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EXTREME NESTING IN THE CONFORMAL LOOP ENSEMBLE
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Microsoft Research∗ and Massachusetts Institute of Technology†

The conformal loop ensemble CLEκ with parameter 8/3 < κ < 8 is the
canonical conformally invariant measure on countably infinite collections of
noncrossing loops in a simply connected domain. Given κ and ν, we com-
pute the almost-sure Hausdorff dimension of the set of points z for which
the number of CLE loops surrounding the disk of radius ε centered at z has
asymptotic growth ν log(1/ε) as ε → 0. By extending these results to a setting
in which the loops are given i.i.d. weights, we give a CLE-based treatment of
the extremes of the Gaussian free field.

1. Introduction. The conformal loop ensemble CLEκ for κ ∈ (8/3,8) is the
canonical conformally invariant measure on countably infinite collections of non-
crossing loops in a simply connected domain D � C [20, 21]. It is the loop
analogue of SLEκ , the canonical conformally invariant measure on noncrossing
paths. Just as SLEκ arises as the scaling limit of a single interface in many two-
dimensional discrete models, CLEκ is a limiting law for the joint distribution of
all of the interfaces. Figures 1 and 2 show two discrete loop models believed or
known to have CLEκ as a scaling limit. Figure 3 illustrates these scaling limits
CLEκ for several values of κ .

1.1. Overview of main results. Fix a simply connected domain D �C and let
� be a CLEκ in D. For each point z ∈ D and ε > 0, we let Nz(ε) be the number
of loops of � which surround B(z, ε), the ball of radius ε centered at z. We study
the behavior of the extremes of Nz(ε) as ε → 0, that is, points where Nz(ε) grows
unusually quickly or slowly (Theorem 1.1). We also analyze a more general setting
in which each of the loops is assigned an i.i.d. weight sampled from a given law μ.
This in turn is connected with the extremes of the continuum Gaussian free field
(GFF) [10] when κ = 4 and μ({−σ })= μ({σ })= 1

2 for a particular value of σ > 0
(Theorems 1.2 and 1.3).

1.2. Extremes. Fix α ≥ 0. The Hausdorff α-measure Hα of a set E ⊂ C is
defined to be

Hα(E)= lim
δ→0

(
inf
{∑

i

(
diam(Fi)

)α :
⋃
i

Fi ⊇E,diam(Fi) < δ

})
,
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FIG. 1. Nesting of loops in the O(n) loop model. Each O(n) loop configuration has probability
proportional to xtotal length of loops × n# loops. For a certain critical value of x, the O(n) model
for 0 ≤ n ≤ 2 has a “dilute phase,” which is believed to converge CLEκ for 8/3 < κ ≤ 4 with
n = −2 cos(4π/κ). For x above this critical value, the O(n) loop model is in a “dense phase,”
which is believed to converge to CLEκ for 4 ≤ κ ≤ 8, again with n = −2 cos(4π/κ). See [11] for
further background. (a) Site percolation. (b) O(n) loop model. Percolation corresponds to n= 1 and
x = 1, which is in the dense phase. (c) Area shaded by nesting of loops.

where the infimum is over all countable collections {Fi} of sets. The Hausdorff
dimension of E is defined to be

dimH(E) := inf
{
α ≥ 0 :Hα(E)= 0

}
.

For each z ∈D and ε > 0, let

Ñz(ε) := Nz(ε)

log(1/ε)
.(1.1)

FIG. 2. Nesting of loops separating critical Fortuin–Kasteleyn (FK) clusters from dual clusters.
Each FK bond configuration has probability proportional to (p/(1 − p))# edges × q# clusters [8],
where there is believed to be a critical point at p = 1/(1 + 1/

√
q) (proved for q ≥ 1 [1]). For

0 ≤ q ≤ 4, these loops are believed to have the same large-scale behavior as the O(n) model loops
for n=√

q in the dense phase, that is, to converge to CLEκ for 4 ≤ κ ≤ 8 (see [11, 17]). (a) Critical
FK bond configuration. Here q = 2. (b) Loops separating FK clusters from dual clusters. (c) Area
shaded by nesting of loops.
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FIG. 3. Simulations of discrete loop models which converge to (or are believed to converge to, in-
dicated with 
) CLEκ in the fine mesh limit. For each of the CLEκ ’s, one particular nested sequence
of loops is outlined. For CLEκ , almost all of the points in the domain are surrounded by an infinite
nested sequence of loops, though the discrete samples shown here display only a few orders of nest-
ing. (a) CLE3 (from critical Ising model). (b) CLE4 (from the FK model with q = 4) 
. (c) CLE16/3
(from the FK model with q = 2). (d) CLE6 (from critical bond percolation) 
.

For ν ≥ 0, we define

�ν(CLEκ) :=�ν(�) :=
{
z ∈D : lim

ε→0
Ñz(ε)= ν

}
.(1.2)

Our first result gives the almost-sure Hausdorff dimension of �ν(CLEκ). The
dimension is given in terms of the distribution of the conformal radius of the con-
nected component of the outermost loop surrounding the origin in a CLEκ in the
unit disk. More precisely, the conformal radius CR(z,U) of a simply connected
proper domain U ⊂C with respect to a point z ∈ U is defined to be |ϕ′(0)| where
ϕ:D→U is a conformal map which sends 0 to z. For each z ∈D, let Lk

z be the kth
largest loop of � which surrounds z, and let Uk

z be the connected component of
the open set D \Lk

z which contains z. Take D =D and let T =− log(CR(0,U1
0 )).
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The log moment generating function of T was computed in [19] and is given by


κ(λ) := logE
[
eλT ]= log

( − cos(4π/κ)

cos(π
√

(1 − 4/κ)2 + 8λ/κ)

)
,(1.3)

for −∞< λ < 1− 2
κ
− 3κ

32 . The almost-sure value of dimH �ν(�) is given in terms
of the Fenchel–Legendre transform 



κ :R→[0,∞] of 
κ , which is defined by




κ(x) := sup

λ∈R
(
λx −
κ(λ)

)
.

We also define

γκ(ν)=
⎧⎨⎩

ν


κ(1/ν), if ν > 0,

1 − 2

κ
− 3κ

32
, if ν = 0.

(1.4)

See Corollary 2.3 for discussion of the formula in (1.4).

THEOREM 1.1. Let κ ∈ (8/3,8), and let νmax be the unique value of ν ≥ 0
such that γκ(ν)= 2. If 0 ≤ ν ≤ νmax, then almost surely

dimH �ν(CLEκ)= 2 − γκ(ν)(1.5)

and �ν(CLEκ) is dense in D. If νmax < ν, then �ν(CLEκ) is almost surely empty.
(See Figures 4 and 5.)

Moreover, if � is a CLEκ in D, ϕ:D → D́ is a conformal transformation, �́ :=
ϕ(�), and �ν(�́) is defined to be the corresponding set of extremes of �́, then
�ν(�́)= ϕ(�ν(�)) almost surely.

We also show in Theorem 4.9 that �νmax(�) is almost surely uncountably infi-
nite for all κ ∈ (8/3,8). This contrasts with the critical case for thick points of the
Gaussian free field: it has only been proved that the set of critical thick points is
infinite (not necessarily uncountably infinite); see Theorem 1.1 of [10].

See Figure 4 for a plot of the Hausdorff dimension of �ν(CLE6) as a function
of ν. The discrete analog of Theorem 1.1 would be to give the growth exponent of
the set of points which are surrounded by unusually few or many loops for a given
model as the size of the mesh tends to zero. Theorem 1.1 gives predictions for these
exponents. Since CLE6 is the scaling limit of the interfaces of critical percolation
on the triangular lattice [3, 4, 22], Theorem 1.1 predicts that the typical point in
critical percolation is surrounded by (0.09189 . . .+o(1)) log(1/ε) loops as ε → 0,
where ε > 0 is the lattice spacing.

We give a brief explanation of the proof for the case ν = 1/ET : by the re-
newal property of CLEκ , the random variables log CR(z,Uk

z ) − log CR(z,Uk+1
z )

are i.i.d. and equal in distribution to T . It follows from the law of large num-
bers (and basic distortion estimates for conformal maps) that, for z ∈ D fixed,
Ñz(ε) → 1/ET as ε → 0, almost surely. By the Fubini–Tonelli theorem, we con-
clude that the expected Lebesgue measure of the set of points for which Ñz(ε) �
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FIG. 4. Suppose that D � C is a simply connected domain and let � be a CLEκ in D. For
κ ∈ (8/3,8) and ν ≥ 0, we let �ν(�) be the set of points z for which the number of loops Nz(ε)

of � surrounding B(z, ε) is (ν + o(1)) log(1/ε) as ε → 0. The plot above shows how the almost-sure
Hausdorff dimension of �ν(CLEκ ) established in Theorem 1.1 depends on ν (the figure is for κ = 6,
but the behavior is similar for other values of κ). The value 1 + 2

κ + 3κ
32 = dimH �ν(CLEκ ) is the

almost-sure Hausdorff dimension of the CLEκ gasket [14, 15, 19], which is the set of points in D

which are not surrounded by any loop of �.

1/ET is 0. It follows that almost surely, there is a full-measure set of points z for
which Ñz(ε) → 1/ET . In other words, ν = νtypical := 1/ET corresponds to typi-
cal behavior, while points in �ν(CLEκ) for ν �= 1/ET have exceptional loop-count
growth.

The idea to prove Theorem 1.1 for other values of ν is to use a multiscale re-
finement of the second moment method [5, 10]. The main challenge in applying
the second moment method to obtain the lower bound of the dimension of the set
�ν(CLEκ) in Theorem 1.1 is to deal with the complicated geometry of CLE loops.
In particular, for any pair of points z,w ∈ D and ε > 0, there is a positive proba-
bility that single loop will come within distance ε of both z and w. To circumvent
this difficulty, we restrict our attention to a special class of points z ∈ �ν(CLEκ)

FIG. 5. The typical nesting and maximal nesting constants (νtypical and νmax) plot-
ted versus κ . For example, when κ = 6, Lebesgue almost all points are surrounded by
(0.091888149 . . .+ o(1)) log(1/ε) loops with inradius at least ε, while some points are surrounded
by as many as (0.79577041 . . .+ o(1)) log(1/ε) loops.
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in which we have precise control of the geometry of the loops which surround z at
every length scale.

The CLE gasket is defined to be the set of points z ∈D which are not surrounded
by any loop of �. Equivalently, the gasket is the closure of the union of the set
of outermost loops of �. Its expectation dimension, the growth exponent of the
expected minimum number of balls of radius ε > 0 necessary to cover the gasket
as ε → 0, is given by 1 + 2

κ
+ 3κ

32 [19]. It is proved in [15] using Brownian loop
soups that the almost-sure Hausdorff dimension of the gasket when κ ∈ (8/3,4]
is 1 + 2

κ
+ 3κ

32 , and it is shown in [14] that this result holds for κ ∈ (4,8) as well.
We show in Proposition 3.1 that the limit as ν → 0 of dimH �ν(�) is 1 + 2

κ
+ 3κ

32
(equivalently, γκ is right continuous at 0). Consequently, from the perspective of
Hausdorff dimension, there is no nontrivial intermediate scale of loop count growth
which lies between logarithmic growth and the gasket.

Theorem 1.1 is a special case of a more general result, stated as Theorem 5.3
in Section 5, in which we associate with each loop L of � an i.i.d. weight ξL
distributed according to some probability measure μ. For each α > 0, we give the
almost-sure Hausdorff dimension of the set

�μ
α(�) :=

{
z ∈D : lim

ε→0+
S̃ε(z)= α

}
of extremes of the normalized weighted loop counts a graph

S̃z(ε)= 1

log(1/ε)
Sz(ε) where Sz(ε)=

∑
L∈�z(ε)

ξL,(1.6)

and �z(ε) is the set of loops of � which surround B(z, ε). This dimension is given
in terms of 



κ and the Fenchel–Legendre transform 


μ of μ. Although the di-

mension for general weight measures μ and κ ∈ (8/3,8) is given by a compli-
cated optimization problem, when κ = 4 and μ is a signed Bernoulli distribution,
this dimension takes a particularly nice form. We state this result as our second
theorem.

