
Electronic Journal of Statistics

Vol. 8 (2014) 1940–1972
ISSN: 1935-7524
DOI: 10.1214/14-EJS940

Trimmed Granger causality between

two groups of time series

Ying-Chao Hung∗

Department of Statistics
National Chengchi University

Taipei 11605
Taiwan

e-mail: hungy@nccu.edu.tw

Neng-Fang Tseng

Department of Mathematical Statistics and Actuarial Science
Aletheia University

Taipei 25103
Taiwan

e-mail: au4225@mail.au.edu.tw

and

Narayanaswamy Balakrishnan

Department of Mathematics and Statistics
McMaster University

Hamilton
Ontario

Canada L8S 4K1
e-mail: bala@mcmaster.ca
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economics, engineering, medicine, neuroscience, and biology. In this paper,
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on the context of Granger causality and vector autoregressive (VAR) model
is introduced. The idea is to characterize a subset of “important variables”
for both groups of time series so that the underlying causal structure can be
presented based on minimum variable information. When the VAR model is
specified, explicit solutions are provided for the identification of important
variables. When the parameters of the VAR model are unknown, an effi-
cient statistical hypothesis testing procedure is introduced to estimate the
solution. An example representing the stock indices of different countries
is used to illustrate the proposed methods. In addition, a simulation study
shows that the proposed methods significantly outperform the Lasso-type
methods in terms of the accuracy of characterizing the simplified causal
relationship.
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1. Introduction

Over the years, the causality system described by a multivariate time series pro-
cess has been one of the most flexible and popular statistical techniques used for
measuring the dynamic relationships between groups of variables in such diverse
fields as economics, engineering, medicine, neuroscience, and biology. A pioneer-
ing study of causal relationships dates back to the work of Granger [12], wherein
a 2-variate autoregressive model was used to identify the “causality” between
two time series based on precedence and predictability. Afterwards, a fairly
rich literature has emerged on this topic by utilizing the vector autoregressive
(VAR) model - a general macroeconometric framework introduced by Sims [34]
and shown promising in describing the temporal dependence in multiple time
series. For example, Hsiao [17] introduced different types of causal relationships
for a 3-variate VAR model. Osborn [27] discussed the “Unidirectional Granger
Causality” based on the VAR model with MA errors and adopted it in sta-
tistical hypothesis testing procedures. Geweke [10, 11] considered measures of
linear dependence and feedback between multiple time series data and provided
a comprehensive survey of the literature on Granger causality. Boudjellaba et al.
[5] tested Granger causality between two vectors in multivariate ARMA mod-
els. Mosconi and Giannine [26] investigated the Granger causality based on a
non-stationary VAR model. Roebroech et al. [29] used the Granger causality
mapping (GCM) to explore directed influences between neuronal populations in
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a fMRI data. While Hacker and Hatemi-J [13] developed a method that is not
sensitive to deviations from the assumption of normal error, Fujita et al. [9] pro-
posed an improved VAR model (called DVAR) for estimating time-varying gene
regulatory networks based on gene expression profiles obtained from microarray
experiments. Shojaie and Michailidis [30] proposed truncating lasso penalty to
estimate causal relationships from time-course gene expression data.

In this work, we focus on the notion of causality in multivariate stochas-
tic processes introduced by Granger [12] and Dufour and Renault [8]. Then by
definition, the so-called Granger causality between two groups of time series in-
dicates that the past values of variables in one group can help predict the future
values of variables in the other group. It is shown that the existence of Granger
causality can be validated by examining a designated subset of the VAR coeffi-
cients. For large VARmodels where some of the coefficients are zero/insignificant
(the so-called spare VAR model), the result of the Granger causality test can
be misinterpreted since some variables in the model may not contribute to the
prediction of variables of interest (i.e., some variables are not Granger-causal
for the variables of interest). Obviously, these variables are “unimportant” in
describing the underlying causal structure and may mislead the causal inference.
Therefore, our goal here is to identify the unimportant variables in the primarily
introduced VAR model so that a simplified causal relationship, called trimmed
Granger causality, can be presented by a small subset of “important variables”.

The estimation of coefficients for large VAR models appears to be a challeng-
ing task due to a limited number of stationary observations. A straightforward
way to tackle this problem is to utilize the idea of l1-penalized regression (Lasso)
so that some of the VAR coefficients are shrunk to zero (Tibshirani [36]). The
Lasso-penalized VAR modeling approach and its variants (Arnold et al. [1], Song
and Bickel [35], Davis et al. [7], Basu and Michailidis [3]) provide a convenient
tool for solving the desired variable-selection problem. However, this type of
approaches have the disadvantage that the accuracy of the estimated important
variables (or the estimated trimmed Granger causality) can not be satisfactorily
controlled based on finite samples (see Section 5.2 for numerical illustrations).
To overcome this issue, we propose an alternative framework based on which the
important variables are identified by validating a class of designated constraints
on the VAR coefficients throughout a sequential hypothesis testing procedure.
By setting appropriate bounds on the type I error rates of the associated tests,
the proposed framework allows us to better control the accuracy of the estimated
important variables without requiring much computational cost.

The rest of this paper is organized as follows. Section 2 introduces the VAR
model, assumptions, some basic concepts of projection theory, and preliminar-
ies needed for establishing the desired causal relationship. Section 3 depicts
how the important variables are defined so as to form the trimmed Granger
causality when the VAR model is specified. Theoretical basis that facilitates
the hypothesis testing procedure introduced in Section 4 is also established.
Section 4 presents a hypothesis testing procedure for identifying the important
variables when the VAR coefficients are unknown and so need to be estimated
based on observed data. The presented procedure has many stages involving
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efficient search algorithms (i.e., the backward and forward search), the Wald
tests with constrained parameter spaces, bootstrap sampling, and control of
type I error rates for multiple testing. Section 5 illustrates the proposed proce-
dure and discusses the power of the associated Wald tests using a real example.
A simulation study is also carried out to compare the accuracy of the proposed
search methods with that of the Lasso-penalized VAR approach. Finally, some
concluding remarks are made in Section 6.

2. Preliminaries

Many different definitions of causal relationships have been proposed in the
literature. In this work, we mainly focus on the notion of causality in multivariate
stochastic processes introduced by Granger [12] and Dufour and Renault [8].
We shall introduce it briefly now. Consider a measurable space on which the
set of square integrable L2-functions form a vector space, called the L2-space.
The “causality” discussed here is defined in terms of projection of an L2-space
onto the Hilbert space with respect to a probability measure µ, where for any
integrable L2-functions f and g, the “inner product” in the Hilbert space is
defined as

< f, g >=

∫

X

fgdµ = E(fg).

Consider a random vector W = (W1,W2, . . . ,WK)′ with each element Wi ∈ L2,
and let IW be the linear manifold spanned by all W1, . . . ,WK . For any given
random variable X in L2, a reasonable quantity to estimate X is the projection
onto IW such that the mean squared error (M.S.E.) can be minimized; that is,
to consider the following estimator

PIW (X) = arg min
c∈IW

E(X − c)2.

By definition, PIW (X) is also the best linear predictor of X in IW . The same
notation can also be used if X represents a random vector.

Suppose there are two multivariate time series Xt = (X1,t, . . . , Xn,t)
′ and

Yt = (Y1,t, . . . , Ym,t)
′, which were possibly identified by economic theory, expert

knowledge, and experience. The primary goal of the so-called “Granger causal-
ity” is to examine whether or not the time series Yt is useful in forecasting the
time series Xt. As shown in the literature, this type of study largely relies on
the pth-order Vector Autoregression (VAR) model of the form

Wt = c+

p
∑

j=1

AjWt−j + at, (2.1)

where c is a K × 1 constant vector, K = n+m, Wt = vec(Xt, Yt) = (W1,t, . . . ,
WK,t)

′ is a K × 1 random vector (“vec” is the column stacking operator), Aj is
a K×K coefficient matrix for all j = 1, . . . , p, and at is a K× 1 error (or noise)
vector satisfying E(at) = 0, (ii) the covariance matrix E(ata

′

t) = Σa is positive
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definite (thus non-singular), and (iii) E(ata
′

t−k) = 0 for any non-zero k. Since
Wt is composed of Xt and Yt, (2.1) can be further represented as

Wt =

(

Xt

Yt

)

=

(

cX
cY

)

+

p
∑

j=1

(

AXX,j AXY,j

AY X,j AY Y,j

)(

Xt−j

Yt−j

)

+

(

aX,t

aY,t

)

, (2.2)

where cX and cY are n× 1 and m× 1 constant vectors, AXX,j , AXY,j , AY X,j ,
and AY Y,j are sub-matrices of Aj of orders n × n, n ×m, m× n, and m ×m,
respectively, and aX,t and aY,t are n× 1 and m× 1 error vectors.

Define two information sets based on all the observations up to time t as

ΩXY = {(Xs, Ys) : s ≤ t}

and
ΩX = {Xs : s ≤ t}.

Let IXY and IX be the linear manifolds spanned by all the random variables
in ΩXY and ΩX , respectively. For any given future time (t+ h), we denote the
best linear predictors of Xt+h based on the information sets ΩXY and ΩX by

X̂t(h|ΩXY ) = (X̂1,t(h|ΩXY ), . . . , X̂n,t(h|ΩXY ))
′

and
X̂t(h|ΩX) = (X̂1,t(h|ΩX), . . . , X̂n,t(h|ΩX))′,

respectively. Then, according to the definitions introduced earlier, it is clear that

X̂t(h|ΩXY ) = PIXY
(Xt+h) and X̂t(h|ΩX) = PIX (Xt+h).

