7 0.0507 (0.007) 0.0497 (0.006) 0.0511 (0.008)
0.9 0.0623 (0.009) 0.0631 (0.008) 0.0629 (0.011)

sample properties of the resulting confidence intervals in the context of three
examples.

Overall, the finite-sample properties were comparable across the three vari-
ance estimation techniques considered. However, SBM required substantially
more computational effort because it orders each of the n − b + 1 overlapping
blocks to obtain the quantile estimates. For example, we ran a three dimensional
probit regression Markov chain (Section 5.2) for 2×105 iterations and calculated
an MCSE for the median of the three marginals. The BM calculation took 0.37
seconds while the SBM calculation took 84.04 seconds, or 227 times longer.

The conditions required in the CLT in Theorem 4 are the same as those
required in the CLT of Theorem 6. However, RS requires stronger conditions in
the sense that it requires the user to establish a useful minorization condition
(14). Although minorization conditions are often nearly trivial to establish, they
are seen as a substantial barrier by practitioners because they require a problem-
specific approach. Alternatively, it is straightforward to implement the BM-
based and SBM-based approaches in general software–see the recent mcmcse R
package (Flegal and Hughes, 2012) which implements the methods of this paper.
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Appendix A: Preliminaries: Markov chains as mixing processes

Let S = {Sn} be a strictly stationary stochastic process on a probability space
(Ω,F , P ) and set F l

k = σ(Sk, . . . , Sl). Define the α-mixing coefficients for n =
1, 2, 3, . . . as

α(n) = sup
k≥1

sup
A∈Fk

1
, B∈F∞

k+n

|P (A ∩B) − P (A)P (B)|.

Let f : Ω → R be Borel. Set T = {f(Sn)} and let αT and αS be the α-mixing
coefficients for T and S, respectively. Then by elementary properties of sigma-
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algebras (cf. Chow and Teicher, 1978, p. 16) σ(Tk, . . . , Tl) ⊆ σ(Sk, . . . , Sl) = F l
k

and hence αT (n) ≤ αS(n) for all n.
Define the β-mixing coefficients for n = 1, 2, 3, . . . as

β(n) = sup
m∈N

A1,...,AI∈Fm
1

A1,...,AI partition Ω

B1,...,BJ∈F∞

m+n

B1,...,BJ partition Ω

1

2

I
∑

i=1

J
∑

j=1

|P (Ai ∩Bj) − P (Ai)P (Bj)| .

If β(n) → 0 as n→ ∞, we say that S is β-mixing while if α(n) → 0 as n→ ∞,
we say that S is α-mixing. It is easy to prove that 2α(n) ≤ β(n) (see Bradley,
1986, for discussion of this and other inequalities) for all n so that β-mixing
implies α-mixing.

Let X be a stationary Harris ergodic Markov chain on (X,B(X)), which has
invariant distribution π. In this case the expressions for the α- and β-mixing
coefficients can be simplified

α(n) = sup
A,B∈B

∣

∣

∣

∣

∫

A

π(dx)Pn(x,B) − π(A)π(B)

∣

∣

∣

∣

while Davydov (1973) showed that

β(n) =

∫

X

‖Pn(x, ·) − π(·)‖π(dx). (20)

Theorem 7. A stationary Harris ergodic Markov chain is β-mixing, hence α-
mixing. In addition, if (4) holds, then β(n) ≤ ψ(n)EπM for all n.

Proof. The first part is Theorem 4.3 of Bradley (1986) while the second part
can be found in the proof of Theorem 2 in Chan and Geyer (1994).

Since 2α(n) ≤ β(n) we observe that Theorem 7 ensures that if p ≥ 0, then

∞
∑

n=1

npψ(n) <∞ implies

∞
∑

n=1

npα(n) <∞. (21)

Appendix B: Proofs

B.1. Proof of Proposition 1

We begin by showing that we can weaken the conditions of Lemma 3.3 in Wang
et al. (2011).

Lemma 1. Let S = {Sn} be a stationary α-mixing process such that αS(n) ≤
Cn−β for some β > 1 and positive finite constant C. Assume the common
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marginal distribution function F is absolutely continuous with continuous den-
sity function f such that 0 < f(ξq) < ∞. For any θ > 0 and δ ∈ (9/(10 +
8β), 1/2) there exists n0 so that if n ≥ n0, then with probability 1

|ξ̂n,q − ξq| ≤
θ(log logn)1/2

f(ξq)n1/2−δ
.