THEOREM 1.2. Fix σ > 0, and define μB({σ }) = μB({−σ }) = 1
2 . In the spe-

cial case κ = 4 and μ= μB, almost surely

dimH �μB
α (�)= max

(
0,2 − π2

2σ 2 α2
)
.(1.7)

This case has a special interpretation which explains the formula (1.7) for the
dimension. It is proved in [13] that for σ =√

π/2, the random height field Sz(ε)

converges in the space of distributions as ε → 0 to a two-dimensional Gaussian
free field h, and the loops � can be thought of as the level sets of h. Since h is
distribution-valued, h does not have a well-defined value at any given point, nor
does h have level sets strictly speaking, but there is a way to make this precise. This
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GFF interpretation suggests a correspondence between the extremes of Sz(ε) and
the extremes of h. The extreme values of h (also called thick points) can be defined
by considering the average hε(z) of h on ∂B(z, ε) and defining T (α) to be the set
of points z for which hε(z) grows like α log(1/ε) as ε → 0. Thick points were
introduced by Kahane in the context of Gaussian multiplicative chaos (see [18],
Section 4, for further background). It is shown in [10] that dimH T (α)= 2−πα2,
which equals dimH �μB when σ =√

π/2 and κ = 4. The following theorem re-
lates exceptional loop count growth with the extremes of the GFF. Loosely speak-
ing, it says that for each α there is a unique value of ν for which “most” of the
α-thick points have loop counts Ñ ≈ ν.

THEOREM 1.3. Let κ = 4 and μB({√π/2})= μB({−√
π/2}) = 1

2 . For every
α ∈ [−√

2/π,
√

2/π ], there exists a unique ν = ν(α) ≥ 0 such that the Hausdorff
dimension of the set of points with S̃z(ε) → α as ε → 0 is equal to the Hausdorff
dimension of the set of points with S̃z(ε)→ α and Ñz(ε)→ ν as ε → 0. Moreover,

ν(α)= α√
π/2

coth
(

π2α√
π/2

)
,

see Figure 6.

Outline. We review large deviation estimates and give some basic overshoot
estimates for random walks in Section 2. In Section 3, we give large deviation es-
timates on the nesting of CLE loops, and show the CLE loops are well behaved
in certain senses that are useful when we prove the Hausdorff dimension in The-
orem 1.1. It suffices to describe the CLE nesting behavior at single points to give
the upper bound (Section 4.1). For the lower bound (Section 4.2), we follow the
strategy of studying a subset of special points that have full dimension and are
only weakly correlated. We give a Hausdorff dimension lower bound proposition
that is cleaner than ones that have appeared earlier, and which allowed for simpli-
fications in the CLE calculations. In this section, we also show that the points of
maximal nesting are equinumerous with R. In Section 5, we explain the proof of

FIG. 6. A graph of ν(α) versus α, which gives the typical loop growth ν log(1/ε) corresponding
to each point with signed loop growth α log(1/ε), for α ∈ [−√

2/π,
√

2/π ]. Also shown is the value
νmax beyond which there are no points having growth ν log(1/ε).
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Theorem 5.3, the extension of Theorem 1.1 to the setting of weighted CLE loops.
We also deduce Theorems 1.2 and 1.3 as corollaries of this result.

2. Preliminaries. In Section 2.1, we review some facts from large deviations,
and then in Section 2.2 we collect several estimates for random walks.

2.1. Large deviations. We review some basic results from the theory of large
deviations, including the Fenchel–Legendre transform and Cramér’s theorem. Let
μ be a probability measure on R. The logarithmic moment generating function,
also known as the cumulant generating function, of μ is defined by


(λ)=
μ(λ)= logE
[
eλX],

where X is a random variable with law μ. The Fenchel–Legendre transform


 :R→[0,∞] of 
 is given by [6], Section 2.2



(x) := sup
λ∈R

(
λx −
(λ)

)
.

We now recall Cramér’s theorem in R, as stated in [6], Theorem 2.2.3.

THEOREM 2.1 (Cramér’s theorem). Let X be a real-valued random variable
and let 
 be the logarithmic moment generating function of the distribution of X.
Let Sn =∑n

i=1 Xi be a sum of i.i.d. copies of X. For every closed set F ⊂ R and
open set G⊂R, we have

lim sup
n→∞

1

n
logP

[
1

n
Sn ∈ F

]
≤− inf

y∈F


(y) and

lim inf
n→∞

1

n
logP

[
1

n
Sn ∈G

]
≥− inf

y∈G


(y).

Moreover,

P

[
1

n
Sn ∈ F

]
≤ 2 exp

(
−n inf

y∈F


(y)

)
.(2.1)

Following [6], Section 2.2.1, we let D
 := {λ :
(λ) < ∞} and D

 =
{x :

(x) < ∞} be the sets where 
 and 

 are finite, respectively, and let
F
 = {
′(λ) :λ ∈ D◦


}, where A◦ denotes the interior of a set A ⊂ R. The fol-
lowing proposition summarizes some basic properties of 
 and 

.

PROPOSITION 2.2. Suppose that μ is a probability measure on R, let 
 be its
log moment generating function, and assume that D
 �= {0}. Let a and b denote
the essential infimum and supremum of a μ-distributed random variable X (with
a =−∞ and/or b =∞ allowed). Then 
 and its Fenchel–Legendre transform 



have the following properties:

(i) 
 and 

 are convex;
(ii) 

 is nonnegative;
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(iii) F
 ⊂D

 ;
(iv) 
 is smooth on D◦


 and 

 is smooth on F◦

;

(v) If D
 =R, then F◦

 = (a, b);

(vi) If (−∞,0] ⊂D
, then (a, a + δ)⊂F◦

 for some δ > 0;

(vii) If [0,∞)⊂D
, then (b − δ, b)⊂F◦

 for some δ > 0;

(viii) 

 is continuously differentiable on (a, b);
(ix) If −∞< a, then (

)′(x)→−∞ as x ↓ a;
(x) If b <∞, then (

)′(x)→+∞ as x ↑ b.

PROOF. For (i)–(iv), we refer the reader to [6], Section 2.2.1.
To prove (v), note that


′(λ)= E[XeλX]
E[eλX] .

Therefore,

a = E[aeλX]
E[eλX] ≤
′(λ)≤ E[beλX]

E[eλX] = b.

Thus, F
 ⊆ [a, b], which gives F◦

 ⊆ (a, b).

This leaves us to prove the reverse inclusion. Suppose c ∈ (a, b), and let Y =
X − c.

Then


′(λ)= E[XeλX]
E[eλX] = c + E[YeλY ]

E[eλY ] = c + E[1{Y≥0}YeλY ] +E[1{Y<0}YeλY ]
E[eλY ] .

Since D
 = R, the tails of X and Y decay rapidly enough for each of the above
expected values to be finite. Since P[Y > 0] > 0, the first term in the numerator
diverges as λ →∞, while the second term decreases monotonically in absolute
value. So for sufficiently large λ, we have 
′(λ) > c. Similarly, for sufficiently
large negative λ we have 
′(λ) ≤ c. Since 
 is smooth, 
′ is continuous, so c ∈
F
. The proofs of (vi) and (vii) are analogous.

To prove (viii), note that F◦

 = (ã, b̃) for some a ≤ ã < b̃ ≤ b. By (iv), 

 is

smooth on (ã, b̃). Therefore, it suffices to consider the possibility that a < ã or b̃ <

b. Suppose first that b̃ < b. By the proof of (v), b̃ < b implies that D
 = (λ1, λ2)

for some λ2 <∞. Furthermore, observe that 
′(λ)→ b̃ as λ↗ λ2. It follows that

(λ2) <∞, and by convexity of 
 we have for all b̃ ≤ x < b,



(x)= sup
λ

[
xλ−
(λ)

]= xλ2 −
(λ2).

In other words, 

 is smooth on (ã, b̃) and is affine on (b̃, b) with slope matching
the left-hand derivative at b̃. Similarly, if a < ã, then 

 is affine on (a, ã) with
slope matching the right-hand derivative of 

 at ã. Therefore, 

 is continuously
differentiable on (a, b).
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To prove (ix), we note that since X is bounded below, D◦

 = (−∞, ξ) for some

0 ≤ ξ ≤+∞. Moreover, there exists ε > 0 so that (a, a + ε)⊂F◦

, by essentially

the same argument we used to prove (v) above. Let D̂ = {λ :
′(λ) ∈ (a, a + ε)},
and note that the left endpoint of D̂ is −∞. Since 
′ is smooth and strictly in-
creasing on D̂ (see [6], Exercise 2.2.24), there exists a monotone bijective func-
tion λ : (a, a + ε) → D̂ for which 
′(λ(x)) = x. In the definition of 

(x), the
supremum is achieved at λ= λ(x). Differentiating, we obtain(



)′(x) = d

dx

[
xλ(x)−


(
λ(x)

)]
= λ(x)+ xλ′(x)− λ′(x)
′(λ(x)

)
(2.2)

= λ(x).

Since the monotonicity of λ implies that λ(x) →−∞ as x → a, this completes
the proof.

The proof of (x) is similar. �

We also have the following adaptation of Cramér’s theorem for which the num-
ber of i.i.d. summands is not fixed.

COROLLARY 2.3. Let X be a positive real-valued random variable with ex-
ponential tails (i.e., E[eλ0X] < ∞ for some λ0 > 0), and let 
(λ) = logE[eλX].
Let Sn =∑n

i=1 Xi be a sum of i.i.d. copies of X, and let Nr = min{n :Sn ≥ r}. If
0 < ν1 < ν2, then

lim
r→∞

1

r
logP[ν1r ≤Nr ≤ ν2r] = − inf

ν∈[ν1,ν2]
ν

(1/ν).(2.3)

This is the origin of the expression ν

(1/ν) in (1.4).

PROOF. Note that in the formula



(x)= sup
λ

[
λx −
(λ)

]
,

the bracketed expression is 0 when λ = 0. Because X has exponential tails,

′(0) = E[X] exists. If x < E[X], then for some sufficiently small negative λ,
the bracketed expression is positive, so 

(x) > 0. Likewise, if x > E[X] then


(x) > 0. We also have 

(E[X])= 0.

Let a = ess infX ∈ [0,∞) be the essential infimum of X and b = ess supX ∈
(0,∞] be the essential supremum of X.

Because 

 is convex on [a, b], by Lemma 2.4 proved below, ν

(1/ν) is con-
vex on [1/b,1/a]. The expression ν

(1/ν) is 0 when ν = 1/E[X] and is positive
elsewhere on [1/b,1/a], so it is strictly decreasing for ν ≤ 1/E[X] and strictly
increasing for ν ≥ 1/E[X].
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There are three possible cases for the relative order of 1/E[X], ν1, and ν2. For
example, suppose ν1 < ν2 < 1/E[X]. We write

{ν1r ≤Nr ≤ ν2r} =
{ ∑

1≤i≤�ν1r�−1

Xi < r

}
∩
{ ∑

1≤i≤�ν2r�
Xi ≥ r

}
=:Er ∩ Fr.

Since ν

(1/ν) is continuous on (1/b,1/a), by Cramér’s theorem,

P
[
Ec

r

]= e−ν1r


(1/ν1)(1+o(1)) and P[Fr ] = e−ν2r



(1/ν2)(1+o(1)),

except when 1/ν1 = 1/b, in which case the expression for P[Ec
r ] becomes an upper

bound. Therefore,

P[Er ∩ Fr ] = P [Fr ] − P
[
Fr ∩Ec

r

]= e−ν2r


(1/ν2)(1+o(1)),

which gives (2.3). The proof for the case 1/E[X] < ν1 < ν2 is analogous, and in
the case ν1 < 1/E[X]< ν2, both sides of (2.3) are 0. �

LEMMA 2.4. Suppose that f is a convex function on [a, b] ⊆ [0,∞]. Then
x �→ xf (1/x) is a convex function on [1/b,1/a].

PROOF. Since f is convex, it can be expressed as f (x) = supi (αi + βix) for
some pair of sequences of reals {αi}i∈N and {βi}i∈N. For x ∈ [0,∞] we can write
xf (1/x)= supi (αix + βi), so it too is convex. �

PROPOSITION 2.5. Let X be a nonnegative real-valued random variable, and
let 
(λ)= logE[eλX]. Then

lim
ν↓0

ν

(1/ν)= sup
{
λ :
(λ) <∞}

.(2.4)

PROOF. Let λ0 = sup{λ :
(λ) < ∞}, and note that 0 ≤ λ0 ≤∞. Recall that


(x) := supλ(λx −
(λ)), so

ν

(1/ν)= sup
λ

(
λ− ν
(λ)

)
.

The supremum is not achieved for any λ > λ0. If λ0 > 0, then E[X] < ∞ and for
ν ≤ 1/E[X] the supremum is achieved over the set λ ≥ 0 ([6], Lemma 2.2.5(b)).
For any λ ≥ 0 we have 
(λ) ≥ 0, so ν

(1/ν) ≤ λ0 for 0 < ν ≤ 1/E[X]. On the
other hand, for any λ < λ0 we have 
(λ) <∞, so lim infν↓0 ν

(1/ν)≥ λ. Thus,
limν↓0 ν

(1/ν)= λ0 when λ0 > 0.

