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Abstract: In recent years, a large variety of continuous shrinkage pri-
ors have been developed for a Bayesian analysis of the standard linear
regression model in high dimensional settings. We consider two such pri-
ors, the Dirichlet-Laplace prior (developed in Bhattacharya et al. (2013)),
and the Normal-Gamma prior (developed in (Griffin and Brown, 2010)). For
both Dirichlet-Laplace and Normal-Gamma priors, Gibbs sampling Markov
chains have been developed to generate approximate samples from the cor-
responding posterior distributions. We show by using a drift and minoriza-
tion based analysis that the Gibbs sampling Markov chains corresponding
to the aforementioned models are geometrically ergodic. Establishing geo-
metric ergodicity of these Markov chains is crucial, as it provides theoretical
justification for the use of Markov chain CLT, which can then be used to
obtain asymptotic standard errors for Markov chain based estimates of
posterior quantities. Both Gibbs samplers in the paper use the Generalized
Inverse Gaussian (GIG) distribution, as one of the conditional distribu-
tions. A novel contribution of our convergence analysis is the use of drift
functions which include terms that are negative fractional powers of normal
random variables, to tackle the presence of the GIG distribution.
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1. Introduction

In recent years, there has been a huge influx of high-dimensional datasets from
various fields such as genomics, environmental sciences, finance and the social
sciences. Classical statistical methods are inadequate to analyze these high-
dimensional datasets. Hence, development of new techniques for analyzing these
datasets has been a major focus of statistical research in the last decade, and
continues to generate much interest. In this context, analysis of the standard lin-
ear regression model in a high-dimensional setting, is a well-studied and popular
research topic.

In particular, consider the model y = Xβ + σǫ, where y = (yi)
n
i=1 ∈ R

n

is the vector of observations, X is the (known) design matrix, β ∈ R
p is the

(unknown) vector of regression coefficients, the components of ǫ are iid standard
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normal errors, and σ2 is the (unknown) variance parameter. The objective is
to estimate the unknown parameters β and σ2. For many modern datasets, the
number of regression parameters (p, the dimension of β) is much larger than
the number of observations (n). Classical statistical methods are not applicable
for analyzing such datasets. A natural approach in these situations is to look for
sparse estimates of β, i.e., estimates where many entries of β are exactly equal
to zero. The lasso (introduced in Tibshirani (1994)) is a popular approach to
deal with this problem. In this approach, the estimate of β is given by

β̂lasso = argmin
β∈Rp



(y −Xβ)T (y −Xβ) + λ

p∑

j=1

|βj |



 , (1.1)

where λ is a user-specified tuning parameter. The estimate β̂lasso also has a

Bayesian statistical interpretation. It is well known that β̂lasso is the mode of
the conditional density of β given σ2 and y, assuming that the components of
β (conditioned on σ2) are independently distributed, with each component hav-
ing a Laplace prior distribution. Based on this observation, several authors have
proposed a Bayesian analysis of the linear regression model in high-dimensional
settings by using various adaptations/generalizations of the Laplace prior dis-
tributions for the entries of β (see Bhattacharya et al. (2013); Carvalho et al.
(2010); Figueiredo (2003); Griffin and Brown (2005, 2010); Johnstone and Sil-
verman (2002); Park and Casella (2008); Polson and Scott (2010); Tipping and
Smola (2001)). These prior distributions are referred to as “continuous shrink-
age priors” and the corresponding statistical models are referred to as “Bayesian
shrinkage models”.

In recent work, Bhattacharya et al. (2013) unify many of the standard Bayesian
shrinkage models under a common framework, and study their theoretical prop-
erties. They show that frequentist optimality of these Bayesian shrinkage meth-
ods depends heavily on prior concentration around sparse vectors, i.e., whether
the corresponding priors place sufficient mass around sparse β values (espe-
cially in high-dimensional settings). They further demonstrate that some pop-
ular choices of shrinkage models, including the Bayesian lasso (introduced in
Park and Casella (2008)), have sub-optimal prior concentration properties, and
develop a new class of continuous shrinkage priors called the Dirichlet-Laplace
priors, which have optimal prior concentration properties.

The Normal-Gamma model developed by Griffin and Brown (2010) is another
commonly used Bayesian shrinkage model, and contains the Bayesian lasso as a
special case. In fact, the Bayesian lasso model corresponds to a specific choice
of a hyperparameter in the Normal-Gamma model. Bhattacharya et al. (2013)
argue that for an appropriate range of hyperparameter values (not including
the Bayesian lasso case) the Normal-Gamma model shares the optimal prior
concentration properties of the Dirichlet-Laplace model.

For both the Dirichlet-Laplace and Normal-Gamma model, the posterior den-
sity is intractable in the sense that desired expected values cannot be computed
in closed form, and it is not possible to directly sample from the posterior density.
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As a result, for both these models, Markov chains have been devised to generate
approximate samples from the corresponding posterior density. A crucial, and
often challenging, task in this context is to investigate whether these Markov
chains are geometrically ergodic, i.e., whether the distribution of each of these
Markov chains converges to the corresponding posterior distribution at a geom-
teric rate. As we discuss below, establishing geometric ergodicity is important for
a meaningful statistical analysis of the corresponding models. A proof of geomet-
ric ergodicity of the Markov chain corresponding to the Bayesian Lasso model
is provided in Khare and Hobert (2013). However, an investigation of geometric
ergodicity for the Markov chain corresponding to the general Normal-Gamma
model and the Dirichlet-Laplace model has not been undertaken. Indeed, the
general Normal-Gamma model requires a much more complicated and nuanced
analysis as compared to the Bayesian lasso model (see Remark 1).

To clarify the importance of establishing geometric ergodicity, consider the
details of the Normal-Gamma model introduced in Griffin and Brown (2010).
The model is specified as follows:

y | β, σ2 ∼ Nn(Xβ, σ
2In) (1.2)

β | σ2, τ ∼ Np(0p, σ
2Dτ ), (1.3)

σ2 ∼ Inverse-Gamma(α, ξ) with α, ξ > 0 known (1.4)

τj ∼ Gamma (a, b) for j = 1, 2, . . . , p, with a, b > 0 known, (1.5)

whereNp denotes the p-variate normal density, andDτ is a diagonal matrix with
diagonal entries given by {τj}pj=1. The joint density for the parameter vector

(β, τ , σ2) conditioned on the data vector y is given by the following:

π(β, τ , σ2 | y) ∝ e−
(y−Xβ)T (y−Xβ)

2σ2

(
√
2π)nσn

e−
βTD

−1
τ β

2σ2

(
√
2π)pσp

×



p∏

j=1

τ
a− 1

2−1
j e−bτj


 (σ2)−α−1e−

ξ

σ2 . (1.6)

There is no direct method to sample from this intractable posterior density.
However, it turns out that β | τ , σ2,y is multivariate normal, σ2 | β, τ ,y is
Inverse Gamma, and the entries of τ | β, σ2,y are independently distributed
with a generalized inverse Gaussian distribution (see Section 3 for more details).
Using these standard densities, Griffin and Brown (2010) construct a Gibbs
sampling Markov chain {(βm, τm, σ2

m)}m≥0. The transition of this Markov chain
from (βm, τm, σ

2
m) to (βm+1, τm+1, σ

2
m+1) can be described by the following

procedure:

Iteration (m+ 1) of the Gibbs sampler:

1. Draw σ2
m+1 from π(· | βm, τm,y), i.e., from the conditional density given

(βm, τm,y).
2. Draw τm+1 from π(· | σ2

m+1,βm,y), i.e., from the conditional density
given (σ2

m+1,βm,y).
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3. Draw βm+1 from π(· | τm+1, σ
2
m+1,y), i.e., from the conditional density

given (τm+1, σ
2
m+1,y).

As shown in Section 3, it can be established in a straightforward way that the
Markov chain described above is Harris ergodic, and its stationary density is
given by the density in (1.6). Harris ergodicity can be used to construct strongly
consistent estimators of intractable posterior expectations. In particular, if a
real-valued measurable function h satisfies

Eπ|h| :=
∫ ∫ ∫

|h(β, τ , σ2)|π(β, τ , σ2 | y) dβ dτ dσ2 <∞,

then irrespective of how the chain is started, the estimator

h̄m :=
1

m+ 1

m∑

i=0

h(βm, τm, σ
2
m)

is strongly consistent for Eπh. However, this estimator is useful only if an esti-
mate of the associated standard error can be provided. All known methods to
compute asymptotically consistent estimates of standard errors for h̄m require
the existence of a Markov chain central limit theorem (CLT). In particular, we
need to establish that

√
m(h̄m − Eπh)

d→ N
(
0, c2

)
,

where c2 is a finite positive constant. In general, the only standard method avail-
able to prove a Markov chain CLT, and obtain consistent estimates of the asymp-
totic variance c2, is to prove that the underlying Markov chain is geometrically
ergodic (see Chan and Geyer (1994); Flegal and Jones (2010); Mykland, Tier-
ney and Yu (1995); Robert (1995)). In the current context, the Markov chain
{(βm, τm, σ2

m)}m≥0 is defined to be geometrically ergodic if there exists a pos-
itive real-valued function M , and a constant γ ∈ [0, 1) such that, for every
(β0, τ 0, σ

2
0) and r ∈ N,

‖Kr
(β0,τ0,σ

2
0)
−Π‖TV ≤M(β0, τ 0, σ

2
0)γ

r

whereKr
(β0,τ0,σ

2
0)
denotes the distribution of the Markov chain started at (β0, τ 0,

σ2
0) after r steps, Π denotes the stationary distribution (corresponding to the

density in (1.6)), and ‖ · ‖TV denotes the total variation norm.
If the state space of an ergodic Markov chain is finite, then geometric ergod-

icity is immediate. However, establishing geometric ergodicity is a much more
challenging task for a Markov chain with an infinite state space. A significant
proportion of Markov chains arising in statistical applications (including the
Markov chains considered in this paper) have continuous state spaces. Despite
some success stories, for a large majority of these Markov chains, a proof of
geometric ergodicity is not available.

For the Normal-Gamma Markov chain described above, we prove the follow-
ing.

Theorem 1.1. The Normal-Gamma Markov chain {(βm, τm, σ2
m)}m≥0 is ge-

ometrically ergodic for every n ≥ 3, p,X, α, ξ, a and b.
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A similar result (Therorem 4.1) is established for the Dirichlet-Laplace Markov
chain in Section 4. The analysis is based on Harris recurrence techniques devel-
oped in Meyn and Tweedie (2009), Rosenthal (1995) and Roberts and Tweedie
(1996) (see Jones and Hobert (2001) for an extensive review). This method of
establishing geometric ergodicity of general state space Markov chains has been
previously used by several authors, including Hobert (2001); Hobert and Geyer
(1998); Jarner and Hansen (2000); Jones and Hobert (2001, 2004); Marchev
and Hobert (2004); Mengersen and Tweedie (1996); Mira and Tierney (1997);
Roberts and Rosenthal (1998b, 1999); Roman and Hobert (2012); Rosenthal
(1996); Roy and Hobert (2007); Tan and Hobert (2009); Tan, Jones and Hobert
(2012). In order to use this technique, one needs to construct a drift function,
and then use it to establish appropriate drift and minorization conditions (see
for example Proposition 3.1 and Proposition 3.2). However, there is no general
recipe or guidelines to construct the drift function and the corresponding drift
and minorization conditions. Constructing these in any specific application is
currently a matter of art.

Both the Gibbs sampling Markov chains analyzed in this paper use the Gen-
eralized Inverse Gaussian (GIG) distribution as one of the conditional distri-
butions. To the best of the authors’ knowledge, a drift and minorization based
analysis for Gibbs samplers involving the GIG distribution has not been under-
taken in previous literature. Gibbs sampling Markov chains in Khare and Hobert
(2012), Khare and Hobert (2013) and Choi and Hobert (2013) involve the In-
verse Gaussian distribution (which is a special case of the GIG distribution),
and require a much simpler analysis as compared to the anaylsis in Section 3
and Section 4 (see Remark 1). We construct a new class of drift functions, which
include terms that are negative fractional powers of normal random variables,
to tackle the presence of the GIG distribution. The details can be found at the
beginning of Section 3.1.

The paper is organized as follows. In Section 2, we establish notation for
standard densities that will be used in our analysis. Section 3 provides drift and
minorization conditions for the Normal-Gamma model. Section 4 provides drift
and minorization conditions for the Dirichlet-Laplace model. Section 5 contains
a discussion of future research directions. The appendix contains mathematical
results, including some new identities related to modified Bessel functions of the
second kind. These mathematical results play an important role in the analysis
in Section 3 and Section 4.

2. Notation

We establish notation for some standard densities that will be used in the anal-
ysis.

• Np(µ,Σ) denotes the p-variate normal density with mean vector µ and
covariance matrix Σ.

• Gamma(α, ξ) denotes the gamma density with shape parameter α > 0
and rate parameter ξ > 0.
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• Inverse-Gamma(α, ξ) denotes the inverse-gamma density with shape pa-
rameter α > 0 and rate parameter ξ > 0.