Proof. Let ǫn = θ(log logn)1/2/fV (ξp)n1/2−δ. Set δn1 = F (ξq + ǫn)−F (ξq) and
note that by Taylor’s expansion there exists 0 < h < 1 such that

δn1 = ǫnf(ξq)
f(hǫn + ξq)

f(ξq)
.

Also, note that
f(hǫn + ξq)

f(ξq)
→ 1 n→ ∞

and hence for sufficiently large n

f(hǫn + ξq)

f(ξq)
≥ 1

2
.

Then for sufficiently large n

δn1 ≥ 1

2
ǫnf(ξq) =

θ

2

(log logn)1/2

n1/2−δ
.

A similar argument shows that for sufficiently large n

δn2 = F (ξq) − F (ξq − ǫn) ≥ θ

2

(log logn)1/2

n1/2−δ
.

The remainder exactly follows the proof of Lemma 3.3 in Wang et al. (2011)
and hence is omitted.

The proof of Proposition 1 will follow directly from the following Corollary.

Corollary 3. Suppose the stationary Markov chain X is polynomially ergodic
of order m > 1. For any θ > 0 and δ ∈ (9/(10 + 8m), 1/2) with probability 1
for sufficiently large n

|ξ̂n,q − ξq| ≤
θ(log logn)1/2

fV (ξq)n1/2−δ

and hence there is a positive constant C0 such that ξ̂n,q ∈
[ ξq −C0n

−1/2+δ
√

log logn, ξq +C0n
−1/2+δ

√
log logn ] with probability 1 for suf-

ficiently large n.

Proof. Let αY (n) be the strong mixing coefficients for Y = {g(Xn)} and note
that αY (n) ≤ n−mEπM by Theorem 7. The remainder follows from Lemma 1
and our basic assumptions on FV and fV .
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B.2. Proof of Theorems 2 and 3

We begin with some preliminary results.

Lemma 2. Let X be stationary with β–mixing coefficients β(n). Suppose h :
X → R and set W = {h(Xn)}. If ||h|| := supx∈X

|h(x)| < ∞, then for any
integer a ∈ [1, n/2] and each ǫ > 0,

Pr

(
∣

∣

∣

∣

∣

n−1
∑

i=0

(Wi−EπWi)

∣

∣

∣

∣

∣

> nǫ

)

≤ 4 exp

{

− aǫ2

8||h||2
}

+11a

(

1+
4||h||
ǫ

)1/2

β

(⌊

n

2a

⌋)

.

Proof. This follows easily by combining observations in Appendix A with The-
orem 1.3 from Bosq (1998).

Lemma 3 (Theorem 2, Glynn and Ormoneit, 2002). Suppose (5) holds, and
h : X → R with ||h|| := supx∈X |h(x)| < ∞. Set W = {h(Xn)} and let ǫ > 0,
then for n > 2||h||n0/(λǫ)

Pr

(

n−1
∑

i=0

Wi − E

(

n−1
∑

i=0

Wi

)

≥ nǫ

)

≤ exp

{

−λ
2(nǫ− 2||h||n0/λ)2

2n||h||2n2
0

}

.

Lemma 4. Suppose X0 ∼ π and let g : X → R be Borel, Y = {g(Xn)} and
ǫ > 0 If Wn = I(Yn > ξq + ǫ) and δ1 = FV (ξq + ǫ) − q, then

Pr
(

ξ̂n,q > ξq + ǫ
)

≤ Pr

(
∣

∣

∣

∣

∣

n−1
∑

i=0

(Wi − EπWi)

∣

∣

∣

∣

∣

> nδ1

)

(22)

while if Vn = I(Yn ≤ ξq − ǫ) and δ2 = q − FV (ξq − ǫ), then for 0 < δ < 1

Pr
(

ξ̂n,q < ξq − ǫ
)

≤ Pr

(∣

∣

∣

∣

∣

n−1
∑

i=0

(Vi − EπVi)

∣

∣

∣

∣

∣

> nδ2δ

)

. (23)

Proof. We compute

Pr
(

ξ̂n,q > ξq + ǫ
)

= Pr
(

Fn(ξ̂n,q) > Fn(ξq + ǫ)
)

= Pr (q > Fn(ξq + ǫ))

= Pr

(

n−1
∑

i=0

I(Yi > ξq + ǫ) > n(1 − q)