The two-group causality, also known as a generalization of Granger causality, is
defined as follows.

Definition 2.1 (Two-group Causality/Non-causality up to Horizon c). Given
any positive integer c, if X̂t(h|ΩX) 6= X̂t(h|ΩXY ) for some h ≤ c, then we say
that Yt causes Xt up to horizon c, and denote it by Y →

(c)
X . On the other hand,

if X̂t(h|ΩX) = X̂t(h|ΩXY ) for all h ≤ c, then we say that Yt does not cause Xt

up to horizon c, and denote it by Y 9

(c)
X .

Remark 1.

(a) In practice, the value of c in Definition 2.1 is chosen by the user/designer. If
c is chosen to be ∞, the two-group causality is known as the Granger causality;
(b) It is clear that if Y →

(c)
X , then there exists at least one pair (i, h) ∈

{1, . . . , n} × {1, . . . , c} such that

E
(

X̂i,t(h|ΩXY )−Xi,t+h

)2

< E
(

X̂i,t(h|ΩX)−Xi,t+h

)2

,

where X̂i,t(h|ΩXY ) and X̂i,t(h|ΩX) are the i-th elements of X̂t(h|ΩXY ) and

X̂t(h|ΩX), respectively.
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Fact 2.1. Based on the model in (2.1) and (2.2), for any positive integer c, we
have Y 9

(c)
X if and only if AXY,j = 0n×m for all j = 1, . . . , p.

Proof. Since Y 9

(c)
X is equivalent to Y 9

(∞)
X (see Dufour and Renault [8],

Proposition 2.3) and Y 9

(∞)
X if and only if AXY,j = 0n×m for all j = 1, . . . , p

(see Lütkepohl [23], Corollary 2.2.1), the result follows immediately.

Fact 2.1 indicates that for any given prediction horizon c, the existence of
Granger causality between Yt and Xt can be validated by examining merely the
coefficient matrix AXY,j. However, as pointed by Lütkepohl [21], the result does
not hold if the information set is changed (e.g., adding or removing variables
from the information set). Since changing the information set is the main theme
of our proposed methods shown later in Section 4, it is then necessary to ex-

amine the coefficient matrix A
(h)
XY,j associated with the h-step predictor for all

h ≤ c (see (2.7) for details). We now review some important properties that are
essential for establishing the theoretical results in Section 3.

Lemma 2.1. Let I1 and I2 be two subspaces of a linear manifold I. Then, we
have:
(a) for any random variable X ∈ I1, PI1(X) = X;
(b) for any random variable X ∈ I, PI1 (X) = PI1 [PI2(X)] if and only if I1 ⊂ I2.

Proof. For a proof, one may refer to Berberian (1961) [4].

Lemma 2.2. Consider the VAR(p) model described in (2.1), and let IW be the
linear manifold spanned by all the variables in ΩW = {(W1,s, . . . ,WK,s) : s ≤ t}.
For any random variable V ∈ IW , there exist a sequence of constant cn0 and row
vectors cn1 , c

n
2 , . . . such that

cn0 +
n
∑

i=1

cni Wt+1−i
L2

−−→ V as n → ∞, (2.3)

where “
L2

−−→” stands for “convergence in quadratic mean”. Let limn→∞ cni = ci
for i = 0, 1, . . ., then c0, c1, . . . are unique.

Proof. The existence of cn0 , c
n
1 , . . . satisfying (2.3) comes directly from the re-

sult of projection theorem (Luenberger [20], p. 51). To prove that c0, c1, . . . are
uniquely determined, we assume there exists another sequence of constant bn0
and row vectors bn1 , b

n
2 , . . . such that

bn0 +

n
∑

i=1

bni Wt+1−i
L2

−−→ V as n → ∞, (2.4)

where limn→∞ bni = bi for i = 0, 1, . . . . Upon subtracting (2.4) from (2.3), we
have

(cn0 − bn0 ) +

n
∑

i=1

(cni − bni )Wt+1−i
L2

−−→ 0 as n → ∞, (2.5)
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and thus

E

[

(cn0 − bn0 ) +

n
∑

i=1

(cni − bni )Wt+1−i

]

→ 0 as n → ∞. (2.6)

Recall that at represents the white noise in the VAR(p) model. Multiplying
at on the left hand side of (2.5) and applying Cauchy-Schwarz inequality for
expectations, we have

E

([

(cn0 − bn0 ) +

n
∑

i=1

(cni − bni )Wt+1−i

]

a′t

)

→ 0 as n → ∞.

Since E(a′t) = 0 and E(Wt+1−ia
′

t) = 0 for all i ≥ 2, we then have

lim
n→∞

(cn1 − bn1 )E(Wta
′

t) = 0,

and thus
lim
n→∞

(cn1 − bn1 )E(ata
′

t) = 0.

Since E(ata
′

t) is a non-singular matrix, we have lim
n→∞

(cn1 − bn1 ) = 0, and thus

c1 = b1. Taking the result back to (2.6), we have a new expression

E

[

(cn0 − bn0 ) +

n
∑

i=2

(cni − bni )Wt+1−i

]

→ 0 as n → ∞.

Continuing in this fashion, we can show bi = ci for all i = 0, 1, 2, . . ., that is, all
ci are uniquely determined.

Note that for any given time lag h > 0, (2.1) can be further represented as

Wt+h =
h−1
∑

k=0

A
(k)
1 (c+ at+h−k) +

p
∑

j=1

A
(h)
j Wt+1−j , (2.7)

where A
(0)
1 = Im+n is the identity matrix of order m+ n, and A

(k)
j is a matrix

obtained from the recursive formula

A
(k)
j =

{

Aj , k = 1,

A
(k−1)
j+1 +A

(k−1)
1 Aj , k = 2, 3, . . . , h

(2.8)

for j = 1, . . . , p. Consider the following partition of matrix A
(h)
j :

A
(h)
j =

(

A
(h)
XX,j A

(h)
XY,j

A
(h)
YX,j A

(h)
Y Y,j

)

, (2.9)

where A
(h)
XX,j and A

(h)
XY,j are two sub-matrices of orders n × n and n × m,

respectively. Denoting the identity matrix of order n by In, then Xt+h =
(In,0n×m)Wt+h. The following lemma yields the best linear predictor of Xt+h

(in matrix form) based on the information set ΩXY .
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Lemma 2.3. Based on (2.1) and (2.2), we have

X̂t(h|ΩXY ) = cX,h +

p
∑

j=1

(A
(h)
XX,jXt+1−j +A

(h)
XY,jYt+1−j), (2.10)

where cX,h = (In,0n×m)
∑h−1

k=0 A
(k)
1 c.

Proof. Since the result is similar to that of Dufour and Renault [8], the proof is
omitted for the sake of brevity.

Lemma 2.3 shows that the best linear predictor of Xt+h relates to Yt only

through the coefficient matrix A
(h)
XY,j . This will serve as a benchmark for the

rest of this work.

3. Identification of important variables when model is specified

Based on the discussions in Section 2, the existence of Granger causality de-
scribes that Yt can improve the prediction of Xt+h for some finite lag h. How-
ever, from Remark 1(b), we learn that if Y →

(c)
X , then it is guaranteed that

adding all variables in Yt into the information set will improve the prediction
of “some” variables in Xt – but not necessarily all. On the other hand, the pre-
diction of Xt+h may be improved by utilizing merely the information of “some”
variables in Yt – but not necessarily all. Therefore, our goal here is to provide
a formal procedure to extract those “important variables” in both Xt and Yt

so that a trimmed causal relationship can be presented. The following example
illustrates this idea.

Consider two groups of variables Yt = (Y1,t, Y2,t, Y3,t)
′ and Xt = (X1,t, X2,t,

X3,t)
′, and assume that Y →

(c)
X for some integer c > 0. Fig. 1 shows three

possible structures that are characterized as having the same causal relationship
Y →

(c)
X . Structure (a) in Fig. 1 indicates that variable Y3,t has no influence on

the prediction of all the variables in Xt. Therefore, it is reasonable to present a
simplified causal relationship between (Y1,t, Y2,t) and Xt by excluding Y3,t from
the analysis. Structure (b) in Fig. 1 indicates that the prediction of X1,t is not
influenced by any of the variables in Yt. Therefore,X1,t can be excluded from the
analysis so that a simplified causal relationship between Yt and (X2,t, X3,t) can
be presented. Similarly, Structure (c) in Fig. 1 indicates that a simplified causal
relationship between (Y1,t, Y2,t) and (X2,t, X3,t) can be presented by excluding
X1,t and Y3,t from the analysis. We shall now introduce a formal definition of
“important variables” in both Xt and Yt.

Definition 3.1 (Important Variables in Xt and Yt). Consider the model ex-
pressed in (2.1) and (2.2), and assume that Y →

(c)
X for some given integer c > 0.