• GIG(ν, α, ξ) denotes the generalized inverse Gaussian density with param-
eters ν ∈ R, α > 0, ξ > 0, and corresponds to the density function

fGIG(x) =
α
ν
2

2ξ
ν
2Kν(

√
αξ)

xν−1e−
1
2 (αx+

ξ
x ), for x > 0.

Here Kν(·) denotes the modified Bessel function of the second kind. Since
fGIG is a density function, it follows immediately that

Kν(
√
αξ) =

∫ ∞

0

α
ν
2

2ξ
ν
2
xν−1e−

1
2 (αx+

ξ
x )dx. (2.1)

Note that for any x > 0, Kν(x) can be obtained from (2.1) by setting
α = x and ξ = x.
Using (2.1), if X ∼ GIG(ν, α, ξ), then

E[X ] =

√
ξKν+1(

√
αξ)√

αKν(
√
αξ)

. (2.2)

The appendix contains several new mathematical identities (along with proofs)
for modified Bessel functions of the second kind. These results are useful in the
subsequent analysis.

3. The Normal-Gamma model

In this section, we prove that the Gibbs sampling Markov chain in Griffin and
Brown (2010) for drawing approximate samples from the posterior density in
(1.6) is geometrically ergodic. We first resolve a minor technical issue, and then
proceed to provide the details of the Gibbs sampling algorithm in Griffin and
Brown (2010). Consider the Normal-Gamma model specified in (1.2)–(1.5). It
can be shown that if a is chosen to be less than 1

2 , then the marginal density of
β converges to infinity if one or more entries of β converge to zero. Such a choice
is intentional, and the objective is that the posterior density of (β, τ , σ2) will
concentrate on neighborhoods of sparse values of β. To avoid technical compli-
cations in defining the conditional densities for the Gibbs sampling algorithm in
Griffin and Brown (2010), it is assumed that the parameter β takes values in R̃

p,

where R̃ := R\{0}. Since the set Rp\R̃p has Lebesgue measure (on R
p) equal to

zero, expectations with respect to the density π(β, τ , σ2 | y) remain the same,

whether we restrict β to R̃
p or not. Hence, it is enough to be able to generate

samples from the density π(β, τ , σ2 | y) restricted to the space R̃
p × R

p
+ × R+.

Griffin and Brown (2010) show that the conditional densities corresponding
to the density in (1.6) are given as follows.

• The conditional density of β given τ , σ2,y is the

Np
(
(XTX +D−1

τ )−1XTy, σ2(XTX +D−1
τ )−1

)
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density on R̃
p. In particular,

π(β | τ , σ2,y) =
|XTX +D−1

τ | 12
(
√
2π)pσp

×

e−
(β−(XTX+D

−1
τ )−1XT y)

T
(XTX+D

−1
τ )(β−(XTX+D

−1
τ )−1XT y)

2σ2 , (3.1)

for β ∈ R̃
p. Note that a sample from any mulltivariate normal density of

R
p is with probability 1 also a sample from the same density restricted

to R̃
p. Hence it is easy to generate a sample from the above conditional

density.
• The conditional density of σ2 given β, τ ,y is the

Inverse-Gamma

(
n+ p+ 2α

2
,
(y −Xβ)T (y −Xβ) + βTD−1

τ β + 2ξ

2

)

density. In particular,

π(σ2 | β, τ ,y) =

(
(y −Xβ)T (y −Xβ) + βTD−1

τ β + 2ξ
)n+p+2α

2

2
n+p+2α

2 Γ(n+p+2α
2 )

× (σ2)−
n+p+2α

2 −1e−
(y−Xβ)T (y−Xβ)+βTD

−1
τ β+2ξ

2σ2 , (3.2)

for σ2 ∈ R+. Here R+ := (0,∞).
• Given β, σ2 and y, the variables τ1, τ2, . . . , τp are conditionally indepen-
dent, and the conditional density of τj given β, σ2 and y is GIG(a −
1
2 , 2b,

β2
j

σ2 ). In particular

π(τ | β, σ2,y)

=

p∏

j=1

(
2bσ2

) a− 1
2

2

2|βj |a−
1
2Ka− 1

2

(√
2b

β2
j

σ2

)τ (a−
1
2 )−1

j e
− 1

2

{
2bτj+

β2j

σ2
1
τj

}

, (3.3)

for τ ∈ R
p
+.

Samples can be generated easily from all the conditional densities in (3.1), (3.2)
and (3.3) by using standard statistical software (such as R). As described in
Section 1, the conditional densities described above can be used to construct a
block Gibbs sampling Markov chain {(βm, τm, σ2

m)}∞m=0. The Markov transi-
tion density corresponding to this Markov chain (with respect to the Lebesgue

measure on R̃
p × R

p
+ × R+) is given by

kNG

(
(β̃, τ̃ , σ̃2), (β, τ , σ2)

)
= π

(
β | τ , σ2,y

)
π
(
τ | β̃, σ2,y

)
π
(
σ2 | β̃, τ̃ ,y

)
.

It is well known, and can be easily verified, that the joint density of (β, τ , σ2)
(conditioned on y) defined in (1.6), is invariant for the Gibbs transition density
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kNG defined above. Since kNG is strictly positive, it follows that the corre-
sponding Markov chain is irreducible with respect to the Lebesgue measure on

R̃
p×R

p
+×R+ (see (Meyn and Tweedie, 2009, Page 87)), and aperiodic. Results

in Asmussen and Glynn (2011) can now be invoked to conclude that the Markov
chain is positive Harris recurrent. We now proceed to prove geometric ergodic-
ity by establishing a geometric drift condition and an associated minorization
condition for the Gibbs transition density kNG. Using results from Rosenthal
(1995), this will immediately establish geometric ergodicity of the corresponding
Markov chain.

3.1. Drift condition

Consider the following function

V (β, τ , σ2) = (y −Xβ)T (y −Xβ) + βTD−1
τ β +

p∑

j=1

1

|βj |δ(a)
+

p∑

j=1

τj ,

where Dτ is the diagonal matrix with the diagonal elements {τj}pj=1, and

δ(a) = aI[0<a≤ 1
2 ]

+min

{
1

2
, 2a− 1

}
I[a> 1

2 ]
.

This function will be used to establish a geometric drift condition for the
Normal-Gamma Markov chain. The first two terms in V (β, τ , σ2) are quadratic
forms in β. The choice of quadratic terms like these is pretty standard. However,
the third term

∑p
j=1

1
|βj|δ is a sum of negative fractional powers of the entries

of β (whose conditional distribution given τ , σ2and y is multivariate normal
with a non-zero mean vector in general), and is the new feature of this drift
function. We would like to differentiate this choice with the drift function in
Tan and Hobert (2009). The drift function in Tan and Hobert (2009) consists
of positive fractional powers of quadratic forms of variables whose conditional
distribution given the other parameters and the data is multivariate normal.

Let EkNG [· | β0, τ 0, σ
2
0 ] denote the expectation with respect to one step of

the Markov chain with transition density kNG, starting at (β0, τ 0, σ
2
0). The

following proposition establishes a geometric drift condition for the transition
density kNG.

Proposition 3.1. If n ≥ 3, there exists constants 0 ≤ γ < 1 and ϕ ≥ 0 such
that

EkNG [V (β, τ , σ2) | (β0, τ 0, σ
2
0)] ≤ γV (β0, τ 0, σ

2
0) + ϕ, (3.4)

for every (β0, τ 0, σ
2
0) ∈ R̃

p × R
p
+ × R+.

Proof. It follows by the definition of the Markov transition density kNG that,

EkNG [V (β, τ , σ2) | (β0, τ 0, σ
2
0)]

= E[E[E[V (β, τ , σ2) | τ , σ2,y] | β0, σ
2,y] | β0, τ 0,y], (3.5)
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where E[· | τ , σ2,y] denotes the expectation with respect to π(· | τ , σ2,y)
(specified in (3.1)), E[· | β0, σ

2,y] denotes the expectation with respect to
π(· | β0, σ

2,y) (specified in (3.2)), and E[· | β0, τ 0,y] denotes the expectation
with respect to π(· | β0, τ 0,y) (specified in (3.3)).

We evaluate the three conditional expectations one step at a time. Note that

E
[
(y −Xβ)T (y −Xβ) + βTD−1

τ β | τ , σ2,y
]

= yTy + E[βT (XTX +D−1
τ )β | τ , σ2,y]− 2yTXE[β | τ , σ2,y]

= yTy + ‖(XTX +D−1
τ )

1
2 (XTX +D−1

τ )−1XTy‖22 +
tr
(
(XTX +D−1

τ )
1
2 (XTX +D−1

τ )−1(XTX +D−1
τ )

1
2

)
σ2

− 2yTX(XTX +D−1
τ )−1XTy

= yTy − yTX(XTX +D−1
τ )−1XTy + pσ2. (3.6)

Let ej denote the j
th unit vector in R

p. By (3.1), we get that the conditional den-
sity of βj = eTj β given τ , σ2,y is N(µj , σ

2
j ), where µj = eTj (X

TX+D−1
τ )−1XTy

and σ2
j = σ2eTj (X

TX+D−1
τ )−1ej . Let λX be largest eigenvalue of XTX . It fol-

lows that for every j = 1, 2, . . . , p,

1

σ
δ(a)
j

=

(
1

σ2eTj (X
TX +D−1

τ )−1ej

) δ(a)
2

(a)

≤ 1

σδ(a)

(
1

eTj (λXIp +D−1
τ )−1ej

) δ(a)
2

=
1

σδ(a)

(
λX +

1

τj

) δ(a)
2

(a′)
≤


λ

δ(a)
2

X

σδ(a)
+

1

σδ(a)τ
δ(a)
2

j


 . (3.7)

Here (a) follows from the fact that λXIp − XTX is a non-negative definite
matrix and (a′) follows from the fact that if u, v ≥ 0 and 0 < δ < 1 then

(u+ v)δ ≤ uδ + vδ. Let κ(a) :=
Γ( 1−δ(a)

2 )2
1−δ(a)

2√
2π

for a > 0. Using Proposition A1

(see appendix) with βj playing the role of V, and utilizing the inequality in (3.7),
we obtain

E

[
1

|βj |δ(a)
| τ , σ2,y

]
≤ κ(a)

σ
δ(a)
j

≤ κ(a)


λ

δ(a)
2

X

σδ(a)
+

1

σδ(a)τ
δ(a)
2

j


 (3.8)
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for every j = 1, 2, . . . , p. It follows by summing over all j = 1, 2, . . . , p that

E




p∑

j=1

1

|βj |δ(a)
| τ , σ2,y



 ≤ pκ(a)λ
δ(a)
2

X

σδ(a)
+
κ(a)

σδ(a)

p∑

j=1

1

τ
δ(a)
2

j

. (3.9)

It follows by (3.6) and (3.9) that the innermost expectation in (3.5) can be
bounded as follows

E[V (β, τ , σ2) | τ , σ2,y] ≤ yTy + pσ2 +
pκ(a)λ

δ(a)
2

X

σδ(a)
+

κ(a)

σδ(a)

p∑

j=1

1

(τj)
δ(a)
2

+

p∑

j=1

τj . (3.10)

For the next step, we consider the middle conditional expectation in (3.5). By

(3.3), we have τj | β0, σ
2,y ∼ GIG(a− 1

2 , 2b,
|β0j|2
σ2 ). It follows by (2.2) that

E[τj | β0, σ
2,y] =



√

|β2
0j |

2bσ2



Ka+ 1

2

(√
2b

|β0j|2
σ2

)

Ka− 1
2

(√
2b

|β0j|2
σ2

)

(b)

≤
( |β0j |√

2bσ

)


a+

√
a2 + 2b

(
|β0j|
σ

)2

√
2b|β0j|
σ




(b′)
≤ a

b
+

|β0j |√
2bσ

(b′′)
≤ a

b
+ C1

|β0j |2
σ2

+
1

2bC1
, (3.11)

where C1 is an arbitrary positive constant (we will make an appropriate choice

of C1 later). Here (b) follows from the fact that
K
ν+1

2
(x)

K
ν− 1

2
(x) ≤ ν+

√
ν2+x2

x
for x, ν > 0

(see (Segura, 2011, Theorem 2)), (b′) follows from the fact that
√
x2 + y2 ≤

|x| + |y|, and (b)′′ follows from the fact that |xy| ≤ x2+y2

2 ≤ x2 + y2. By (2.1),
we get that

E

[
1

(τj)
δ(a)
2

]
=

∫ ∞

0

1

x
δ(a)
2

(√
2bσ

|β0j |

)a− 1
2
x(a−

1
2 )−1e

− 1
2

(
2bx+

β20j

σ2x

)

2Ka− 1
2

(√
2b|β0j |
σ

) dx

=

(√
2bσ

|β0j |

) δ(a)
2 K

a− 1
2−

δ(a)
2

(√
2b|β0j|
σ

)

Ka− 1
2

(√
2b|β0j |
σ

) . (3.12)

Now we separately consider three cases when a < 1
2 , a >

1
2 and a = 1

2 .
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Case 1: a ∈ (0, 12 ).