)

= Pr

(

n−1
∑

i=0

(Wi − EπWi) > nδ1

)

≤ Pr

(
∣

∣

∣

∣

∣

n−1
∑

i=0

(Wi − EπWi)

∣

∣

∣

∣

∣

> nδ1

)

.
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Similarly,

Pr
(

ξ̂n,q < ξq − ǫ
)

≤ Pr
(

Fn(ξ̂n,q) ≤ Fn(ξq − ǫ)
)

≤ Pr (q ≤ Fn(ξq − ǫ))

= Pr

(

n−1
∑

i=0

I(Yi ≤ ξq − ǫ) ≥ nq

)

= Pr

(

n−1
∑

i=0

(Vi − EπVi) ≥ nδ2

)

≤ Pr

(∣

∣

∣

∣

∣

n−1
∑

i=0

(Vi − EπVi)

∣

∣

∣

∣

∣

> nδ2δ

)

.

Proof of Theorem 2. Let ǫ > 0. Then

Pr
(∣

∣

∣
ξ̂n,q − ξq

∣

∣

∣
> ǫ
)

= Pr
(

ξ̂n,q > ξq + ǫ
)

+ Pr
(

ξ̂n,q < ξq − ǫ
)

.

From Lemmas 2 and 4, we have for any integer a ∈ [1, n/2],

Pr
(

ξ̂n,q > ξq + ǫ
)

≤ 4 exp

{

−aδ
2
1

8

}

+ 11a

(

1 +
4

δ1

)1/2

β
(⌊ n

2a

⌋)

and

Pr
(

ξ̂n,q < ξq − ǫ
)

≤ 4 exp

{

−a(δ2δ)
2

8

}

+ 11a

(

1 +
4

δ2δ

)1/2

β
(⌊ n

2a

⌋)

.

Suppose γ = min{δ1, δ2δ}, then

Pr
(∣

∣

∣
ξ̂n,q − ξq

∣

∣

∣
> ǫ
)

≤ 8 exp

{

−aγ
2

8

}

+ 22a

(

1 +
4

γ

)1/2

β
(⌊ n

2a

⌋)

.

Finally note that by Theorem 7

β
(⌊ n

2a

⌋)

≤ ψ
(⌊ n

2a

⌋)

EπM.

Proof of Corollary 1. As in the proof of Theorem 2 we have

Pr
(∣

∣

∣
ξ̂n,q − ξq

∣

∣

∣
> ǫ
)

≤ 8 exp

{

−aγ
2

8

}

+ 22a

(

1 +
4

γ

)1/2

β
(⌊ n

2a

⌋)

.

That

β
(⌊ n

2a

⌋)

≤ (1 − λ)

⌊

n
2an0

⌋

follows from (20) and that ‖Pn(x, ·) − π(·)‖ ≤ (1 − λ)⌊n/n0⌋ for all n.
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Proof of Theorem 3. First note that

Pr
(∣

∣

∣
ξ̂n,q − ξq

∣

∣

∣
> ǫ
)

= Pr
(

ξ̂n,q > ξq + ǫ
)

+ Pr
(

ξ̂n,q < ξq − ǫ
)

.

From Lemmas 3 and 4 we have for n > 2n0/(λδ1)

Pr
(

ξ̂n,q > ξq + ǫ
)

≤ exp

{

−λ
2(nδ1 − 2n0/λ)2

2nn2
0

}

and for n > 2n0/(λδδ2)

Pr
(

ξ̂n,q < ξq − ǫ
)

≤ exp

{

−λ
2(nδδ2 − 2n0/λ)2

2nn2
0

}

,

Suppose γ = min{δ1, δδ2}, then for n > 2n0/(λγ)

Pr
(
∣

∣

∣
ξ̂n,q − ξq

∣

∣

∣
> ǫ
)

≤ 2 exp

{

−λ
2(nγ − 2n0/λ)2

2nn2
0

}

.

B.3. Proof for Example 1

Let q(x) denote the density of a t(3) distribution, fX(x) the density of a t(4)
distribution, fY |X(y|x) the density of a Gamma(5/2, 2 +x2/2) distribution and
π(x, y) the density at (7). Then the Markov chain has Markov transition density
given by

k(x′, y′|x, y) = fY |X(y′|x′)k(x′|x)

where

k(x′|x) ≥ q(x′)

{

1 ∧ fX(x′)q(x)

fX(x)q(x′)

}

= fX(x′)

{

q(x)

fX(x)
∧ q(x′)

fX(x′)

}

.

