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With the recent advent of high-throughput genotyping techniques, ge-
netic data for genome-wide association studies (GWAS) have become in-
creasingly available, which entails the development of efficient and effective
statistical approaches. Although many such approaches have been developed
and used to identify single-nucleotide polymorphisms (SNPs) that are asso-
ciated with complex traits or diseases, few are able to detect gene–gene inter-
actions among different SNPs. Genetic interactions, also known as epistasis,
have been recognized to play a pivotal role in contributing to the genetic vari-
ation of phenotypic traits. However, because of an extremely large number
of SNP–SNP combinations in GWAS, the model dimensionality can quickly
become so overwhelming that no prevailing variable selection methods are
capable of handling this problem. In this paper, we present a statistical frame-
work for characterizing main genetic effects and epistatic interactions in a
GWAS study. Specifically, we first propose a two-stage sure independence
screening (TS-SIS) procedure and generate a pool of candidate SNPs and in-
teractions, which serve as predictors to explain and predict the phenotypes
of a complex trait. We also propose a rates adjusted thresholding estimation
(RATE) approach to determine the size of the reduced model selected by an
independence screening. Regularization regression methods, such as LASSO
or SCAD, are then applied to further identify important genetic effects. Sim-
ulation studies show that the TS-SIS procedure is computationally efficient
and has an outstanding finite sample performance in selecting potential SNPs
as well as gene–gene interactions. We apply the proposed framework to an-
alyze an ultrahigh-dimensional GWAS data set from the Framingham Heart
Study, and select 23 active SNPs and 24 active epistatic interactions for the
body mass index variation. It shows the capability of our procedure to resolve
the complexity of genetic control.

1. Introduction. Genome-wide association studies (GWAS) have been a
powerful tool for genetic and biomedical research. The past decade has witnessed
the rapid development of GWAS and the substantial contributions it has made
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[Altshuler, Daly and Lander (2008); Psychiatric GCCC (2009); Hirschhorn (2009);
Das et al. (2011)]. With advances in high-throughput genotyping techniques and
modern statistics, GWAS have been helping investigators understand the genetic
basis of many complex traits or diseases, providing valuable clues to the genetic
predisposition of common diseases and drug responses [Burton et al. (2007); Daly
(2010)], among others.

In a typical GWAS, hundreds of thousands of single-nucleotide polymorphisms
(SNPs) are usually genotyped on a cohort being studied to identify important ge-
netic variants that are associated with the trait of interest. Although fast and in-
expensive, the collection of genetic information is normally limited to a sample
involving hundreds of subjects, which brings statistical challenges for estimating
and identifying relevant genetic risk factors. With SNPs being predictors and phe-
notypes being the response, single-SNP analysis is mostly performed. However,
such a single-SNP approach is neither efficient nor precise, since it fails to con-
sider all SNPs and their possible interactions simultaneously, and to adjust the
estimated effects accordingly. Therefore, many statistical procedures that consider
all SNPs jointly have been proposed for analyzing the high-dimensional data sets
generated by genome-wide association studies.

This is a feature selection problem for high-dimensional data, where the number
of SNPs (p) is much larger than the number of observations (n). Penalized regres-
sions, which are developed to overcome severe drawbacks of traditional variable
selection techniques, are widely used to select a subset of important predictors
from a large number of potential predictors. In the GWAS analysis of case-control
studies, Wu et al. (2009) and Cho et al. (2009) applied LASSO penalized re-
gression [Tibshirani (1996)] and elastic-net penalized regression [Zou and Hastie
(2005)], respectively. Ayers and Cordell (2010) further conducted a comprehen-
sive study to examine the performance of a variety of penalized regressions in
case-control studies. They concluded that variable selection techniques based on
penalized regressions outperform single-SNP analysis and stepwise selection. To
further explore the potential of high-dimensional statistical models for identify-
ing disease susceptibility genes, several two-stage approaches have been proposed
for selecting significant main effects. Li et al. (2011) employed preconditioning
and Bayesian LASSO on population cohorts to estimate genetic effects of SNPs
on continuous traits. He and Lin (2011) developed a GWASelect procedure for
case-control cohorts, where several steps of iterative sure independence screening
(ISIS) and LASSO regression are involved.

These methods based on penalized regressions have demonstrated their statis-
tical power and computational feasibility over the single-SNP analysis. However,
since statistical methodologies and computations have already been challenged by
the overwhelming number of whole-genome SNPs, these methods either do not
consider gene–gene interactions or estimate interactions among only a small num-
ber of selected SNPs with significant main effects. However, without considering
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the full picture of epistatic interactions in GWAS analysis, only a limited portion
of phenotypic variation can be explained such that potential disease-associated
pathways and risk factors can hardly be identified [Manolio et al. (2009); Cordell
(2009)].

In light of recent developments in machine learning, many sophisticated ap-
proaches have been proposed to search for whole-genome interactions in genome-
wide association studies, most of which are designed for case-control cohorts.
These machine learning approaches include a Bayesian partitioning model [Zhang
and Liu (2007)], a SNPRuler based on an association rule [Wan et al. (2010b)] and
random forest approaches [Breiman (2001); Kim et al. (2009)]. However, these
methods are computationally intensive and do not perform well in practice when
the genome-wide SNP data are considered [Wan et al. (2010b); Wang et al. (2011);
Szymczak et al. (2009)]. More recently, adaptive LASSO [Yang et al. (2010)] and
Bayesian generalized linear models [Yi, Kaklamani and Pasche (2011)] are applied
to detect epistatic interactions in case-control cohorts where all SNP pairs are ex-
haustively searched. Wang et al. (2011) present a comprehensive comparison of the
prevailing epistatic interaction detection methods, including SNPRuler [Wan et al.
(2010b)], SNPHarvester [Yang et al. (2009)], Screen and Clean [Wu et al. (2010)],
BOOST [Wan et al. (2010a)] and TEAM [Zhang et al. (2010)]. They concluded
that these methods perform differently in terms of statistical power, false positive
rate and computational cost. However, methods other than Screen and Clean are
specially designed for case-control studies where phenotypic values are binary, and
cannot be applied to quantitative traits unless the phenotypical values are properly
discretized.

In this paper, we propose a statistical framework for detecting whole-genome
epistatic interactions in a population cohort where phenotype is continuous. The
framework incorporates the well-developed penalized regressions, which have
proved successful in detecting SNPs with significant main effects. Therefore, ex-
isting findings regarding penalized regression theories and their empirical perfor-
mance in GWAS analysis can provide direct and valuable insights into our frame-
work. Moreover, the proposed algorithm is suitable for parallel computing and
does not involve computationally demanding techniques on the whole-genome
SNP data that prevailing interaction models may involve, such as resampling
strategies and Bayesian analysis. As a result, it is computationally efficient.

Specifically, we develop a two-stage sure independence screening (TS-SIS) pro-
cedure before variable selection. The screening step forms a pool of important
SNPs, which may either have significant main effects or demonstrate no marginal
effects but strong epistatic interactions. Since the two-stage screening is based on
sure independence screening [Fan and Lv (2008)], the computational burden of se-
lecting important interactions is greatly reduced. More importantly, this procedure
guarantees the performance of the following variable selection procedure, in the
sense that once important SNPs and interactions enter the pool, the probability of
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identifying the correct ones is very high. We also propose a rates adjusted thresh-
olding estimation (RATE) approach to determine the number of predictors retained
by a variable screening procedure. This approach is based on soft-thresholding
and bootstrapping, and relates the reduced model size to a false positive rate. Ueki
and Tamiya (2012) proposed hard-thresholding-based sure independence screen-
ing (SIS) to select promising main genetic effects and interactions for penalized
regressions. Motivated by the multifactor dimensionality reduction [MDR; Ritchie
et al. (2001)] approach, they proposed dummy coding methods to effectively cap-
ture various patterns of interactions in case-control studies. Our approach, how-
ever, is more general and suitable for population-based GWAS and other variable
screening problems.