By the property that Kν(x) = K−ν(x) (see (Abramowitz and Stegun, 1965,
Page 375)), we obtain

E

[
1

(τj)
δ(a)
2

]
=

(√
2bσ

|β0j |

) δ(a)
2 K 1

2+
δ(a)
2 −a

(√
2b|β0j|
σ

)

K 1
2−a

(√
2b|β0j |
σ

) . (3.13)

By Proposition A2 (see appendix), with ν1 = 1
2 + δ(a)

2 − a, ν2 = 1
2 − a and

x =
√
2b|β0j|
σ

, it follows that for arbitrary ǫ∗ (we will make an appropriate choice

of ǫ∗ later), there exists an ǫ depending on ǫ∗ and a such that, for
√
2b|β0j |
σ

< ǫ,

K 1
2
+ δ(a)

2
−a

(√
2b|β0j |
σ

)

K 1
2−a

(√
2b|β0j |
σ

) ≤ (1 + ǫ∗)
Γ(12 + δ(a)

2 − a)2
δ(a)
2 σ

δ(a)
2

Γ(12 − a)
(√

2b|β0j |
) δ(a)

2

. (3.14)

By (3.13), we obtain

E

[
1

(τj)
δ(a)
2

]

=

(√
2bσ

|β0j |

) δ(a)
2 K 1

2+
δ(a)
2 −a

(√
2b|β0j |
σ

)

K 1
2−a

(√
2b|β0j |
σ

) I[√
2b|β0j |
σ

<ǫ

]

+

(√
2bσ

|β0j |

) δ(a)
2 K 1

2+
δ(a)
2 −a

(√
2b|β0j|
σ

)

K 1
2−a

(√
2b|β0j|
σ

) I[√
2b|β0j |
σ

≥ǫ
]

(c)

≤ (1 + ǫ∗)

(
σ

|β0j |

)δ(a) Γ(12 + δ(a)
2 − a)2

δ(a)
2

Γ(12 − a)
I[√

2b|β0j |
σ

<ǫ

]

+

(√
2bσ

|β0j |

) δ(a)
2




(2(1− a))
δ(a)
2

(√
2b|β0j |
σ

) δ(a)
2

+ 1


 I[√

2b|β0j |
σ

≥ǫ
]

≤ (1 + ǫ∗)

(
σ

|β0j |

)δ(a) Γ(12 + δ(a)
2 − a)2

δ(a)
2

Γ(12 − a)
+

+ (2b)
δ(a)
2

(2(1− a))
δ(a)
2

ǫδ(a)
+

(2b)
δ(a)
2

ǫ
δ(a)
2

, (3.15)

where (c) follows by (3.14) and Proposition A4 (see appendix) with ν := 1
2 − a

and x :=
√
2b|β0j |
σ

.
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Case 2: a > 1
2 .

Note that if x > 0, then ν 7→ Kν(x) is an increasing function for ν > 0 (see
(Laforgia, 1991, Page 266)). Furthermore, by (Baricz, 2008, Page 69), it follows
that if ν1 < ν2, ν > 0, and x > 0, then

Kν1+ν(x)

Kν1(x)
≤ Kν2+ν(x)

Kν2(x)
.

By choosing ν1 = −ν and ν2 = 0, it follows that K2
0 (x) ≤ K2

ν(x) for ν > 0 and
x > 0. Since Kν(x) is positive for ν ≥ 0 and x > 0, it follows that ν 7→ Kν(x)
is an increasing function for ν ≥ 0. Using this along with (3.12) and the fact

uv ≤ u2+v2

2 for u, v > 0, we get that

E

[
1

(τj)
δ(a)
2

]
≤
(√

2bσ

|β0j |

) δ(a)
2

≤ 1

2κ(a)

(
σ

|β0j |

)δ(a)
+

(2b)
δ(a)
2 κ(a)

2
. (3.16)

Case 3: a = 1
2 .

From (3.12) it follows that

E

[
1

(τj)
δ(a)
2

]
=

(√
2bσ

|β0j |

) δ(a)
2 K δ(a)

2

(√
2b|β0j|
σ

)

K0

(√
2b|β0j|
σ

) . (3.17)

By Proposition A3 (see appendix) with ν := δ(a)
2 and x :=

√
2b|β0j |
σ

, there exists
and ǫ′ such that

K δ(a)
2

(√
2b|β0j |
σ

)

K0

(√
2b|β0j |
σ

) ≤ 1

2κ
(
1
2

) (√
2b|β0j |
σ

) δ(a)
2

for 0 < x < ǫ′. (3.18)

Hence by (3.17) and (3.18) we obtain,

E

[
1

(τj)
δ(a)
2

]

=

(√
2bσ

|β0j |

) δ(a)
2 K δ(a)

2

(√
2b|β0j |
σ

)

K0

(√
2b|β0j|
σ

) I[√
2b|β0j |
σ

<ǫ′
]

+

(√
2bσ

|β0j |

) δ(a)
2 K δ(a)

2

(√
2b|β0j |
σ

)

K0

(√
2b|β0j |
σ

) I[√
2b|β0j |
σ

≥ǫ′
]

(c′)
≤ 1

2κ
(
1
2

)
(

σ

|β0j |

)δ(a)
I[√

2b|β0j |
σ

<ǫ′
]
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+

(√
2bσ

|β0j |

) δ(a)
2




1
(√

2b|β0j |
σ

) δ(a)
2

+ 1


 I[√

2b|β0j |
σ

≥ǫ′
]

≤ 1

2κ
(
1
2

)
(

σ

|β0j |

)δ(a)
I[√

2b|β0j |
σ

<ǫ′
] +

(2b)
δ(a)
2

ǫ′δ(a)
+

(2b)
δ(a)
2

ǫ′
δ(a)
2

, (3.19)

where (c′) follows from Proposition A4 (see appendix) with ν = 0 and x =√
2b|β0j|
σ

.

Let us denote C2 = 1
2κ(a)I[a≥ 1

2 ]
+ (1 + ǫ∗)

Γ( 1
2+

δ(a)
2 −a)2

δ(a)
2

Γ( 1
2−a)

I[0<a< 1
2 ]

and

C3 =
(2b)

δ(a)
2 κ(a)

2
I[a> 1

2 ]
+ (2b)

δ(a)
2

[
(2(1− a))

δ(a)
2

ǫδ(a)
+

1

ǫ
δ(a)
2

]
I[0<a< 1

2 ]

+
(2b)

δ(a)
2

ǫ′δ(a)

(
1 + ǫ′

δ(a)
2

)
I[a= 1

2 ]
.

Hence, combining the three cases, and using (3.15), (3.16) and (3.19), we have
for every a > 0,

E

[
1

(τj)
δ(a)
2

]
≤ C2

(
σ

|β0j |

)δ(a)
+ C3. (3.20)

By (3.10), (3.11) and (3.20), it follows that

E
[
E[V (β, τ , σ2) | τ , σ2,y] | β0, σ

2,y
]

≤ yTy + pσ2 +
pκ(a)λ

δ(a)
2

X

σδ(a)
+ E


 κ(a)
σδ(a)

p∑

j=1

1

(τj)
δ(a)
2

+

p∑

j=1

τj | β0, σ
2,y




≤ yTy + pσ2 +
pκ(a)(λ

δ(a)
2

X + C3)

σδ(a)
+ κ(a)C2

p∑

j=1

1

|β0j |δ(a)

+ C1

p∑

j=1

β2
0j

σ2
+
ap

b
+

p

2bC1
. (3.21)

To analyze terms related to the outermost conditional expectation in (3.5), note
that by (3.2)

E[σ2 | β0, τ 0,y] =
(y −Xβ0)

T (y −Xβ0) + β
T
0D

−1
τ0
β0 + 2ξ

n+ p+ 2α− 2
, (3.22)
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and

E[
1

σ2
| β0, τ 0,y] =

n+ p+ 2α

(y −Xβ0)
T (y −Xβ0) + β

T
0D

−1
τ0 β0 + 2ξ

≤ n+ p+ 2α

βT0D
−1
τ0 β0

. (3.23)

Since δ(a) ≤ 1
2 , it follows that g(x) = x

δ(a)
2 is a concave function for x > 0.

Hence, by Jensen’s inequality for concave functions, we obtain

E

[
1

σδ(a)
| β0, τ 0,y

]
≤

(
E

[
1

σ2
| β0, τ 0,y

]) δ(a)
2

≤
[

n+ p+ 2α

(y −Xβ0)
T (y −Xβ0) + β

T
0D

−1
τ0 β0 + 2ξ

] δ(a)
2

≤
[
n+ p+ 2α

2ξ

] δ(a)
2

. (3.24)

It follows by (3.5), (3.21), (3.22), (3.23) and (3.24) that

EkNG [V (β, τ , σ2) | (β0, τ 0, σ
2
0)]

≤ yTy + κ(a)C2

p∑

j=1

1

|β0j |δ(a)
+ pE

[
σ2 | β0, τ 0,y

]
+
ap

b
+

p

2bC1

+ E


pκ(a)(λ

δ(a)
2

X + C3)

σδ(a)
| β0, τ 0,y


+ C1

p∑

j=1

E

[
β2
0j

σ2
| β0, τ 0,y

]

≤ yTy + κ(a)C2

p∑

j=1

1

|β0j |δ(a)
+ pκ(a)(λ

δ(a)
2

X + C3)

[
n+ p+ 2α

2ξ

] δ(a)
2

+ p
(y −Xβ0)

T (y −Xβ0) + β
T
0D

−1
τ 0
β0 + 2ξ

n+ p+ 2α− 2
+
ap

b

+ C1(n+ p+ 2α)

p∑

j=1

β2
0j

βT0D
−1
τ0 β0

+
p

2bC1
. (3.25)

Note that by the Cauchy-Schwarz inequality,

p∑

j=1

β2
0j ≤




p∑

j=1

|β0j |



2

=




p∑

j=1

√
β2
0j

τ0j

√
τ0j



2

≤




p∑

j=1

β2
0j

τ0j






p∑

j=1

τ0j




≤
(
β
T
0D

−1
τ0
β0

)



p∑

j=1

τ0j


 . (3.26)
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It follows from (3.25) and (3.26) that

EkNG [V (β, τ , σ2) | (β0, τ 0, σ
2
0)]

≤ κ(a)C2

p∑

j=1

1

|β0j |δ(a)
+ C1(n+ p+ 2α)

p∑

j=1

τ0j

+
p

n+ p+ 2α− 2

[
(y −Xβ0)

T (y −Xβ0) + β
T
0D

−1
τ0
β0

]

+ yTy +
2ξp

n+ p+ 2α− 2
+ pκ(a)(λ

δ(a)
2

X + C3)

[
n+ p+ 2α

2ξ

] δ(a)
2

+
ap

b
+

p

2bC1
.

Hence, we obtain

EkNG [V (β, τ , σ2) | (β0, τ 0, σ
2
0)] ≤ γV (β0, τ 0, σ

2
0) + ϕ, (3.27)

where

ϕ = yTy +
2ξp

n+ p+ 2α− 2
+ pκ(a)(λ

δ(a)
2

X + C3)

[
n+ p+ 2α

2ξ

] δ(a)
2

+
ap

b
+

p

2bC1
, (3.28)

γ =Max

{
κ(a)C2, C1(n+ p+ 2α),

p

n+ p+ 2α− 2

}
. (3.29)

Recall that δ(a) = aI[0<a≤ 1
2 ]
+min{ 1

2 , 2a−1}I[a>1
2 ]
, κ(a) =

Γ(
1−δ(a)

2 )2
1−δ(a)

2√
2π

and

C2 = 1
2κ(a)I[a≥ 1

2 ]
+ (1 + ǫ∗)

Γ( 1
2+

δ(a)
2 −a)2

δ(a)
2

Γ( 1
2−a)

I[0<a< 1
2 ]
. Hence,

κ(a)C2 =
1

2
I[a≥ 1

2 ]
+ (1 + ǫ∗)

[
Γ(12 − a

2 )
]2

Γ(12 )Γ(
1
2 − a)

I[0<a< 1
2 ]
. (3.30)

Note that [Γ(ϑ+ζ)]2

Γ(ϑ)Γ(ϑ+2ζ) ≤ ϑ
ϑ+ζ2 for ϑ > 0 and ζ > 0 (see Gurland (1956)). Let

0 < a < 1
2 . Taking ζ =

a
2 , ϑ = 1

2−a we get
[Γ( 1

2− a
2 )]

2

Γ( 1
2 )Γ(

1
2−a)

≤ 1−2a

(1−2a)+ a2

2

. If we choose

ǫ∗ < a2

2(1−2a) (remember ǫ∗ is an arbitrary positive constant of our choice) then

clearly (1 + ǫ∗)
[Γ( 1

2− a
2 )]

2

Γ( 1
2 )Γ(

1
2−a)

< 1. Hence κ(a)C2 < 1.