(a) The set of important variables in Yt = (Y1,t, . . . , Ym,t)
′ is defined as

SY = {Yi,t ∈ Yt : X̂t(h|ΩXY ) 6= X̂t(h|ΩXY−i
) for some h ≤ c}, (3.1)
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Y1, t

Y
2, t

Y3, t

X

X

X

1, t

t

t

2,

3,

(a)

Y1, t

Y
2, t

Y3, t

X

X

X

1, t

t

t

2,

3,

(b)

Y1, t

Y
2, t

Y3, t

X

X

X

1, t

t

t

2,

3,

(c)

Fig 1. Three possible causal structures that are characterized as having the same causal
relationship Y →

(c)
X.

where ΩXY−i
= ΩXY \ {Yi,t, Yi,t−1, . . .} refers to a reduced information set with

the i-th variable in Yt being excluded;
(b) The set of important variables in Xt = (X1,t, . . . , Xn,t)

′ is similarly defined
as

SX = {Xi,t ∈ Xt : X̂i,t(h|ΩXY ) 6= X̂i,t(h|ΩX) for some h ≤ c}. (3.2)

Definition 3.1 states that if the prediction of Xt+h based on ΩXY is the same
as that based on the reduced information set ΩXY−i

, then Yi,t is characterized
as an unimportant variable in Yt and can be excluded from the analysis. On the
other hand, if the prediction of Xi,t+h based on ΩXY is the same as that based
on ΩX , then Xi,t is characterized as an unimportant variable in Xt and can be
excluded from the analysis. Then, based on the two sets of identified important
variables SY and SX , we can present the following trimmed Granger causality:

SY →
(c)

SX . (3.3)

Remark 2. Note that by Definition 2.1, SY = ∅ implies that Y 9

(c)
X (i.e., Yt

does not cause Xt).

We shall now introduce some useful guidelines for finding the two important
sets SY and SX .

Theorem 3.1 (Identification of SY ). Consider the matrix A
(h)
XY,j given in (2.9),

and its column partition as

A
(h)
XY,j = (A

(h)
XY,j(:, 1), A

(h)
XY,j(:, 2), . . . , A

(h)
XY,j(:,m)), (3.4)

where A
(h)
XY,j(:, i) refers to the i-th column of A

(h)
XY,j. Then, for any given i ∈

{1, . . . ,m}, Yi,t ∈ SY if and only if there exists at least one pair (h, j) ∈
{1, . . . , c} × {1, . . . , p} such that A

(h)
XY,j(:, i) 6= 0.
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Proof. First, we show that Yi,t ∈ SY is a sufficient condition for the desired

result. Note that by (2.10), X̂t(h|ΩXY ) can be expressed as

X̂t(h|ΩXY ) = cX,h +

p
∑

j=1

A
(h)
XX,jXt+1−j +

p
∑

j=1

A
(h)
XY,j(:, 1)Y1,t+1−j

+ · · ·+
p
∑

j=1

A
(h)
XY,j(:,m)Ym,t+1−j . (3.5)

Suppose Yi,t ∈ SY , and given any h we assume that A
(h)
XY,j(:, i) = 0 for all

j ∈ {1, . . . , p}. Then, we have

X̂t(h|ΩXY ) = cX,h +

p
∑

j=1

A
(h)
XX,jXt+1−j +

p
∑

j=1

A
(h)
XY,j(:, 1)Y1,t+1−j + · · ·

+

p
∑

j=1

A
(h)
XY,j(:, i− 1)Yi−1,t+1−j +

p
∑

j=1

A
(h)
XY,j(:, i + 1)Yi+1,t+1−j

+ · · ·+
p
∑

j=1

A
(h)
XY,j(:,m)Ym,t+1−j . (3.6)

Equation (3.6) implies that each element of X̂t(h|ΩXY ) belongs to the linear
manifold IXY−i

spanned by all the random variables in ΩXY−i
. The result of

Lemma 2.1 then yields

X̂t(h|ΩXY−i
) = PIXY

−i
(Xt+h) = PIXY

−i
(PIXY

(Xt+h))

= PIXY
−i

(

X̂t(h|ΩXY )
)

= X̂t(h|ΩXY ),

which leads to a contradiction with the primary assumption that Yi,t ∈ SY .
Therefore, we conclude that there must exist at least one pair (h, j) ∈ {1, . . . , c}×
{1, . . . , p} such that A

(h)
XY,j(:, i) 6= 0. Next, we show that Yi,t ∈ SY is a neces-

sary condition for the desired result. Suppose there exists one pair (h, j) ∈
{1, . . . , c} × {1, . . . , p} such that A

(h)
XY,j(:, i) 6= 0, and we assume that Yi,t /∈ SY

(i.e., X̂t(h|ΩXY ) = X̂t(h|ΩXY−i
)). Since X̂t(h|ΩXY−i

) can be analogously ex-
pressed as

X̂t(h|ΩXY−i
) = bX,h +

p
∑

j=1

B
(h)
XX,jXt+1−j +

p
∑

j=1

B
(h)
XY,j(:, 1)Y1,t+1−j + · · ·

+

p
∑

j=1

B
(h)
XY,j(:, i − 1)Yi−1,t+1−j +

p
∑

j=1

B
(h)
XY,j(:, i + 1)Yi+1,t+1−j

+ · · ·+
p
∑

j=1

B
(h)
XY,j(:,m)Ym,t+1−j , (3.7)
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upon subtracting (3.7) from (3.5), we obtain

0 = (cX,h − bX,h) +

p
∑

j=1

(A
(h)
XX,j −B

(h)
XX,j)Xt+1−j

+

p
∑

j=1

(A
(h)
XY,j(:, 1)−B

(h)
XY,j(:, 1))Y1,t+1−j + · · ·+

p
∑

j=1

(A
(h)
XY,j(:, i)− 0)Yi,t+1−j

+ · · ·+
p
∑

j=1

(A
(h)
XY,j(:,m)−B

(h)
XY,j(:,m))Ym,t+1−j

almost surely. By Lemma 2.2, we then obtain A
(h)
XY,j(:, i) = 0 for all j ∈

{1, . . . , p}, which leads to a contradiction with the assumption that there exists

one pair (h, j) ∈ {1, . . . , c} × {1, . . . , p} such that A
(h)
XY,j(:, i) 6= 0. Hence, we

must have Yi,t ∈ SY , which completes the proof.

The following theorem describes an important property of SY , which we state
without showing the detailed proof.

Theorem 3.2. Let VY be any subset of {Y1,t, . . . , Ym,t}, then SY ⊆ VY if and
only if

X̂t(h|ΩXY ) = X̂t(h|ΩXVY
) for all 1 ≤ h ≤ c. (3.8)

Remark 3.

(a) Any subset VY of {Y1,t, . . . , Ym,t} that satisfies (3.8) is called an important
set in the validation of the desired causal relationship. Based on Theorem 3.2,
we have

SY = inf{VY : VY is an important set} = ∩(all important sets VY ), (3.9)

which is clearly the minimal important set that provides the same information
as Yt does for predicting Xt+h. As shown later in Section 4, this property is
useful for finding SY when the VAR coefficients are unknown.
(b) Combining the results of Theorems 3.1 and 3.2, we get

X̂t(h|ΩXY ) = X̂t(h|ΩXSY
)

= c1,h +

p
∑

j=1

A
(h)
XX,jXt+1−j +

p
∑

j=1

A
(h)
XY,j(:, s1)Ys1,t+1−j

+

p
∑

j=1

A
(h)
XY,j(:, s2)Ys2,t+1−j + · · ·+

p
∑

j=1

A
(h)
XY,j(:, sq)Ysq ,t+1−j ,

where {s1, s2, . . . , sq} is a sub-sequence of {1, 2, . . . ,m}, and A
(h)
XY,j(:, s) 6= 0 for

all s ∈ {s1, s2, . . . , sq}. Thus, we have SY = {Ys1,t, Ys2,t, . . . , Ysq,t}.
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Theorem 3.3 (Identification of SX). Consider the matrix A
(h)
XY,j given in (2.9),

and its row partition as

A
(h)
XY,j =















A
(h)
XY,j(1, :)

A
(h)
XY,j(2, :)

...

A
(h)
XY,j(n, :)















, (3.10)

where A
(h)
XY,j(i, :) refers to the i-th row of A

(h)
XY,j. Then, for any given i ∈

{1, . . . , n}, Xi,t ∈ SX if and only if there exists at least one pair (h, j) ∈
{1, . . . , c} × {1, . . . , p} such that A

(h)
XY,j(i, :) 6= 0.

Proof. From (2.10), the i-th element of X̂t(h|ΩXY ) can be expressed as

X̂i,t(h|ΩXY ) = cX,h(i) +

p
∑

j=1

A
(h)
XX,j(i, :)Xt+1−j +

p
∑

j=1

A
(h)
XY,j(i, :)Yt+1−j ,

where cX,h(i) is the i-th element of vector cX,h. As in the proof of Theorem 3.1,

we can simply obtain X̂i,t(h|ΩXY ) 6= X̂i,t(h|ΩX) for some h ≤ c if and only if

A
(h)
XY,j(i, :) 6= 0 for at least one pair (h, j) ∈ {1, . . . , c} × {1, . . . , p}. The result

thus follows.

Theorem 3.4. The set SX can be equivalently expressed as

SX = {Xi,t ∈ Xt : X̂i,t(h|ΩXSY
) 6= X̂i,t(h|ΩX) for some h ≤ c}. (3.11)

Proof. The result follows immediately from Definition 3.1(b) and Remark 3(b).

Theorem 3.4 indicates that SX can be obtained by first identifying the set
SY . The following is a dual result of Theorem 3.2, which we present without a
proof.