Next, suppose λ0 = 0. Then the supremum is achieved over the set λ ≤ 0,
for which 
(λ) ≤ 0. For any ε > 0, there is a δ > 0 for which −ε ≤ 
(λ) ≤ 0
whenever −δ ≤ λ ≤ 0. Since λ0 = 0, Pr[X = 0] < 1, so 
(−δ) < 0. Let ν0 =
−δ/
(−δ). By the convexity of 
, for 0 ≤ ν ≤ ν0, the supremum is achieved for
λ ∈ [−δ,0]. For λ in this range, λ − ν
(λ) ≤ εν, so 0 ≤ ν

(1/ν) ≤ εν when
0 < ν ≤ ν0. Hence, limν↓0 ν

(1/ν)= 0 when λ0 = 0. �
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We conclude by giving a parametrization of the graph of the function γκ over
the interval (0,∞).

PROPOSITION 2.6. Recall the definition of 
κ in (1.3). The graph of γκ over
the interval (0,∞) is equal to the set{(

1


′
κ(λ)

, λ− 
κ(λ)


′
κ(λ)

)
:−∞< λ < 1 − 2

κ
− 3κ

32

}
.(2.5)

PROOF. Recall that 


κ(x) = supλ∈R[λx − 
κ(λ)]. Since 
′

κ is continuous
and strictly increasing, the maximizing value of λ for a given value of x is the
unique λ ∈ R such that 
′

κ(λ) = x. If we let λ be this maximizing value, then we
have




κ(x)= λx −
κ(λ).(2.6)

Differentiating (1.3) shows that as λ ranges from −∞ to 1− 2/κ − 3κ/32, 
′
κ(λ)

ranges from 0 to ∞. Using (2.6) and writing ν = 1/x, we obtain

ν = 1

x
= 1


′
κ(λ)

and

ν


κ(1/ν)= 1


′
κ(λ)

(
λ
′

κ(λ)−
κ(λ)
)= λ− 
κ(λ)


′
κ(λ)

.

Therefore, {(ν, ν


κ(1/ν)) : 0 < ν <∞} is equal to (2.5). �

PROPOSITION 2.7. The function γκ is strictly convex over [0,∞).

PROOF. Define x(λ) = 1/
′
κ(λ) and y(λ) = λ − 
κ(λ)/
′

κ(λ). By Proposi-
tion 2.6, the second derivative of γκ is given by(

d

dλ

[
y′(λ)

x′(λ)

])/(
x′(λ)

)
=
(

8π2 sin2
(

π

κ

√
8κλ+ (κ − 4)2

)
tan
(

π

κ

√
8κλ+ (κ − 4)2

))
(2.7)

/(
2π

√
8κλ+ (κ − 4)2 − κ sin

(
2π

κ

√
8κλ+ (κ − 4)2

))
.

It is straightforward to confirm that sin2 t tan t/(2t − sin(2t)) > 0 for all t ∈
[0, π/2) (where we extend the definition to t = 0 by taking the limit of the ex-
pression as t ↘ 0). Similarly, sinh2(2t) tanh(t)/(sinh(2t) − 2t) > 0 for all t ≤ 0
(again extending to t = 0 by taking a limit). Setting t = π

κ

√
8κλ+ (κ − 4)2, these

observations imply that the second derivative of γκ is positive for all λ less than
1 − 2/κ − 3κ/32. �
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2.2. Overshoot estimates. Let {Sn}n∈N be a random walk in R whose incre-
ments are nonnegative and have exponential moments. In this section, we will
bound the tails of Sn stopped at:

(i) the first time that it exceeds a given threshold (Lemma 2.8) and at
(ii) a random time which is stochastically dominated by a geometric random

variable (Lemma 2.9).

LEMMA 2.8. Suppose {Xj }j∈N are nonnegative i.i.d. random variables for
which E[X1] > 0 and E[eλ0X1] < ∞ for some λ0 > 0. Let Sn =∑n

j=1 Xj and
τx = inf{n≥ 0 :Sn ≥ x}. Then there exists C > 0 (depending on the law of X1 and
λ0) such that P[Sτx − x ≥ α] ≤ C exp(−λ0α) for all x ≥ 0 and α > 0.

PROOF. Since E[X1] > 0, we may choose v > 0 so that P[X1 ≥ v] ≥ 1
2 . We

partition (−∞, x) into intervals of length v:

(−∞, x)=
∞⋃

k=0

Ik where Ik = [x − (k + 1)v, x − kv
)
.

Then we partition the event Sτx − x ≥ α into subevents:

{Sτx − x ≥ α} =
∞⋃

n=0

∞⋃
k=0

En,k where En,k = {Sn ∈ Ik, Sn+1 ≥ x + α}.

The event En,k implies Xn+1 ≥ kv + α, and since Xn+1 is independent of Sn, we
have

P[En,k] ≤ P[Sn ∈ Ik] × E[eλ0X]
eλ0(kv+α)

.

On the event Sn ∈ Ik , since Xn+1 is independent of what occurred earlier
and is larger than v with probability at least 1

2 , we have P[Sn+1 ∈ Ik|Sn ∈
Ik, Sn−1, . . . , S1] ≤ 1

2 . Thus,
∞∑

n=0

P[Sn ∈ Ik] = E
[∣∣{n :Sn ∈ Ik}

∣∣]≤ 2.

Thus,

P[Sτx − x ≥ α] ≤
∞∑

k=0

2E[eλ0X]
eλ0(kv+α)

≤ 2E[eλ0X]
1 − e−λ0v

× e−λ0α.
�

LEMMA 2.9. Let {Xj }j∈N be an i.i.d. sequence of random variables and let
Sn =∑n

i=1 Xi . Let N be a positive integer-valued random variable, which need not
be independent of the Xj ’s. Suppose that there exists λ0 > 0 for which E[eλ0X1]<
∞ and q ∈ (0,1) for which P[N ≥ k] ≤ qk−1 for every k ∈ N. Then there exist
constants C,c > 0 (depending on q and the law of X1) for which P[SN > α] ≤
C exp(−cα) for every α > 0.



1026 J. MILLER, S. S. WATSON AND D. B. WILSON

PROOF. Since qE[eλX] is a continuous function of λ which is finite for λ =
λ0 > 0 and less than 1 for λ= 0, there is some c > 0 for which qE[e2cX]< 1. The
Cauchy–Schwarz inequality gives

E
[
ecSN

]= E

[ ∞∑
k=1

ecSk 1{N=k}
]

≤
∞∑

k=1

√
E
[
e2cSk

]
P[N = k] = q−1/2

∞∑
k=1

(√
E
[
e2cX1

]
q
)k

<∞.

We conclude using the Markov inequality P[SN > α] ≤ e−cαE[ecSN ]. �

3. CLE estimates. In Section 3.1, we apply the estimates from Section 2 to
obtain asymptotic loop nesting probabilities for CLE. Then in Section 3.2 we show
that CLE loops are well behaved in a certain sense that will allow us to do the two-
point estimates that we need for the Hausdorff dimension.

3.1. CLE nesting estimates. We establish two technical estimates in this sub-
section. Lemma 3.2 uses Cramér’s theorem to compute the asymptotics of the
probability that the number Nz(ε) of CLE loops surrounding B(z, ε) has a certain
rate of growth as ε → 0.

In preparation for the proof of Lemma 3.2 below, we establish the continuity of
the function γκ defined in (1.4). Throughout, we let νmax be the unique solution to
γκ(ν)= 2.

PROPOSITION 3.1. The function γκ is continuous. In particular,

lim
ν↓0

γκ(ν)= 1 − 2

κ
− 3κ

32
.(3.1)

The quantity on the right-hand side of (3.1) is two minus the almost-sure Haus-
dorff dimension of the CLEκ gasket [14, 15, 19].

PROOF OF PROPOSITION 3.1. The continuity of γκ on (0,∞) follows from
Proposition 2.2(iv), and the continuity at 0 follows from Proposition 2.5 and the
fact that (1.3) blows up at λ0 = 1 − 2

κ
− 3κ

32 but not for λ < λ0. �

LEMMA 3.2. Let κ ∈ (8/3,8), 0 ≤ ν ≤ νmax, and 0 < a ≤ b. Then for all
functions ε �→ δ(ε) decreasing to 0 sufficiently slowly as ε → 0 and for all proper
simply connected domains D and points z ∈ D satisfying a ≤ CR(z;D) ≤ b, we
have ⎧⎪⎪⎪⎨⎪⎪⎪⎩

lim
ε→0

logP[ν ≤ Ñz(ε)≤ ν + δ(ε)]
log ε

= γκ(ν), for ν > 0,

lim
ε→0

logP[(1/2)δ(ε)≤ Ñz(ε)≤ δ(ε)]
log ε

= γκ(0), for ν = 0,

(3.2)
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where γκ is defined in (1.4), and the convergence is uniform in the domain D.

PROOF. Let {Ti}i∈N be the sequence of log conformal radius increments asso-
ciated with z. That is, defining Ui

z to be the connected component of D \Li
z which

contains z, we have Ti := log CR(z;Ui−1
z )− log CR(z;Ui

z). Let

Sn :=
n∑

i=1

Ti = log CR(z;D)− log CR
(
z;Un

z

)
for n ∈N.

As in Corollary 2.3, we let Nr = min{n :Sn ≥ r}.
By the Koebe one-quarter theorem and the hypotheses of the lemma, we have

log(a/4)− log inrad
(
z;Un

z

)≤ Sn ≤ logb − log inrad
(
z;Un

z

)
.(3.3)

Suppose first that ν > 0. Let

E := {(ν + η) log(1/ε)≤Nlog(a/4)+log(1/ε)

}
and

F := {Nlog(b)+log(1/ε) ≤ (ν + δ0 − η) log(1/ε)
}
.

It follows from (3.3) that for all fixed δ0 > 0 and 0 < η < δ0/2 and for all ε =
ε(η) > 0 sufficiently small, we have{

ν ≤ Ñz(ε)≤ ν + δ0
}⊃E ∩ F.

By Corollary 2.3, logP[E]/ log ε → infξ∈[ν+η,ν+δ0−η] γκ(ξ). Furthermore,
Cramér’s theorem implies that P[F |E] = εo(1). It follows that

lim inf
ε→0

logP[ν ≤ Ñz(ε)≤ ν + δ0]
log ε

≥ inf
ξ∈[ν+η,ν+δ0−η]γκ(ξ).

Letting η → 0 and using an analogous argument to upper bound the limit supre-
mum of the quotient on the left-hand side, we find that

lim
ε→0

logP[ν ≤ Ñz(ε)≤ ν + δ0]
log ε

= inf
ξ∈[ν,ν+δ0]

γκ(ξ).

By the continuity of γκ on [0,∞), we may choose δ(ε) ↓ 0 so that (3.2) holds. The
proof for ν = 0 is similar. As above, we show that for δ0 > 0 fixed, we have

lim
ε→0

logP[δ0/2 ≤ Ñz(ε)≤ δ0]
log ε

= inf
ξ∈[δ0/2,δ0]

γκ(ξ).

Again, choose δ(ε) ↓ 0 so that (3.2) holds. �
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3.2. Regularity of CLE. Let D �C be a proper simply connected domain and
let � be a CLEκ in D. For each z ∈ D, let Lj

z be the j th largest loop of � which
surrounds z. In this section, we estimate the tail behavior of the number of such
loops Lj

z which intersect the boundary of a ball B(z, r) in D.

LEMMA 3.3. For each κ ∈ (8/3,8) there exists p1 = p1(κ) > 0 such that for
any proper simply connected domain D and z ∈D,

P
[
L1

z ∩ ∂D =∅
]≥ p1 > 0.