Since for all x
q(x)

fX(x)
≥

√
9375

32π

we have that for all x, y

k(x′, y′|x, y) ≥
√

9375

32π
fY |X(y′|x′)fX(x′) =

√
9375

32π
π(x′, y′)

and our claim follows immediately.

B.4. Proof of Theorem 4

We need some notation and few definitions before we begin; for more background
on what follows the reader should consult van der Vaart and Wellner (1996).
A class T of a set S is said to pick out a subset C of the set {x1, . . . , xn} ⊂ S if
C = T∩{x1, . . . , xn} for some T ⊂ T . The class T is said to shatter {x1, . . . , xn}
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if it picks out all 2n possible subsets. T is a V-C class if there is some n < ∞
such that no subset of size n is shattered by T . The subgraph of a function
f : S → R is the set {(s, t) : 0 ≤ t ≤ f(s) or f(s) ≤ t ≤ 0}. A class of functions
F is a V-C subgraph class if the class of its subgraphs is a V-C class of sets (in
S × R).

Let F be a class of functions and define for f ∈ F

Gn(f) :=
1√
n

n−1
∑

i=0

(f(Xi) − E(f(Xi))).

If, considered as a process indexed by F , Gn converges to a Gaussian limit
process in the space

l∞(F) :=

{

g : F → R : sup
f∈F

|g(f)| <∞
}

equipped with the supremum metric, then we say that {Xi} satisfies a functional
CLT.

We begin with a preliminary result.

Lemma 5. Let F be a measurable uniformly bounded V-C subgraph class of
functions. If X is stationary and polynomially ergodic of order m > 1, then there
is a Gaussian process {G(f)}f∈F which has a version with uniformly bounded
and uniformly continuous paths with respect to the L2(π)-norm such that

{

n−1/2
n
∑

i=1

(f(Xi) − Eπf)

}

f∈F

=⇒ {G(f)}f∈F in l∞(F). (24)

Moreover,

Var(G(f)) = E[f(X0) − E(f(X0))]2

+ 2

∞
∑

i=1

E [(f(X0) − E(f(X0)))(f(Xi) − E(f(Xi)))] . (25)

Proof. In light of our Theorem 7, (24) follows from Corollary 2.1 in Arcones
and Yu (1994) and (25) follows from Theorem 0 in Bradley (1985).

Proof of Theorem 4. Let I = {1(−∞,t]}t∈R and set F = I ◦g = {1(−∞,t]◦g}t∈R.
The class of indicator functions I = {1(−∞,t]}t∈R is a uniformly bounded V-C
class (see Example 2.6.1, page 135, and Problem 9, page 151, in van der Vaart
and Wellner (1996)). By Lemma 2.6.18(vii), page 147, in van der Vaart and Well-

ner (1996) I ◦g is thus also a V-C class. Letting Fn(t) = (1/n)
∑n−1

i=0 1(−∞,t](Yi)
and using Lemma 5 shows that the empirical process

√
n(Fn − FV ), satisfies

√
n(Fn − FV ) =⇒ G (26)

for a Gaussian process G. Since FV is continuously differentiable on [a, b] =
[F−1

V (p) − ǫ, F−1
V (q) + ǫ] for 0 < p < q < 1 and some ǫ > 0, with positive
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derivative fV , it now follows from Theorem 3.9.4 and Lemma 3.9.23(i) in van der
Vaart and Wellner (1996) that

√
n
(

F
−1
n − F−1

V

)

=⇒ − G ◦ F−1
V

fV ◦ F−1
V

, in l∞[p, q], (27)

Now, since the class F = I ◦ g is a (uniformly) bounded class by (27) we have
that the variance of G(y) (which corresponds to evaluating G at f = 1(−∞,y]◦g)
is

E
(

1(−∞,y](Y0) − FV (y)
)2

+ 2
∞
∑

i=1

E
(

(1(−∞,y](Y0) − FV (y))(1(−∞,y](Yi) − FV (y))
)

= σ2(y), (28)

where σ2(y) is as defined in (9). To finish, we need to evaluate the processes in
(27) at q so that (28) gives us that the variance of G(ξq) is σ2(ξq) and thus the
variance of −G(ξq)/fV (ξq) = σ2(ξq)/f2

V (ξq) as desired.
That the same conclusion holds for any initial distribution follows from the

same argument as in Theorem 17.1.6 of Meyn and Tweedie (2009).