We applied the newly developed statistical framework to analyze a GWAS data
set from the Framingham Heart Study, aimed to identify genetic variants that are
associated with obesity, blood pressure and heart disease. We find that, out of
349,985 SNPs, 23 SNPs and 24 epistatic interactions have notable effects on the
body mass index (BMI). By applying gene-set enrichment analysis tools [Wang,
Li and Bucan (2007); Holden et al. (2008)] in future studies, biological knowledge
can be integrated to discover and prioritize signaling pathways implied by detected
SNPs. Morever, SNP–SNP interactions will provide insight into functional related
genes and the structure of genetic pathways, allowing better understanding of com-
plex genetic architecture and cellular processes in a system level.

In Section 2 we introduce the TS-SIS procedure that reduces the model di-
mensionality and identifies potential gene–gene interactions. Section 3 proposes
a rates adjusted thresholding estimation (RATE) approach to determine the num-
ber of predictors retained by a general variable screening procedure. Section 4
shows how penalized regression can fit in this framework and gives the estimation
procedure for SCAD penalized regression [Fan and Li (2001)]. In Section 5 the
statistical properties of this framework are investigated through simulation stud-
ies. Section 6 applies this framework to the Framingham Heart Study. Concluding
remarks are given in Section 7.

2. Two-stage sure independence screening. In genome-wide association
studies phenotypical measurements are explained by a handful of covariates and a
great number of genetic factors represented by SNP genotypes. To select important
SNPs and estimate their genetic effects precisely by adjusting for observed covari-
ates, we employ a GWAS model that takes into account the effects of both genetic
effects and covariate effects. Moreover, as we discussed, epistatic interactions play
a central role in understanding metabolic pathways of complex diseases and traits.
Therefore, a comprehensive GWAS model incorporating both main genetic effects
and gene–gene interactions is more appropriate.
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For subject i in a population cohort consisting of a total of n subjects, we de-
scribe the observed phenotypic value yi as

yi = μ +
q∑

k=1

xk,iαk +
p∑

j=1

ξj,iaj +
p∑

j=1

ζj,i dj +
p∑

j=1

∑
j ′<j

ξj,iξj ′,iIaa
jj ′

+
p∑

j=1

p∑
j ′=1

ξj,iζj ′,iIad
jj ′ +

p∑
j=1

p∑
j ′=1

ζj,iξj ′,iIda
jj ′(2.1)

+
p∑

j=1

∑
j ′<j

ζj,iζj ′,iIdd
jj ′ + εi,

where μ is the overall mean, q is the number of nongenetic covariates, p is the
number of SNPs, xk,i is the kth covariate for subject i, k = 1, . . . , q, i = 1, . . . , n,
which could be either discrete or continuous, αk is the effect of the kth covariate,
aj and dj are the additive effect and dominant effect of the j th SNP, respectively,
for j = 1, . . . , p, Iaa

jj ′ is the additive × additive epistatic effect between the j th

SNP and the j ′th SNP, Iad
jj ′ , Ida

jj and Idd
jj ′ are additive × dominant epistatic effect,

dominant × additive epistatic effect and dominant × dominant epistatic effect, and
εi is the residual error assumed to follow a N(0, σ 2) distribution. If an effect is
nonzero in the regression model (2.1), we say that the corresponding covariate or
interaction is active. For subject i, ξj,i and ζj,i are the indicators of the additive
and dominant effects of the j th SNP, respectively, which are defined as

ξj,i =
⎧⎪⎨
⎪⎩

1, if the genotype of SNP j is AA,
0, if the genotype of SNP j is Aa,
−1, if the genotype of SNP j is aa,

ζj,i =
{

1, if the genotype of SNP j is Aa,
0, if the genotype of SNP j is AA or aa.

Therefore, the additive effect aj in model (2.1) measures the change of the average
phenotypic value by substituting allele A with allele a in a population. Dominant
effect dj , on the other hand, represents how the effect of allele A is modified by
the presence of allele a, allowing a more general nonadditive genetic model.

Given observed phenotypic traits, genetic information and covariates such as
gender or age, our goal is to characterize the genetic control of the phenotype, by
selecting active SNPs and gene–gene interactions and estimating their genetic ef-
fects. However, since in GWAS data sets, the number of SNPs usually far exceeds
the number of subjects, it is almost impossible to directly estimate all genetic ef-
fects, as even epistatic interactions are not considered in the regression model.
Recently, penalized regressions that regularize the size of regression coefficients
are applied to GWAS models without interactions, and appropriate algorithms are
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designed for high-dimensional inference, such as cyclical coordinate descent meth-
ods. But in many clinical trials where the number of SNPs is extremely large com-
pared with the sample size, the empirical performance of penalized regression is
not guaranteed. Moreover, if four interaction terms for each SNP pair are consid-
ered in the GWAS analysis, the estimation of all genetic effects in the ultrahigh-
dimensional setting is infeasible from the perspective of both statistical theories
and computational cost.

To identify this ultrahigh-dimensional model in practice, and to make the best
use of GWAS data for better explanation and predictions, we need to put assump-
tions on the heredity structures of epistatic effects, although we want to make
the restrictions as weak as possible. Two versions of the effect heredity princi-
ple are the following: strong heredity and weak heredity [Chipman (1996)]. Under
strong heredity, if the interaction between two predictors is significant, both pre-
dictors should be marginally significant. Under weak heredity, only one needs to
be marginally significant.

Obviously, in prevailing penalized regression models for GWAS, where interac-
tion effects are tested after a subset of significant SNPs are selected, strong heredity
assumption is implicitly imposed. However, throughout this paper we will assume
only weak heredity, since, in practice, many important SNPs are marginally un-
correlated with the response, but interact with other SNPs in an epistasis network.
With this biologically meaningful assumption in the epistatic GWAS model as well
as large data sets collected in genome-wide studies, the potential of GWAS could
be fully explored, and a detailed picture of genetic control and regulation could be
unveiled.

Two SNPs involved in a two-way interaction will be denoted as “two roots.”
We will employ a two-stage sure independence screening (TS-SIS) procedure to
identify SNPs which may have active main effects or may act as roots. Sure in-
dependence screening is a statistical learning technique for ultrahigh-dimensional
data proposed by Fan and Lv (2008). In the context of GWAS analysis, it ranks
the importance of SNPs according to their marginal correlations with the response
and retains those SNPs whose marginal correlations are strong enough. It can be
shown that under some technical conditions, sure independence screening enjoys
the sure screening property. That is, the reduced model is capable of retaining all
the active SNPs with asymptotic probability one.

Let Da and Dd be two sets of indices of truly important additive effects and
truly important dominant effects, respectively. The first SIS round will be per-
formed between each SNP and the response to select active main effects. Since
it is common practice to include covariates as linear predictors of the response
in GWAS analysis, covariates are not subject to SIS and will later be added to
the reduced model after TS-SIS. After the first stage of SIS, two subsets of SNPs
with potential nonzero additive effects D̂a and potential nonzero dominant effects
D̂d are selected. Sure screening property [Fan and Lv (2008)] implies that truly
important main effects are retained in D̂a and D̂d with high probabilities.
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Next, we formulate pairwise epistatic interactions between all SNPs in D̂a

or D̂d and all genome-wide SNPs. In particular, an additive×additive interac-
tion term is formulated by taking one SNP from D̂a and taking any additive ef-
fect from all SNPs. The set of additive × additive interactions are denoted by
D(0)

aa = {(j, j ′) : ξj ξj ′, j ∈ D̂a, j
′ = 1,2, . . . , p}. Similarly, additive×dominant in-

teractions D(0)
ad , dominant × additive interactions D(0)

da , and dominant × dominant

interactions D(0)
dd are formulated, and the GWAS model becomes

yi = μ +
q∑

k=1

xk,iαk + ∑
j∈D̂a

ξj,iaj + ∑
j∈D̂d

ζj,idj + ∑
(j,j ′)∈D(0)

aa

ξj,iξj ′,iIaa
jj ′

+ ∑
(j,j ′)∈D(0)

ad

ξj,iζj ′,iIad
jj ′ +

∑
(j,j ′)∈D(0)

da

ζj,iξj ′,iIda
jj ′(2.2)

+ ∑
(j,j ′)∈D(0)

dd

ζj,iζj ′,iIdd
jj ′ + εi.