Theorem 3.5. Let V̄X be any subset of {X1,t, . . . , Xn,t}. Then, SX ⊆ {X1,t, . . . ,
Xn,t} \ V̄X if and only if

X̂i,t(h|ΩXY ) = X̂i,t(h|ΩX) for all Xi,t ∈ V̄X and 1 ≤ h ≤ c. (3.12)

Remark 4. If V̄X is any subset of {X1,t, . . . , Xn,t} that satisfies (3.12), then
VX = {X1,t, . . . , Xn,t} \ V̄X is called an important set in the validation of the
desired causal relationship. Therefore, we have

SX = inf{VX : VX is an important set} = ∩(all important sets VX), (3.13)

which is clearly the minimal important set so that the prediction of each variable
Xi,t in the set is influenced by Yt (or SY ). As shown later in Section 4, this
property is useful for finding SX when the VAR coefficients are unknown.
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4. Identification of important variables: A hypothesis testing

procedure

We have shown that, by examining the coefficient matrices A
(h)
XY,j, the impor-

tant variables in the trimmed causal relationship can be explicitly identified.

However, in practice, the parameters in A
(h)
XY,j are usually unknown and need

to be estimated. Thus, to best identify the causal relationship, one can resort
to a statistical hypothesis testing procedure. A naive approach is to perform an
exhaustive search on finding all possible important sets VX and VY , and then
identify the two minimal important sets SX and SY by using (3.9) and (3.13).
This means that for each 1 ≤ h ≤ c, one needs to conduct 2m × 2n = 2m+n

possible hypothesis tests for validating the associated constraints on the ele-

ments of the coefficient matrix A
(h)
XY,j . Obviously, such a procedure will become

computationally involved (even for small values of m and n, say, m = n = 5,
there are over 103 tests needed to be conducted for each h) and the false rate
of the resulting causal relationship (i.e., the overall type I error rate) will also
be difficult to control.

Here we propose a more efficient procedure so that the two minimal important
sets SX and SY can be adequately estimated without requiring a large number of
hypothesis tests. The proposed procedure is sequential and utilizes the ideas of
the backward and forward search method that have been successfully applied to
various variable selection problems (Kutner et al. [19], Miller [24]). The detailed
steps are introduced in the following sections.

4.1. Backward and forward search of important variables

We first explain how to utilize the concept of backward search in our efficient hy-
pothesis testing procedure, which basically comes from the ideas in Theorems 3.2
and 3.5. Suppose Y →

(c)
X for some positive integer c, where Yt = (Y1,t, . . . , Ym,t)

′

and Xt = (X1,t, . . . , Xn,t)
′, and now we would like to characterize the minimal

important set SY . The backward search starts with an initial estimate of SY ,

say, the full set V
(0)
Y = {Y1,t, . . . , Ym,t}. In the first stage, all the potential

unimportant variables are identified (by using the hypothesis tests shown in the

next section) and the most unimportant one, say, Yi1,t, is excluded from V
(0)
Y .

Next, the estimated important set is updated by setting V
(1)
Y = V

(0)
Y \ {Yi1,t}.

Continue in this fashion until none of the unimportant variables are found, say,
if the search stops at the sth stage, then the minimal important set SY can

be estimated as S̃Y = V
(s−1)
Y . Note that another minimal important set S̃X

can be obtained in a similar way. Thus, the trimmed causal relationship can be
estimated by

S̃Y →
(c)

S̃X .

The forward search, conversely, starts with an empty set V
(0)
Y = ∅ and ends

up with an estimate S̃Y = V
(s′)
Y by sequentially adding one most important
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variable (if exists) into the important set. It should be mentioned that the re-
quired number of hypothesis tests for either the backward or the forward search
is at most O(m2+n2), which is much smaller than that based on the exhaustive
search, viz., O(2m+n). In concluding, as the required number of hypothesis tests
becomes smaller, a more reasonable bound on the type I error rate of each indi-
vidual test may be used without lowering the overall accuracy of the estimated
causal relationship.

4.2. The Wald test with constrained parameter spaces

Note that if the causal relationship is defined by the one-step-ahead predictor
(i.e., c = 1 or h = 1), then at each stage, determining whether or not a particular
variable belongs to the estimated important set is equivalent to validating a des-
ignated linear constraint on the VAR coefficients under a given linear constraint
on the VAR coefficients. In this case, the Wald statistic can be used to perform
the test. It should be noted that in order to perform the Wald test associated
with each stage of our search procedure, we need a stronger assumption that the
term at in (2.1) is a “standard white noise”. Denoting at = (a1,t, . . . , aK,t)

′, this
assumption indicates that at are continuous random vectors satisfying the fol-
lowing: (i) E(at) = 0; (ii) E(ata

′

t) is nonsingular; (iii) at and as are independent
for t 6= s; and (iv) there exists some constant c̄ < ∞ such that

E|ai,taj,tal,tam,t| ≤ c̄ for i, j, l,m = 1, . . . ,K, and all t.

These assumptions allow us to establish consistency and asymptotic normality
of the least square estimators of the VAR coefficients (see Lütkepohl [23] for
details).

Consider the stationary VAR(p) model in (2.1) and let θ = vec(c, A1, . . . , Ap),
which represents a (K2p + K) × 1 vector comprising all VAR coefficients. We
next introduce two multiple hypothesis testing procedures associated with the
backward and forward search for estimating the minimal important sets.

The backward search. Suppose we would like now to estimate the minimal
important set SY by using the backward search. Assume that the search does
not terminate at the (s− 1)th stage and denote the updated important set by

V
(s−1)
Y = {Yi1,t, Yi2,t, . . . , Yim−s+1,t}, where {i1, i2, . . . , im−s+1} is a subsequence

of {1, . . . ,m}. Then, at the sth stage, every variable in V
(s−1)
Y will be tested so

as to see if it is a potential unimportant variable (and thus can be possibly

excluded from V
(s−1)
Y ). Note that this is equivalent to conducting a multiple

testing procedure with m− s+ 1 null hypotheses

H1
0 : Qi1θ = 0, H2

0 : Qi2θ = 0, . . . , Hm−s+1
0 : Qim−s+1θ = 0, (4.1)

where each null hypothesisHk
0 is now tested under a designated linear constraint

Rk
sθ = 0, k = 1, . . . ,m− s+ 1. (4.2)
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Here, Qi1 , . . . , Qim−s+1 are full-ranked matrices of order np × (K2p + K) so

that Qikθ = 0 represents equivalently A
(1)
XY,j(:, ik) = 0 for all j = 1, . . . , p,

k = 1, . . . ,m − s + 1. By Theorem 3.1, each Qik is a designated matrix for

testing if Yik,t ∈ V
(s−1)
Y is an unimportant variable. In addition, Rk

1 ≡ R1 is a
zero matrix (i.e., no constraints at the first stage) and Rk

s ≡ Rs (s ≥ 2) is a
full-ranked matrix of order (s−1)np×(K2p+K) so that the constraint Rk

sθ = 0

represents equivalently an identity of the s−1 unimportant variable(s) that have
been excluded from Yt. Solving the homogeneous system in (4.2) yields

θ = Bk
s θs, (4.3)

where Bk
s ≡ Bs is a full-ranked matrix of order (K2p+K)×[K2p+K−(s−1)np]

and θs represents a [K2p+K−(s−1)np]×1 vector of unconstrained parameters
in θ, k = 1, . . . ,m− s+ 1.

The forward search. When the forward search is used to estimate SY , the
above formulation needs to be justified. Assume that the search does not ter-
minate at the (s − 1)th stage and denote the complement of the updated im-

portant set by V̄
(s−1)
Y = {Y1,t, . . . , Ym,t} \ V (s−1)

Y = {Yi1,t, Yi2,t, . . . , Yim−s+1,t},
where {i1, i2, . . . , im−s+1} is a subsequence of {1, . . . ,m}. Then, at the sth stage,

every variable in V̄
(s−1)
Y will be tested so as to see if it is a potential impor-

tant variable (and thus can be possibly added into V
(s−1)
Y ). Analogously, this is

equivalent to considering m− s + 1 null hypotheses shown in (4.1), while each
null hypothesis Hk

0 is now tested under a designated linear constraint

Rk
sθ = 0, k = 1, . . . ,m− s+ 1. (4.4)

Analogously, here Qi1 , . . . , Qim−s+1 are full-ranked matrices of order np ×
(K2p + K) so that Qikθ = 0 represents equivalently A

(1)
XY,j(:, ik) = 0 for all

j = 1, . . . , p, k = 1, . . . ,m−s+1. Therefore, each Qik is a designated matrix for

testing if Yik,t ∈ V̄
(s−1)
Y is an important variable. In addition, Rk

s is a full-ranked
matrix of order (m− s)np× (K2p+K) so that Rk

sθ = 0 represents equivalently

an identity of all the unimportant variables in V̄
(s−1)
Y , with the tested variable

Yik,t being excluded from the set. Solving the homogeneous system in (4.4) based
on these justifications, we obtain

θ = Bk
s θ

k
s ,

where Bk
s is a full-ranked matrix of order (K2p+K)×[K2p+K−(m−s)np] and

θks represents a [K2p+K − (m− s)np]× 1 vector of unconstrained parameters
in θ, k = 1, . . . ,m− s+ 1.

The following theorem can be used to test the constrained null hypotheses in
(4.1) for both the backward and forward search.