B.5. Proof of Theorem 5

There exists ǫ > 0 such that m > 1 + ǫ+ 2/δ. Using (21) we have that

∞
∑

n=1

nǫ+2/δα(n) <∞.

Samur’s (2004) Proposition 3.1 implies that EQN
2+ǫ+2/δ
1 < ∞, and Samur’s

(2004) Corollary 3.5 says there exists 2 < p1 < 2 + δ such that EQ(S1)p1 <∞.

B.6. Proof of Theorem 6

We require a preliminary result before proceeding with the rest of the proof.

Lemma 6. If X is polynomially ergodic of order m > 1, then Γ(y) is continuous
at ξq.

Proof. Denote the limit from the right and left as limy→x+ and limy→x− , re-
spectively. From the assumption on FV it is clear that

lim
y→ξ+q

FV (y) = lim
y→ξ−q

FV (y). (29)

Recall that

S1(y) =

τ1−1
∑

i=0

I(Yi ≤ y).

Let Z1(y) = S1(y)−FV (y)N1 and note EQ[Z1(y)] = 0 since Hobert et al. (2002)
show

EQS1(y) = FV (y)EQN1 for all y ∈ R. (30)
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Equations (29) and (30) yield EQ[limy→ξ+q
S1(y)] = EQ[limy→ξ−q

S1(y)]. The

composition limit law and (29) result in

EQ

[

lim
y→ξ+q

Z1(y)2

]

= EQ

[

lim
y→ξ−q

Z1(y)2

]

. (31)

What remains to show is that the limit of the expectation is the expectation of
the limit. Notice that 0 < S1(y) ≤ N1 for all y ∈ R and

|Z1(y)| = |S1(y) − FV (y)N1| ≤ S1(y) +N1 ≤ 2N1,

which implies EQ[Z1(y)2] ≤ 4EQN
2
1 . By Theorem 5 EQN

2
1 <∞ and the domi-

nated convergence theorem gives, for any finite x,

lim
y→x

EQ

[

Z1(y)2
]

= EQ

[

lim
y→x

Z1(y)2
]

.

Finally, from the above fact and (31) we have

lim
y→ξ+q

EQ

[

Z1(y)2
]

= lim
y→ξ−q

EQ

[

Z1(y)2
]

,

and hence EQ[Z1(y)2] is continuous at ξq implying the desired result.

Hobert et al. (2002) show that Γ(y) = σ2(y)Eπs where s is defined at (14),
which yields the following corollary.

Corollary 4. Under the conditions of Lemma 6, σ2(y) is continuous at ξq.

Proof of Theorem 6. Notice

Pr
(√

R
(

YτR(j) − ξq
)

≤ y
)

= Pr
(

YτR(j) ≤ ξq + y/
√
R
)

= Pr

(

τR−1
∑

k=0

I{Yk ≤ ξq + y/
√
R} ≥ j

)

= Pr

(

τR−1
∑

k=0

[

I{Yk ≤ ξq + y/
√
R} − FV

(

ξq + y/
√
R
)

]

≥ j − τRFV

(

ξq + y/
√
R
)

)

= Pr

(√
R

τR

τR−1
∑

k=0

WR,k ≥ sR

)

,

where

WR,k = I{Yk ≤ ξq + y/
√
R} − FV

(

ξq + y/
√
R
)

, k = 0, . . . , τR − 1,
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and

sR =

√
R

τR

(

j − τRFV

(

ξq + y/
√
R
))

.

First, consider the sR sequence. Let h : R+ → R+ satisfy limR→∞ h(τR)/√
τR = 0 and set j = τRq + h(τR). Note that q = FV (ξq). For y 6= 0

sR =

√
R

τR

(

j − τRFV (ξq + y/
√
R)
)

=

√
R

τR

(

τRq + h(τR) − τRFV (ξq + y/
√
R)
)

= −y
y

√
R

τR

(

τRFV (ξq + y/
√
R) − τRq

)

+

√
R

τR
h(τR)

= −y
√
R

y

(

FV (ξq + y/
√
R) − FV (ξq)

)

+

√
R

τR
h(τR)

= −y
(

FV (ξq + y/
√
R) − FV (ξq)

y/
√
R

)

+
h(τR)√
N̄
√
τR
,

which, as R → ∞, converges to −yfV (ξq) since N̄ → E(N1) with probability 1

where 1 ≤ E(N1) < ∞ by Kac’s theorem. If y = 0, then sR = h(τR)/
√
N̄
√
τR

and hence sR → 0 as R → ∞. Thus for all y we have sR → −yfV (ξq) as R → ∞.
Second, consider WR,k

√
R

τR

[

Γ
(

ξq + y/
√
R
)]1/2

τR−1
∑

k=0

WR,k
d→ N(0, 1).