After adding interaction terms in the model (2.2), the model dimensionality be-
comes extremely high compared with GWAS model without epistatic interactions.
To test whether these interactions contribute to the observed variation in pheno-
types, we again apply SIS to all interaction terms and select epistatic effects that
are highly correlated with the response. Let D̂aa be the index set for the selected
additive × additive interactions between a SNP in D̂a and another genome-wide
SNP. Similarly, we define three other sets, D̂ad , D̂da and D̂dd , which contain se-
lected additive × dominant, dominant × additive and dominant×dominant interac-
tions, respectively. Then the GWAS model after TS-SIS becomes

yi = μ +
q∑

k=1

xk,iαk + ∑
j∈D̂a

ξj,iaj + ∑
j∈D̂d

ζj,idj + ∑
(j,j ′)∈D̂aa

ξj,iξj ′,iIaa
jj ′

+ ∑
(j,j ′)∈D̂ad

ξj,iζj ′,iIad
jj ′ +

∑
(j,j ′)∈D̂da

ζj,iξj ′,iIda
jj ′(2.3)

+ ∑
(j,j ′)∈D̂dd

ζj,iζj ′,iIdd
jj ′ + εi.

Algorithm 1 summarizes the TS-SIS procedure, where the sizes of the reduced
models in steps 1 and 3 will be determined by the RATE approach proposed in
Section 3.

REMARK. If some nongenetic covariates (such as age) are known as truly sig-
nificant predictors in model (2.1), the following modified independence screening
procedure can be implemented to improve the performance in steps 1 and 3 of
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Algorithm 1 Two-stage sure independence screening
Step 1. Apply the SIS approach to all additive and dominate main effects SNPs
and estimate the reduced models D̂a and D̂d .
Step 2. Formulate pairwise epistatic interactions between all SNPs selected
in D̂a or D̂d and all genome-wide SNPs D = {1,2, . . . , p}. That is, D(0)

aa =
{(j, j ′) : ξj ξj ′, j ∈ D̂a, j

′ ∈ D}, D(0)
ad = {(j, j ′) : ξj ζj ′, j ∈ D̂a, j

′ ∈ D}, D(0)
da =

{(j, j ′) : ζj ξj ′, j ∈ D̂d, j ′ ∈ D}, and D(0)
dd = {(j, j ′) : ζj ζj ′, j ∈ D̂d, j ′ ∈ D}.

Step 3. Apply the SIS approach again to all epistatic interactions in step 2,

that is, D(0)
aa , D(0)

ad , D(0)
da and D(0)

dd , and obtain the reduced models D̂aa , D̂ad ,
D̂da and D̂dd .
Step 4. Combine all reduced models in steps 1 and 3 to obtain the final selected
model by the TS-SIS procedure: {D̂a, D̂d, D̂aa, D̂ad, D̂da, D̂dd}.

Algorithm 1. We run a linear regression of the response on each SNP and the sig-
nificant nongenetic covariates, and utilize the magnitude of the SNP’s estimated
coefficient as a marginal screening utility.3

3. Rates adjusted thresholding estimation. In this section we propose a
general rule to determine the size of the reduced model selected by an indepen-
dence screening procedure. This rule can be applied to other independence screen-
ing methods. In its application to the proposed TS-SIS, it is equivalent to deter-
mining the cardinalities of sets D̂a , D̂d , D̂aa , D̂ad , D̂da and D̂dd .

In general, the choice of the reduced model size is critical for any independence
screening approach. If the model size is too large, the following penalized regres-
sion would be less efficient due to the presence of too many noise variables. If the
model size is too small, on the other hand, it is likely to miss important predictors
in the screening stage. Fan and Lv (2008) suggested the reduced model size being
proportional to [n/ logn] for the SIS procedure, where n is the sample size and [·]
denotes the integer of a real number. Although this hard thresholding is easy to
implement in practice, little theoretical evidence is provided to guarantee its per-
formance in different data sets. Zhu et al. (2011) proposed a soft-thresholding rule
by adding auxiliary variables in their Sure Independent Ranking and Screening
(SIRS) procedure for multi-index models with ultrahigh-dimensional covariates.
In what follows we propose a general data-driven procedure to determine the re-
duced model size that extends the soft-thresholding procedure.

Denote the pn-dimensional vector of predictors by x = (X1, . . . ,Xpn), and de-
note the vector of regression coefficients by γ = (γ1, . . . , γpn) in a linear regres-
sion model. Let M be the set of active predictors and Mc be its complement. That
is, M = {1 ≤ j ≤ pn :γj �= 0} and Mc = {1 ≤ j ≤ pn :γj = 0}. The idea of the

3We thank the Associate Editor for suggesting this modified independence screening.
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soft-thresholding rule in Zhu et al. (2011) is as follows. First, d auxiliary variables
are generated independently and randomly z = (Z1, . . . ,Zd) ∼ Nd(0, Id). Next,
an independence screening procedure is applied to the combined predictors set
(xT, zT)T. Let ρk be the marginal screening utility between each predictor and the
response, where k = 1,2, . . . , (pn + d). Because z is known to be independent of
the response, the marginal utility ρk between any Zk and the response is exactly
zero and the associated sample version ρ̂k should be less than any marginal util-
ity between the active predictors and the response. Zhu et al. (2011) suggested the
maximal sample marginal utility of all auxiliary variables, Cd = max1≤m≤d ρ̂pn+m,
as a natural cutoff to separate two sets of active and inactive predictors in x. Thus,
the selected model is determined by M̂ = {1 ≤ j ≤ pn : ρ̂j > Cd}.

Although the soft-thresholding procedure may be useful, there are two major
concerns of practical interest. The first is the choice of the number of auxiliary vari-
ables d . The larger the d value, the sparser the selected model, and thus the higher
the probability of missing some active predictors. Besides, a larger d value implies
more computation cost. On the other hand, a smaller d value gives a smaller cutoff,
thus the reduced model dimensionality could still be very high. The second con-
cern is how to generate independent auxiliary variables z. The performance of the
soft-thresholding rule depends on an exchangeability assumption between inactive
predictors and auxiliary variables assumed in Theorem 3 of Zhu et al. (2011). But
its validity is difficult to check in practice.4 To address these concerns, we propose
a rates adjusted thresholding estimation (RATE) approach to determine the number
of auxiliary variables d by bootstrapping auxiliary variables from the original data.

In particular, we propose to relate the number of auxiliary variables d to the
false positive rate of an independence screening procedure

|M̂∩Mc|
|Mc| ,

which is the proportion of inactive predictors that are incorrectly included in the
selected model M̂. In data mining and bioinformatics, statistical power is also
known as sensitivity, and false positive rate is one minus specificity. Both sensi-
tivity and specificity are performance measures of interest in genetic association
studies [see, e.g., Duggal et al. (2008); Gorlov et al. (2008); Harley et al. (2008);
Jacobs et al. (2009)].

The next theorem provides a lower bound on the probability that the false posi-
tive rate is controlled under a pre-specified level α.