Theorem 4.1. Consider the stationary VAR(p) model in (2.1) and let θ =
vec(c, A1, . . . , Ap). Define the K(p+1)×1 vector Zt = vec(1K×1,Wt,Wt−1, . . . ,
Wt−p+1) and let Γ = E(ZtZ

′

t). Suppose we would like to estimate the minimal
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important set SY based on T periods of observations. At the sth stage of the
search procedure, let θ̂ be the generalized least squares estimator of θ under the
constraint in (4.2) (for the backward search) or (4.4) (for the forward search).
Then for each k ∈ {1, . . . ,m− s+ 1}, we have:
(a)

√
T (Qik θ̂−Qikθ)

d−→ N
(

0, QikB
k
s

[

(Bk
s )

′(Γ⊗ Σ−1
a )Bk

s

]−1
(Bk

s )
′Q′

ik

)

as T → ∞,

(4.5)
where QikB

k
s [(B

k
s )

′(Γ ⊗ Σ−1
a )Bk

s ]
−1(Bk

s )
′Q′

ik
is a positive definite matrix with

“⊗” representing the Kronecker product;
(b) Define the Wald statistic by

λk = T (Qik θ̂)
′

{

QikB
k
s

[

(Bk
s )

′(Γ̂⊗ Σ̂−1
a )Bk

s

]−1

(Bk
s )

′Q′

ik

}−1

(Qik θ̂), (4.6)

where Γ̂ and Σ̂a are consistent estimators of Γ and Σa, respectively. Then, under
Hk

0 in (4.1), λk has an asymptotic χ2 distribution with np degrees of freedom.

Proof. (a) By Proposition 5.3 in Lütkepohl [23], we have

√
T (θ̂ − θ)

d−→ N
(

0, Bk
s

[

(Bk
s )

′(Γ⊗ Σ−1
a )Bk

s

]−1
(Bk

s )
′

)

as T → ∞.

So it is clear that

√
T (Qik θ̂−Qikθ)

d−→ N
(

0, QikB
k
s

[

(Bk
s )

′(Γ⊗ Σ−1
a )Bk

s

]−1
(Bk

s )
′Q′

ik

)

as T → ∞.

Since we know [(Bk
s )

′(Γ ⊗ Σ−1
a )Bk

s ]
−1 is nonsingular (thus positive definite)

by Proposition 5.1 in Lütkepohl [23], it is clear that QikB
k
s [(B

k
s )

′(Γ ⊗
Σ−1

a )Bk
s ]

−1(Bk
s )

′Q′

ik
is positive semidefinite. Therefore, it suffices to show that

it is a nonsingular matrix. Let us now consider the backward search method
and, for simplicity, assume Rk

s in (4.2) can be written as

Rk
s =

(

I(s−1)np 0(s−1)np×[K2p+K−(s−1)np]

)

.

Then, Bk
s in (4.3) can be written as

Bk
s =

(

0(s−1)np×[K2p+K−(s−1)np]

IK2p+K−(s−1)np

)

.

Since each row in Qik is linearly independent of the rows in Rk
s , Qik can be

written as
Qik =

(

0np×[(s−1)np] Q∗
)

,

where Q∗ is an np× [K2p+K− (s−1)np] matrix and rank(Q∗) = rank(Qik) =
np. Upon noting that

QikB
k
s =

(

0np×[(s−1)np] Q∗
)

(

0(s−1)np×[K2p+K−(s−1)np]

IK2p+K−(s−1)np

)

= Q∗,
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we then have rank(QikB
k
s ) = rank(Q∗) = np. Further, by Cholesky decompo-

sition we have
[

(Bk
s )

′(Γ⊗ Σ−1
a )Bk

s

]−1
= LL′,

where L is a full-ranked lower triangular matrix. Therefore, rank(QikB
k
sL) =

np, and thus rank([QikB
k
sL][QikB

k
sL]

′) = rank(QikB
k
sLL

′(Bk
s )

′Q′

ik
) = np.

Since now QikB
k
s [(B

k
s )

′(Γ⊗Σ−1
a )Bk

s ]
−1(Bk

s )
′Q′

ik
has a full rank np, it is a non-

singular matrix and the proof is complete. Note that the proof for the forward
search method is quite similar, and is therefore not presented for brevity.
(b) Since QikB

k
s [(B

k
s )

′(Γ⊗Σ−1
a )Bk

s ]
−1(Bk

s )
′Q′

ik
is nonsingular by (a), the Wald

statistic λk in (4.6) is well defined. In addition, Γ̂ and Σ̂a are consistent es-
timators of Γ and Σa, respectively. So, the required result follows directly by
Proposition C.15(5) in Lütkepohl [23].

Note that Hk
0 in (4.1) is rejected if λk in (4.6) is too large, or, conversely, Hk

0

in (4.1) is not rejected if λk in (4.6) is too small. Thus, at stage s of the backward

search, Yik,t ∈ V
(s−1)
Y is considered as a potential unimportant variable if the

Wald statistic λk is small (or its p-value is large). Once all the unimportant
variables are identified, the backward search will exclude the “most unimportant

one” (associated with λk having the largest p-value) from V
(s−1)
Y . On the other

hand, at stage s of the forward search, Yik,t ∈ V̄
(s−1)
Y is considered as a potential

important variable if the Wald statistic λk is large (or its p-value is small).
Once all the important variables are identified, the forward search will add the
“most important one” (associated with λk having the smallest p-value) into

V
(s−1)
Y .

In addition to the ways of developing the minimal important sets, the back-
ward and forward search also have different features in running the multiple
hypothesis testing procedure. For instance, if a simplified causal relationship
does exist, then it is more difficult for the backward search to reject the null
hypothesis at early stages. This is due to the fact that, with less constraints
on the VAR coefficients at early stages, the variance of the generalized least
squares estimator θ̂ becomes larger, thus resulting in a smaller test statistic λk

in (4.6). On the other hand, if a simplified causal relationship does exist, then
it is easier for the forward search to reject the null hypothesis at early stages.
This is due to the fact that, with more constraints on the VAR coefficients at
early stages, the variance of θ̂ becomes smaller, thus resulting in a larger test
statistic λk in (4.6).

Remark 5. Recall that to identify if a particular variable is an important/
unimportant one, we need to examine the corresponding row/column in the

matrix A
(h)
XY,j . If h > 1, this has to be validated under a “nonlinear” constraint

of the VAR coefficients (e.g., h = 2 refers to a quadratic constraint), which may
not be represented as the form in (4.2). Therefore, there may not exist a matrix
Bs in (4.3) so that the asymptotic results in Theorem 4.1 can be established.
The readers can refer to Lütkepohl [23] for some examples.
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4.3. Control of type I error

It is now clear that searching the minimal important set SY or SX corresponds
to a multiple testing procedure, where the fundamental problem is to control
the so-called familywise error rate (FWER). Since the constrained hypothe-
sis tests described in Section 4.2 are correlated, it is natural to consider the
classical Bonferroni procedure (Miller [25]). However, as the number of vari-
ables becomes large, both the backward and forward search procedures may
still require a considerably large number of individual tests. This will force the
Bonferroni procedure to select a rather conservative bound on the type I er-
ror rate of each individual test, thus resulting in a reduction in the power of
the test. Note that there exists a fairly rich literature on the improvement of
the Bonferroni procedure (Šidák [31, 32], Simes [33], Hochberg [14]). Among all
the available procedures, here we utilize the one called the Holm’s step-down
procedure (Holm [16]) due to the following reasons: (i) it does not require any
restriction on the joint distribution of the test statistics (i.e., it allows depen-
dence among the null hypotheses); and (ii) it controls the same FWER and is
shown to be uniformly more powerful than the Bonferroni procedure. We now
briefly introduce how the Holm’s step down procedure is used to perform the
multiple testing at each stage of our search method.

The Holm’s Step-down Procedure. Denoting by π(1) ≤ π(2) ≤ · · · ≤
π(m−s+1) the ordered p-values and by H

(1)
0 , H

(2)
0 , . . . , H

(m−s+1)
0 the correspond-

ing null hypotheses at the sth stage of our search method. For a given level of
significance 0 < α∗ < 1, let

k = arg min
i=1,...,m−s+1

{

π(i) >
α∗

m− s+ 2− i

}

. (4.7)

The Holm’s step-down procedure rejects the null hypotheses H
(1)
0 , . . . , H

(k−1)
0

and accepts H
(k)
0 , . . . , H

(m−s+1)
0 . If such k does not exist, then all the null

hypotheses are rejected.

Another important characteristic of our search procedure is that it can possi-
bly stop at any stage, viz., the number of tests required to complete the search
procedure is “random”. This also implies that the FWER of all the required
tests for finding the minimal important set is a random quantity. Therefore, our
goal is to select the value of α∗ in (4.7) so that the “expected FWER” does not
exceed a preset control level α. The detailed steps for finding α∗, the minimal
important set, and the required theoretical basis are described below.

Theorem 4.2. Suppose the backward/forward search is used to estimate the
minimal important set SY and only one variable is possibly excluded/included
at each stage s based on the Holm’s step-down procedure. There exists an α∗ ∈
(0, α) such that if α∗ is chosen as the bound for the FWER of all tests in each
search stage s, then Eα∗(FWER) ≤ α.

Proof. Let FWERs denote the familywise error rate of all the tests at stage s;
then, by Holm’s step-down procedure, we have FWERs ≤ α∗ for all s =
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1, 2, . . . ,m. Since the search can possibly stop at any stage, given any 0 <
α∗ < α, the expected FWER of the whole search procedure is expressed as

Eα∗(FWER) =
m
∑

s=1

(FWERs)ps, (4.8)

where ps represents the probability that the search stops at stage s, and FWERs

denotes the familywise error rate based on all the individual tests up to stage s,
s = 1, 2, . . . ,m. Since it is clear that FWERs ≤ ∑s

i=1 FWERi ≤ sα∗, we then
have

Eα∗(FWER) ≤ α∗

m
∑

s=1

sps. (4.9)

Note that 1 ≤∑m
s=1 sps ≤ m, since

∑m
s=1 sps represents the expected number of

required search stages. Therefore, we have Eα∗(FWER) ≤ α by simply choosing
α∗ = α/m.