PROOF. If κ ∈ (8/3,4], we can take p1 = 1 since the loops of such CLEs
almost surely do not intersect the boundary of D. Assume κ ∈ (4,8). By the con-
formal invariance of CLE, the boundary avoidance probability is independent of
the domain D and the point z, so we take D = D. Let η = η0 be the branch of
the exploration process of � targeted at 0 and let (W,V ) be the driving pair for η.
Let τ be an almost surely positive and finite stopping time such that η|[0,τ ] almost
surely does not surround 0 and η(τ) �= Vτ almost surely. Then η|[τ,∞) evolves
as an ordinary chordal SLEκ process in the connected component of D \ η([0, τ ])
containing 0 targeted at Vτ , up until disconnecting Vτ from 0. In particular, η|(τ,∞)

almost surely intersects the right-hand side of η|[0,τ ] before surrounding 0. Since
η is almost surely not space filling [17] and cannot trace itself, this implies that,
almost surely, there exists z ∈ Q2 ∩ D such that the probability that η makes a
clockwise loop around z before surrounding 0 is positive. This in turn implies that
with positive probability, the branch ηz of the exploration tree targeted at z makes a
clockwise loop around z before making a counterclockwise loop around z. By [20],
Lemma 5.2, this implies P[L1

z ∩ ∂D=∅]> 0. �

Suppose that D =D. By the continuity of CLEκ loops, Lemma 3.3 implies there
exists r0 = r0(κ) < 1 such that

P
[
L1

0 ⊂ B(0, r0)
]≥ p1

2
.(3.4)

LEMMA 3.4. For each κ ∈ (8/3,8) there exists p = p(κ) > 0 such that for
any proper simply connected domain D and z ∈D,

P
[
L2

z ⊆ B
(
z,dist(z, ∂D)

)]≥ p.
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PROOF. Let D1 be the connected component of D \ L1
z which contains z

and let X = CR(z;D1)/CR(z;D) ≤ 1. Let ϕ:D→ D1 be a conformal map with
ϕ(0) = z, and let r = dist(z, ∂D). By the Koebe one-quarter theorem, we have
CR(z;D)≤ 4r , hence∣∣ϕ′(0)

∣∣= CR(z;D1)= CR(z;D) · CR(z;D1)

CR(z;D)
≤ 4Xr.

The variant of the Koebe distortion theorem which bounds |f (z) − z| (see,
e.g., [12], Proposition 3.26) then implies for |w|< r0 < 1, we have∣∣ϕ(w)− z

∣∣≤ 4Xr
r0

(1 − r0)2 .(3.5)

Since the distribution of − logX has a positive density on (0,∞) [19], the proba-
bility of the event E = {X ≤ (1− r0)

2/(4r0)} is bounded below by p2 = p2(κ) > 0
depending only κ . On E, the right-hand side of (3.5) is bounded above by r , that
is, ϕ(r0D) ⊂ B(z, r). By the conformal invariance and renewal property of CLE,
the loop L2

z in D is distributed as the image under ϕ of the loop L1
0 in D, which

is independent of X. Thus, by (3.4), P[L2
z ⊆ B(z, r)] ≥ P[E]P[L2

z ⊆ B(z, r)|E] ≥
(p2)(p1/2)=: p > 0. �

For the CLEκ � in D, z ∈D and r > 0 we define

J∩
z,r := min

{
j ≥ 1 :Lj

z ∩B(z, r) �=∅
}
,(3.6a)

J⊂
z,r := min

{
j ≥ 1 :Lj

z ⊂ B(z, r)
}
.(3.6b)

COROLLARY 3.5. J⊂
z,r −J∩

z,r is stochastically dominated by 2Ñ where Ñ is a
geometric random variable with parameter p = p(κ) > 0 which depends only on
κ ∈ (8/3,8).

PROOF. Immediate from Lemma 3.4 and the renewal property of CLEκ . �

LEMMA 3.6. For each κ ∈ (8/3,8) there exist c1 > 0 and c2 > 0 such that for
any proper simply connected domain D and point z ∈D, for any positive numbers
r and R for which r < R and B(z,R) ⊂ D, a CLEκ in D contains a loop L
surrounding z for which L ⊂ B(z,R) and L ∩ B(z, r) = ∅ with probability at
least 1 − (c1r/R)c2 .

PROOF. For convenience, we let x = log(R/r) and rescale so that R = 1. For
the CLEκ �, let λj =− log CR(Lj

z (�)). By the renewal property of CLEκ , {λj+1−
λj } form an i.i.d. sequence, and their distribution has exponential tails [19]. Now
min({λj } ∩ (0,∞)) = λJ∩

z,1
, which by Lemma 2.8 is dominated by a distribution

which has exponential tails and depends only on κ . By Cramér’s theorem, there
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is a constant c > 0 so that λJ∩
z,1+cx ≤ x − log 4 except with probability expo-

nentially small in x. By Corollary 3.5, J⊂
z,1 − J∩

z,1 is stochastically dominated by
twice a geometric random variable, and so J⊂

z,1 ≤ J∩
z,1 + cx except with probabil-

ity exponentially small in x. If both of these high probability events occur, then
LJ⊂

z,1
∩B(z, e−x)=∅. �

LEMMA 3.7. Let X be a random variables whose law is the difference in log
conformal radii of successive CLEκ loops. Let fM denote the density function of
X −M conditional on X ≥M . For some constant Cκ depending only on κ ,

sup
M

fM ≤ Cκ × exp
[−(1 − 2/κ − 3κ/32)x

]
.

For all M and all x > 1, the actual density is within a constant factor of this upper
bound.

PROOF. The density function for the law of X is [19], equation (4)

−κ cos(4π/κ)

4π

∞∑
j=0

(−1)j
(
j + 1

2

)
exp

[
−(j + 1/2)2 − (1 − 4/κ)2

8/κ
x

]
.

For large enough x, the first term dominates the sum of the other terms. For
small x, a different formula ([19], Theorem 1), implies that the density is bounded
by a constant. Integrating, we obtain P[X ≥ M] to within constants, and then ob-
tain the conditional probability to within constants. �

4. Nesting dimension. In this section, we prove Theorem 1.1, which gives
the Hausdorff dimension of the set �ν(�) for a CLEκ � in a simply connected
proper domain D �C. Define

�+
ν (�) :=

{
z ∈D : lim inf

r→0
Ñz(r;�)≥ ν

}
,

�−
ν (�) :=

{
z ∈D : lim sup

r→0
Ñz(r;�)≤ ν

}
.

Then the sets �±
ν (�) are monotone in ν, and �ν(�) = �+

ν (�) ∩ �−
ν (�). (We

suppress � from the notation when it is clear from context.)

PROPOSITION 4.1. �+
ν (�) and �−

ν (�) are invariant under conformal maps.

Conformal invariance of these CLE exceptional points is easier to prove than
conformal invariance of the thick points of the Gaussian free field ([10], Corol-
lary 1.4).
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PROOF. Let ϕ:D →D′ be a conformal map, and let � be a CLEκ in D; ϕ(�)

is a CLEκ in D′. By the Koebe distortion theorem, for all ε > 0 small enough

Nz

(
16ε

∣∣ϕ′(z)
∣∣−1;�)≤Nϕ(z)

(
ε;ϕ(�)

)≤Nz

( 1
16ε
∣∣ϕ′(z)

∣∣−1;�).
But

lim inf
ε→0+

Nz(16±1ε|ϕ′(z)|−1;�)

log(1/ε)
= lim inf

ε→0+
Nz(ε;�)

log(1/(16∓1ε|ϕ′(z)|))
= lim inf

ε→0+
Nz(ε;�)

log(1/ε)
.

Thus,

lim inf
ε→0+

Ñz(ε;�)= lim inf
ε→0+

Ñϕ(z)

(
ε;ϕ(�)

)
,

so ϕ(�+
ν (�))=�+

ν (ϕ(�)). Similarly, ϕ(�−
ν (�))=�−

ν (ϕ(�)). �

Observe that conformal maps preserve Hausdorff dimension: away from the
boundary, conformal maps are bi-Lipschitz, and the Hausdorff dimension of a
countable union of sets is the maximum of the Hausdorff dimensions. So we may
restrict our attention to the case where the domain D is the unit disk D.

4.1. Upper bound. Let � be a CLEκ in D. Here, we upper bound the Haus-
dorff dimension of �±

ν (�). Recall that γκ is defined in (1.4) and that νmax is
the unique value of ν ≥ 0 such that γκ(ν) = 2. Moreover, γκ(ν) ∈ [0,2) for
0 ≤ ν < νmax.

PROPOSITION 4.2. If 0 ≤ ν ≤ νtypical, then dimH �−
ν (CLEκ) ≤ 2 − γκ(ν)

almost surely. If νtypical ≤ ν ≤ νmax, then dimH �+
ν (CLEκ) ≤ 2 − γκ(ν) almost

surely. If ν > νmax, then �+
ν (CLEκ)=∅ almost surely.

PROOF. Observe that the unit disk can be written as a countable union
of Möbius transformations of B(0,1/2). For example, for q ∈ D ∩ Q2, define
ϕq to be the Riemann map for which ϕq(0) = q and ϕ′

q(0) > 0. Then D =⋃
q∈D∩Q2 ϕq(B(0,1/2)). By Möbius invariance, therefore, it suffices to bound the

Hausdorff dimension of �±
ν ∩B(0,1/2) for a CLEκ in D. We will prove the result

for �+
ν ∩B(0,1/2), as �−

ν ∩B(0,1/2) is similar.
To upper bound the Hausdorff dimension, it suffices to find good covering sets.

Let r > 0. Let Dr be the set of open balls in C which are centered at points of rZ2∩
B(0,1/2+ r/

√
2) and have radius (1+1/

√
2)r . For every point z ∈ B(0,1/2), the

closest point in rZ2 to z is the center of a ball U ∈ Dr for which B(z, r) ⊂ U ⊂
B(z, (1 +√

2)r).
For each ball U ∈Dr , let z(U) be the center of U . We define

U r,ν+ := {U ∈Dr : Ñz(U)(r)≥ ν
}
.(4.1)
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The conformal radius of D with respect to z ∈ D is 1 − |z|2. For U ∈ Dr , we
have |z(U)| ≤ 1/2+ r/

√
2, so 1

2 ≤ CR(z;D)≤ 1 provided r ≤ 1− 1/
√

2. Thus by
Cramér’s theorem (as in the proof of Lemma 3.2) and the continuity of γκ(ν), for
ν > νtypical we have

P
[
U ∈ U r,ν+]≤ rγκ (ν)+o(1),

where for fixed ν, the o(1) term tends to 0 as r → 0, uniformly in U .
Next, we define

Cm,ν+ := ⋃
n≥m

Uexp(−n),ν+.(4.2)

Suppose that z ∈ �+
ν (�) ∩ B(0,1/2). Since lim infε→0 Ñz(ε) ≥ ν, for any

ν′ < ν, for all large enough n, Nz((1 +√
2)e−n) ≥ ν′n. There is a ball U ∈ Ue−n

for which U ⊂ B(z, (1 + √
2)e−n), and so Nz(U)((1 + 1/

√
2)e−n) ≥ Nz((1 +√

2)e−n), so U ∈ Ue−n,ν′+. Hence, for any m ∈ N and ν′ < ν, we conclude that
Cm,ν′+ is a cover for �+

ν (�)∩B(0,1/2).
We use this cover to bound the α-Hausdorff measure of �+

ν (�). If m ∈ N and
ν′ > ν > νtypical,

E
[
Hα

(
�+

ν (�)
)] ≤ E

[ ∑
U∈Cm,ν′+

(
diam(U)

)α]

= ∑
n≥m

∑
U∈De−n

[
(2 +√

2)e−n]αP[U ∈ Ue−n,ν′+](4.3)

≤ ∑
n≥m

en(2−α−γκ (ν′)+o(1)).

If α > 2−γκ(ν′), the right-hand side tends to 0 as m→∞. Since m was arbitrary,
we conclude that E[Hα(�+

ν (�))] = 0. Therefore, almost surely Hα(�+
ν (�)) = 0.

Any such α is an upper bound on dimH �+
ν (�). The continuity of γκ(ν) then

implies that almost surely dimH �+
ν (�) ≤ 2 − γκ(ν) when ν > νtypical. When ν =

νtypical, the dimension bound (which is 2) holds trivially. Finally, when ν > νmax,
the bound in (4.3) shows that H0(�

+
ν (�))= 0 almost surely. Therefore, �+

ν (�)=
∅ almost surely. �

4.2. Lower bound. Next, we lower bound dimH(�ν(�)). As we did for the
upper bound, we assume without loss of generality that D = D. We will follow
the strategy used in [10] for GFF thick points: we introduce a subset Pν(�) of
�ν(�) which has the property that the number and geometry of the loops which
surround points in Pν(�) are controlled at every length scale. This reduction is
useful because the correlation structure of the loop counts for these special points
is easier to estimate (Proposition 4.7) than that of arbitrary points in �ν(�). Then
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we prove that the Hausdorff dimension of this special class of points is at least
2 − γκ(ν) with positive probability. We complete the proof of the almost sure
lower bound of dimH �ν(�) using a zero–one argument.

LEMMA 4.3. Let � be a CLEκ in the unit disk D, and fix ν ≥ 0. Then for
functions δ(ε) converging to 0 sufficiently slowly as ε → 0 and for sufficiently
large M > 1, the event that:

(i) there is a loop which is contained in the annulus B(0, ε) \ B(0, ε/M) and
which surrounds B(0, ε/M), and

(ii) the index J of the outermost such loop in the annulus B(0, ε) \B(0, ε/M)

satisfies ν log ε−1 ≤ J ≤ (ν + δ(ε)) log ε−1,

has probability at least εγκ(ν)+o(1) as ε → 0.