THEOREM 1. Suppose that the inactive variables {Xj : j ∈ Mc} and aux-
iliary variables {Zk :k = 1, . . . , d} are exchangeable in the sense that the inac-

4For instance, both the Editor and Associate Editor mentioned that the distribution of “noisy” SNPs
is quite different from a normal distribution, so the exchangeability assumption may be violated. We
thank the Editor and Associate Editor for pointing this out.
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Algorithm 2 Rates adjusted thresholding estimation

Step 1. Solve the equation {1 − α(pn−n)
pn+d

}d = β to obtain d , for given pn, n, α

and β .
Step 2. Bootstrap the original data x = (X1, . . . ,Xpn) to obtain d independent
auxiliary variables z = (Z1, . . . ,Zd) in the following way. For each i = 1, . . . , n,
randomly assign one value of (X1k, . . . ,X(i−1)k,X(i+1)k, . . . ,Xnk) to Zik , and
then get the vector Zk = (Z1k, . . . ,Znk) for k = 1, . . . , d . If d > pn, one may
iterate the above procedure until getting enough auxiliary variables.
Step 3. Compute the marginal screening utility ρ̂∗

k between each auxiliary vari-
able Zk and the response, k = 1, . . . , d , and set the cutoff Cd = max1≤k≤d ρ̂∗

k .
Step 4. Compute the marginal screening utility ρ̂j between each predictor Xj

and the response, j = 1, . . . , pn, and select the reduced model as M̂ = {1 ≤
j ≤ pn : ρ̂j > Cd}.

tive and auxiliary variables are equally likely to be selected by the independence
screening procedure. Under the sparsity condition that sn < n, the probability that
the false positive rate can be controlled under a pre-specified level α is bounded
from below. That is,

P

( |M̂∩Mc|
|Mc| < α

)
≥ 1 −

{
1 − α(pn − n)

pn + d

}d

.(3.1)

The theorem implies that the probability of the false positive rate being con-
trolled below a given level α is greater than 1 − {1 − α(pn−n)

pn+d
}d . Given a fixed

confidence level 1 − β = 1 − {1 − α(pn−n)
pn+d

}d , the number of auxiliary variables d

can be determined. According to Theorem 1, we propose the RATE procedure in
Algorithm 2 for a general independence screening method.

We remark that the modified bootstrapping procedure in step 2 in Algorithm 2 is
to guarantee the independence between the response and auxiliary variables z. We
obtain independent auxiliary variables by bootstrapping the original data instead
of simulating them from a normal distribution. Consequently, the bootstrapped
auxiliary variables have the same data structure as the original predictors, approx-
imating the exchangeability condition in the soft-thresholding rule. Note that with
given pn and n, two rates α and β together determine the number of auxiliary vari-
ables d . Therefore, we call this approach the rates adjusted thresholding estimation
(RATE). It will be shown later that the RATE approach has excellent performance
in the simulation studies and the real data analysis.

4. SCAD penalized regression. After two-stage sure independence screen-
ing, the dimensionality of the GWAS model is greatly reduced. In order to pre-
cisely select important SNPs and epistatic interactions from a pool of candidate
effects, penalized regressions widely used in main-effect analysis could be incor-
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porated here. Specifically, we put penalties on the sizes of additive effects, dom-
inant effects and all epistatic effects and minimize the following penalized least
squares:

1

2n
‖y − Ey‖2 + ∑

j∈D̂a

pλ

(|aj |) + ∑
j∈D̂d

pλ

(|dj |) + ∑
(j,j ′)∈D̂aa

pλ

(∣∣Iaa
jj ′

∣∣)
(4.1)

+ ∑
(j,j ′)∈D̂ad

pλ

(∣∣Iad
jj ′

∣∣) + ∑
(j,j ′)∈D̂da

pλ

(∣∣Ida
jj ′

∣∣) + ∑
(j,j ′)∈D̂dd

pλ

(∣∣Idd
jj ′

∣∣),
where the penalty function pλ(·) is implemented to shrink sufficiently small effects
to zero and thus exclude the inactive predictors.

We consider the smoothly clipped absolute deviation (SCAD) penalty function
due to its unbiasedness, continuity and sparsity properties [Fan and Li (2001)]. The
SCAD penalty is a nonconvex function and defined as follows:

pλ(b) = λ|b|I (
0 ≤ |b| < λ

) + aλ|b| − (b2 + λ2)/2

a − 1
I
(
λ ≤ |b| ≤ aλ

)
+ (a + 1)λ2

2
I
(|b| > aλ

)
,

where I (·) is an indicator function and a = 3.7 as suggested in Fan and Li (2001).
λ is the tuning parameter which balances the model complexity and forecasting
performance. We follow the idea of Wang, Li and Tsai (2007) and choose λ by a
BIC tuning parameter selector.

Commonly-used algorithms for the SCAD penalized least squares include the
local quadratic approximation (LQA) algorithm [Fan and Li (2001)], the perturbed
LQA [Hunter and Li (2005)] and the local linear approximation (LLA) [Zou and
Li (2008)] algorithm. With the aid of LLA, one may employ the LARS algorithm
to obtain the SCAD estimate. Thus, we will use the LLA algorithm in this paper.
Specifically, for a given initial value β(0), the penalty function pλ(·) can be locally
approximated by a linear function as

pλ

(|β|) ≈ pλ

(∣∣β(0)
∣∣) + p′

λ

(∣∣β(0)
∣∣)(|β| − ∣∣β(0)

∣∣) for |β| ≈ ∣∣β(0)
∣∣.(4.2)

With the aid of LLA, the estimates of regression coefficients in SCAD penalized
least squares (4.1) can be obtained by minimizing

1
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after constants are discarded. Note that this penalized least squares can be easily
minimized based on L1 penalized regression.

5. Simulated studies. In this section we investigate the GWAS analysis
framework consisting of TS-SIS and variable selection through simulation stud-
ies. We simulate large data sets where SNPs may have either (a) main effects or
(b) interaction effects. Our goal is to identify these active SNPs with high accuracy
and low computational cost.

Specifically, genotypes of p SNPs across 23 chromosomes are generated for
n = 500 subjects. For SNP j of subject i, j = 1, . . . , p, i = 1, . . . , n, its genotype
ξj,i is derived from uj,i , where the vector (u1,i , . . . , up,i) is generated from multi-
variate normal distribution with zero mean and covariance matrix � = (σj,k)p×p ,
σj,k = ρ|j−k| for ρ = 0.2, 0.5 or 0.8. Then, we set

ξj,i =
⎧⎪⎨
⎪⎩

1, uij > c1j ,
0, c2j ≤ uij ≤ c1j ,
−1, uij < c2j ,

where c1j and c2j determine the minor allele frequency (MAFs). We consider
two cases: homogeneous case, MAF = 0.5 for each j , and heterogeneous case,
in which the MAF of each SNP is randomly set to 0.5, 0.35 or 0.2 with equal
likelihood. Finally, the dominant effect indicator ζj,i is derived from ξj,i by setting
ζj,i = 1 − |ξj,i |. In total, there are p = 3948 SNPs across 23 chromosomes, with
the number of SNPs in each chromosome being one percent of that in a real data
set we are going to work on.

We put 3 active main effects and 3 active epistatic interactions across the whole
genome, whose positions and effect sizes are given in Table 1. Column “Interact
with” in Table 1 indicates, out of 3 active main effects, which one the SNP inter-
acts with. When simulating the response variable, we standardize the design matrix
columnwisely, such that all columns of the design matrix have the same variance.

TABLE 1
Information of 6 assumed genetic effects for data simulation

Chr. Position Additive/dominant Interact with Effect size

Main effects
1 1 Additive – 1
2 1 Dominant – 1
3 1 Additive – 1

Epistatic interactions
11 1 Additive 1 1

2 2 Dominant 2 1
12 1 Dominant 2 1



2304 LI, ZHONG, LI AND WU

This step makes the comparison of detecting active main effects and active interac-
tions fair. From Table 1, it can be seen that one SNP could interact with two other
SNPs without marginal effects (three SNPs on chromosomes 2 and 12), and two
SNPs involved in a two-way interaction may also be correlated (two SNPs on chro-
mosomes 2). These interaction patterns add further complexity in the simulation
studies.