Lemma 6 and the continuous mapping theorem imply

√
R

τR [Γ (ξq)]
1/2

τR−1
∑

k=0

WR,k
d→ N(0, 1). (32)

Using sR → −yfV (ξQ) as R → ∞, (32), and Slutsky’s Theorem, we conclude
that, as R → ∞,

P
(√

R
(

YτR(j) − ξq
)

≤ y
)

= P

( √
R

τR [Γ (ξq)]
1/2

τR−1
∑

k=0

WR,k ≥ sR

[Γ (ξq)]
1/2

)

→ 1 − Φ

{

−yfV (ξq)

[Γ (ξq)]1/2

}

= Φ

{

yfV (ξq)

[Γ (ξq)]1/2

}

,

resulting in
√
R
(

YτR(j) − ξq
) d→ N

(

0,
Γ (ξq)

f2
V (ξq)

)

.
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Appendix C: Regenerative simulation in example of Section 5.1

The minorization condition necessary for RS is, at least in principle, quite
straightforward for a Metropolis-Hastings algorithm. Let q(x, y) denote the pro-
posal kernel density, and α(x, y) the acceptance probability. Then P (x, dy) ≥
q(x, y)α(x, y)dy, since the right hand side only accounts for accepted jump pro-
posals, and the minorization condition is established by finding s′ and ν′ such
that q(x, y)α(x, y) ≥ s′(x)ν′(y). By Theorem 2 of Mykland et al. (1995), the
probability of regeneration on an accepted jump from x to y is then given by

rA(x, y) =
s′(x)ν′(y)

q(x, y)α(x, y)
.

Letting π denote the (possibly unnormalized) target density, we have for a
Metropolis random walk

α(x, y) = min

{

π(y)

π(x)
, 1

}

≥ min

{

c

π(x)
, 1

}

min

{

π(y)

c
, 1

}

for any positive constant c. Further, for any point x̃ and any set D we have

q(x, y) ≥ inf
y∈D

{

q(x, y)

q(x̃, y)

}

q(x̃, y)ID(y).

Together, these inequalities suggest one possible choice of s′ and ν′, which results
in

rA(x, y) = ID(y) × infy∈D {q(x, y)/q(x̃, y)}
q(x, y)/q(x̃, y)

× min {c/π(x), 1}min {π(y)/c, 1}
min {π(y)/π(x), 1} .

(33)
For a t(v) target distribution, α(x, y) reduces to

min

{

(

v + x2

v + y2

)

v+1

2

, 1

}

≥ min

{

(

v + x2

c

)

v+1

2

, 1

}

×min

{

(

c

v + y2

)
v+1

2

, 1

}

and the last component of (33) is given, up to the constant c, by

[

min
{

v + x2, c
}

min {v + x2, v + y2} × v + y2

max {v + y2, c}

]

v+1

2

.

Since this piece of the acceptance probability takes the value 1 whenever v+x2 <
c < v + y2 or v + y2 < c < v + x2, it makes sense to take c equal to the median
value of v +X2 under the target distribution.

The choice of x̃ and D, and the functional form of the middle component
of (33), will of course depend on the proposal distribution. For the Metropolis
random walk with Normally distributed jump proposals, q(x, y) ∝ exp{− 1

2σ2 (y−
x)2}, taking D = [x̃− d, x̃+ d] for d > 0 gives

infy∈D {q(x, y)/q(x̃, y)}
q(x, y)/q(x̃, y)

= exp

{

− 1

σ2
{(x− x̃)(y − x̃) + d|x− x̃|}

}

.
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For the t(v) distributions we can take x̃ = 0 in all cases, but the choice of d
should depend on v. With the goal of maximizing regeneration frequency, we
arrived at, by trial and error, d = 2

√

v/(v − 2), or two standard deviations in
the target distribution.
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