PROOF. We define δ(ε) to be 2 times the function denoted δ in Lemma 3.2. Let
E1 denote the event that between ν log ε−1 and (ν+ 1

2δ(ε)) log ε−1 loops surround
B(z, ε), let E2 denote the event that at most 1

2δ(ε) log ε−1 loops intersect the circle
∂B(z, ε), and let E3 denote the event that there is a loop winding around the closed
annulus B(0, ε) \B(0, ε/M).

Lemma 3.2 implies

P[E1] = εγκ(ν)+o(1) as ε → 0.(4.4)

Corollary 3.5 implies that for sufficiently small ε, we have

P[E2|E1] ≥ 3
4 .(4.5)

Lemma 3.7 applied to the log conformal radius increment sequence implies that
for some large enough M ,

P
[
CR
(
0;UJ∩

0,ε

0

)≥M−1/2ε|E1
]≥ 7

8 .(4.6)

Lemma 2.9 and Corollary 3.5 together imply that for large enough M

P
[
CR
(
0;UJ⊂

0,ε

0

)
/CR

(
0;UJ∩

0,ε

0

)≥M−1/2|E1
]≥ 7

8 .(4.7)
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FIG. 7. First step in the construction of the set of “perfect points” Pν(�) of the CLE �.

Combining (4.4), (4.5), (4.6) and (4.7), we arrive at

P[E1 ∩E2 ∩E3] = εγκ(ν)+o(1) as ε → 0.

The event E1 ∩E2 ∩E3 implies the event described in the lemma. �

We define the set Pν = Pν(�) as follows. For z ∈ D and k ≥ 0, we inductively
define (see Figure 7):

• Let τ0 = 0.
• Let V k

z =U
τk
z be the connected component of D\Lτk

z containing z. In particular,
V 0

z =D =D.
• Let ϕk

z be the conformal map from V k
z to D with ϕk

z (z)= 0 and (ϕk
z )′(z) > 0.

• Let tk = 2−(k+1).
• Let τk+1 be the smallest j ∈N such that ϕk

z (L
j
z )⊂ B(0, tk).

Let �̃k
z be the image under ϕk

z of the loops of � which are surrounded by Lτk
z

and in the same component of D \Lτk
z as z. Then �̃k

z is a CLEκ in D.
Let M > 1 be a large enough constant for Lemma 4.3, and let Ek

z to be the event
described in Lemma 4.3 for the CLE �̃k

z and ε = tk . We define

Ek1,k2
z := ⋂

k1≤k<k2

Ek
z .

Throughout the rest of this section, we let

sk =
∏

0≤i<k

ti for k ≥ 0.(4.8)

LEMMA 4.4. There exist sequences {rk}k∈N and {Rk}k∈N satisfying

lim
k→∞

log rk

log sk
= lim

k→∞
logRk

log sk
= 1(4.9)
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such that for all z ∈ B(0,1/2) and k ≥ 0, we have

B(z, rk)⊂ V k
z ⊂ B(z,Rk)(4.10)

on the event E0,k
z .

PROOF. For 0 < j ≤ k, the chain rule implies that on the event E0,k
z we have

CR
(
z;V j

z

)= CR
(
0;ϕj−1

z

(
V j

z

))
CR
(
z;V j−1

z

)≤ tj−1 CR
(
z;V j−1

z

)
,(4.11)

where the inequality follows from the Schwarz lemma. Iterating the inequality
in (4.11), we see that

CR
(
z;V k

z

) ≤ tk−1 CR
(
z;V k−1

z

)≤ · · · ≤ (tk−1 · · · t0)CR
(
z;V 0

z

)
(4.12)

= sk CR(z;D).

Since |((ϕk−1
z )−1)′(0)| = CR(z;V k−1

z ), it follows from the Koebe distortion
theorem that V k

z ⊆ B(z, tk−1/(1 − tk−1)
2 CR(z;V k−1

z )). Since CR(z;V k−1
z ) ≤

sk−1 CR(z;D), CR(z;D) = 1 − |z|2 ≤ 1, and tk−1 ≤ 1/2, we see from (4.12) that
V k

z ⊆ B(z,4sk), so we set Rk = 4sk to get the second inclusion in (4.10).
To find {rk}k∈N satisfying the first inclusion in (4.10), we observe that on E0,k

z

we have

CR
(
z;V k

z

) ≥ M−1tk−1 CR
(
z;V k−1

z

)≥ · · · ≥M−k(tk−1 · · · t0)CR
(
z;V 0

z

)
= M−ksk CR(z;D).

By the Koebe one-quarter theorem, we thus see that inrad(z;V k
z ) ≥

1
4M−ksk CR(z;D). Since CR(z;D)≥ 3/4 for z ∈ B(0,1/2), setting rk = 3

16M−ksk
gives (4.10).

A straightforward calculation confirms that these sequences {rk}k∈N and
{Rk}k∈N satisfy (4.9). �

We define Pν(�)⊆D by

Pν(�) := ⋂
n≥1

{
z ∈ B(0,1/2) :E0,n

z occurs
}
.(4.13)

Next, we show that elements of Pν(�) are special points of �ν(�):

LEMMA 4.5. For ν ≥ 0, always Pν(�)⊆�ν(�).

PROOF. It follows from the definition of Ek
z that for z ∈ Pν , the number of

loops surrounding V k
z is (ν + o(1)) log s−1

k as k →∞. Lemma 4.4 then implies
that the number of loops surrounding B(0, sk) is also (ν+o(1)) log s−1

k as k →∞.
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If 0 < ε < 1, we may choose k = k(ε)≥ 0 so that sk+1 ≤ ε ≤ sk . Then

Nz(sk)

log s−1
k

· log s−1
k

log ε−1 ≤ Nz(ε)

log ε−1 ≤ Nz(sk+1)

log s−1
k+1

· log s−1
k+1

log ε−1 .

Observe that log sk+1/ log sk → 1 as k →∞. From this, we see that both the left-
hand side and right-hand side converge to ν as ε → 0, so the middle expression
also converges to ν as ε → 0, which implies z ∈�ν(�). �

We use the following lemma, which establishes that the right-hand side of (4.13)
is an intersection of closed sets.

LEMMA 4.6. For each n ∈ N, the set Pν,n := {z ∈ B(0,1/2) :E0,n
z occurs} is

always closed.

PROOF. Suppose that z is in the complement of Pν,n, and let k be the least
value of j such that E

j
z fails to occur. Each of the two conditions in the definition

of Ek
z (see Lemma 4.3) has the property that its failure implies that Ek

w also does
not occur for all w in some neighborhood of z. (We need the continuity of ϕk

z

in z, which may be proved by realizing ϕk
w as a composition of ϕk

z with a Möbius
map that takes the disk to itself and the image of w to 0.) This shows that the
complement of Pν,n is open, which in turn implies that Pν,n is closed. �

PROPOSITION 4.7. Consider a CLEκ in D. There exists a function f (de-
pending on κ and ν) such that (1) f (s) = sγκ(ν)+o(1) as s → 0, and (2) for all
z,w ∈ B(0,1/2)

P
[
E0,n

z ∩E0,n
w

]
f
(
max

(
sn, |z−w|))≤ P

[
E0,n

z

]
P
[
E0,n

w

]
.(4.14)

PROOF. Suppose z,w ∈ B(0,1/2). Let rk and Rk be defined as in Lemma 4.4.
If |z −w| ≤ Rn, then we bound P[E0,n

z ∩E0,n
w ] ≤ P[E0,n

z ] and, using Lemma 4.3
and the fact that Rn = 4sn,

P
[
E0,n

z

]≥ ∏
k≤n

t
γκ (ν)+o(1)
k = sγκ(ν)+o(1)

n = max
(
sn, |z−w|)γκ(ν)+o(1)

,

which implies (4.14). Next suppose |z−w|> Rn. Letting

u= min
{
k ∈N :Rk < |z−w|},

we have

P
[
E0,n

z ∩E0,n
z

]= P
[
E0,u

z ∩E0,u
w

]
P
[
Eu,n

z ∩Eu,n
w |E0,u

z ∩E0,u
w

]
.
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By Lemma 4.4, w /∈ V u
z and z /∈ V u

w , so we see that V u
z and V u

w are disjoint. By the
renewal property of CLE, this implies that conditional on E0,u

z ∩E0,u
w , the events

Ek
z and Ek

w for k ≥ u are independent. Thus,

P
[
E0,n

z ∩E0,n
z

]= P
[
E0,u

z ∩E0,u
w

]
P
[
Eu,n

z

]
P
[
Eu,n

w

]
≤ P

[
E0,u

z

]
P
[
Eu,n

z

]
P
[
Eu,n

w

]
so

P
[
E0,n

z ∩E0,n
z

]
P
[
E0,u

w

] ≤ P
[
E0,n

z

]
P
[
E0,n

w

]
.

Since

P
[
E0,u

w

]≥ sγκ(ν)+o(1)
u = max

(
sn, |z−w|)γκ (ν)+o(1)

,

(4.14) follows in this case as well. �

We take tk as in Section 4.2 and sk as in (4.8). We will prove Theorem 1.1 using
Proposition 4.7 and the following general fact about Hausdorff dimension. The
key ideas in Proposition 4.8 have appeared in [5, 9, 10], but Proposition 4.8 gives
a cleaner statement that can be used with our construction of nested closed sets.

PROPOSITION 4.8. Suppose P1 ⊃ P2 ⊃ P3 ⊃ · · · is a random nested sequence
of closed sets, and {sn}n∈N is a sequence of positive real numbers converging to 0.
Suppose further that 0 < a < 2, and f (s)= sa+o(1) as s → 0. If for each z,w ∈D

and n≥ 1 we have P[z ∈ Pn]> 0 and

P[z,w ∈ Pn]f (max
(
sn, |z−w|))≤ P[z ∈ Pn]P[w ∈ Pn],(4.15)

then for any α < 2 − a,

P
[
dimH(P )≥ α

]
> 0 where P := ⋂

n≥1

Pn.

PROOF. Let μn denote the random measure with density with respect to
Lebesgue measure on C given by

dμn(z)

dz
= 1z∈Pn∩D

P[z ∈ Pn] .
Then E[μn(D)] = area(D), and by (4.15),

E
[
μn(D)2]= ∫∫

D×D

P[z,w ∈ Pn]
P[z ∈ Pn]P[w ∈ Pn] dzdw ≤ C1 <∞

for some constant C1 depending on the function f but not n.
For α ≥ 0, the α-energy of a measure μ on C is defined by

Iα(μ) :=
∫∫

C×C

1

|z−w|α dμ(z) dμ(w).
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If there exists a nonzero measure with finite α-energy supported on a set P ⊂ C,
usually called a Frostman measure, then the Hausdorff dimension of P is at least α

([7], Theorem 4.13). The expected α-energy of μn is

E
[
Iα(μn)

]= ∫∫
D×D

P[z,w ∈ Pn]
P[z ∈ Pn]P[w ∈ Pn]

1

|z−w|α dz dw,

and when α < 2 − a, the expected α-energy is bounded by a finite constant C2
depending on f and α but not n.

Since the random variable μn(D) has constant mean and uniformly bounded
variance, it is uniformly bounded away from 0 with uniformly positive probability
as n →∞. Also, P[Iα(μn) ≤ d] → 1 as d →∞ uniformly in n. Therefore, we
can choose b and d large enough that the probability of the event

Gn := {b−1 ≤ μn(D)≤ b and Iα(μn)≤ d
}

is bounded away from 0 uniformly in n. It follows that with positive probability
infinitely many Gn’s occur. The set of measures μ satisfying b−1 ≤ μ(D)≤ b and
is weakly compact by Prohorov’s compactness theorem. Therefore, on the event
that Gn occurs for infinitely many n, there is a sequence of integers k1, k2, . . . for
which μk�

converges to a finite nonzero measure μ
 on D.
We claim that μ
 is supported on P . To show this, we use the portmanteau

theorem, which implies that if π� → π weakly and U is open, then π(U) ≤
lim inf� π�(U). Since Pn is closed for each n ∈N, we have

μ
(C \ Pn)≤ lim inf
�→∞ μk�

(C \ Pn)= 0,

where the last step follows because μk�
is supported on Pk�

⊂ Pn for k� ≥ n. There-
fore,

μ
(C \ P)= lim
n→∞μ
(C \ Pn)= 0,

so μ
 is supported on P .
To see that μ
 has finite α-energy, we again use the portmanteau theorem, which

implies that ∫
f dμ≤ lim inf

�→∞

∫
f dμ�

whenever f is a lower semicontinuous function bounded from below and
μ� → μ weakly. Taking f (z,w) = |z − w|−α , μ� = μk�

(dz)μk�
(dw), and μ =

μ(dz)μ(dw) completes the proof. �

PROOF OF THEOREM 1.1. Recall that conformal invariance was proved in
Proposition 4.1. We now show that dimH �ν(�) = 2 − γκ(ν) almost surely, when
0 ≤ ν ≤ νmax. (The case ν = νmax uses a separate argument.) We established the
upper bound in Section 4.1, so we just need to prove the lower bound.
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Suppose ν < νmax. For each connected component U in the complement of the
gasket of �, let z(U) be the lexicographically smallest rational point in U , and let
ϕU be the Riemann map from (U, z(U)) to (D,0) with positive derivative at z(U).
By Proposition 4.8, for any ε > 0, there exists p(ε) > 0 such that

P
[
dimH

(
Pν

(
ϕU(�|U)

))≥ 2 − γκ(ν)− ε
]≥ p(ε).