For each simulated data set, we first implement SIS with the RATE procedure
to select s1 SNPs, which may exhibit notable main effects or epistatic effects.
We determine s1 in each simulation according to Theorem 1 with α = 0.01 and
β = 0.0001 and, on average, there are 11 SNPs selected in the first stage of TS-SIS.
According to the sure screening property, this subset of s1 SNPs should include the
first SNPs on the first 3 chromosomes with high probability, which demonstrate
active main effects and may serve as roots in two-way interactions.

To select those SNPs that have no marginal effects, but modify the genetic ef-
fects of other SNPs, two-way interactions are formed between each selected SNP
in the first stage and any SNP across the genome according to model (2). SIS is car-
ried out again, and, in total, s2 pairs of SNPs are selected. We set α = 0.005 and
β = 0.0001. These SNP pairs should contain all epistatic interactions, although
they may rank low in terms of the absolute value of marginal correlations. Fi-
nally, s1 SNPs with potential main effects and s2 SNP pairs enter model (2.3), and
variable selections are implemented to select important SNPs and estimate their
main effects and epistatic effects. We consider both LASSO regression and SCAD
regression following TS-SIS.

Table 2 reports the statistical power, false positive rates and computational time
using R code. The result is the average over 100 simulations with standard error
in parenthesis. In columns labeled “TS-SIS” under “Power (%),” we present the
statistical power of TS-SIS, or the proportion of active SNPs and interactions that
are successfully included in the candidate pool of s1 SNPs and s2 interactions.
In adjacent columns “TS-SIS-SCAD” and “TS-SIS-LASSO,” we report statistical
powers of two-stage SIS paired with SCAD regression or LASSO regression, or
the percent of 6 active SNPs that are correctly identified by the whole procedure.
Note that the statistical power under “TS-SIS-SCAD” or “TS-SIS-LASSO” cannot
be greater than that of TS-SIS, since a SNP or an epistatic interaction is considered
by the variable selection procedure only if it is correctly identified by TS-SIS. In
each column under “False Positive Rate (×10−4),” we report the false positive rate
defined as the proportion of unimportant SNPs that are incorrectly identified. We
also report the median computing time for TS-SIS with penalized regression over
all replications. The simulation is conducted on a 32-bit windows 7 system, with
an Intel (R) i5-2400 processor, 3.10 GHz, 4G memory.

According to Table 2, the TS-SIS captures most of the SNPs with active main
effects, as well as SNPs without main effects but demonstrating active interactions.
As a result, important SNPs are selected in the reduced model, and the majority of
irrelevant SNPs are eliminated before variable selection. This critical step greatly
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TABLE 2
Statistical power, false positive rate and running time of the proposed TS-SIS approach

Power (%) False positive rate (×10−4)

TS-SIS- TS-SIS- TS-SIS- TS-SIS- Time
(ρ,σ 2) TS-SIS SCAD LASSO TS-SIS SCAD LASSO (seconds)

Homogeneous case (MAF = 0.50)
(0.8, 6) 97.0 92.7 86.5 4.22 2.18 2.92 12.29

(8.3) (11.7) (13.3) (2.35) (1.09) (1.47)

(0.8, 8) 95.5 86.2 82.3 4.52 2.42 3.19 13.64
(9.1) (13.4) (15.9) (2.51) (1.23) (1.68)

(0.5, 6) 97.8 94.5 88.2 2.93 1.74 2.29 10.05
(6.6) (9.5) (13.2) (1.58) (0.88) (1.16)

(0.5, 8) 95.8 90.7 88.5 2.76 1.72 2.21 11.13
(8.3) (13.0) (11.6) (1.69) (1.01) (1.33)

(0.2, 6) 95.9 91.8 87.7 2.89 1.75 2.27 7.88
(9.0) (11.7) (13.4) (1.88) (1.05) (1.43)

(0.2, 8) 95.5 87.8 87.1 2.70 1.81 2.28 9.12
(9.7) (13.6) (13.1) (1.71) (1.08) (1.42)

Heterogeneous case (mixed MAFs)
(0.8, 6) 98.17 89.83 89.50 4.71 2.30 3.18 12.41

(5.24) (11.58) (11.28) (3.51) (1.30) (1.99)

(0.8, 8) 96.50 85.50 88.33 5.02 2.46 3.42 13.15
(7.22) (12.46) (11.73) (4.17) (1.49) (2.11)

(0.5, 6) 98.17 91.50 90.67 3.47 1.87 2.45 11.17
(5.24) (11.48) (11.68) (2.93) (1.26) (1.78)

(0.5, 8) 95.00 87.67 88.33 3.08 1.82 2.42 10.38
(9.91) (13.94) (14.11) (2.36) (1.12) (1.75)

(0.2, 6) 97.67 90.17 90.83 3.08 1.80 2.37 10.59
(6.28) (12.10) (11.93) (2.15) (1.10) (1.54)

(0.2, 8) 94.33 87.50 89.33 2.58 1.53 2.05 9.25
(9.54) (13.06) (11.24) (2.33) (0.99) (1.61)

improves the probability of effectively identifying important SNPs and interactions
in GWAS analysis. After TS-SIS, SNPs and interactions in the reduced model are
selected by either SCAD or LASSO. As expected, variable selection further re-
duces the false positive rate and increases the interpretability of the final model.
Compared with LASSO, SCAD can identify truly important SNPs with higher
probability for the homogeneous case. As more SNPs have lower MAFs in the
heterogeneous case, two penalized regressions have comparable statistical powers.
In addition, SCAD delivers smaller false positive rates consistently in all simula-
tion scenarios. Table 2 further suggests that, as σ 2 decreases, the statistical powers
increase, but the linkage disequilibrium of two SNPs measured by ρ plays a lim-
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TABLE 3
Statistical power of detecting interactions of the proposed TS-SIS approach

Homogeneous case Heterogeneous case

TS-SIS- TS-SIS- TS-SIS- TS-SIS-
(ρ,σ 2) TS-SIS SCAD LASSO TS-SIS SCAD LASSO

(0.8, 6) 93.3 93.3 92.7 97.0 97.0 97.0
(13.4) (13.4) (14.7) (9.6) (9.6) (9.6)

(0.8, 8) 96.7 96.3 96.3 94.7 94.3 94.7
(10.1) (10.5) (10.5) (13.2) (14.3) (13.2)

(0.5, 6) 96.7 96.7 96.7 96.7 96.7 96.7
(10.1) (10.1) (10.1) (10.1) (10.1) (10.1)

(0.5, 8) 92.6 92.6 92.6 91.0 91.0 91.0
(15.1) (15.1) (15.1) (18.3) (18.3) (18.3)

(0.2, 6) 93.5 93.5 93.5 96.0 96.0 96.0
(13.3) (13.3) (13.3) (10.9) (10.9) (10.9)

(0.2, 8) 92.7 92.7 92.7 91.0 91.0 91.0
(16.1) (16.1) (16.1) (17.0) (17.0) (17.0)

ited role in this setting. Besides, this variable screening procedure is very fast even
though millions of potential pairwise interactions are present in each simulation.

Table 3 gives the statistical power of detecting interactions, or the average pro-
portion of interactions that are selected over 100 simulations. By comparing Ta-
ble 3 with Table 2, it can be seen that interactions are relatively more difficult
to capture by variable screenings than main effects. This is understandable since
the number of interaction terms is huge compared with the number of main ef-
fect terms. Once important interactions are identified by TS-SIS, however, they
are unlikely to be missed by the following penalized regression. As a result, the
statistical power of the entire procedure is very close to that of TS-SIS. In Ta-
ble 4 we report the results when the number of SNPs is doubled (p = 6996) for
MAF = 0.50, with all other specifications unchanged. Interestingly, although the
statistical power of TS-SIS increases, the power of SCAD and LASSO regres-
sions slightly decreases, because the same α and β in Theorem 1 imply a larger
reduced model from TS-SIS.5 However, given that the number of interactions in-
creases from about 24.5 million to about 98 million, the performance of TS-SIS is
excellent, as can be seen from the increased statistical power and decreased false
positive rates. In Table 4 we do not change α and β for comparison purposes; we
consider in future research the effects of user-specified rates.