The assumption n ≥ 3 will automatically lead to the fact that p
n+p+2α−2 < 1,

and if we choose C1 = 1
2(n+p+2α) (recall that C1 is an arbitrary positive constant

of our choice), then C1(n+ p+2α) = 1
2 . Hence 0 ≤ γ < 1, which establishes the

required result.
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Remark 1. The Bayesian lasso model in Park and Casella (2008) arises as a
special case of the Normal-Gamma model, when the hyperparameter a in the
Normal-Gamma model is chosen to be 1. In this case, the conditional distribu-
tion of 1

τj
given β, σ2,y reduces to an Inverse Gaussian distribution for each

1 ≤ j ≤ p. In Khare and Hobert (2013), a proof of geometric ergodicity of the
Bayesian lasso Markov chain is provided by using a drift function of the form

(y −Xβ)T (y −Xβ) + βTD−1
τ β +

p∑

j=1

τj .

Hence, the term of the form
∑p

j=1
1

|βj |δ is not required. This significantly sim-

plifies the drift and minorization analysis in the Bayesian lasso case.

3.2. Minorization condition

For every d > 0, let

BV,d =
{
(β0, τ 0, σ

2
0) ∈ R̃

p × R
p
+ × R+ : V (β0, τ 0, σ

2
0) ≤ d

}
.

The following proposition establishes an associated minorization condition to
the geometric drift condition in Proposition 3.1.

Proposition 3.2. There exist a constant 0 < ǫ̃ = ǫ̃(V, d) ≤ 1 and a probability

density function f̃ on R̃
p × R

p
+ × R+ such that

kNG
(
(β0, τ 0, σ

2
0), (β, τ , σ

2)
)
≥ ǫ̃f̃(β, τ , σ2) (3.31)

for every (β0, τ 0, σ
2
0) ∈ BV,d.

Proof. Recall that

kNG
(
(β0, τ 0, σ

2
0), (β, τ , σ

2)
)

= π
(
β | τ , σ2,y

)
π
(
τ | β0, σ

2,y
)
π
(
σ2 | β0, τ 0,y

)
. (3.32)

Note that, if (β0, τ 0, σ
2
0) ∈ BV,d, then β

T
0D

−1
τ0
β0 +

∑p
j=1 τ0j ≤ d, hence

(
βT0D

−1
τ0
β0

)



p∑

j=1

τ0j



 ≤ d2.

It follows by (3.26) that

p∑

j=1

β2
0j ≤ d2. (3.33)
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By (3.3)

π(τ | β0, σ
2,y) =

p∏

j=1

g0j(τj | β0, σ
2), (3.34)

where g0j(. | β0, σ
2) is the GIG(a− 1

2 , 2b,
β2
0j

σ2 ) density. Hence

g0j(τj | β0, σ
2)

=
(τj)

a− 1
2−1e

− 1
2

(
2bτj+

β20j

τjσ
2

)

[
β2
0j

2bσ2

] (a− 1
2
)

2

2Ka− 1
2

(√
2b|β0j |
σ

)

(e)

≥ (τj)
a− 1

2−1e
− 1

2

(
2bτj+

d2

τjσ
2

)

[
|β0j |
σ
√
2b

](a− 1
2 )

2Ka− 1
2

(√
2b|β0j |
σ

)

≥





[
d

σ
√
2b

](a− 1
2 )

2Ka−1
2

(√
2bd
σ

)

[
|β0j|
σ
√
2b

](a− 1
2 )

2Ka− 1
2

(√
2b|β0j |
σ

)









(τj)
a− 1

2−1e
− 1

2

(
2bτj+

d2

τjσ
2

)

[
d

σ
√
2b

](a− 1
2 )

2Ka− 1
2

(√
2bd
σ

)





≥






[
d

|β0j |

]a− 1
2 2Ka− 1

2

(√
2bd
σ

)

2Ka− 1
2

(√
2b|β0j |
σ

)




 g̃j(τj | σ2), (3.35)

where (e) follows by (3.33), and g̃j(τj | σ2) is the GIG(a− 1
2 , 2b,

d2

σ2 ) density.

Let us consider the function x 7→ K0(x)
K1(x)

for x > 0. By (Segura, 2011, Page 526)

we get that −x
d
dx
K0(x)

K0(x)
< 1

2 +
√

1
4 + x2 and −x

d
dx
K1(x)

K1(x)
> 1

2 +
√

1
4 + x2. Hence

d
dx
(log(K0(x)

K1(x)
)) =

d
dx
K0(x)

K0(x)
−

d
dx
K1(x)

K1(x)
> 0. So x 7→ K0(x)

K1(x)
is an increasing function

for x > 0. As
√
2bd
σ

≥
√
2b|β0j|
σ

, we get that

K0

(√
2bd
σ

)

K1

(√
2bd
σ

) ≥
K0

(√
2b|β0j|
σ

)

K1

(√
2b|β0j|
σ

) . (3.36)

Let ã = a+ I[a= 1
2 ]
. Hence, by (3.35) and (3.36), we obtain

g0j(τj | β0, σ
2,y) ≥






[
d

|β0j |

]a− 1
2 2Kã− 1

2

(√
2bd
σ

)

2Kã− 1
2

(√
2b|β0j|
σ

)




 g̃j(τj | σ2)

(e′)
≥





[
d

|β0j |

]a− 1
2 K 2ã−1

4

(
bd2
)
e−

1
2σ2

2Kã− 1
2

(√
2b|β0j|
σ

)



 g̃j(τj | σ2), (3.37)



Geometric ergodicity for shrinkage models 621

where (e′) follows from the Proposition A5 (see appendix) with s :=
√
2bd and

t := σ and ν := ã− 1
2 .

Note that ã − 1
2 6= 0 for every a > 0. Using Proposition A7 (see appendix)

with x =
√
2b|β0j|
σ

and ν = ã− 1
2 we have

g0j(τj | β0, σ
2,y)

≥






[
(2b)

1
2 |ã− 1

2 | da−
1
2

σ|ã− 1
2 |

]
|β0j ||ã−

1
2 |−(a− 1

2 )K 2ã−1
4

(
bd2
)
e−

1
2σ2

2|ã−
1
2 |Γ
(
|ã− 1

2 |
)




 g̃j(τj | σ2).

(3.38)

As (β0, τ 0, σ
2
0) ∈ BV,d and δ(a) > 0, we have 1

|β0j|δ(a) ≤ d and hence |β0j | ≥
1

d
1

δ(a)
. It follows that

g0j(τj | β0, σ
2,y)

≥
{
e−

1
2σ2

σ|ã− 1
2 |

}{[
(2b)

1
2 |ã− 1

2 | d(a−
1
2 )−

|ã− 1
2
|−(a− 1

2
)

δ(a)

]
K 2ã−1

4

(
bd2
)

2|ã−
1
2 |Γ
(
|ã− 1

2 |
)
}
g̃j(τj | σ2).

(3.39)

Now using (3.34) and the lower bound specified in (3.39) for each j = 1, 2, . . . , p,
we get that

π(τ | β0, σ
2,y)

≥
{
e−

p

2σ2

σp|ã−
1
2 |

}{[
(2b)

1
2 |ã− 1

2 | d(a−
1
2 )−

|ã− 1
2
|−(a− 1

2
)

δ(a)

]
K 2ã−1

4

(
bd2
)

2|ã−
1
2 |Γ
(
|ã− 1

2 |
)
}p

×






p∏

j=1

g̃j(τj | σ2)




 . (3.40)

We now bound π(σ2 | β0, τ 0,y) and the term depending on σ2 in (3.40). Note
that for (β0, τ 0, σ

2
0) ∈ BV,d, we have

(y −Xβ0)
T (y −Xβ0) + β

T
0D

−1
τ0
β0 + 2ξ

2
≤ d+ 2ξ

2
. (3.41)

Note that

(y −Xβ0)
T (y −Xβ0) + β

T
0D

−1
τ0
β0 + 2ξ

= yTy − 2yTXβ0 + β
T
0 (X

TX +D−1
τ0

)β0 + 2ξ

= yTy − yTX(XTX +D−1
τ0

)−1XTy + 2ξ +

+
[
‖
(
XTX +D−1

τ0

)− 1
2
(
XTy − (XTX +D−1

τ0
)β0

)
‖2
]2
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≥ yTy − yTX(XTX +D−1
τ0

)−1XTy + 2ξ

≥ yTy − yTX(XTX +
1

d
Ip)

−1XTy + 2ξ. (3.42)

The last inequality follows since 0 < τ0j ≤ d for every 1 ≤ j ≤ p. Note that
Ip−X(XTX+ 1

d
Ip)

−1XT is a positive definite matrix. Hence yTy−yTX(XTX+
1
d
Ip)

−1XTy > 0. It follows by (3.41) and (3.42) that for (β0, τ 0, σ
2
0) ∈ BV,d,

e−
p

2σ2

σp|ã−
1
2 |
π(σ2 | β0, τ 0,y)

=
e−

p

2σ2

σp|ã−
1
2 |

[
(σ2)−

n+p+2α
2 −1e−

(y−Xβ0)T (y−Xβ0)+βT0 D
−1
τ0

β0+2ξ

2σ2

]

×




(
(y −Xβ0)

T (y −Xβ0) + β
T
0D

−1
τ0
β0 + 2ξ

)n+p+2α
2

2
n+p+2α

2 Γ(n+p+2α
2 )




≥
[
yTy − yTX(XTX + 1

d
Ip)

−1XTy + 2ξ

2

]n+p+2α
2

×
{
(σ2)−

n+p+2α+p|2ã−1|
2 −1e−

d+2ξ+p

2σ2

Γ(n+p+2α
2 )

}

=






[
y
T
y−y

TX(XTX+ 1
d
Ip)

−1XTy+2ξ

2

]n+p+2α
2

[
d+2ξ+p

2

]n+p+2α+p|2ã−1|
2

Γ(n+p+2α+p|2ã−1|
2 )

Γ(n+p+2α
2 )





h̃(σ2),

(3.43)

where h̃(σ2) is the Inverse-Gamma(n+p+2α+p|2ã−1|
2 , d+2ξ+p

2 ) density. It follows
from (3.32), (3.40) and (3.43) that for all (β0, τ 0, σ

2
0) ∈ BV,d,

kNG
(
(β0, τ 0, σ

2
0), (β, τ , σ

2)
)
≥ ǫ̃f̃(β, τ , σ2), (3.44)

where

ǫ̃ =

{[
(2b)

1
2 |ã− 1

2 | d(a−
1
2 )−

|ã− 1
2
|−(a− 1

2
)

δ(a)

]
K 2ã−1

4

(
bd2
)

2|ã−
1
2 |Γ
(
|ã− 1

2 |
)
}p

×





[
y
T
y−y

TX(XTX+ 1
d
Ip)

−1XTy+2ξ

2

]n+p+2α
2

[
d+2ξ+p

2

]n+p+2α+p|2ã−1|
2

Γ(n+p+2α+p|2ã−1|
2 )

Γ(n+p+2α
2 )





, (3.45)

and f̃(·) is a probability density on R̃
p × R

p
+ × R+ given by

f̃(β, τ , σ2) = π
(
β | τ , σ2,y

)





p∏

j=1

g̃j(τj | σ2)




 h̃(σ2).
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Since kNG((β0, τ 0, σ
2
0), ·) and f̃(·) are both probability density functions, it

follows by (3.44) that ǫ̃ ≤ 1. This proves the required result.

The drift and minorization conditions in Proposition 3.1 and Proposition
4.2 can be combined with (Rosenthal, 1995, Theorem 12) to establish geomet-
ric ergodicity of the Normal-Gamma Markov chain with transition density kNG.
Theorem 1.1 is a straightforward corollary of Theorem 3.1. Note that the follow-
ing theorem not only provides a proof of geometric ergodicity, but also provides
quantitative convergence bounds which may be used to compute the number of
iterations required for the Markov chain distribution to get sufficiently close to
the stationary distribution.

Theorem 3.1. Let p,X, α, ξ, a, b be arbitrary, n ≥ 3, and let γ, ϕ and ǫ̃ be as
defined in (3.29), (3.28), and (3.45) respectively. Let d > 2ϕ

1−γ , A = 1+d
1+2ϕ+γd

and U = 1 + 2(γd+ ϕ). Then for any (β0, τ 0, σ
2
0) ∈ R̃

p × R
p
+ × R+, r ∈ N and

0 < s < 1,

∥∥∥Kr
NG,(β0,τ0,σ

2
0)
−ΠNG

∥∥∥
TV

≤ (1−ǫ̃)rs+
(

Us

A1−s

)r (
1 +

ϕ

1− γ
+ V (β0, τ 0, σ

2
0)

)
.

where Kr
NG,(β0,τ0,σ

2
0)

denotes the distribution of the Normal-Gamma Markov

chain started at (β0, τ 0, σ
2
0) after r steps, and ΠNG denotes the joint distribution

of the (β, τ , σ2) (conditioned on y) in the Normal-Gamma model.