By Lemma 4.5 Pν(ϕU(�|U)) ⊂ �ν(ϕU(�|U)), and by conformal invariance we
have dimH �ν(ϕU(�|U)) = dimH �ν(�|U), which lower bounds dimH �ν(�).
Since there are infinitely many components U in the complement of the gasket,
and the �|U ’s are independent, almost surely dimH �ν(�)≥ 2− γκ(ν)− ε. Since
ε > 0 was arbitrary, we conclude that almost surely dimH �ν(�)≥ 2 − γκ(ν).

It remains to show that �ν(�) is dense in D almost surely, for 0 ≤ ν < νmax. Let
z be a rational point in D, and recall that Uk

z is the complementary connected com-
ponent of D \ Lk

z which contains z. Almost surely �ν(�|Uk
z
) has positive Haus-

dorff dimension, and in particular is nonempty. Since there are countably many
such pairs (z, k), almost surely �ν(�|Uk

z
) �=∅ for each such z and k, and almost

surely for each rational point z, diameter(Uk
z )→ 0. �

THEOREM 4.9. For a CLEκ � in a proper simply connected domain D,
almost surely �νmax(�) is equinumerous with R. Furthermore, almost surely
�νmax(�) is dense in D.

PROOF. As usual, we assume without loss of generality that D = D. We will
describe a random injective map from the set {0,1}N of binary sequences to D

such that the image of the map is almost surely a subset of �νmax(�). The idea of
the proof is to find two disjoint annuli in D such that � contains a loop winding
around each annulus, � has many loops surrounding these annuli, and for which
the nesting of these loops is sufficiently well behaved for the limiting loop density
to make sense. We then find two further such annuli inside each of those, and so
on. Every binary sequence specifies a path in the resulting tree of domains, and the
intersections of the domains along distinct paths correspond to distinct points in
�νmax(�).

Let M > 0 be a large constant as described in Lemma 4.3. For a CLE � in D,
let ED

0,ε(ν) denote the event that there is a loop contained in B(0, ε) \ B(0, ε/M)

surrounding B(0, ε/M) and such that the index J of the outermost such loop is
at least ν log ε−1. If (D, z) �= (D,0), � is a CLE in D, and ε > 0, let ED

z,ε(ν) be
the event ED

0,ε(ν) occurs for the conformal image of � under a Riemann map from
(D, z) to (D,0). If {εj }j∈N is a sequence of positive real numbers, let ED,n

z (ν) =
E

D,n
z,{εj }∞j=1

(ν) denote the event that ED
z,ε(ν) “occurs n times” for the first n values

of ε in the sequence. More precisely, we define ED,n
z (ν) inductively by ED,1

z (ν)=
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ED
z,ε1

(ν) and

ED,n
z (ν)=ED

z,ε1
(ν)∩E

UJ
z ,n−1

z,{εj }∞j=2
(ν),(4.16)

for n > 1. For the remainder of the proof, we fix the sequence εj := tj = 2−j−1

and define the events ED,n
z (ν) with respect to this sequence.

For a domain D with z0 ∈ D, let ϕ be a conformal map from (D,0) to (D, z0),
and let FD,z0,n(ν) denote the event that there is some point z ∈ B(0,1/2) for which
E

D,n
ϕ(z)(ν) occurs. By Lemma 4.6 and Propositions 4.7 and 4.8, we see that there is

some p > 0 [depending on κ ∈ (8/3,8) and ν < νmax], such that P[FD,z0,n(ν)] ≥
p for all n.

For each k ∈N, we choose νk ∈ (νtypical, νmax) so that γκ(νk)= 2 − 2−k−1. For
each k ∈N and � ∈N, we define qk,� = 2−2k−�.

Suppose z ∈ B(0,1/2) and 0 < r < 1/2 and 0 < u < r/M . For n ∈ N and ν <

νmax, we say that the annulus B(z, r) \ B(z,u) is (n, ν)-good if (i) there exists a
loop contained in the annulus and surrounding z (say Lj

z is the outermost such

loop) and (ii) the event FU
j
z ,z,n(ν) occurs.

For q, r > 0, define u(q, r) = (q/C)1/αr1+2/α , where C and α are chosen so
that every annulus B(z, r) \B(z,u) contained in D contains a loop surrounding z

with probability at least 1−C(u/r)α (see Lemma 3.6). For 0 < r < 1/2, let Sr be
a set of 1

100r2 disjoint disks of radius r in B(0,1/2). By our choice of u(q, r), the
event G that all the disks B(z, r) in Sr contain a CLE loop surrounding B(z,u) has
probability at least 1 − q . We choose rk,� > 0 small enough so that for all n ∈ N,
with probability at least 1 − 21−2k−� there are two disks B(z, rk,�) in Srk,�

such
that B(z, rk,�) \ B(z,u(qk,�, rk,�)) is an (nk, νk)-good annulus. This is possible
because on the event G, the disks in Srk,�

give us 1
100r2

k,�

independent trials to obtain

a good annulus, and each has success probability at least p. Abbreviate uk,� =
u(qk,�, rk,�). Finally, we define a sequence (nk)k∈N growing sufficiently fast that

lim
k→0

∑k
j=1 logu−1

j+1,1∑k
j=1 log s−1

nj

= 0.(4.17)

Now suppose that � is a CLE in the unit disk. Define

A=A(D,0, r, u, q, n, ν)

to be the event that there are at least two disks B(z, r) and B(w, r) in Sr such that
B(z, r) \ B(z,u) and B(w, r) \ B(w,u) are both (n, ν)-good. If (D, z) �= (D,0)

and � is a CLE in D, define A = A(D,z, r, u, q,n, ν) to be the event that
A(D,0, r, u, q, n, ν) occurs for the conformal image of � under a Riemann map
from (D, z) to (D,0). Abbreviate A(D,z, rk,�, uk,�, qk,�, nk, νk) as Ak,�(D, z).

We define a random map b �→Db from the set of terminating binary sequences
to the set of subdomains of D as follows. If the event A1,1(D,0) occurs, we set
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�(D) = 1 and define D0 = ϕ−1
z (U

I (ź)

ź
) and D1 = ϕ−1

w (U
I (ẃ)

ẃ
), where z and w are

the centers of two (n1, ν1)-good annuli, ϕz (resp., ϕw) is a Riemann map from

(D, z) [resp., (D,w)] to (D,0), ź ∈ U
J⊂
z,r1,1

z and ẃ ∈ U
J⊂
w,r1,1

w are points for which

E
U

J⊂z,r1,1
z ,n1

ź
(ν1) and E

U
J⊂w,r1,1
w ,n1

ẃ
(ν1) occur, and I (ź) [resp., I (ẃ)] is the index of

the nth loop encountered in the definition of E
D,n
ź

(ν1) [resp., E
D,n
ẃ

(ν1)] [in other
words, the first such loop is denoted J in (4.16), the second such loop is the first
one contained in the preimage of B(0, ε2) under a Riemann map from (UJ

z , z)

to (D,0), and so on]. If A does not occur, then we choose a disk B(z, r1,1) in

Sr1,1 and consider whether the event A1,2(U
J⊂
z,r1,1

z ) occurs. If it does, then we set

�(D) = 2 and define D0 and D1 to be the conformal preimages of U
J⊂
z,r1,2

z and

U
J⊂
w,r1,2

w , respectively, where again z and w are centers of two (n1, ν1)-good annuli.
Continuing inductively in this way, we define �(D) ∈ N and D0 and D1 [note that
�(D) < ∞ almost surely by the Borel–Cantelli lemma since

∑
� 21−2k−� < ∞].

Repeating this procedure in D0 and D1 beginning with k = 2 and �= 1, we obtain
Di,j ⊂Di for i, j ∈ {0,1}× {0,1}. Again continuing inductively, we obtain a map
b �→Db with the property that Db ⊂Db′ whenever b′ is a prefix of b.

If b ∈ {0,1}N, we define zb = ⋂
b′is a prefix of b Db′ . Since

∑
k 2k2−2k−� < ∞,

with probability 1 at most finitely many of the domains Db have �(Db) > 0. It
follows from this observation and (4.17) that

lim inf
t→0

Ñzb
(t)≥ νmax.

But by Proposition 4.2, almost surely every point z in D satisfies

lim sup
t→0

Ñz(t)≤ νmax.

Therefore, zb ∈�νmax(�).
Since the set of binary sequences is equinumerous with R, this concludes the

proof that �νmax(�) is equinumerous with R. The proof that �νmax(�) is dense
now follows using the argument for density in Theorem 1.1. �

5. Weighted loops and Gaussian free field extremes. The main result of
this section is Theorem 5.3, which generalizes Theorem 1.1 and highlights the
connection between extreme loop counts and the extremes of the Gaussian free
field [10]. Let � be a CLEκ , and fix a probability measure μ on R. Conditional
on �, let (ξL)L∈� be an i.i.d. collection of μ-distributed random variables indexed
by �. For z ∈ D and ε > 0, we let �z(ε) be the set of loops in � which surround
B(z, ε) and define

Sz(ε)=
∑

L∈�z(ε)

ξL and S̃z(ε)= Sz(ε)

log(1/ε)
.
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For a CLEκ � on a domain D and α ∈R, we define �
μ
α(�)⊂D by

�μ
α(�) :=

{
z ∈D : lim

ε→0
S̃z(ε)= α

}
.

To study the Hausdorff dimension of �
μ
α(�), where � is a CLEκ on D, we

introduce for each (α, ν) ∈R× [0,∞) the set

�μ
α,ν(�) :=

{
z ∈D : lim

ε→0
S̃z(ε)= α and lim

ε→0
Ñz(ε)= ν

}
.(5.1)

Let 


μ be the Fenchel–Legendre transform of μ and let 



κ be the Fenchel–
Legendre transform of the log conformal radius distribution (1.3). We define

γκ(α, ν)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ν


μ

(
α

ν

)
+ ν



κ

(
1

ν

)
, ν > 0,

lim
ν′↘0

γκ

(
α, ν′

)
, ν = 0 and α �= 0,

lim
ν′↘0

γκ

(
ν′
)= 1 − 2

κ
− 3κ

32
, ν = 0 and α = 0,

(5.2)

where the limits exist by the convexity of 


κ and 



μ [Proposition 2.2(i)]. Note
that γκ(α, ν) may be infinite for some (α, ν) pairs. Note also that the second and
third limit expressions for α = 0, ν = 0 agree except when 



μ(0) =∞, because
limν′→0 ν′



μ(0/ν′)= 0 whenever 


μ(0) <∞.

THEOREM 5.1. Suppose ν ≥ 0, α ∈ R, �
μ
α,ν(CLEκ) is given by (5.1), and

γκ(α, ν) is given by (5.2). If γκ(α, ν)≤ 2, then almost surely,

dimH �μ
α,ν(CLEκ)= 2 − γκ(α, ν).(5.3)

If γκ(α, ν) > 2, then almost surely �
μ
α,ν(CLEκ)=∅.

PROOF. Suppose that � ∼ CLEκ in a proper simply connected domain
D ⊂ C. If α = ν = 0, then �

μ
α,ν(�) contains the gasket of �, which implies

dimH �
μ
α,ν(�) ≥ 2 − γκ(0,0) [14, 15]. Furthermore, �

μ
α,ν(�) ⊂ �0(�), which

implies by Theorem 1.1 that dimH �
μ
α,ν(�) ≤ 2 − γκ(0,0). Therefore, (5.3) holds

in the case α = ν = 0.
Suppose that (α, ν) �= (0,0), and assume γκ(α, ν) ≤ 2. For the upper bound

in (5.3), we follow the proof of Proposition 4.2. As before, we restrict our attention
without loss of generality to the case that D =D and the set �

μ
α,ν(�)∩B(0,1/2).