We also compare this framework with other methods for detecting SNP–SNP
interactions in simulation studies with MAF = 0.5. Although most of the avail-

5On average, the total number of main effects and interactions selected by TS-SIS increases from
46.9 to 66.2.
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TABLE 4
Statistical power, false positive rate and running time of the proposed TS-SIS approach when the

number of SNPs is doubled (p = 6996) for MAF = 0.5

Power (%) False positive rate (×10−4)

TS-SIS- TS-SIS- TS-SIS- TS-SIS- Time
(ρ,σ 2) TS-SIS SCAD LASSO TS-SIS SCAD LASSO (seconds)

(0.8, 6) 99.5 90.0 83.7 1.39 0.74 0.97 39.37
(3.7) (12.9) (14.2) (0.64) (0.29) (0.40)

(0.8, 8) 97.3 87.8 84.1 1.32 0.78 1.01 44.68
(7.8) (14.3) (12.7) (0.60) (0.29) (0.39)

(0.5, 6) 97.3 89.8 85.0 1.15 0.68 0.89 29.90
(7.0) (11.8) (14.3) (0.58) (0.32) (0.41)

(0.5, 8) 97.1 86.3 83.7 1.17 0.74 0.95 36.56
(8.2) (14.8) (14.9) (0.53) (0.33) (0.42)

(0.2, 6) 98.8 93.8 87.2 1.06 0.67 0.86 25.97
(4.3) (10.2) (12.5) (0.47) (0.28) (0.36)

(0.2, 8) 94.7 80.7 84.0 1.18 0.77 0.99 33.52
(9.7) (15.1) (13.8) (0.52) (0.29) (0.38)

able interaction detection methods are designed for binary phenotypes, the Mendel
software program [Lange et al. (2001, 2013)] and the Screen and Clean (SC)
method [Wu et al. (2010)] can identify important SNPs as well as interactions
in GWAS analysis for the quantitative phenotype. Moreover, they are scalable
and computationally efficient. Specifically, Analysis Option 24 in Mendel soft-
ware is very convenient to test for main genetic effects and interaction effects
based on marginal p-values or LASSO type analysis [Wu and Lange (2008); Wu
et al. (2009); Zhou et al. (2010)]. Table 5 reports the results from four major
analysis options of Mendel: (1) marginal analysis for main effects followed by
testing important marginal effects against all SNPs for interactions (Mendel 1),
(2) marginal analysis for main effects followed by testing all pairwise interactions
among top SNPs (Mendel 2), (3) LASSO analysis for main effects followed by
testing important marginal effects against all SNPs for interactions (Mendel 3),
and (4) LASSO analysis for main effects followed by testing all pairwise interac-
tions among top SNPs (Mendel 4). Since these four analysis options generate final
models with pre-determined sizes, we use the default model size of 10 for main
effects and then determine the number of selected interactions in a way that the
final model size is the same as our method (TS-SIS-SCAD). Table 5 also reports
the performance of the Screen and Clean (SC) method (column “SC”) and hard-
thresholding-based TS-SIS (column “Hard-SCAD” and column “Hard-LASSO”),
where the first [n/ logn] SNPs are selected in TS-SIS. Since the final model size
of Mendel is user specified, the false positive rate is not reported.
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TABLE 5
Statistical power and false positive rate of alternative methods

Power (%) FPR (×10−4)

Hard- Hard- Mendel Mendel Mendel Mendel Hard- Hard-
(ρ,σ 2) SCAD LASSO SC 1 2 3 4 SCAD LASSO SC

(0.8, 6) 89.3 81.0 69.9 85.3 49.0 89.3 49.3 4.0 4.4 4.8
(9.3) (8.5) (10.5) (8.7) (4.0) (10) (3.3) (0.4) (0.4) (2.7)

(0.8, 8) 81.5 80.5 61.9 85.7 49.7 88.0 49.0 4.2 4.6 5.3
(11.3) (11.9) (12.0) (9.5) (2.4) (10.1) (4.0) (0.3) (0.4) (3.2)

(0.5, 6) 87.5 81.7 68.8 83.3 50.0 86.7 49.7 4.5 4.8 5.1
(10.7) (9.6) (13.5) (6.7) (0) (9.5) (2.4) (0.3) (0.3) (2.8)

(0.5, 8) 81 81.3 60.5 83.0 49.0 86.0 49.7 4.6 4.9 5.3
(11.1) (12.8) (11.6) (7.9) (4.0) (10.3) (2.4) (0.3) (0.4) (3.5)

(0.2, 6) 86.2 81.8 66.8 86.0 49.3 89.3 49.3 4.5 4.9 4.8
(10.1) (9.2) (12.1) (10.3) (3.3) (10.5) (3.3) (0.3) (0.4) (2.2)

(0.2, 8) 79.8 80.2 63.1 83.3 49.3 85.0 49.7 4.6 5.0 4.2
(12.6) (14.9) (9.2) (8.9) (3.3) (9.7) (2.4) (0.3) (0.3) (2.3)

Among all alternative approaches, Mendel 3 has the best performance followed
by Mendel 1 and hard-thresholding-based approaches. Both Mendels 3 and 1 test
the interactions between marginally important SNPs and all SNPs, but Mendel 3
selects marginally important SNPs by LASSO regressions and Mendel 1 is based
on the conventional marginal analysis. Mendels 2 and 4 cannot give statistical
power greater than 50% since only interactions among top SNPs are considered. In
terms of hard-thresholding-based TS-SIS procedures (“Hard-SCAD” and “Hard-
LASSO”), their performance is less satisfactory since too many variables retained
after variable screening lead to a lower statistical power and an inflated false pos-
itive rate. But similar to Table 2, SCAD regression tends to be associated with a
higher statistical power and a smaller false positive rate. Last, the Screen and Clean
method has a low statistical power and a large and unstable false positive rate.

In summary, TS-SIS guided by the RATE approach is effective and efficient in
selecting truly important genetic effects and eliminating false positives for the fol-
lowing penalized regressions. In the context of the ultrahigh-dimensional GWAS
model where a huge number of potential predictors are considered, they are rec-
ommended in the real data analysis.

6. Framingham data analysis. We use the newly developed framework to
analyze a real GWAS data set from the Framingham Heart Study, a cardiovascu-
lar study based in Framingham, Massachusetts, supported by the National Heart,
Lung, and Blood Institute and Boston University [Dawber, Meadors and Moore
(1951)]. Recently, 550,000 SNPs have been genotyped for the entire Framingham
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cohort [Jaquish (2007)], from which 977 unrelated subjects including 418 males
and 559 females were randomly chosen for our data analysis, conforming to the
assumption of population-based GWAS. For each subject, body mass index (BMI)
is measured at multiple time points between age 29 and age 61. We take the first
measurement for each individual, although the age of receiving the first measure-
ment varies across individuals.

As a common practice in GWAS analysis, SNPs with rare allele frequency
<10% were excluded from data analysis, which leaves 349,985 SNPs across 23
chromosomes of the whole genome. 5.16% of the remaining SNPs, however, con-
tain missing genotypes for some subjects. Since we are interested in detecting ac-
tive genetic effects rather than handling missing data in this study, for each missing
genotype of each subject, we randomly draw a genotype according to the SNP’s
genotypic frequencies across all subjects whose genotypes are known. Then, by
including gender and age as two covariates, we follow the procedure described in
previous sections to select SNPs with active main effects and construct an epistatic
network explaining the observed BMI variations. In the RATE assisted TS-SIS
procedure, in particular, the confidence level is the same as that in simulation stud-
ies (β = 0.0001), but α is set to 0.0005 in screening for main effects and to 0.00001
in detecting interactions.