4. The Dirichlet-Laplace model

In this section we analyze the Dirichlet-Laplace Bayesian shrinkage model in-
troduced by Bhattacharya et al. (2013). As in Section 3, let y = (yi)

n
i=1 denote

the data vector and X denote the known design matrix. The Dirichlet-Laplace
model in Bhattacharya et al. (2013) can be specified as follows

y | β, σ2 ∼ N(Xβ, σ2In)

β | σ2,ψ,φ, θ ∼ N(0, σ2Dη)

σ2 ∼ Inverse-Gamma(α, ξ) α, ξ > 0 fixed

ψ1, ψ2, . . . , ψp
i.i.d.∼ Exp

(
1

2

)

(φ1, φ2, . . . , φp) ∼ Dir(a, a, . . . , a), θ ∼ Gamma

(
pa,

1

2

)
, (4.1)

where η = (ψ,φ, θ), Dη denotes a diagonal matrix with diagonal elements
(ψjφ

2
jθ

2)pj=1, and a is a known positive constant. Let

Sp :=




(φj)
p

j=1 : φj ≥ 0 and

p∑

j=1

φj = 1




 .
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Then, the parameter η = (ψ,φ, θ) takes values in the space ∆p := R
p
+×Sp×R+.

It can be shown if a is chosen to be less than 1 in the Dirichlet-Laplace model,
then the marginal density of β converges to infinity as one or more entries of β
converge to zero. For the same reasons as those discussed at the beginning of
Section 3, we assume that the parameter β takes values in R̃

p.
The joint density of (β,η, σ2) (conditioned on y) with respect to the Lebesgue

measure on R̃
p ×∆p × R+ is given as follows

π(β,η, σ2 | y)

∝ e−
(y−Xβ)T (y−Xβ)

2σ2

(
√
2π)nσn

e−
βTD

−1
η β

2σ2

(
√
2π)pσpθp

p∏

j=1

(
e−

ψj
2

√
ψj
φa−2
j

)
θpa−1e−

θ
2 (σ2)−α−1e−

ξ

σ2 .

(4.2)

To perform Bayesian statistical inference for this model, we need to compute
expectations with respect to the above posterior density. However, these ex-
pectations are not available in closed form, and there is no direct method to
generate samples from the density in (4.2). Bhattacharya et al. (2013) derive
the following expressions for the conditional densities associated with the den-
sity in (4.2).

• The conditional density of β given η, σ2,y is the

Np
(
(XTX +D−1

η )−1XTy, σ2(XTX +D−1
η )−1

)

density on R̃
p. In particular

π(β | η, σ2,y)

=
|XTX+D−1

η | 12
(
√
2π)pσp

e−
(β−(XTX+D

−1
η )−1XT y)

T
(XTX+D

−1
η )(β−(XTX+D

−1
η )−1XT y)

2σ2 ,

(4.3)

for β ∈ R̃
p.

• The conditional density of σ2 given the variables β,η,y is

Inverse-Gamma

(
n+ p+ 2α

2
,
(y −Xβ)T (y −Xβ) + βTD−1

η β + 2ξ

2

)
.

In particular,

π(σ2 | β,η,y) =

(
(y −Xβ)T (y −Xβ) + βTD−1

η β + 2ξ
)n+p+2α

2

2
n+p+2α

2 Γ(n+p+2α
2 )

× (σ2)−
n+p+2α

2 −1e−
(y−Xβ)T (y−Xβ)+βTD

−1
η β+2ξ

2σ2 ,

(4.4)

for σ2 ∈ R+.
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• For j = 1, . . . , p, conditioned on φ, θ,β, σ2 and y, the random variables
ψj , j = 1, 2, . . . , p are independently distributed. The conditional density

of ψj given φ, θ,β, σ
2,y is GIG(12 , 1,

β2
j

(φjθσ)2
). In particular

π
(
ψj | θ,φ,β, σ2,y

)
=

(
1

2πψj

) 1
2

e

−

(
1−
(
φjθσ

|βj |

)
ψj

)2

2ψj

(
φjθσ

|βj|

)2

, (4.5)

for ψj ∈ R+. For the GIG(ν, α, ξ) distribution, in the special case when
ν = 1

2 or ν = − 1
2 , the expected value can be obtained in closed form. In

fact,

E
(
ψj | β, σ2,φ, θ,y

)
= 1 +

|βj |
φjθσ

, (4.6)

and

E

(
1

ψj
| β, σ2,φ, θ,y

)
=
φjθσ

|βj |
. (4.7)

• The conditional density of (φ, θ) given β, σ2,y is given by

π(φ, θ | β, σ2,y) ∝ 1

θp





p∏

j=1

e
− |βj |
σφjθ φa−2

j



 θpa−1e−

θ
2

∝ θp−1





p∏

j=1

e
− |βj |
σφjθ

− θφj
2 (θφj)

a−2



 . (4.8)

Bhattacharya et al. (2013) show that a sample from this density can be
generated as follows: Draw random variables T1, T2, . . . , Tp with

Tj | β, σ2,y ∼ GIG

(
a− 1, 1, 2

|βj|
σ

)
, (4.9)

and set

θ =

p∑

j=1

Tj and φj =
Tj

θ
for j = 1, 2, . . . , p. (4.10)

Using the conditional densities described above, a Gibbs sampling Markov chain
(βm,ηm, σ

2
m)∞m=0 can be constructed to sample from the density in (4.2). The

state space of this Markov chain is R̃
p × ∆p × R+, and the transition from

(βm,ηm, σ
2
m) to (βm+1,ηm+1, σ

2
m+1) can be described as follows
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Iteration (m+ 1) of the Dirichlet-Laplace Gibbs sampler:

1. Draw σ2
m+1 from π(· | βm,ηm,y) (as defiend in (4.4)).

2. Draw ηm+1 = (ψm+1,φm+1, θm+1) in the following way:

(a) Draw (φm+1, θm+1) from π(· | βm, σ2
m+1,y)

(as described in (4.8), (4.9), and (4.10)).

(b) Draw ψm+1,j from π(· | θm+1,φm+1,βm+1, σ
2
m+1,y) (as described in

(4.5)) independently for j = 1, . . . , p.

3. Draw βm+1 from π(· | ηm+1, σ
2
m+1,y) (as described in (4.3)).

The transition density of the Markov chain defined above (with respect to the

Lebesgue measure on R̃
p ×∆p × R+) is given by

kDL

(
(β̃, η̃, σ̃2), (β,η, σ2)

)
= π

(
β | η, σ2,y

)




p∏

j=1

π
(
ψj | θ,φ, β̃, σ2,y

)




× π
(
φ, θ | β̃, σ2,y

)
π
(
σ2 | β̃, η̃,y

)
.

(4.11)

It is well known, and can be easily verified, that the joint density of (β,η, σ2)
(conditioned on y) defined in (4.2), is invariant for the Gibbs transition density
kDL defined above. Since the Markov transition density kDL is strictly posi-
tive, by exactly the same argument as in Section 3, it can be shown that the
corresponding Markov chain is Harris recurrent. We now prove geometric ergod-
icity by establishing a geometric drift condition and an associated minorization
condition for the Gibbs transition density kDL.

Remark 2. Note that the conditional densities of β and σ2 (in (4.3) and (4.4))
are very similar to the conditional densities of β and σ2 in the Normal-Gamma
model (see (3.1) and (3.2)). Hence, for the steps in the analysis involving the
conditional densities of β and σ2, we heavily use the results established for anal-
ogous steps in Section 3. However, the conditional density of the parameter η
in the Dirichlet-Laplace model is significantly different and much more compli-
cated than the conditional density of the parameter τ in the Normal-Gamma
model. Hence, steps involving components of η require a different and more
involved analysis than in Section 3.

4.1. Drift condition

Let δ∗(a) = argminδ∈(0,1)
Γ( 1−δ

2 )

2
δ
2
√
π

Γ(1+ δ
2−a)

Γ(1−a) . Consider the following function

Ṽ (β,η, σ2) = (y −Xβ)T (y −Xβ) + βTD−1
η β +

p∑

j=1

1

|βj |δ̃(a)
+

p∑

j=1

ψjθ
2φ2j ,

where δ̃(a) = δ∗(a)I[a<1] +
1
2I[a=1] + min{2(a − 1), 12}I[a>1], and Dη is the

diagonal matrix with diagonal elements {ψjθ2φ2j}pj=1. Note that 0 < δ̃(a) < 1.
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Let EkDL [· | β0,η0, σ
2
0 ] denote the expectation with respect to one step of

the Markov chain with transition density kDL, starting at (β0,η0, σ
2
0). The

following proposition establishes a geometric drift condition for the transition
density kDL.

Proposition 4.1. If n ≥ 3 and a > a∗ (as defined in Proposition A8 (see
appendix)), there exists constants 0 ≤ γ < 1 and ϕ ≥ 0 such that

EkDL [Ṽ (β,η, σ2) | (β0,η0, σ
2
0)] ≤ γṼ (β0,η0, σ

2
0) + ϕ, (4.12)

for every (β0,η0, σ
2
0) ∈ R̃

p ×∆p × R+.

Proof It follows by the definition of the Markov transition density kDL that

EkDL [Ṽ (β,η, σ2) | (β0,η0, σ
2
0)]

= E[E[E[Ṽ (β,η, σ2) | η, σ2,y] | β0, σ
2,y] | β0,η0,y]. (4.13)

As in the proof of Proposition 3.1, we evaluate the three conditional expectations
one step at a time. Note that the innermost conditional expectation is with
respect to the conditional distribution of β, and by (4.3),

β | η, σ2,y ∼ Np
(
(XTX +D−1

η )−1XTy, σ2(XTX +D−1
η )−1

)
.

Hence, the method for simplifying the innermost expectation here will be very
similar to the method for simplifying the innermost expectation in the proof of
Proposition 3.1. By exactly the same argument as the one leading to (3.6), it
follows that

E
[
(y −Xβ)T (y −Xβ) + βTD−1

η β | η, σ2,y
]

= yTy − yTX(XTX +D−1
η )−1XTy + pσ2. (4.14)

Let κ̃(a) :=
Γ( 1−δ̃(a)

2 )2
1−δ̃(a)

2√
2π

for a > 0. By a similar argument as the one leading

to (3.7) and (3.8), it follows that for every j = 1, 2, . . . , p, βj ∼ N(µj , σ
2
j ), where

µj = eTj (X
TX +D−1

η )−1XTy and σ2
j = σ2eTj (X

TX +D−1
η )−1ej , and

E

[
1

|βj |δ̃(a)
| η, σ2,y

]
≤ κ̃(a)

σ
δ̃(a)
j

≤ κ̃(a)



λ
δ̃(a)
2

X

σδ̃(a)
+

1

σδ̃(a)ψ
δ̃(a)
2

j θδ̃(a)φ
δ̃(a)
j



 . (4.15)

It follows from (4.14) and (4.15) that

E[Ṽ (β,η, σ2) | η, σ2,y]

≤ yTy + pσ2 +
pκ̃(a)λ

δ̃(a)
2

X

σδ̃(a)
+
κ̃(a)

σδ̃(a)

p∑

j=1

1

ψ
δ̃(a)
2

j θδ̃(a)φ
δ̃(a)
j

+

p∑

j=1

ψjθ
2φ2j .

(4.16)
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We now analyze the middle conditional expectation in (4.13), which requires

getting an upper bound for E[ κ̃(a)
σδ̃(a)

∑p
j=1

1

ψ
δ̃(a)
2

j θδ̃(a)φ
δ̃(a)
j

| β0, σ
2,y] and

E[
∑p

j=1 ψjθ
2φ2j | β0, σ

2,y].

We first consider E[
∑p
j=1 ψjθ

2φ2j | β0, σ
2,y]. Note by (4.9) and (4.10), φjθ |

β0, σ
2,y ∼ GIG(a− 1, 1, 2

|β0j|
σ

).
Hence

E[φjθ | β0, σ
2,y] =

(√
2
|β0j |
σ

) Ka

(√
2
|β0j |
σ

)

Ka−1

(√
2
|β0j|
σ

)

(g)

≤
(√

2
|β0j |
σ

)

a+
√
a2 + 2

|β0j|
σ√

2
|β0j|
σ





≤ 2a+
√
2

√
|β0j |
σ

, (4.17)

where (g) follows from (Laforgia and Natalini, 2009, Theorem 1.2). Furthermore,

E[(φjθ)
2 | β0, σ

2,y] =

(
2
|β0j|
σ

) Ka+1

(√
2
|β0j|
σ

)

Ka−1

(√
2
|β0j|
σ

)

(h)

≤
(
2
|β0j|
σ

)





Ka+1

(√
2
|β0j|
σ

)

Ka

(√
2
|β0j|
σ

)






2

(i)

≤
(
2
|β0j|
σ

)

 (a+ 1) +
√
(a+ 1)2 + 2

|β0j|
σ√

2
|β0j|
σ




2

≤ 2

(
(a+ 1)2 + (a+ 1)2 + 2

|β0j |
σ

)

≤ 4(a+ 1)2 + 4
|β0j |
σ

, (4.18)

where (h) follows from (Laforgia and Natalini, 2009, eq. (1.9)) and (i) follows
from (Laforgia and Natalini, 2009, Theorem 1.2). By (4.6), we get that

E[ψjφ
2
jθ

2 | β0, σ
2,y]

= E
[
φ2jθ

2E[ψj | φj , θ,β0, σ
2,y] | β0, σ

2,y
]

= E

[
φ2jθ

2

(
1 +

|β0j |
φjθσ

)
| β0, σ

2,y

]
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= E
[
φ2jθ

2 | β0, σ
2,y
]
+

|β0j |
σ

E
[
φjθ | β0, σ

2,y
]
. (4.19)

Let C1, C2 > 0 be arbitrary (we will make appropriate choices for C1 and C2

at the end of the proof). It follows by (4.17), (4.18) and (4.19) that for every
j = 1, 2, . . . , p,

E[ψjφ
2
jθ

2 | β0, σ
2,y]

≤ 4(a+ 1)2 + 4
|β0j |
σ

+
|β0j |
σ

(
2a+

√
2

√
|β0j |
σ

)

≤ 4(a+ 1)2 + 2(a+ 2)
|β0j |
σ

+
√
2
|β0j |
σ

√
|β0j |
σ

(j)

≤ 4(a+ 1)2 + 2(a+ 2)

{
C1

2

( |β0j |
σ

)2

+
1

2C1

}
+
√
2

( |β0j |
σ

) 3
2

(j′)
≤ 4(a+ 1)2 +

a+ 2

C1
+ C1(a+ 2)

( |β0j |
σ

)2

+

{
C2

( |β0j |
σ

)2

+
27

64C3
2

}

≤ 4(a+ 1)2 +
a+ 2

C1
+

1

2C3
2

+ [C1(a+ 2) + C2]

( |β0j |
σ

)2

, (4.20)

where (j) follows from the fact that uv ≤ u2

2 + v2

2 for u, v > 0 (with u =√
C1

|β0j |
σ
, v = 1√

C1
) and (j′) follows from the fact that u

3
4 v

1
4 ≤ 3

4u + 1
4v for

u, v > 0 (with u = 1
3
√

2
4C2

(
|β0j|
σ

)2, v = (3
√
2

4C2
)3).