Theorem 4.2 indicates that, there always exists an α∗ ∈ (0, α) such that
if the bound on the FWER of the tests at each search stage is chosen as α∗,
then the expected FWER for estimating the minimal important set SY will not
exceed the preset level α. Note that the value of α∗ satisfying Eα∗(FWER) ≤ α
is clearly not unique, and the best choice is obviously the “least conservative”
one, which is given by

ᾱ∗ = sup{α∗ ∈ (0, α) : α∗

m
∑

s=1

sps ≤ α}. (4.10)

Therefore, if one knows the probabilities ps associated with the value of α∗

placed in (4.7), then ᾱ∗ can be found by performing a numerical search over the
interval (0, α).

Recall that the error terms in the VAR model are assumed to be inde-
pendent for different time indices (see Section 4.2). Therefore, the bootstrap
method can be utilized to estimate the probabilities ps for any given α∗. To
see how the bootstrap procedure works, suppose the least squares estimates
of the primary VAR(p) coefficients are solved based on T periods of observa-
tions, say, {Wt,Wt−1, . . . ,Wt−T+1}, and the associated noise vectors are de-
noted by {at, at−1, . . . , at−T+1}. The bootstrap sample of T periods, denoted
by {W ∗

t ,W
∗

t−1, . . . ,W
∗

t−T+1}, is generated by the following mechanism:

W ∗

t = ĉ+

p
∑

j=1

ÂjWt−j + a∗t , (4.11)

where ĉ and Âj are the least squares estimates of the VAR coefficients based
on {Wt,Wt−1, . . . ,Wt−T+1}, and a∗t is the noise resampled from {at, at−1, . . . ,
at−T+1}. Thus, given a value of α∗ ∈ (0, α), one can estimate the probabilities ps
by performing the search procedure a large number of times, where each time
the search is conducted based on a bootstrap sample generated by (4.11). In
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concluding, the detailed steps for determining whether or not Eα∗(FWER) ≤ α
are summarized below.

Algorithm 1 (Checking if Eα∗(FWER) ≤ α by bootstrap sampling).

Step 1: Select a particular value α∗ from the interval (0, α), set Ns = 0 for
s = 1, . . . ,m.

Step 2: Find the least squares estimates of the VAR(p) coefficients based on the
observations {Wt,Wt−1, . . . ,Wt−T+1}, denote the associated noise vectors
by {at, at−1, . . . , at−T+1}.

Step 3: Obtain a bootstrap sample {W ∗

t ,W
∗

t−1, . . . ,W
∗

t−T+1} by using the mech-
anism in (4.11). Perform the backward/forward search procedure, wherein
the bound on the FWER of all the tests at each stage is chosen as α∗.

Step 4: If the search stops at stage s based on the Holm’s step-down procedure,
then set Ns = Ns + 1.

Step 5: Repeat Steps 3 and 4 N times (where N is chosen to be a large num-
ber), let p̂s = Ns/N , s = 1, . . . ,m.

Step 6: If α∗
∑m

s=1 sp̂s ≤ α, then we conclude that Eα∗(FWER) ≤ α.

Note that by utilizing Algorithm 1 along with an adequate numerical search
method over the interval (0, α), we can approach the value of ᾱ∗ without much
computational cost. For example, a simple grid search should work well for this
one-dimensional search problem. Once ᾱ∗ is obtained, the minimal important set
SY can be estimated by performing the backward/forward search based on the
primary observed data {Wt,Wt−1, . . . ,Wt−T+1}, while the expected FWER is
shown to be satisfactorily controlled. For illustrative purpose, the detailed steps
of the “backward search” and “forward search” for finding S̃Y are summarized
below in Algorithms 2 and 3, respectively.

Algorithm 2 (Finding S̃Y by the backward search).

Step 1: Set V
(0)
Y = {Y1,t, . . . , Ym,t} and s = 1.

Step 2: Compute respectively the p-values of the (m−s+1) Wald statistics in
(4.6) under the corresponding null hypotheses in (4.1), denote the ordered
p-values by π(1), . . . , π(m−s+1) and let k = argmini=1,...,m−s+1{π(i) >

ᾱ∗

m−s+2−i
}.

Step 3: Let Yi(m−s+1),t be the potential unimportant variable associated with

the null hypothesis H
(m−s+1)
0 (i.e., the one having the largest p-value). If

k exists, set V
(s)
Y = V

(s−1)
Y \ {Yi(m−s+1),t} and s = s + 1, go to Step 2;

otherwise stop the search and set S̃Y = V
(s−1)
Y .

Algorithm 3 (Finding S̃Y by the forward search).

Step 1: Set V
(0)
Y = ∅ and s = 1.

Step 2: Compute respectively the p-values of the (m−s+1) Wald statistics in
(4.6) under the corresponding null hypotheses in (4.1), denote the ordered
p-values by π(1), . . . , π(m−s+1) and let k = argmini=1,...,m−s+1{π(i) >

ᾱ∗

m−s+2−i
}.
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Step 3: Let Yi(1),t be the potential important variable associated with the null

hypothesis H
(1)
0 (i.e., the one having the smallest p-value). If k 6= 1, set

V
(s)
Y = V

(s−1)
Y ∪ {Yi(1),t} and s = s + 1, go to Step 2; otherwise stop the

search and set S̃Y = V
(s−1)
Y .

It is noted that the estimated minimal important sets S̃Y and S̃X obtained
by the backward and forward search may be different. However, they should
be reasonably close to the “true minimal important sets”. From the viewpoint
of implementation, both search methods are computationally feasible and can
maintain a certain level of accuracy in deriving the trimmed Granger causality.

4.4. The power of the test

Let us consider the ordered alternative hypotheses at the sth stage of the search
procedure:

H(1)
a : Qi(1)θ = θ1, H(2)

a : Qi(2)θ = θ2, . . . , H(m−s+1)
a : Qi(m−s+1)

θ = θm−s+1,
(4.12)

where the elements of each vector θk, k = 1, . . . ,m− s+1, satisfy (i) the linear
constraint in (4.2) (for the backward search) or (4.4) (for the forward search);

and (ii) A
(1)
XY,j(:, ik) 6= 0 for at least one j ∈ {1, . . . , p}. The power of the kth

ordered test against H
(k)
a can be computed based on the following theorem.

Theorem 4.3. Consider the stationary VAR(p) model in (2.1) and let θ =
vec(A1, . . . , Ap). Suppose we would like to estimate the minimal important set
SY based on T periods of observations. At the sth stage of the search procedure,
let θ̂ be the generalized least squares estimator of θ under the constraint in (4.2)
(for the backward search) or (4.4) (for the forward search). If the value of T is

large, then the power of the kth ordered test against H
(k)
a is given by

Powerk = P (reject H
(k)
0 | H(k)

a ) ≈ P
(

χ2(np, γ̂k) > χ2
1−ᾱ∗

k
(np)

)

, (4.13)

where χ2(np, γ̂k) is a non-central chi-squared random variable with np degrees
of freedom and non-centrality parameter

γ̂k = Tθ′k

{

Qi(k)
B(k)

s

[

(B(k)
s )′(Γ̂⊗ Σ̂−1

a )B(k)
s

]−1

(B(k)
s )′Q′

i(k)

}−1

θk, (4.14)

and

ᾱ∗

k =
ᾱ∗

m− s+ 2− k
, k = 1, . . . ,m− s+ 1.

Proof. If T is large, then under H
(k)
a we have

√
TQi(k)

θ̂
A∼ N

(√
Tθk, Qi(k)

B(k)
s

[

(B(k)
s )′(Γ⊗ Σ−1

a )B(k)
s

]−1

(B(k)
s )′Q′

i(k)

)

,

where “
A∼” means “is approximately distributed as”. Thus, by definition, the

Wald statistic λk in (4.6) is approximately distributed as a non-central chi-
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squared distribution with np degrees of freedom and non-centrality parameter

γk = Tθ′k

{

Qi(k)
B(k)

s

[

(B(k)
s )′(Γ⊗ Σ−1

a )B(k)
s

]−1

(B(k)
s )′Q′

i(k)

}−1

θk.

Since at each stage some of the coefficients in θ may be unknown or uncon-
strained, γk can be directly estimated by

γ̂k = Tθ′k

{

Qi(k)
B(k)

s

[

(B(k)
s )′(Γ̂⊗ Σ̂−1

a )B(k)
s

]−1

(B(k)
s )′Q′

i(k)

}−1

θk,

where Γ̂ and Σ̂a are the consistent estimates of Γ and Σa based on T periods of
observations, respectively. Thus, we have

Powerk = P (reject H
(k)
0 | H(k)

a ) = P
(

λk > χ2
1−ᾱ∗

k
(np) | H(k)

a

)

≈ P
(

χ2(np, γ̂k) > χ2
1−ᾱ∗

k
(np)

)

.

5. Numerical results

In this section, we illustrate the proposed hypothesis testing procedures for
estimating the trimmed Granger causality with a real example. A simulation
study is also carried out to compare their accuracy with that of the Lasso-
penalized VAR approach. All the numerical results were obtained by using the
software package R (version 2.13.0) and executed on 3.0 GHz AMD Athlon II
X2 250 processors with 4GB of cache under the operating system of Microsoft
Windows 7 32-bit Service Pack 1 (SP1).