Out of 349,985 SNPs and numerous two-way interaction terms, 23 active main
effects and 24 active epistatic interactions are detected by the TS-SIS procedure
followed by SCAD penalized regression. Then, we refit a linear regression model
with these selected SNPs and two covariates being predictors, and obtain the esti-
mated regression coefficient and heritability for each selected SNP. Tables 6 and 7

TABLE 6
Information of SNPs with active main effects in the Framingham Heart Study

Additive effects Dominant effects

Heritability Heritability
Chr. Name MAF Effect (%) Chr. Name MAF Effect (%)

1 ss66041272 0.49 −0.82 1.92 3 ss66173500 0.29 −0.26 0.35
1 ss66276746 0.13 −0.42 0.23 3 ss66142093 0.30 −0.63 2.06
4 ss66346559 0.28 −0.51 0.60 4 ss66354801 0.27 0.30 0.45
4 ss66159949 0.29 0.12 0.03 6 ss66166806 0.34 −0.45 1.09
5 ss66316662 0.38 0.37 0.37 6 ss66299053 0.34 0.41 0.91
5 ss66118377 0.50 0.06 0.01 6 ss66090554 0.27 0.24 0.29
7 ss66083530 0.19 −0.47 0.39 7 ss66083530 0.35 −0.28 0.43
8 ss66177628 0.23 −0.01 0.00 7 ss66249128 0.33 −0.64 2.19
9 ss66095597 0.28 −0.60 0.83 7 ss66314446 0.21 0.62 1.70

12 ss66086159 0.36 −0.45 0.53 8 ss66381612 0.27 −0.32 0.51
21 ss66511535 0.16 −0.44 0.30 11 ss66369823 0.25 0.21 0.21

13 ss66487154 0.30 0.38 0.75
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TABLE 7
Information of SNPs with significant interactions in the Framingham Heart Study

Root 1 Root 2

Chr. Name MAF Chr. Name MAF Effect
Heritability

(%)

Additive × additive interactions
1 ss66041272 0.49 6 ss66061582 0.21 −0.95 2.08
9 ss66095597 0.28 4 ss66151090 0.11 −0.80 0.89

Additive × dominant interactions
1 ss66137441 0.49 17 ss66248774 0.49 1.06 1.70
3 ss66081331 0.28 3 ss66142093 0.35 0.56 0.30
3 ss66375852 0.38 23 ss66107600 0.33 −1.13 0.83
4 ss66159949 0.29 11 ss66132273 0.38 0.74 0.71
8 ss66177628 0.23 13 ss66487154 0.34 −1.06 1.32

Dominant × additive interactions
3 ss66142093 0.3 2 ss66430035 0.25 −1.00 0.97
3 ss66142093 0.3 3 ss66081331 0.28 −0.74 0.61
3 ss66142093 0.3 3 ss66483001 0.30 −0.33 0.14
4 ss66354801 0.27 7 ss66416257 0.21 −0.72 0.53
6 ss66316737 0.29 21 ss66113670 0.10 1.42 2.75
7 ss66468842 0.33 7 ss66083530 0.19 −0.14 0.03
7 ss66249128 0.33 8 ss66047672 0.23 −0.88 0.79

15 ss66058021 0.38 1 ss66325411 0.17 1.01 0.90

Dominant × dominant interactions
3 ss66142093 0.3 4 ss66444506 0.26 1.09 0.89
3 ss66142093 0.3 8 ss66468875 0.39 0.97 0.71
3 ss66142093 0.3 11 ss66152909 0.35 1.08 0.78
7 ss66468842 0.33 11 ss66318229 0.29 1.02 0.68
7 ss66249128 0.33 12 ss66451087 0.14 2.25 2.29
7 ss66249128 0.33 12 ss66109005 0.16 −1.08 0.61

11 ss66369823 0.25 10 ss66482189 0.42 1.23 1.74
11 ss66369823 0.25 3 ss66142093 0.35 −0.40 0.15
18 ss66306728 0.3 16 ss66394113 0.13 1.19 0.55

tabulate the information of selected SNPs with nonzero main and epistatic interac-
tion effects, respectively, including chromosomes, names, minor allele frequencies
(MAF), estimated genetic effects and heritabilities. Specifically, heritability is the
proportion of the phenotypic variance explained by the genetic variance of a par-
ticular effect. For an additive or dominant effect, it is calculated as

h2 = 2pApa(âj + (pA − pa)d̂j )
2 + (2pApad̂j )

2

var(y)
,

where pA is the allele frequency for A and pa is the allele frequency for a. For the
epistatic interactions, the heritability calculation under our general genetic model
is more involved. Suppose SNP j has alleles A and a, and SNP j ′ has alleles B
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and b. Then for genotypes AABB, AABb, AAbb, AaBB, AaBb, Aabb, aaBB, aaBb
and aabb, the vector of genotype frequencies is

ω = (
p2

Ap2
B,2p2

ApBpb,p
2
Ap2

b,2pApap
2
B,4pApapBpb,

2pApap
2
b,p

2
ap

2
B,2p2

apBpb,p
2
ap

2
b

)T
,

and the associated genetic values are

g = (
âj + âj ′ + Îaa

jj ′, d̂j + âj ′ + Îda
jj ′,−âj + âj ′ − Îaa

jj ′

âj + d̂j ′ + Îad
jj ′, d̂j + d̂j ′ + Îdd

jj ′,−âj + d̂j ′ − Îad
jj ′

âj + âj ′ − Îaa
jj ′, d̂j − âj ′ − Îda

jj ′,−âj − âj ′ + Îaa
jj ′

)T
.

Therefore, the genetic variance is ωT g2 − (ωT g)2, and the epistatic variance is
this genetic variance minus the genetic variances of two main effects. Finally, the
associated epistatic heritability is the epistatic variance divided by the phenotypic
variance. If dominant effects are not modeled, this formula gives exactly the same
result as the one proposed in Wu and Zhao (2009), where two SNPs’ additive
effects and their additive × additive interaction are considered.

Generally speaking, main genetic effects contribute to 16.1% of the phenotypic
BMI variation, among which 5.2% is due to the additive genetic effects and 10.9%
is due to the dominant genetic effects. Epistasis, on the other hand, explains 23.0%
of the phenotypic variation. It is worth noting that a few SNPs and interactions
demonstrate stronger genetic effects than others. In other words, although the ex-
pression of the BMI trait is determined by many SNPs, there exist some SNPs that
may be more influential. For example, out of the 23 SNPs exhibiting significant
additive or dominant effects, five have heritabilities greater than 1%. This number
increases to six for epistatic interactions.

To depict an overall picture of genetic control for BMI by SNP–SNP epistasis,
we draw a web of additive × additive, additive × dominant, dominant × additive
and dominant×dominant interactions in Figure 1 which shows the genomic distri-
bution of SNPs that interact with each other. From this figure, we obtain the follow-
ing interesting results: (1) epistasis appears to be distributed randomly throughout
the genome, although a few SNPs, such as ss66142093 on chromosome 3 and
ss66249128 and ss66468842 on chromosome 7 tend to interact with many other
SNPs. (2) Active epistasis may not be due to interactions between two SNPs, both
of which display active marginal effects. Of the 24 selected pairs, there are two
cases in which both SNPs have active marginal effects and there are 14 cases in
which only one SNP has an active marginal effect, whereas the counterpart has
none. There are as many as 8 pairs in which no SNP is active for its marginal
effect. Notably, the dominant × dominant interaction between SNP ss66249128
on chromosome 7 and SNP ss66451087 on chromosome 12 can explain 2.29% of
the BMI variation, although the latter is marginally uncorrelated with BMI. In the
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FIG. 1. A picture of significant SNP–SNP interactions for BMI in the Framingham Heart Study. The
numbers beside SNPs are chromosome numbers. The SNPs that display significant additive (A) and
dominant (D) effects are indicated by arrows. The pairs of SNPs with significant additive × additive,
additive × dominant, dominant × additive and dominant × dominant interactions are indicated as
AA, AD, DA and DD, respectively.

presence of SNP ss66451087, the dominant genetic effect of SNP ss66249128 is
dramatically impacted (Table 7).
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Since our model allows a large number of SNPs to be analyzed simultane-
ously, the resulting discoveries should be more biologically relevant and statis-
tically robust than those from traditional single-SNP approaches. For example,
SNP ss66142093 on chromosome 3 was detected to explain 2.97% heritability.
This SNP is near a candidate gene ANAPC13 involved in pathways for bone and
cartilage development that affects human height and stature through cell cycle reg-
ulation and mitosis [Weedon and Frayling (2008)].