Next, we consider E[ κ̃(a)

σδ̃(a)ψ
δ̃(a)
2

j θδ̃(a)φ
δ̃(a)
j

| β0, σ
2,y]. Since 0 < δ̃(a) < 1, it

follows that x 7→ xδ̃(a) is a concave function for x > 0. By Jensen’s inequality
and (4.7), we obtain

E



 1

(σφjθ)
δ̃(a)

ψ
δ̃(a)
2

j

| β0, σ
2,y





≤ E


 1

(σφjθ)
δ̃(a)

{
E

[
1

ψj
| β0, σ, θ,φ,y

]} δ̃(a)
2

| β0, σ,y




= E


 1

(σφjθ)
δ̃(a)

{
σθφj

|β0j |

} δ̃(a)
2

| β0, σ,y




=
1

(σ|β0j |)
δ̃(a)
2

E


 1

(φjθ)
δ̃(a)
2

| β0, σ,y


 .
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(k)
=

1

(2σ|β0j |3)
δ̃(a)
4

K
a− δ̃(a)

2 −1

(√
2
|β0j |
σ

)

Ka−1

(√
2
|β0j|
σ

) , (4.21)

where (k) follows from (4.9), (4.10), and (2.1). Now consider the three cases,
a∗ < a < 1, a > 1 and a = 1, where a∗ is as defined in Proposition A8 (see
appendix).

Case 1: a∗ < a < 1.

Let ǫ∗ = 1
2 [

2
δ∗(a)

2
√
π

Γ( 1−δ∗(a)
2 )

Γ(1−a)
Γ(1+ δ∗(a)

2 −a)
−1]. Proposition A9 (see appendix) ensures

that ǫ∗ > 0. Using Proposition A2 (see appendix) with ν1 = 1 + δ̃(a)
2 − a,

ν2 = 1 − a and x =
√

2|β0j|
σ

, there exists an ǫ depending on ǫ∗, a such that if√
2|βj|
σ

< ǫ then

K
1+ δ̃(a)

2 −a(
√

2|β0j |
σ

)

K1−a(
√

2|β0j |
σ

)
≤ (1 + ǫ∗)

Γ(1 + δ̃(a)
2 − a)2

δ̃(a)
2 σ

δ̃(a)
4

Γ(1− a) (2|β0j |)
δ̃(a)
4

. (4.22)

Since a∗ < a < 1 and Kν(x) = K−ν(x) (Abramowitz and Stegun, 1965,
page 375), it follows by (4.21) and (4.22) that

E


 1

(σφjθ)
δ̃(a)

ψ
δ̃(a)
2

j

| β0, σ
2,y




≤ (1 + ǫ∗)

(2σ|β0j |3)
δ̃(a)
4

Γ(1 + δ̃(a)
2 − a)2

δ̃(a)
2 σ

δ̃(a)
4

Γ(1 − a) (2|β0j|)
δ̃(a)
4

I[√ 2|β0j |
σ

<ǫ

] +

1

(2σ|β0j |3)
δ̃(a)
4

K
1+ δ̃(a)

2 −a

(√
2
|β0j |
σ

)

K1−a

(√
2
|β0j|
σ

) I[√ 2|β0j |
σ

≥ǫ
]. (4.23)

Using 4.23 and Proposition A4 (see appendix) with ν = 1 − a, δ = δ̃(a), and

x =

√
2|β0j |
σ

, we obtain

E


 1

(σφjθ)
δ̃(a)

ψ
δ̃(a)
2

j

| β0, σ
2,y




≤ (1 + ǫ∗)

|β0j |δ̃(a)
Γ(1 + δ̃(a)

2 − a)

Γ(1− a)
I[√ 2|β0j |

σ
<ǫ

] +
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1

(2σ|β0j |3)
δ̃(a)
4



(3− 2a)

δ̃(a)
2

[
2|β0j |
σ

] δ̃(a)
4

+ 1


 I[√ 2|β0j |

σ
≥ǫ
]

≤ 1

|β0j |δ̃(a)
(1 + ǫ∗)

Γ(1 + δ̃(a)
2 − a)

Γ(1 − a)
+

1

σδ̃(a)

2
δ̃(a)
2

ǫ
3δ̃(a)

2



 (3− 2a)
δ̃(a)
2

ǫ
δ̃(a)
2

+ 1



 .

(4.24)

Case 2: a > 1.

In the argument leading to (3.16), it was established that ν 7→ Kν(x) is

a increasing function for ν ≥ 0. It follows from (4.21), and the fact v
3
4u

1
4 ≤

3
4v +

1
4u ≤ v + 1

4u for u, v > 0, (with u = [2κ̃(a)]3

(2σ)δ̃(a)
and v = 1

2κ̃(a)|β0j|δ̃(a)
) that

E


 1

(σφjθ)
δ̃(a)

ψ
δ̃(a)
2

j

| β0, σ
2,y


 ≤ 1

2κ̃(a)|β0j |δ̃(a)
+

21−δ̃(a) (κ̃(a))3

σδ̃(a)

≤ 1

2κ̃(a)|β0j |δ̃(a)
+

2 (κ̃(a))
3

σδ̃(a)
. (4.25)

Case 3: a = 1.

By Proposition A3 (see appendix) with ν = δ̃(1)
2 , x =

√
2
|β0j|
σ

, there exists

ǫ′ > 0, such that for

√
2
|β|0j
σ

< ǫ′

K δ̃(1)
2

(√
2
|β|0j
σ

)

K0

(√
2
|β|0j
σ

) ≤ σ
δ̃(1)
4

2κ̃ (1) [2|β0j|]
δ̃(1)
4

. (4.26)

Hence, using (4.21), we obtain

E



 1

(σφjθ)
δ̃(1)

ψ
δ(1)
2

j

| β0, σ
2,y





≤ 1

(2σ|β0j |3)
δ̃(1)
4

σ
δ̃(1)
4

2κ̃ (1) [2|β0j|]
δ̃(1)
4

I[√ 2|β0j |
σ

<ǫ′
]

+
1

(2σ|β0j |3)
δ̃(1)
4

K δ̃(1)
2

(√
2
|β0j|
σ

)

K0

(√
2
|β0j|
σ

) I[√ 2|β0j |
σ

≥ǫ′
]
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(k′′)
≤ 1

21+
δ̃(1)
2 κ̃ (1) |β0j |δ̃(1)

I[√ 2|β0j |
σ

<ǫ′
]

+
1

σδ̃(1)

2
δ̃(1)
2

ǫ′
3δ̃(1)

2

[
1

ǫ′
δ̃(1)
2

+ 1

]
I[√ 2|β0j |

σ
≥ǫ′
]

≤ 1

2κ̃ (1) |β0j |δ̃(1)
+

1

σδ̃(1)

2
δ̃(1)
2

ǫ′
3δ̃(1)

2

[
1

ǫ′
δ̃(1)
2

+ 1

]
,

(4.27)

where (k′′) follows from Proposition A4 (see appendix), with ν = 0 and x =√
2
|β0j|
σ

.

Let us denote D3 = 1
2κ̃(a)I[a≥1] + (1 + ǫ∗)

Γ(1+ δ̃(a)
2 −a)

Γ(1−a) I[a<1] and

D4 = 2 (κ̃(a))3 I[a>1] +
2
δ̃(a)
2

ǫ
3δ̃(a)

2



 (3− 2a)
δ̃(a)
2

ǫ
δ̃(a)
2

+ 1



 I[a<1]

+
2
δ(1)
2

ǫ′
3δ(1)

2

[
1

ǫ′
δ(1)
2

+ 1

]
I[a=1].

Hence, combining the three cases, and using (4.24), (4.25) and (4.27), we have
for every a > a⋆,

E



 1

(σφjθ)
δ̃(a)

ψ
δ̃(a)
2

j

| β0, σ
2,y



 ≤ D3

|β0j |δ̃(a)
+

D4

σδ̃(a)
. (4.28)

It follows by (4.16), (4.20) and (4.28) that

E
[
E[Ṽ (β,η, σ2) | η, σ2,y] | β0, σ

2,y
]

≤ yTy + pσ2 +
pκ̃(a)λ

δ̃(a)
2

X

σδ̃(a)
+ κ̃(a)D3

p∑

j=1

1

|β0j |δ̃(a)
+
pκ̃(a)D4

σδ̃(a)
+

p

(
4(a+ 1)2 +

a+ 2

C1
+

1

2C3
2

)
+ [C1(a+ 2) + C2]

p∑

j=1

|β0j |2
σ2

. (4.29)

Finally, we consider the outermost conditional expectation in (4.13). It follows
by (4.4) that

E[σ2 | β0,η0,y] =
(y −Xβ0)

T (y −Xβ0) + β
T
0D

−1
η0
β0 + 2ξ

n+ p+ 2α− 2
, (4.30)

E

[
1

σ2
| β0,η0,y

]
=

n+ p+ 2α

(y −Xβ0)
T (y −Xβ0) + β

T
0D

−1
η0
β0 + 2ξ
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≤ n+ p+ 2α

βT0D
−1
η0
β0

. (4.31)

Since 0 < δ̃(a) < 1, it follows that g(x) = xδ̃(a) is a concave function for x > 0.
By Jensen’s inequality, we obtain

E

[
1

σδ̃(a)
| β0,η0,y

]
≤

[
n+ p+ 2α

(y −Xβ0)
T (y −Xβ0) + β

T
0D

−1
η0
β0 + 2ξ

] δ̃(a)
2

≤
[
n+ p+ 2α

2ξ

] δ̃(a)
2

. (4.32)

By (4.29), (4.30), (4.31) and (4.32), we obtain

Ek[Ṽ (β,η, σ2) | (β0,η0, σ
2
0)]

= E[E[E[Ṽ (β,η, σ2,y) | η, σ2,y] | β0, σ
2,y] | β0,η0,y]

≤ yTy + p

[
(y −Xβ0)

T (y −Xβ0) + β
T
0D

−1
η0
β0 + 2ξ

n+ p+ 2α− 2

]

+ κ̃(a)D3

p∑

j=1

1

|β0j |δ̃(a)
+

[
n+ p+ 2α

2ξ

] δ̃(a)
2

pκ̃(a)

{
λ
δ̃(a)
2

X +D4

}

+ p

(
4(a+ 1)2 +

a+ 2

C1
+

1

2C3
2

)

+ [C1(a+ 2) + C2]

p∑

j=1

(n+ p+ 2α)
|β0j |2

βT0D
−1
η0
β0

. (4.33)

By exactly the same argument as the one leading to (3.26), we obtain
∑p
j=1

|β0j |2
βT0 D

−1
η0

β0

≤
∑p

j=1 ψ0jθ
2
0φ

2
0j . It follows from (4.33) that

EkDL [Ṽ (β,η, σ2) | (β0,η0, σ
2
0)] ≤ γṼ (β0,η0, σ

2
0) + ϕ, (4.34)

where

γ =Max

{
p

n+ p+ 2α− 2
, [C1(a+ 2) + C2] (n+ p+ 2α), κ̃(a)D3

}

and

ϕ = p

(
4(a+ 1)2 +

a+ 2

C1
+

1

2C3
2

)

+

[
n+ p+ 2α

2ξ

] δ̃(a)
2

pκ̃(a)

{
λ
δ̃(a)
2

X +D4

}
+ yTy +

[
2pξ

n+ p+ 2α− 2

]
.

The assumption n ≥ 3 automatically leads to p
n+p+2α−2 < 1. Recall that C1, C2

are arbitrary positive numbers of our choice. If we choose the constants C1 =



634 S. Pal and K. Khare

1
4(a+2)(n+p+2α) and C2 = 1

4(n+p+2α) then clearly [C1(a+2)+C2](n+p+2α) = 1
2 .