5.1. A real example

A number of studies have reported strong correlations between international
stock markets and indicated the leading role of the markets in Western coun-
tries (Copeland and Copeland [6], Jeong [18], Rapach et al. [28]). It is of our
interest to identify the important lead/lag linkages between the stock markets
of the countries in Asia and Western world. The following are the two groups
of stock indices considered in this study:

X1,t: Hong Kong Hang-Seng Index (HSI);
X2,t: Singapore FTSE Straits Times Index (FTSE STI);
X3,t: Bangkok Set Index (BSI);
X4,t: Shanghai Synthesis Index (PSI);
Y1,t: Germany DAX Index (DAX);
Y2,t: Canada S&P/TSX Composite Index (S&P/TSX);
Y3,t: Paris SBF 250 Stock Index (SBF250);
Y4,t: New York S&P 500 Index (S&P500).
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Fig 2. The time series plots for the growth rates of eight variables recorded monthly from
March 2009 to April 2014.

The data were retrieved from the database of Taiwan Economic Journal (TEJ,
http://www.finasia.biz), which were collected monthly over the period from
March 2009 to April 2014 (i.e., T = 62). In order to obtain stationary time
series, all the variables were further transformed into the format of “growth
rate” (i.e., growth rate = (value in the present period − value in the previous
period)/(value in the previous period)). The resulting transformed time series
plots are given in Fig. 2.

As shown in Fig. 2, each of the time series plots appears to have fairly constant
mean and variance over time. To further validate the property of stationarity,
the Augmented Dickey-Fuller (ADF) test was applied to each of the eight trans-
formed series. For example, if Yi,t is the transformed series, then a Unit Root

http://www.finasia.biz


A trimmed Granger causality 1963

test based on the simple assumption of AR(1) model is performed based on the
regression equation

△Yi,t = µ+ βYi,t−1 − α1△Yi,t−1 + εt,

where µ is a constant and △ is the first difference operator. As a result, all the
p-values for the ADF tests of these eight transformed variables are less than
10−4, which indicates that they can be reasonably treated as stationary time
series.

Remark 6. For data that reveal the time-dependent volatilities and/or cross-
volatilities, there are other ways that can be used to assess the stationarity of
the underlying multivariate time series model. The readers can refer to the work
by Aue et al. [2]) and the references therein.

We next establish the desired VAR model based on which we show how
to obtain the trimmed Granger causality between Yt = (Y1,t, Y2,t, Y3,t, Y4,t)

′

and Xt = (X1,t, X2,t, X3,t, X4,t)
′. To select the best order of the VAR model,

we first consider four commonly used criteria (Lütkepohl [23]): AIC (Akaike’s
Information Criterion), HQ (Hannan-Quinn criterion), SC (Schwarz Criterion)
and FPE (Final Prediction Error). The definitions of these four criteria are given
by

AIC(p) = ln det(Σ̂a) +
2

T
pK2,

HQ(p) = ln det(Σ̂a) +
2 ln lnT

T
pK2,

SC(p) = ln det(Σ̂a) +
lnT

T
pK2,

FPE(p) =

(

T +Kp+ 1

T −Kp− 1

)K

det(Σ̂a).

Note that here T = 62, K = 4 + 4 = 8, Σ̂a = T−1
∑T

t=1 âtâ
′

t, and ât are the
least squares estimates of the error terms. The results, with various choices of
order p (say, from 1 to 4), are given in Table 1. As shown in Table 1, most of the
criteria (except for the AIC) would suggest the order p = 1 that achieves the
minimum value. However, the Wald statistic based on the VAR(1) model gives
a rather large p-value (say, 0.1528) against the existence of Granger causality

Table 1

Estimation of AIC, HQ, SC and FPE for various choices of the VAR order p. Note that the
minimum value of each criterion is highlighted in bold

Order p AIC(p) HQ(p) SC(p) FPE(p)×1024

1 −54.40 −53.36 −51.70 2.43

2 −54.04 −52.09 −48.94 4.11

3 −53.77 −50.89 −46.26 8.85

4 −54.87 −51.07 −44.96 9.20
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Fig 3. The estimated bounds for Eα∗ (FWER) with respect to the α∗ values over two selected
subintervals of (0, α) under the backward (left panel) and forward (right panel) search. Here
α is given by 0.10.

between Yt and Xt. Therefore, we have decided to choose p = 2 for fitting the
VAR model, which is suboptimal based on the four criteria but indicates the
existence of strong Granger causality between Yt and Xt (the associated p-value
is 0.000125).

Suppose now we choose c = 1 (i.e., the one-step-ahead predictor is considered)
and α = 0.10 (the bound on the expected FWER of obtaining one minimal
important set). We first estimate the minimal important set SY based on the
VAR(2) model. Consider a class of α∗ values equally spaced over the interval
(0, α) = (0, 0.10) and implement Algorithm 1 for each α∗ based on 104 bootstrap
samples by using the backward and forward search. Since the estimated bound
for Eα∗(FWER) increases monotonically with α∗, it suffices to examine their
relationships over some selected subintervals of (0, 0.10) so as to find ᾱ∗. The
results are shown in Fig. 3.

Based on the numerical results associated with Fig. 3, the values of ᾱ∗ for
the backward and forward search methods are estimated (by interpolation) as
0.0597 and 0.0275, respectively. Setting ᾱ∗ = 0.0597 and 0.0275, the stages
of implementing the backward and forward search for obtaining the estimated
minimal important set S̃Y are detailed in Tables 2 and 3, respectively.

As can be seen from Tables 2 and 3, both search methods stop at stage

3, which result in the same estimated minimal important set S̃Y = V
(2)
Y =

{Y1,t, Y2,t}. To obtain the estimated minimal important set S̃X , the stages of
implementing the backward and forward search methods are detailed in Tables
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Table 2

The stage-by-stage result of the “backward search” for obtaining the estimated minimal
important set S̃Y . Here α = 0.10, ᾱ∗ = 0.0597, m = 4, and for each stage the maximum

p-value is highlighted in bold

The associated p-value

Stage Y1,t Y2,t Y3,t Y4,t Action Important Set

s = 1 0.0007 0.0518 0.0820 0.2119 Remove Y4,t V
(1)
Y

= {Y1,t, Y2,t, Y3,t}

s = 2 0.0006 0.0063 0.0918 * Remove Y3,t V
(2)
Y

= {Y1,t, Y2,t}

s = 3 0.0001 0.0088 * * Stop S̃Y = {Y1,t, Y2,t}

Table 3

The stage-by-stage result of the “forward search” for obtaining the estimated minimal
important set S̃Y . Here α = 0.10, ᾱ∗ = 0.0275, m = 4, and for each stage the minimum

p-value is highlighted in bold

The associated p-value

Stage Y1,t Y2,t Y3,t Y4,t Action Important Set

s = 1 0.0003 0.0230 0.0526 0.2495 Add Y1,t V
(1)
Y

= {Y1,t}

s = 2 * 0.0088 0.1210 0.0529 Add Y2,t V
(2)
Y

= {Y1,t, Y2,t}

s = 3 * * 0.0918 0.2336 Stop S̃Y = {Y1,t, Y2,t}

Table 4

The stage-by-stage result of the “backward search” for obtaining the estimated minimal
important set S̃X . Here α = 0.10, ᾱ∗ = 0.0680, n = 4, and for each stage the maximum

p-value is highlighted in bold

The associated p-value

Stage X1,t X2,t X3,t X4,t Action Important Set

s = 1 0.0007 0.0031 0.3596 0.0121 Remove X3,t V
(1)
X

= {X1,t,X2,t, X4,t}

s = 2 0.0002 0.0005 * 0.0173 Stop S̃X = {X1,t, X2,t,X4,t}

Table 5

The stage-by-stage result of the “forward search” for obtaining the estimated minimal
important set S̃X . Here α = 0.10, ᾱ∗ = 0.0286, n = 4, and for each stage the minimum

p-value is highlighted in bold

The associated p-value

Stage X1,t X2,t X3,t X4,t Action Important Set

s = 1 0.0090 0.1242 0.0385 0.0040 Add X4,t V
(1)
X

= {X4,t}

s = 2 0.0647 0.1240 0.0528 * Stop S̃X = {X4,t}

4 and 5, respectively. Note that in this case ᾱ∗ = 0.0680 and 0.0286 for the
backward and forward search, respectively, both of which are estimated based
on 104 bootstrap samples.

As can be seen from Tables 4 and 5, the estimated important set under the
backward search is S̃X = {X1,t, X2,t, X4,t}, while the estimated important set

under the forward search is S̃X = {X4,t}. Thus, by choosing α = 0.10, the
trimmed Granger causality obtained by the backward search is:

{Y1,t, Y2,t} →
(1)

{X1,t, X2,t, X4,t}.
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Table 6

The two estimated minimal important sets S̃Y and S̃X given by the backward and forward
search with α = 0.01, 0.05, 0.10, 0.15 and 0.20

Choice of α Backward search Forward search

0.01 S̃Y = {Y1,t} S̃Y = {Y1,t}

S̃X = {X1,t,X2,t} S̃X = ∅

0.05 S̃Y = {Y1,t, Y2,t} S̃Y = {Y1,t}

S̃X = {X1,t,X2,t} S̃X = ∅

0.10 S̃Y = {Y1,t, Y2,t} S̃Y = {Y1,t, Y2,t}

S̃X = {X1,t,X2,t, X4,t} S̃X = {X4,t}

0.15 S̃Y = {Y1,t, Y2,t, Y3,t} S̃Y = {Y1,t, Y2,t}

S̃X = {X1,t,X2,t, X4,t} S̃X = {X4,t}

0.20 S̃Y = {Y1,t, Y2,t, Y3,t} S̃Y = {Y1,t, Y2,t}

S̃X = {X1,t,X2,t, X4,t} S̃X = {X4,t}

On the other hand, the trimmed Granger causality obtained by the forward
search is:

{Y1,t, Y2,t} →
(1)

{X4,t}.