In other GWAS for BMI [Frayling et al. (2007); Scuteri et al. (2007); Speliotes
et al. (2010)], significant SNPs were repeatedly detected on chromosomes 1, 3, 4,
6, 7 and 11 in NEGR1, ETV5, GNPDA2. BDNF and MTCH2 loci. Our results
of main genetic effects are in agreement with previous reports about the presence
of common variants near these loci associated with biochemical pathways toward
obesity. The result on epistatic interactions suggests large epistatic effects among
chromosomes 3, 7 and 11 which have not been reported in previous studies, pos-
sibly showing the unique power of this new approach. A recent review on iden-
tifying genes responsible for type 2 diabetes confirms genomic regions harboring
disease susceptibility loci [Frayling et al. (2007)]. These regions include two on
chromosome 3 and one on each of chromosomes 4, 6, 9 and 12. We have noticed
many SNPs identified in this study overlap with those detected by previous studies
targeting type 2 diabetes, suggesting the underlying correlations between BMI and
type 2 diabetes. Additionally, our analysis shows that the regression coefficients for
gender and age are −0.12 and 0.01, respectively. That is, after adjusting for these
genetic factors, the risk of obesity is higher for females, and the risk increases with
age.

To further evaluate the significance and predictability of the proposed method,
we randomly partition the original real data set into two parts: the training data set
with 900 subjects and the validation data set with the remaining 77 individuals.
We apply the proposed RATE assisted TS-SIS followed by the SCAD penalized
regression to the training data set, and then use the validation data set to evaluate
the estimated model. Denote by Y ∗

i the response BMI value of the ith subject in
the validation data set, and Ŷ ∗

i the predicted BMI value by the estimated model
using the training data set, where i = 1,2, . . . ,77. We compute the following two
criteria to evaluate the prediction performance. First, we calculate the relative mean
absolute prediction error (RMAPE), which is the difference between Y ∗

i and Ŷ ∗
i

divided by the true value of Y ∗
i :

RMAPE = 1

77

77∑
i=1

|Y ∗
i − Ŷ ∗

i |
Y ∗

i

.

Second, we note that a primary interest of predicting BMI is to predict whether the
individual is obese or not, that is, BMI> 30. Thus, we compute the classification
accuracy (CA) of the validation data set using the estimated model:

CA = 1 − 1

77

77∑
i=1

∣∣I (
Y ∗

i > 30
) − I

(
Ŷ ∗

i > 30
)∣∣,



2314 LI, ZHONG, LI AND WU

where I (·) is an indicator function. Then, we repeat the above validation exper-
iment 10 times. The average RMAPE is 14.10%, and the standard deviation of
RMAPE is 0.85%. The average CA is 82.77%, with a standard deviation of 3.37%.
These results suggest that our model predicts well in the out-of-sample validation
data sets.

7. Discussion. Identifying genetic interaction network is an important task in
genome-wide association studies, but is challenged by the sheer volume of genetic
data. In this paper we present a comprehensive GWAS model and propose a statis-
tical framework to identify important SNPs and interactions which jointly explain
the observed phenotypes. Specifically, a two-stage sure independence screening
procedure (TS-SIS) is proposed to formulate a candidate pool of SNPs, including
those without weak main effects, but serving as a root in two-way interactions.
This procedure expands the literature by relaxing the restrictive assumption that
two roots in an interaction have to be marginally correlated with the response.
A RATE approach is also proposed to determine the number of predictors retained
in each stage of TS-SIS. This approach can also be applied to other variable screen-
ing problems.

Wu and Zhao (2009) derived an analytical approach to calculate the power of
a model selection strategy in GWAS that is similar to the proposed TS-SIS. Their
approach allows for random genotypes, correlation among test statistics as well as
a false-positive control. It is straightforward to apply their power calculations to
our framework. Since the TS-SIS procedure provided a relatively low-dimensional
regression model containing important SNPs with high probability, existing penal-
ized least squares estimations and their empirical performances in GWAS analysis
provided valuable guidance for selecting important SNPs and constructing a gene–
gene interaction network.

The new model has been used to analyze GWAS data from the Framingham
Heart Study [Dawber, Meadors and Moore (1951)], aimed to identify genetic vari-
ants that affect cardiovascular diseases and their related traits such as blood pres-
sure and BMI [Jaquish (2007)]. To the best of our knowledge, this is likely the first
study that has detected genetic interactions for obesity-related traits in GWAS.
Since the detected SNPs displaying important interactions may be harbored in
genes of the BMI-associated metabolic pathways [Speliotes et al. (2010)], plus
higher heritabilities collectively explained by them, our model should provide a
powerful and useful tool for understanding the underlying genetic mechanisms and
regulatory network of obesity. For example, dopamine, which is a neurotransmit-
ter, modulates motivation and rewarding properties of eating. Wang et al. (2001)
confirmed by biomedical experiments that brain dopamine levels are significantly
lower in the obese individuals, suggesting strong correlations between BMI and
genetic regulatory networks. The use of our model to detect dopamine-associated
SNPs in a GWAS study should help to unravel the genetic architecture of obesity.
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Our statistical procedure is capable of identifying epistatic interactions and en-
ables researchers to decipher a detailed picture of the genetic architecture of human
diseases or complex traits. So far, we have concentrated on detecting interactions
for a continuous trait in GWAS. The proposed TS-SIS assisted SCAD regression
can be readily extended to case-control cohorts, family trios or survival data anal-
ysis in genome-wide association studies. The framework can also be applied to
other statistical problems, where the accurate detection of interactions is desired
in the presence of high-dimensional data sets or ultrahigh-dimensional data sets.

APPENDIX

PROOF OF THEOREM 1. Let any r ∈ N+, the set of positive integers. The
event {|M̂∩Mc| ≥ r} represents that at least r unimportant variables rank on the
top of all auxiliary variables. Because the inactive variables {Xj : j ∈ Mc} and
auxiliary variables {Zk :k = 1, . . . , d} are exchangeable, we follow the idea of Zhu
et al. (2011) and have that

P
(∣∣M̂∩Mc

∣∣ ≥ r
) ≤ (pn − sn)!

(pn − sn − r)!r!
/ (pn − sn + d)!

(pn − sn + d − r)!r!
≤ (pn − sn + d − r) × · · · × (pn − sn + 1 − r)

(pn − sn + d) × · · · × (pn − sn + 1)
(A.1)

≤
(

1 − r

pn + d

)d

.

|Mc| = pn − sn > pn − n by the sparsity principle. If we can assume |M| < n,
it follows that

P

( |M̂∩Mc|
|Mc| < α

)
= 1 − P

(∣∣M̂∩Mc
∣∣ ≥ α

∣∣Mc
∣∣)

≥ 1 − P
(∣∣M̂∩Mc

∣∣ ≥ α(pn − n)
)

(A.2)

≥ 1 −
{

1 − α(pn − n)

pn + d

}d

,

where the second inequality follows by (A.1). �
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