Note that κ̃(a)D3 = 1
2I[a≥1] + (1 + ǫ∗)κ̃(a)

Γ(1+ δ̃(a)
2 −a)

Γ(1−a) I[a<1]. If a
∗ < a < 1,

then δ̃(a) = δ∗(a), and it follows by the definition of ǫ∗ and Proposition A9

(see appendix) that κ̃(a)(1 + ǫ∗)
Γ(1+ δ̃(a)

2 −a)
Γ(1−a) = 1

2 + 1
2

Γ( 1−δ∗(a)
2 )

2
δ∗(a)

2
√
π

Γ(1+ δ∗(a)
2 −a)

Γ(1−a) < 1.

Hence if a > a∗, then 0 ≤ γ < 1, which establishes the required geometric drift
condition.

4.2. Minorization condition

For every d > 0, let

B
Ṽ ,d

=
{
(β0,η0, σ

2
0) ∈ R̃

p ×∆p × R+ : Ṽ (β0,η0, σ
2
0) ≤ d

}
.

The following proposition establishes an associated minorization condition to
the geometric drift condition in Proposition 4.1.

Proposition 4.2. There exist a constant 0 < ǫ∗ = ǫ∗(Ṽ , d) ≤ 1 and a probabil-

ity density function f∗ on R̃
p ×∆p × R+ such that

kDL
(
(β0,η0, σ

2
0), (β,η, σ

2)
)
≥ ǫ∗f∗(β,η, σ2) (4.35)

for every (β0,η0, σ
2
0) ∈ B

Ṽ ,d
.

Proof. Throughout this proof we will assume that (β0,η0, σ
2
0) ∈ B

Ṽ ,d
. To estab-

lish the minorization condition, we will construct lower bounds for appropriate
conditional densities appearing in (4.11). If (β0,η0, σ

2
0) ∈ B

Ṽ ,d
, then by a simi-

lar argument as the one leading to (3.33), we get
∑p
j=1 β

2
0j ≤ d2. Let mj =

φjθσ

|β0j |
and m∗j =

φjθσ

d
. Since |β0j | ≤ d, it follows that mj ≥ m∗j . Hence

(1−mjψj)
2

2ψjm2
j

=
(1 +m2

jψ
2
j )

2ψjm2
j

− 1

mj

≤ 1

2ψjm2
j

+
ψj

2

≤ 1

2ψjm2
∗j

+
ψj

2

≤ (1−m∗jψj)2

2ψjm2
∗j

+
1

m∗j
. (4.36)

It follows by (4.5) and (4.36) that,

π
(
ψj | θ,φ,β0, σ

2,y
)

≥ e
− 1
m∗j

(
1

2πψj

) 1
2

e
− (1−m∗jψj)2

2ψjm
2
∗j

=
(
e
− d
φjθσ

)
gj
(
ψj | θ,φ, σ2

)
, (4.37)
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where gj(ψj | θ,φ, σ2) denotes the GIG(12 , 1,
d2

φ2
jθ

2σ2 ) density. By (4.8) and

(Bhattacharya et al., 2013, Page 17), we get that

π
(
φ, θ | β0, σ

2,y
)
= θp−1

p∏

j=1

g∗0j
(
φjθ | β0, σ

2
)
, (4.38)

where g∗0j(· | β0, σ
2) denotes the GIG(a− 1, 1, 2

|β0j|
σ

) density. Note that

e
− d
φjθσ g∗0j(φjθ | β0, σ

2)

=
(φjθ)

a−2
e
− d
φjθσ e

− 1
2

(
φjθ+

2|β0j |
φjθσ

)

2
(

2|β0j |
σ

)a−1
2

Ka−1

(√
2|β0j |
σ

)

≥ (φjθ)
a−2

e
− 1

2

(
φjθ+

4d
φjθσ

)

2
(

2|β0j |
σ

) a−1
2

Ka−1

(√
2|β0j |
σ

)

=




2
(
4d
σ

) a−1
2 Ka−1

(√
4d
σ

)

2
(

2|β0j |
σ

)a−1
2

Ka−1

(√
2|β0j |
σ

)








(φjθ)
a−2

e
− 1

2

(
φjθ+

4d
φjθσ

)

2
(
4d
σ

) a−1
2 Ka−1

(√
4d
σ

)





=




2
(
4d
σ

) a−1
2 Ka−1

(√
4d
σ

)

2
(

2|β0j |
σ

)a−1
2

Ka−1

(√
2|β0j |
σ

)


 g

∗
j (φjθ | σ2), (4.39)

where g∗j (· | σ2) denotes the GIG(a− 1, 1, 4d
σ
) density. Furthermore by Proposi-

tion A6 (see appendix) with ν = a− 1, s = 4d and t = σ we get

2

(
4d

σ

) a−1
2

Ka−1

(√
4d

σ

)
≥ e−

d

σ2

[
e−

1
4K a−1

2

(√
2d
)
(2d)

a−1
4

]
. (4.40)

In the argument leading to (3.16), it was established that ν 7→ Kν(x) is a
increasing function for ν ≥ 0. Since K−ν(x) = Kν(x) (see (Abramowitz and
Stegun, 1965, Page 375)) and |a − 1| ≤ a + 1 for a ≥ 0, it follows that

Ka−1(

√
2|β0j|
σ

) ≤ Ka+1(

√
2|β0j |
σ

) for a ≥ 0. Therefore it follows by (4.39), (4.40)

and Proposition A7 (see appendix) that

e
− d
φjθσ g∗0j(φjθ | β0, σ

2)

≥




2
(
4d
σ

) a−1
2 Ka−1

(√
4d
σ

)

2
(

2|β0j|
σ

) a−1
2

Ka+1

(√
2|β0j|
σ

)


 g

∗
j (φjθ | σ2)
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≥



e−

d

σ2

[
e−

1
4K a−1

2

(√
2d
)
(2d)

a−1
4

]

(
σ

2|β0j |

)
Γ(a+ 1)2a+1


 g∗j (φjθ | σ2)

(m)

≥



e−

1
4K a−1

2

(√
2d
)
(2d)

a−1
4

d
1

δ̃(a)Γ(a+ 1)2a


 e

− d

σ2

σ
g∗j (φjθ | σ2), (4.41)

where (m) follows by the fact that |β0j | ≥ 1

d
1
δ̃(a)

for (β0,η0, σ
2
0) ∈ B

Ṽ ,d
. Finally

we bound the conditional density of σ2 given β0,η0 and y. Note that since
(β0,η0, σ

2
0) ∈ B

Ṽ ,d
, it follows that

(y −Xβ0)
T (y −Xβ0) + β

T
0D

−1
η0
β0 + 2ξ

2
≤ d+ 2ξ

2
. (4.42)

Furthermore by exactly the same argument as the one leading to (3.42) it follows
that

(y −Xβ0)
T (y −Xβ0) + β

T
0D

−1
η0
β0 + 2ξ

≥ yTy − yTX

(
XTX +

1

d
Ip

)−1

XTy + 2ξ. (4.43)

It follows from (4.4), (4.42) and (4.43) that for (β0,η0, σ
2
0) ∈ B

Ṽ ,d

e−
pd

σ2

σp
π(σ2 | β0,η0,y)

=
e−

pd

σ2

σp

(σ2)−
n+p+2α

2 −1
(
(y −Xβ0)

T (y −Xβ0) + β
T
0D

−1
η0
β0 + 2ξ

)n+p+2α
2

2
n+p+2α

2 Γ(n+p+2α
2 )

×
{
e−

(y−Xβ0)T (y−Xβ0)+βT0 D
−1
η0

β0+2ξ

2σ2

}

≥
[
yTy − yTX(XTX + 1

d
Ip)

−1XTy + 2ξ

2

]n+p+2α
2

×
{
(σ2)−

n+2p+2α
2 −1e−

d+2ξ+2pd

2σ2

Γ(n+p+2α
2 )

}

=

[
y
T
y−y

TX(XTX+ 1
d
Ip)

−1XTy+2ξ

2

]n+p+2α
2

[
d+2ξ+2pd

2

]n+2p+2α
2

Γ(n+2p+2α
2 )

Γ(n+p+2α
2 )

h∗(σ2), (4.44)
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where h∗(σ2) denotes the Inverse-Gamma(n+2p+2α
2 , d+2ξ+2pd

2 ) density. Let

f∗(β,η, σ2)

= π(β | η, σ2,y)





p∏

j=1

gj
(
ψj | θ,φ, σ2

)






θ

p−1

p∏

j=1

g∗j (φjθ | σ2)



h∗(σ2).

(4.45)

It follows by (4.37), (4.41) and (4.44) that

kDL
(
(β0,η0, σ

2
0), (β,η, σ

2)
)
≥ ǫ∗f∗(β,η, σ2), (4.46)

where

ǫ∗ =




e−

1
4K a−1

2

(√
2d
)
(2d)

a−1
4

d
1

δ̃(a)Γ(a+ 1)2a




p

×

[
y
T
y−y

TX(XTX+ 1
d
Ip)

−1XTy+2ξ

2

]n+p+2α
2

[
d+2ξ+2pd

2

]n+2p+2α
2

Γ(n+2p+2α
2 )

Γ(n+p+2α
2 )

. (4.47)

Note thst kDL((β0,η0, σ
2
0), ·) and f∗(·) are both probability density functions.

Hence, by (4.46), it follows that ǫ∗ ≤ 1.

The drift and minorization conditions in Proposition 4.1 and Proposition 4.2
can be combined with (Rosenthal, 1995, Theorem 12) to establish geometric
ergodicity of the Dirichlet-Laplace Markov chain with transition density kDL.

Theorem 4.1. Let p,X, α, ξ be arbitrary, n ≥ 3, a > a∗ and γ, ϕ, ǫ be as
defined in (4.34), (4.47). Let d > 2ϕ

1−γ , A = 1+d
1+2ϕ+γd and U = 1 + 2(γd + ϕ).

Then for any (β0,η0, σ
2
0) ∈ R̃

p ×∆p × R+, r ∈ N and 0 < s < 1,

∥∥∥Kr
DL,(β0,η0,σ

2
0)
−ΠDL

∥∥∥
TV

≤ (1−ǫ∗)rs+
(

Us

A1−s

)r (
1 +

ϕ

1− γ
+ Ṽ (β0,η0, σ

2
0)

)

where Kr
DL,(β0,η0,σ

2
0)

denotes the distribution of the Dirichlet-Laplace Markov

chain started at (β0,η0, σ
2
0) after r steps, and ΠDL denotes the joint distribution

of (β,η, σ2) (conditioned on y) in the Dirichlet-Laplace model.

5. Discussion

In recent years, a number of Bayesian shrinkage models have been developed
to tackle high-dimensional data sets. As mentioned earlier, most of these mod-
els use Markov chains to sample from the intractable posterior distributions of
the parameters. However, important theoretical properties such as geometric
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ergodicity of these Markov chains have not been previously investigated. In this
paper, geometric ergodicity of Gibbs sampling Markov chains corresponding to
the Bayesian shrinkage models in Griffin and Brown (2010) and Bhattacharya
et al. (2013) has been established. The new and interesting feature of these
Markov chains, especially from the point of view of establishing geometric er-
godicity, is the presence of the Generalized Inverse Gaussian distribution as
one of the conditional distributions in the Gibbs sampler. To tackle this, we
introduced novel drift functions which include the term

∑p
i=1

1
|βj |δ (recall that

for both models, the conditional distributon of β given other parameters and
the data is multivariate normal). The GIG distribution involves modified Bessel
functions of the second kind, and the properties of these functions are invoked
frequently in the intricate drift and minorization analysis presented in Section 3
and Section 4.

Note that the results in Section 3 (for the Normal-Gamma model) hold for ev-
ery p,X, α, ξ, a and b. The results in Section 4 (for the Dirichlet-Laplace model)
hold for all values of p,X, α, ξ, but require that a > a∗. As mentioned earlier,
the structure of the conditional distribution of the parameter η in the Dirichlet-
Laplace model is more complicated than the conditional distribution of the
parameter τ in the Normal-Gamma model. Hence, it is not entirely surprising
that we were able to prove a stronger result for the Normal-Gamma model.
Using the insights obtained from the analysis in this paper, in future research
we plan to investigate geometric ergodicitiy (or the lack of it) for the Dirichlet-
Laplace models when a ≤ a∗, and for Markov chains corresponding to some of
the other Bayesian shrinkage models proposed in the literature.

Appendix: Mathematical identities

Proposition A1. Let V be a normal random variable with mean µ and variance

γ2. Then for any δ ∈ (0, 1), E[ 1
|V |δ ] ≤

Γ( 1−δ
2 )2

1−δ
2√

2πγδ
.

Proof. Let f(x) = 1√
2πγ

e
− (x−µ)2

2γ2 . For every t > 0, define

At = {x : f(x) > t}

=

{
x :

1√
2πγ

e
− (x−µ)2

2γ2 > t

}
=

{
x : |x− µ| <

√
−2γ2log

(√
2πγt

)}
.