For the remainder of the proof, we interpret the expression 0

(α/0) to mean
limν→0 ν

(α/ν) for 

 ∈ {



μ,


κ} and α ∈ R. Fix ε > 0. We claim that for

δ > 0 sufficiently small,

inf
ν′∈(ν−δ,ν+δ)∩[0,∞)

ν′


κ

(
1

ν′
)
≥ ν



κ

(
1

ν

)
− ε

8
and(5.4)

inf
ν′∈(ν−δ,ν+δ)∩[0,∞),

α′∈(α−δ,α+δ)

ν′


μ

(
α′

ν′
)
≥ 3 ∧

(
ν



μ

(
α

ν

)
− ε

8

)
.(5.5)
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[We include the minimum with 3 on the right-hand side of (5.5) to handle the case
that ν



μ(α/ν) =∞. The particular choice of 3 was arbitrary; any value strictly
larger than 2 would suffice.]

The continuity of ν


κ(1/ν) on [0,∞) (Proposition 3.1) implies (5.4).

For (5.5), we consider three cases:

(i) If ν > 0, then (5.5) follows from the lower semi-continuity of 


μ (see the

definitions in the beginning of [6], Section 1.2, and [6], Lemma 2.2.5).
(ii) If ν = 0 (so that α �= 0) and limx→0 x



μ(1/x) <∞, we write

ν′


μ

(
α′

ν′
)
= α′ ·

(
ν′

α′



μ

(
α′

ν′
))

.(5.6)

Assume that α′ > 0; the case that α′ < 0 is symmetric. If δ ∈ (0, α), then α′ ∈
(α − δ,α + δ) implies that α′ is bounded away from 0. Therefore, (5.6) and the
lower semi-continuity of 



μ imply that for all η > 0, there exists δ > 0 such that

ν′

α′

∗
μ

(
α′

ν′
)
≥ lim

x→0
x
∗

μ(1/x)− η,

whenever 0 < ν′ < δ and α′ ∈ (α − δ,α + δ). Since α′ > α − δ, we can choose
η > 0 and then δ > 0 sufficiently small that (5.5) holds.

(iii) If ν = 0 (so that α �= 0) and limx→0 x


μ(1/x) =∞, then the lower semi-

continuity of 


μ implies that there exists δ > 0 such that (5.5) holds with 3 on the

right-hand side.

We choose δ > 0 so that (5.4) and (5.5) hold, and we replace the definition (4.1)
of U r,ν+ with

U r,ν,α := {U ∈Dr :
∣∣Ñz(U)(r)− ν

∣∣≤ δ and
∣∣S̃z(U)(r)− α

∣∣≤ δ
}
,

where Dr is defined as in Section 4.1 in the proof of Proposition 4.2. As in (4.2),
Cm,ν,α =⋃n≥mUexp(−n),ν,α is a cover of �

μ
α,ν(�)∩B(0,1/2) for all m ∈N. Sup-

pose that γκ(α, ν) ≤ 2. Using Lemma 3.2 and Cramér’s theorem, we see that for
sufficiently large n,

P
[
U ∈ Uexp(−n),ν,α]≤ P

[∣∣S̃z(U)

(
e−n)− α

∣∣≤ δ|∣∣Ñz(U)

(
e−n)− ν

∣∣≤ δ
]

× P
[∣∣Ñz(U)

(
e−n)− ν

∣∣≤ δ
]

(5.7)

≤ e−(γκ (α,ν)−ε/2)n.

If γκ(α, ν) > 2, then the same analysis shows that P[U ∈ Uexp(−n),ν,α] ≤ e−cn for
some c > 2. The rest of the argument now follows the proof of Proposition 4.2.

For the lower bound, we may assume γκ(α, ν) ≤ 2, which implies that
ν



μ(α/ν) is finite. We consider the events denoted by Ek
z in the discussion fol-

lowing Lemma 4.3, which we now denote by Ek
z (1). We also define events on

which we can control the sums associated with the loops in each annulus. More
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precisely, suppose that (δk)k∈N is a sequence of positive real numbers with δk → 0
as k →∞. We define

Ek
z (2)= {S0

(
tk; �̃k

z

) ∈ ((α − δk) log t−1
k , (α + δk) log t−1

k

)}
.

[Recall the definition of �̃k
z from Section 4.2 and that S0(tk; �̃k

z ) represents the
weighted loop count with respect to �̃k

z , where we define ξL for L ∈ �̃k
z to be

equal to the weight of the conformal preimage of L in �.] We define the events
Ék

z = Ek
z (1) ∩ Ek

z (2) and É
k1,k2
z =⋂k2

k=k1
Ék

z as before. Similar to (5.7), we have
by Cramér’s theorem

P
[
Ek

z (2)|Ek
z (1)

]= t
ν



μ(α/ν)+o(1)

k ,

provided δk → 0 slowly enough. We multiply both sides by P[Ek
z (1)] =

t
ν



κ (1/ν)+o(1)

k and get

P
[
Ék

z

]= t
γκ (α,ν)+o(1)
k as k →∞.

Thus, Proposition 4.7 and its proof carry over with γκ(ν) replaced by γκ(α, ν).
It remains to verify that Ṕ (α, ν;�) ⊂ �

μ
α,ν(�), where Ṕ (α, ν;�) is defined to

be the set of points z for which É1,n
z occurs for all n. We see that limε→0 Ñz(ε)= ν

for the reasons explained in the proof of Lemma 4.5. Moreover, limε→0 S̃z(ε)= α

for analogous reasons. By Proposition 4.8, this completes the proof. �

In Theorem 5.3, we show that dimH �
μ
α(CLEκ) is almost surely equal to the

maximum of the expression given in Theorem 5.1 as ν is allowed to vary. In The-
orem 5.2 we show that, with the exception of some degenerate cases, there is a
unique value of ν at which this maximum is achieved.

THEOREM 5.2. Let α ∈R and let μ be a probability measure on R.

(i) If α = 0, then ν �→ γκ(α, ν) has a unique nonnegative minimizer ν0.
(ii) If α > 0 and μ((0,∞)) > 0 or if α < 0 and μ((−∞,0)) > 0, then ν �→

γκ(α, ν) has a unique minimizer ν0. Furthermore, ν0 > 0.
(iii) If α > 0 and μ((0,∞)) = 0 or α < 0 and μ((−∞,0)) = 0, then for all

ν ∈ [0,∞) we have γκ(α, ν)=∞. In this case we set ν0 = 0.

PROOF. For part (i), note that when α = 0, the expression we seek to minimize
is ν



μ(0)+ν


κ(1/ν). If 



μ(0) <+∞, then this expression has a unique positive
minimizer because its derivative with respect to ν differs from that of ν



κ(1/ν)

by the constant 


μ(0) and, therefore, varies strictly monotonically from −∞ to

+∞. If 


μ(0)=+∞, then ν = 0 is the unique minimizer.

For part (iii), observe by Cramér’s theorem that 


μ(x)=∞ when x and α have

the same sign, so γκ(α, ν)=∞.



EXTREME NESTING IN CLE 1045

For part (ii), we may assume without loss of generality that α > 0 and
μ((0,∞)) > 0. Define a = ess infX and b = ess supX for a μ-distributed ran-
dom variable X, so that −∞≤ a ≤ b ≤+∞. Since μ((0,∞)) > 0, we have b > 0
by Proposition 2.2(v).

We make some observations about the functions fμ : (0,∞) → [0,∞] and
fκ : (0,∞)→[0,∞] defined by

fμ(ν) := ν


μ

(
α

ν

)
and fκ(ν) := ν



κ

(
1

ν

)
.

First, they inherit convexity from 


μ and 



κ by Lemma 2.4. Note that the sum
f (ν) := fμ(ν)+ fκ(ν) is also convex.

By Proposition 2.2(viii), 


μ is continuously differentiable on (a, b). The chain

rule gives

f ′
μ(ν)=−α

ν

(




μ

)′(α

ν

)
+



μ

(
α

ν

)
.

If a >−∞, then Proposition 2.2(ix) implies (


μ)′(x)→−∞ as x ↘ a. Similarly,

if b <∞, Proposition 2.2(x) implies (


μ)′(x)→+∞ as x ↗ b. In other words,

lim
ν↗α/a

f ′
μ(ν) =+∞ if a > 0 and(5.8)

lim
ν↘α/b

f ′
μ(ν) =−∞ if b <∞.(5.9)

Recall from Proposition 2.6 that (note fκ = γκ ){
(ν, fκ(ν) : 0 < ν <∞}= {( 1


′
κ(λ)

, λ− 
κ(λ)


′
κ(λ)

)
:−∞< λ < 1 − 2

κ
− 3κ

32

}
.

Suppose −∞< λ0 < 1 − 2/κ − 3κ/32. If ν = 1/
′
κ(λ0), then

f ′
κ(ν)=

(
d

dλ

∣∣∣∣
λ=λ0

[
λ−
κ(λ)/
′

κ(λ)
])/( d

dλ

∣∣∣∣
λ=λ0

[
1/
′

κ(λ)
])=−
κ(λ0).

When we take λ0 → −∞ (which corresponds to taking ν → +∞) and λ0 →
1−2/κ −3κ/32 (which corresponds to taking ν → 0), respectively, in the explicit
formula (1.3) for 
κ , we obtain

lim
ν↘0

f ′
κ(ν) =−∞ and(5.10)

lim
ν↗+∞f ′

κ(ν) =+∞.(5.11)

We complete the proof of (ii) by treating five cases separately. For each of the
cases (i)–(ii) and (iv)–(v), we argue that f ′(ν) ranges from −∞ to +∞ for ν ∈
(α/b,α/max(0, a)) [if a < 0 so that max(0, a)= 0 then we interpret α/0 =+∞].
Upon showing this, continuous differentiability of f [Proposition 2.2(viii)] guar-
antees by the intermediate value theorem that the equation f ′(ν) = 0 has a solu-
tion. The convexity of fμ and strict convexity of fκ (Proposition 2.7) imply that
the solution is unique. Case (iii) uses a separate (easy) argument.
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(i) a ≤ 0 < b < ∞. Note that f ′
μ(x) →−∞ as x ↘ α/b and f ′

κ(x) →+∞
as x →+∞. Since f ′

κ(x) �→∞ as x ↘ α/b and f ′
μ(x) �→ −∞ as x →+∞, we

conclude that f ′((α/b,+∞))= (−∞,+∞).
(ii) a ≤ 0 < b =∞. We have f ′((0,+∞))= (−∞,+∞) since f ′

κ(x) goes to
−∞ as x ↘ 0 and to +∞ as x →+∞.

(iii) 0 < a = b < ∞. Since a = b, 


μ(x) = +∞ for all x �= b, so ν = α/b is

the unique minimizer of ν �→ γκ(α, ν).
(iv) 0 < a < b < ∞. We have f ′((α/b,α/a)) = (−∞,+∞) since f ′

μ(x) goes
to −∞ as x ↘ α/b and to +∞ as x ↗ α/a.

(v) 0 < a < b =∞. We have f ′((0, α/a)) = (−∞,+∞) since f ′
κ(x) goes to

−∞ as x ↘ 0 and f ′
μ(x) goes to +∞ as x ↗ α/a. �

THEOREM 5.3. Let α ∈R and let μ be a probability measure on R. Let ν0 =
ν0(α) be the minimizer of ν �→ γκ(α, ν) from Theorem 5.2. If γκ(α, ν0(α)) ≤ 2,
then almost surely

dimH �μ
α(CLEκ)= 2 − γκ

(
α, ν0(α)

)
.(5.12)

If γκ(α, ν0(α)) > 2, then �
μ
α(CLEκ)=∅ almost surely.

PROOF. The lower bound is immediate from Theorem 5.1, since

�μ
α(�)⊃�

μ
α,ν0(α)(�),

where � is a CLEκ . For the upper bound, we follow the approach in the proof
of Proposition 4.2. It suffices to consider the case where the domain is the unit
disk D, and without loss of generality we may consider the set �

μ
α(�)∩B(0,1/2).

Observe that if α = 0, then

γκ(0, ν)= ν


μ(0)+ ν



κ(1/ν).(5.13)

If 


μ(0) =∞, then the first term in (5.13) is infinite unless ν = 0. It follows that

ν0(0) = 0 in this case. If 


μ(0) < ∞, then the derivative of the first term with

respect to ν is a nonnegative constant 


μ(0), while the derivative of the second

term is a strictly increasing function going from −∞ to ∞ as ν goes from 0 to ∞.
It follows that 



μ(0) <∞ implies ν0(0) > 0. We first handle the case 


μ(0) <∞.