For comparison purpose, the two estimated minimal important sets given
by the backward and forward search, with different choices of α, are shown
in Table 6. As can be seen, the estimated important sets obtained by the two
different search methods are somewhat different. For example, by choosing α =
0.15 and 0.20, the backward search results in the same estimation of the trimmed
Granger causality

{Y1,t, Y2,t, Y3,t} →
(1)

{X1,t, X2,t, X4,t};

by choosing α = 0.10, 0.15 and 0.20, the forward search results in the same
estimation of the trimmed Granger causality

{Y1,t, Y2,t} →
(1)

{X4,t}.

Note that as the value of α becomes smaller (i.e., a more conservative bound
placed on the expected FWER or type I error rate), both the backward and
forward search methods result in a rather simplified causal relationship. How-
ever, the estimated important set may be “empty” under the proposed search
methods (e.g., the S̃X obtained by the forward search when α = 0.01 and 0.05) -
even though the Wald test has proved the existence of Granger causality. These
phenomena are caused by the characteristics of both search methods described
early in Section 4.3.

To examine the power of the two search methods, at each search stage s we

consider the alternative hypothesis H
(k)
a : Qi(k)

θ = θk for each individual test,

where θk is now chosen as θ̂, the ordinary least squares estimate of θ under the
constraints in (4.2) and (4.4). Given that α = 0.10 and 0.15, the average power
of the individual tests at each stage under both search methods for obtaining
S̃Y and S̃X are sketched in Figs. 4 and 5, respectively.
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Fig 4. The average power of the individual tests at each stage of both search methods for
obtaining S̃Y (left panel) and S̃X (right panel), given that α = 0.10.
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Fig 5. The average power of the individual tests at each stage of both search methods for
obtaining S̃Y (left panel) and S̃X (right panel), given that α = 0.15.

Figs. 4 and 5 reveal some interesting findings. First, as the stage moves, the
average power increases and decreases respectively under the backward and for-
ward search. This is due to the fact that (i) the bound on the type I error rate
of each individual test (i.e., ᾱ∗

k) becomes less strict; and (ii) the estimated non-
centrality parameters γ̂k increase (i.e., a shift of the non-central chi-squared dis-
tribution to the right) and decrease (i.e., a shift of the non-central chi-squared
distribution to the left) respectively under the backward and forward search.
Second, for this particular example, the backward search seems to be more pow-
erful (in average sense) than the forward search. Last, as we increase the value
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of α from 0.10 to 0.15, at each stage the average power of both search methods
increases as well. The result is intuitive since less conservative bounds on the
type I error rate will increase the possibility of rejecting the null hypotheses.

5.2. A simulation study

Here we perform a simulation study to compare our proposed two search meth-
ods and the Lasso-type methods in terms of (i) the accuracy of the estimated
two important sets; and (ii) the accuracy of the estimated trimmed Granger
causality. Note that two popular Lasso implementations of VAR models are the
Lasso-SS and the Lasso-LL method, where the former uses the sum of squared
residuals and the later uses minus log likelihood as the loss function, respectively.
However, as shown by Davis et al. [7], the performance of these two Lasso-type
methods are quite similar under the simulation setup considered in this study.
Therefore, numerical results are provided merely for the Lasso-SS method.

Consider the following 6-dimensional VAR(1) model:
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













X1,t

X2,t
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













=
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









0.8 0 0 0 0 0
0 0 0 0.3 0 0
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0 0 0.6 0 0 0
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
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






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+
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


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a3,t
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






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, (5.1)

where at = (a1,t, . . . , a6,t)
′ are i.i.d. Gaussian noise with mean zero and covari-

ance matrix

Σa =

















δ2 δ/4 δ/6 δ/8 δ/10 δ/12
δ/4 1 0 0 0 0
δ/6 0 1 0 0 0
δ/8 0 0 1 0 0
δ/10 0 0 0 1 0
δ/12 0 0 0 0 1

















.

Suppose now we are interested in finding the trimmed Granger causality between
Yt = (Y1,t, Y2,t, Y3,t)

′ and Xt = (X1,t, X2,t, X3,t)
′ based on the one-step-ahead

predictor. By (5.1), the coefficient matrix of interest is then

AXY,1 =





0 0 0
0.3 0 0
0 −0.3 0



 .

Thus, by choosing c = 1, the true important sets are SY = {Y1,t, Y2,t} and
SX = {X2,t, X3,t}, respectively, while the trimmed Granger causality is

{Y1,t, Y2,t} →
(1)

{X2,t, X3,t}.
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Table 7

The accuracy of different methods for estimating SY , SX and SY →
(1)

SX with δ = 1, 2, 5, 10,

and α = 0.10, 0.05, 0.01

Accuracy of Accuracy of Accuracy of
Choice of Method Choice of Estimating Estimating Estimating

δ α SY SX SY →
(1)

SX

Backward 0.10 0.636 0.650 0.552
0.05 0.537 0.521 0.448
0.01 0.262 0.264 0.206

1 Forward 0.10 0.483 0.495 0.398
0.05 0.439 0.447 0.356
0.01 0.242 0.252 0.187

Lasso-SS – 0.398 0.304 0.200

Backward 0.10 0.766 0.781 0.682
0.05 0.705 0.707 0.633
0.01 0.510 0.498 0.435

2 Forward 0.10 0.665 0.674 0.587
0.05 0.601 0.611 0.530
0.01 0.415 0.438 0.363

Lasso-SS – 0.326 0.278 0.174

Backward 0.10 0.799 0.801 0.724
0.05 0.770 0.778 0.717
0.01 0.628 0.625 0.574

5 Forward 0.10 0.693 0.710 0.624
0.05 0.688 0.695 0.613
0.01 0.527 0.535 0.474

Lasso-SS – 0.336 0.272 0.164

Backward 0.10 0.811 0.806 0.739
0.05 0.748 0.750 0.683
0.01 0.608 0.589 0.531

10 Forward 0.10 0.720 0.745 0.660
0.05 0.661 0.652 0.596
0.01 0.488 0.507 0.439

Lasso-SS – 0.360 0.284 0.170

To assess the accuracy of each method, we simulate the VAR(1) model for
1,000 times by using the R package “mAr” (with the sample size T = 100) and
record respectively the proportions of times that the estimated important sets
and trimmed Granger causality match the true ones (the bias or variation of the
estimated VAR parameters is not of particular interest here). For comparison
purpose, the order of the VAR model used to perform the backward and forward
search is pre-specified by one, while the bound on the type I error rate is chosen
to be α = 0.10. On the other hand, the Lasso-SS VAR model is estimated by
using the R package “fastVAR”, with the VAR order pre-specified by one and
the tuning parameter selected by 10-fold cross validations. The numerical results
are given in Table 7 for various choices of α and δ in Σa.

As can be seen from Table 7, both the backward and forward search clearly
outperform the Lasso-SS approach, except for the case that a rather tight error
bound (α = 0.01) and small variability (δ = 1) in the noise term are considered.
The improvement on the accuracy becomes more significant as the value of δ
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increases (e.g., up to 300% for estimating the trimmed Granger causality). In
addition, the proposed two search methods in general have higher accuracy on
estimating the important sets as the value of α becomes larger. Such a phe-
nomenon is intuitive since the true coefficient matrix AXY , 1 in the VAR model
is nonzero (recall that the power of the test increases with α). The reasons why
the Lasso-SS method is not able to precisely undertake the characterization of
the desired important variables are: (i) spurious non-zero VAR coefficients are
produced since the temporal dependence is ignored; (ii) there exists a systematic
bias on the estimation of the VAR coefficients due to the shrinkage effect of the
Lasso penalty; and (iii) bias accumulates when the entire row or column in the
coefficient matrix AXY , 1 is estimated. As supported by the numerical evidence,
our proposed hypothesis testing procedure nevertheless overcomes the short-
comings of such a pure estimation procedure. Further, by choosing appropriate
bounds on the type I error rate, it allows us to better “control” the accuracy on
characterizing the desired causal relationship.

6. Concluding remarks

In this paper, we have explained how we could identify the important variables
in two groups of time series so that a simplified Granger causal relationship can
be presented based on the VAR model. Such a simplified causal relationship,
called trimmed Granger causality, allows us to forecast some future quantities
by utilizing just a part of variable information. Thus, this work can be viewed
as a refined version of the conventional Granger causality test. When the VAR
model is specified, explicit conditions are provided for identifying the important
variables in both groups of time series. When the parameters of the VAR model
are unknown, a multiple hypothesis testing procedure along with two different
search algorithms is introduced for estimating the important variables. A simula-
tion study shows that, by choosing appropriate bounds on the type I error rate,
our proposed methods significantly outperform the Lasso-type methods (e.g.,
Lasso-SS and Lasso-LL) in characterizing the correct important variables (or
causal relationship). We are currently looking into (i) efficient computational
methods for large VAR models and how it would compare with other vari-
able selection methods; and (ii) the hypothesis testing procedure when Granger
causality is defined via the h-step-ahead predictor, where h > 1 (see Remark 5
for details). The problem in (ii) is challenging since one may have to validate
nonlinear constraints on the VAR coefficients in the hypothesis testing proce-
dure, for which the existing theoretical results are rather limited. We hope to
report these findings in a future paper.
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