(A.1)

Let A∗
t be the “symmetric rearrangement” of At defined by

A∗
t = {x : 2|x| < length(At)} =

{
x : |x| <

√
−2γ2log

(√
2πγt

)}

=

{
x :

1√
2πγ

e
− x2

2γ2 > t

}
. (A.2)
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Let f∗ be the “symmetric decreasing rearrangement” of f defined by

f∗(x) =

∫ ∞

0

I{x∈A∗
t }dt =

∫ ∞

0

I{
1√
2πγ

e
− x2

2γ2 >t

}dt =
1√
2πγ

e
− x2

2γ2 . (A.3)

Note that the function g(x) = 1
|x|δ where δ ∈ (0, 1) is decreasing function of

|x| and symmetric around 0. It can be easily proved that the “symmetric de-
creasing rearrangement” of g is given by g∗(x) = 1

|x|δ . By the Hardy-Littlewood

inequality (Lieb and Loss, 2001, Page 82), we get that

∫

R

f(x)g(x)dx ≤
∫

R

f∗(x)g∗(x)dx. (A.4)

If V ∼ N(µ, γ2), It follows that

E

[
1

|V |δ
]
=

∫

R

1

|x|δ
e
− (x−µ)2

2γ2

√
2πγ

dx =

∫

R

f(x)g(x)dx ≤
∫

R

f∗(x)g∗(x)dx

= 2

∫

R+

1

|x|δ
e
− x2

2γ2

√
2πγ

dx.

By a change of variable with u = x2

γ2 we get that

E

[
1

|V |δ
]
≤ 1

γδ

∫

R+

u
1−δ
2 −1 e

−u
2

√
2π

du =
1

γδ

(
2

1−δ
2 Γ

(
1−δ
2

)
√
2π

)
. (A.5)

Proposition A2. Let ν1, ν2 > 0. Then for arbitrary ǫ∗ > 0 there exists ǫ > 0
such that

Kν1(x)

Kν2(x)
≤ (1 + ǫ∗)

Γ(ν1)2
ν1−ν2

Γ(ν2)xν1−ν2

for all 0 < x < ǫ (obviously ǫ will depend on ǫ∗, ν1, ν2).

Proof. By (Abramowitz and Stegun, 1965, Page 375), if ν > 0, then Kν(x)

[ 2
νΓ(ν)
2xν ]

−→

1 as x → 0. It follows that

Kν1 (x)

[
2ν1Γ(ν1)

2xν1
]

Kν2 (x)

[
2ν2Γ(ν2)

2xν2
]

−→ 1 as x → 0. Hence for arbitrary

positive ǫ∗ there exists ǫ > 0 such that

Kν1 (x)

[
2ν1Γ(ν1)

2xν1
]

Kν2 (x)

[
2ν2Γ(ν2)

2xν2
]

≤ 1 + ǫ∗ for 0 < x < ǫ.

Therefore
Kν1(x)

Kν2(x)
≤ (1 + ǫ∗)Γ(ν1)2

ν1−ν2

Γ(ν2)xν1−ν2 for 0 < x < ǫ.
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Proposition A3. Let ν > 0. Then there exists ǫ′ > 0 such that

Kν(x)

K0(x)
≤ 2

1
4
√
π

2Γ
(
1
4

)
xν
,

for all 0 < x < ǫ′ (obviously ǫ′ will depend on ν).

Proof. By (Abramowitz and Stegun, 1965, Page 375), if ν > 0, then Kν(x)

[ 2
νΓ(ν)
2xν ]

−→

1 as x → 0, and K0(x)
[−log(x)] −→ 1 as x → 0. Hence there exists ǫ > 0 such that

Kν (x)

[
2νΓ(ν)
2xν

]

K0(x)

[− log(x)]

≤ 2 for 0 < x < ǫ. Let ǫ′ := min{ǫ, e−Γ(ν)2ν+1κ} where κ =
Γ( 1

4 )

2
1
4
√
π
. Note

that 0 < ǫ′ < 1. As a result x 7→ −log(x) is positive and strictly decreasing

function on x ∈ (0, ǫ′]. Hence Kν(x)
K0(x)

≤ 2νΓ(ν)
xν [− log(ǫ′)] for 0 < x < ǫ′. As 0 < ǫ′ ≤

e−Γ(ν)2ν+1κ, it follows that

Kν(x)

K0(x)
≤ 2νΓ(ν)

xν
[
− log

(
e−Γ(ν)2ν+1κ

)] = 2
1
4
√
π

2Γ
(
1
4

)
xν

for 0 < x < ǫ′.

Proposition A4. Let ν ≥ 0, δ ∈ (0, 1) and x > 0. Then

Kν+ δ
2
(x)

Kν(x)
≤ (2ν + 1)

δ
2

x
δ
2

+ 1.

Proof. Let ν1, ν2 ∈ R, x > 0 and 0 ≤ ω ≤ 1. By the integral form of the modified
Bessel function of the second kind (Watson, 1995, page 181) we obtain,

Kων1+(1−ω)ν2(x) =

∫ ∞

0

e−x.cosh(t)cosh ((ων1 + (1− ω)ν2)t) dt.

Since the hyperbolic cosine function is a log-convex function, we obtain

Kων1+(1−ω)ν2(x)

≤
∫ ∞

0

e−x.cosh(t) (cosh(ν1t))
ω (cosh(ν2t))

1−ω
dt

=

∫ ∞

0

(
e−x.cosh(t)cosh(ν1t)

)ω (
e−x.cosh(t)cosh(ν2t)

)1−ω
dt

(m)

≤
(∫ ∞

0

e−x.cosh(t)cosh(ν1t)dt

)ω (∫ ∞

0

e−x.cosh(t)cosh(ν2t)dt

)1−ω

= [Kν1(x)]
ω
[Kν2(x)]

1−ω
, (A.6)

where (m) follows from Holder’s inequality. Hence, for ν ≥ 0 and δ ∈ (0, 1), we
obtain

Kν+ δ
2
(x)

Kν(x)
=

Kν(1− δ
2 )+(ν+1) δ2

(x)

Kν(x)
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≤ [Kν(x)]
1− δ

2
[
K(ν+1)(x)

] δ
2

Kν(x)

=

[
Kν+1(x)

Kν(x)

] δ
2

(q)

≤



(ν + 1

2 ) +
√
(ν + 1

2 )
2 + x2

x




δ
2

≤
[
2(ν + 1

2 ) + x

x

] δ
2

≤ (2ν + 1)
δ
2

x
δ
2

+ 1. (A.7)

The last inequality follows form the fact that (y+1)
δ
2 ≤ y

δ
2 +1 if δ ∈ (0, 1) and

y > 0, and (q) follows by (Segura, 2011, Theorem 2).

Proposition A5. Let ν ∈ R and s, t > 0. Then 2Kν(
s
t
) ≥ K ν

2
( s

2

2 )e
− 1

2t2 .

Proof. By choosing α = s
t
and ξ = s

t
in (2.1), and the fact that uv ≤ u2

2 + v2

2
for u, v ≥ 0, we obtain

2Kν

(s
t

)
=

∫ ∞

0

xν−1e−
1
2 (x

s
t
+ s
tx )dx

≥
∫ ∞

0

xν−1e
− 1

2

(
x2s2

2 + 1
2t2

+ s2

2x2
+ 1

2t2

)

dx

= e−
1

2t2

∫ ∞

0

xν−1e
− 1

2

(
x2s2

2 + s2

2x2

)

dx

= e−
1

2t2

∫ ∞

0

y
ν−1
2 e

− 1
2

(
ys2

2 + s2

2y

)
1

2
√
y
dy

= e−
1

2t2
1

2

∫ ∞

0

y
ν
2−1e

− 1
2

(
ys2

2 + s2

2y

)

dy

= e−
1

2t2 K ν
2

(
s2

2

)
. (A.8)

The last equality follows by choosing α = s2

2 and ξ = s2

2 in (2.1).

Proposition A6. Let ν ∈ R and s, t > 0. Then

2
(s
t

) ν
2

Kν

(√
s

t

)
≥ e−

s

4t2

[
e−

1
4K ν

2

(√
s

2

)(s
2

) ν
4

]
.

Proof. By choosing α = 1 and ξ = s
t
in (2.1), and the fact that uv ≤ u2

2 + v2

2
for u, v ≥ 0, we obtain

2
(s
t

) ν
2

Kν

(√
s

t

)
=

∫ ∞

0

xν−1e−
1
2 (x+

s
xt )dx
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≥
∫ ∞

0

xν−1e
− 1

2

(
x2+1

2 +s
( 1
x2

+ 1
t2
)

2

)

dx

= e−
1
2 (

1
2+

s

2t2
)
∫ ∞

0

xν−1e−
1
2 (x

2+ s

2x2
)e

x2

4 dx

≥ e−
1
2 (

1
2+

s

2t2
)
∫ ∞

0

1

2
y
ν
2−1e−

1
2 (y+

s
2y )dy

= e−
s

4t2

[
e−

1
4K ν

2

(√
s

2

)(s
2

) ν
4

]
. (A.9)

The last equality follows by choosing α = 1 and ξ = s
2 in (2.1).

Proposition A7. Let ν 6= 0 and x > 0. Then 2Kν(x) ≤ x−|ν|Γ(|ν|)2|ν|.
Proof. If ν > 0, then for any x > 0, by choosing α = 1 and ξ = x2 in (2.1), we
obtain

2Kν (x) = x−ν
∫ ∞

0

yν−1e
− 1

2

(
y+ x2

y

)

dy ≤ x−ν
∫ ∞

0

yν−1e−
y
2 dy ≤ x−νΓ(ν)2ν .

(A.10)
If ν < 0 then for any x > 0 we get from (Abramowitz and Stegun, 1965,
Page 375) and (A.10) that

2Kν(x) = 2K−ν(x) ≤ x−(−ν)Γ(−ν)2−ν ≤ xνΓ(−ν)2−ν . (A.11)

Proposition A8. Let Ψ(α) =
d
dα

Γ(α)

Γ(α) denote the digamma function. Then,

there exists a unique a∗ ∈ (0, 1) such that 1
2Ψ(1− a∗)− 1

2Ψ(12 )− 1
2 log(2) = 0.

Proof. Let g(a) := 1
2Ψ(1−a)− 1

2Ψ(12 )− 1
2 log(2). Note that g

′(a) = − 1
2Ψ

′(1−a) <
0 for a ∈ (0, 1) as Ψ′(·) is always positive on the positive part of real line. Now
g(0) = 0.346 > 0 and g(12 ) = − 1

2 log(2) < 0. Since g is continuous and strictly
decreasing on the interval (0, 1), it follows that there exists a unique a∗ ∈ (0, 1)
such that g(a∗) = 0.

Although there is no closed form expression for a∗, standard numerical meth-
ods reveal that a∗ ≈ 1

π
.

Proposition A9. Let a ∈ (a∗, 1). Then δ∗(a) = argminδ∈(0,1)
Γ( 1−δ

2 )

2
δ
2
√
π

Γ(1+ δ
2−a)

Γ(1−a)
is well defined, and

Γ(1−δ
∗(a)
2 )

2
δ∗(a)

2
√
π

Γ(1 + δ∗(a)
2 − a)

Γ(1− a)
< 1.

Proof. Fix a ∈ (a∗, 1) arbitrarily. Let fa(δ) :=
Γ( 1−δ

2 )

2
δ
2
√
π

Γ(1+ δ
2−a)

Γ(1−a) . Let ga(δ) :=

d
dδ
(log(fa(δ))) =

1
2Ψ(1 + δ

2 − a)− 1
2Ψ(12 − δ

2 )− 1
2 log(2). It follows that g

′
a(δ) =

1
4Ψ

′(1 + δ
2 − a) + 1

4Ψ
′(12 − δ

2 ) > 0, as Ψ′ is always positive on (0, 1). As a result
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ga(δ) is strictly increasing on (0, 1). Since Ψ(·) is an increasing function on (0, 1),
we obtain

ga(0) =
1

2

(
Ψ(1− a)−Ψ(

1

2
)− log(2)

)

<
1

2

(
Ψ(1− a∗)−Ψ(

1

2
)− log(2)

)
= 0. (A.12)

for a ∈ (a∗, 1). Note that for a fixed δ ∈ (0, 1), the function a 7→ ga(δ) is
decreasing in a ∈ (0, 1), hence for a ∈ (a∗, 1)

ga(.8) > g1(.8) =
1

2
(Ψ(.4)−Ψ(.1)− log(2)) > 0. (A.13)

Since the function δ 7→ ga(δ) is strictly increasing and differentiable on (0, 1)
with ga(0) < 0 and ga(.8) > 0, it follows that there exist a number δ∗(a) ∈ (0, 1)
such that ga(δ

∗(a)) = 0. Since ga(δ) < 0 for δ < δ∗(a) and ga(δ) > 0 for
δ > δ∗(a), it follows that δ = δ∗(a) is the point of global minima for the
function δ 7→ fa(δ) on (0, 1). Note that ga(δ) =

d
dδ
log(fa(δ)) < 0 for δ < δ∗(a).

Therefore fa(δ
∗(a)) < fa(0) = 1.
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