Let cμ(α)= γκ(α, ν0(α)). Since ν


κ(1/ν) and ν



μ(α/ν) are convex and lower
semicontinuous, we may define ν1 and ν2 so that ν



κ(1/ν) ≤ cμ(α) if and only
if 0 ≤ ν1 ≤ ν ≤ ν2 < ∞. Observe that [ν1, ν2] is nonempty since it contains
ν0(α). We also define ν′1 := inf{ν ≥ ν1 :ν



μ(α/ν) ≤ cμ(α)} and ν′2 := sup{ν ≤
ν2 :ν



μ(α/ν)≤ cμ(α)}.
We claim that

∀ε > 0,∃δ > 0 so that ∀(α′, ν
) ∈ [α − δ,α + δ] × [ν′1, ν′2] we have

ν


μ

(
α′/ν

)
> ν



μ(α/ν)− ε
4 .

(5.14)
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Using (5.13), observe that if α = 0, then cμ(α) is less than γκ(0,0), which im-
plies that ν1 > 0. Therefore, (5.14) follows in the case α = 0 from the lower
semicontinuity of 



μ at 0. For the case α > 0, we observe that ν


μ(α/ν) fi-

nite on [ν′1, ν′2]. By lower semicontinuity and convexity of 


μ, this implies that

ν


μ(α/ν) is continuous on [ν′1, ν′2]. Since [ν′1, ν′2] is compact, we conclude that

ν


μ(α/ν) is uniformly continuous on [ν′1, ν′2]. Since ν



μ(α′/ν) can be written as
α′
α

να
α′ 



μ(α/(να/α′)) (a straightforward limiting argument shows that this equal-
ity holds even when ν = 0), the uniform continuity of 



μ implies (5.14) except
possibly at the endpoints ν′1 and ν′2. However, since 



μ is lower semicontinuous,
(5.14) holds at ν′1 and ν′2 as well.

Recall the collection of balls Dr for r > 0 that we defined in the proof of Propo-
sition 4.2. For n ∈N, let

Qn := {Q ∈Dexp(−n) : S̃z(ε)

(
e−n) ∈ (α − δ,α + δ)

}
.

Our goal is to show that for all Q ∈Dexp(−n) and n sufficiently large,

P
[
Q ∈Qn]≤ e−n(cμ(α)−ε/2).(5.15)

The rest of the proof is similar to that of Proposition 4.2. To prove (5.15), we
abbreviate Ñz(Q)(e

−n) as Ñ and write

P
[
Q ∈Qn]= E

[
P
[
S̃z(Q)

(
e−n) ∈ (α − δ,α + δ)|Ñ ]].

We split the conditional probability according to the value of Ñ :

P
[
Q ∈Qn]
≤ E

[
1{Ñ /∈[ν1,ν2]}P

[
S̃z(Q)

(
e−n) ∈ (α − δ,α + δ)|Ñ ]]

+E
[
1{Ñ∈[ν1,ν2]\[ν′1,ν′2]}P

[
S̃z(Q)

(
e−n) ∈ (α − δ,α + δ)|Ñ ]]

+E
[
1{Ñ∈[ν′1,ν′2]}P

[
S̃z(Q)

(
e−n) ∈ (α − δ,α + δ)|Ñ ]].

The first term on the right-hand side is bounded above by e−n(cμ(α)+o(1)), be-
cause of our choice of ν1 and ν2. Similarly, the second term is bounded above by
e−n(cμ(α)+o(1)) by Cramér’s theorem and our choice of ν′1 and ν′2. Thus it remains
to show that the third term is bounded above by e−n(cμ(α)−ε/2) for all n sufficiently
large. Multiplying and dividing by e−nÑ



κ(1/Ñ ), applying Cramér’s theorem, and
using (5.14), we find that for large enough n, the third term is bounded above
by

E
[
1{Ñ∈[ν′1,ν2]}e

−n(Ñ


μ(α/Ñ )+Ñ



κ(1/Ñ )−ε/2)enÑ


κ(1/Ñ )]

≤ e−n(cμ(α)−ε/4)E
[
1Ñ∈[ν′1,ν′2]e

nÑ


κ(1/Ñ )].
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Thus, it remains to show that E[1Ñ∈[ν′1,ν′2]e
nÑ



κ(1/Ñ )] = eo(n). Applying (2.1)
from Cramér’s theorem, we find that if νtypical ≤ ν′2, we have

E
[
1Ñ∈[νtypical,ν

′
2]e

nÑ


κ(1/Ñ )]

≤
�(ν′2−νtypical)n�∑

k=1

E
[
1{(k−1)/n≤Ñ−νtypical<k/n}enÑ



κ(1/Ñ )]

≤
�(ν′2−νtypical)n�∑

k=1

enfκ(k/n)E[1{(k−1)/n≤Ñ−νtypical}]

≤
�(ν′2−νtypical)n�∑

k=1

en[fκ(k/n)−fκ((k−1)/n)],

where fκ(ν) := ν


κ( 1

ν
). The mean value theorem implies that the summand is

bounded above by exp(supν∈[νtypical,ν
′
2] f

′
κ(ν)). Therefore, the expectation on the

event {Ñ ∈ [νtypical, ν
′
2]} is O(n). An analogous argument gives the same bound

for the expectation on {Ñ ∈ [ν′1, νtypical]}, so

E
[
1Ñ∈[ν′1,ν′2]e

nÑ


κ(1/Ñ )]=O(n)= eo(n).

Now consider the case 


μ(0) = ∞, which implies that ν0(0) = 0. As in the

case 


μ(0) < ∞, it suffices to show that for every ε > 0, there exists δ > 0 such

that

P
[∣∣S̃z

(
e−n)∣∣≤ δ

]≤ e−n(γκ (0,0)−ε).(5.16)

Choose η > 0 small enough that ν


κ(ν) ≥ 1 − 2/κ − 3κ/32 − ε/2 whenever ν ∈

(0, η). Then choose δ > 0 small enough that 


μ(x)≥ 2/η for all x ∈ (−δ/η, δ/η)

(this is possible by lower semicontinuity of 

). Again abbreviating Ñz(e
−n) as

Ñ , we write

P
[∣∣S̃z

(
e−n)∣∣≤ δ

]= E
[
P
[∣∣S̃z

(
e−n)∣∣≤ δ|Ñ ]]

= E
[
P
[∣∣S̃z

(
e−n)∣∣≤ δ|Ñ ]1Ñ∈[0,η)

]
+E

[
P
[∣∣S̃z

(
e−n)∣∣≤ δ|Ñ ]1Ñ∈[η,∞)

]
.

Bounding the conditional probability by 1 and using our choice of η, we see that
the first term is bounded above by e−n(γκ (0,0)−ε). For the second term, we note
by (2.1) in Cramér’s theorem that the conditional probability is bounded above by

2 exp
(
−nÑ inf

|y|≤δ/Ñ


(y)

)
.
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On the event where Ñ is at least η, the factor Ñ inf|y|≤δ/Ñ 

(y) is at least 2,
which implies that the second term is bounded by e−2n. This establishes (5.16)
and completes the proof. �

PROOF OF THEOREM 1.2. The logarithmic moment generating function of
the signed Bernoulli distribution is 
B(η) = log cosh(ση). When κ = 4, for-
mula (1.3) for 
κ simplifies to


4(λ)=
{
− log cosh(π

√−2λ), λ < 0,

− log cos(π
√

2λ), λ≥ 0.

Using the definition of the Fenchel–Legendre transform,

ν0(α)


B

(
α

ν0(α)

)
+ ν0(α)



4

(
1

ν0(α)

)
= inf

ν≥0
sup
η,λ

[
ηα + λ− ν

(

4(λ)+
B(η)

)]
.

By the minimax theorem (see, e.g., [16]), the right-hand side equals

sup
η,λ

inf
ν≥0

[
ηα + λ− ν

(

4(λ)+
B(η)

)]= sup
η,λ : 
4(λ)+
B(η)≤0

[ηα + λ].

Since 
4(λ) is continuous in λ and 
4(λ)→∞ as λ→∞, if 
4(λ)+
B(η) < 0,
then λ can be increased so that 
4(λ)+
B(η)= 0. Thus, this last supremum can
be replaced by the supremum over λ and η satisfying 
4(λ)+
B(η)= 0.

Observe that 
B(η) ≥ 0 for all η, and 
4(λ) < 0 only when λ < 0. It follows
that if 
4(λ) + 
B(η) = 0, then λ < 0 and we can use the formulas for 
4 and

B to conclude that


4(λ)+
B(η)= 0 implies ση = π
√−2λ.(5.17)

So we have

ν0(α)


B

(
α

ν0(α)

)
+ ν0(α)



4

(
1

ν0(α)

)
= sup

η,λ : 
4(λ)+
B(η)=0
(ηα + λ)

= sup
λ<0

(
απ

σ

√−2λ+ λ

)

= π2α2

2σ 2 ,

since the supremum is achieved when λ=−α2π2/2σ 2. �

PROOF OF THEOREM 1.3. In light of Theorems 5.1 and 5.3, it suffices to
show that the maximum of 2 − γκ(α, ν) is obtained when ν = α

σ
coth(π2α

σ
). As in

the proof of Theorem 1.2, we begin by writing

γκ(α, ν)= ν


κ

(
α

ν

)
+ ν



μ

(
1

ν

)
= sup

η,λ

[
ηα + λ− ν

(

κ(λ)+
μ(η)

)]
.
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At the minimizing value of ν and the corresponding maximizing values of η and λ,
the derivatives of the expression in brackets with respect to ν, λ, and η are all zero.
Differentiating, we obtain the system


κ(λ)+
μ(η) = 0,


′
κ(λ)= 1

α

′

μ(η) = 1

ν
.

The first equation implies ση = π
√−2λ as in (5.17). Substituting for λ in

the equation 
′
κ(λ) = 1

α

′

μ(η), we get α = σ 2η/π2. Finally, substituting into
1
α

′

μ(η)= 1/ν gives ν = α
σ

coth(π2α
σ

), as desired. �

6. Further questions. One of the consequences of Theorem 1.1 is that for
each κ ∈ (8/3,8) there exists a constant c such that the following is true. Almost
surely,

sup
z∈D

Sz(ε)= c
(
1 + o(1)

)
log(1/ε) as ε → 0.

Is it possible to remove the o(1) and give the order of the correction term? In
particular, in analogy with the work of Bramson and Zeitouni [2] for the discrete
GFF, is it true that there exist a constant b such that

sup
z∈D

Sz(ε)= c log(1/ε)+ b log log(1/ε)+O(1) as ε → 0?

Do the discrete loop models that are known to converge to CLE have the same
extreme nesting behavior as CLE?

Notation.

• D is a simply connected proper domain in C, that is, ∅� D �C (page 1013).
• � denotes a CLEκ process on D (page 1013).
• Nz(ε) is the number of loops of � which surround B(z, ε) (page 1013).
• �ν(�) is the set of all z ∈ D such that Nz(ε) = (ν + o(1)) log(1/ε) as ε → 0

[(1.2) on page 1015].
• Lz is the sequence of loops of � which surround z (page 1015).
• Lj

z is the j th loop of � which surrounds z (page 1015).
• U

j
z is the connected component of D \Lj

z which contains z (page 1015).
• γκ(ν) is the exponent for how unlikely it is for a point to be surrounded by a ν

density of loops [(1.4) on page 1016]:

logP
[
J⊂

z,r =
(
ν + o(1)

)
log(1/r)

]= (γκ(ν)+ o(1)
)

log(1/r).

• 
κ is the log moment generating function for the log conformal radius distribu-
tion, and 
∗

κ is its Fenchel–Legendre transform (pages 1016, 1020).
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• Sz(ε) is the sum of the loop weights over the loops of � which surround B(z, ε)

[(1.6) on page 1018].
• Ñz(ε) and S̃z(ε) are normalized versions of Nz(ε) and Sz(ε), obtained by di-

viding by log(1/ε) [(1.1) on page 1014 and (1.6) on page 1018].
• μ is the weight distribution on the loops (page 1013).
• (Ti)

∞
i=1 is the sequence of log conformal radii increments for CLE loops which

surround a given point (page 1027).
• tk = 2−(k+1) and sk =∏1≤j<k tj (page 1034).
• J∩

z,r is the index of the first loop of Lz which intersects B(z, r) [(3.6) on
page 1029].

• J⊂
z,r is the index of the first loop of Lz which is contained in B(z, r) [(3.6) on

page 1029].
• �z(ε) is the set of loops of � which surround B(z, ε) (page 1041).
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