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STEADY-STATE SIMULATION OF REFLECTED BROWNIAN
MOTION AND RELATED STOCHASTIC NETWORKS1

BY JOSE BLANCHET AND XINYUN CHEN

Columbia University and Stony Brook University

This paper develops the first class of algorithms that enable unbiased esti-
mation of steady-state expectations for multidimensional reflected Brownian
motion. In order to explain our ideas, we first consider the case of compound
Poisson (possibly Markov modulated) input. In this case, we analyze the com-
plexity of our procedure as the dimension of the network increases and show
that, under certain assumptions, the algorithm has polynomial-expected ter-
mination time. Our methodology includes procedures that are of interest be-
yond steady-state simulation and reflected processes. For instance, we use
wavelets to construct a piecewise linear function that can be guaranteed to be
within ε distance (deterministic) in the uniform norm to Brownian motion in
any compact time interval.

1. Introduction. This paper studies simulation methodology that allows es-
timation, without any bias, of steady-state expectations of multidimensional
reflected processes. Our algorithms are presented with companion rates of
convergence. Multidimensional reflected processes, as we shall explain, are very
important for the analysis of stochastic queueing networks. However, in order to
motivate the models that we study, let us quickly review a formulation introduced
by Kella (1996).

Consider a network of d queueing stations indexed by {1,2, . . . , d}. Suppose
that jobs arrive to the network according to a Poisson process with rate λ, denoted
by (N(t) : t ≥ 0). Specifically, the kth arrival brings a vector of job requirements
W(k) = (W1(k), . . . ,Wd(k))T which are nonnegative random variables (r.v.’s),
and they add to the workload at each station right at the moment of arrival. So if
the kth arrival occurs at time t , the workload of the ith station (for i ∈ {1, . . . , d})
increases by Wi(k) units right at time t . We assume that W = (W(k) :k ≥ 1) is a
sequence of i.i.d. (independent and identically distributed) nonnegative r.v.’s. For
fixed k, the coordinates of W(k) are not necessarily independent; however, W is
assumed to be independent of N(·).

Throughout the paper we shall use boldface to write vector quantities, which
are encoded as columns. For instance, we write y = (y1, . . . , yd)T .
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The total amount of external work that arrives to the ith station up to (and in-
cluding) time t is denoted by

Ji(t) =
N(t)∑
k=1

Wi(k).

Now, assume that the workload at the ith station is processed as a fluid by
the server at a rate ri , continuously in time. This means that if the workload in
the ith station remains strictly positive during the time interval [t, t + dt], then the
output from station i during this time interval equals ri dt . In addition, suppose
that a proportion Qi,j ≥ 0 of the fluid processed by the ith station is circulated
to the j th server. We have that

∑d
j=1 Qi,j ≤ 1, Qi,i = 0, and we define Qi,0 =

1 − ∑d
j=1 Qi,j . The proportion Qi,0 corresponds to the fluid that goes out of the

network from station i.
The dynamics stated in the previous paragraph are expressed formally by a dif-

ferential equation as follows. Let Yi(t) denote the workload content of the ith
station at time t . Then for given Yi(0), we have

dYi(t) = dJi(t) − riI
(
Yi(t) > 0

)
dt + ∑

j :j �=i

Qj,irj I
(
Yj (t) > 0

)
dt

= dJi(t) − ri dt + ∑
j :j �=i

Qj,irj dt(1)

+ riI
(
Yi(t) = 0

)
dt − ∑

j :j �=i

Qj,irj I
(
Yj (t) = 0

)
dt

for i ∈ {1, . . . , d}. It is well known that the resulting vector-valued workload pro-
cess, Y(t) = (Y1(t), . . . , Yd(t))T , is Markovian. The differential equation (1) ad-
mits a unique piecewise linear solution that is right-continuous and has left limits
(RCLL). This can be established by elementary methods, and we shall comment
on far-reaching extensions shortly.

The equations given in (1) take a neat form in matrix notation. This notation is
convenient when examing stability issues and other topics which are related to the
steady-state simulation problem we investigate. In particular, let r = (r1, . . . , rd)T

be the column vector corresponding to the service rates, write R = (I − Q)T and
define

X(t) = J(t) − Rrt,

where J(t) is a column vector with its ith coordinate equal to Ji(t). Then equa-
tion (1) can be expressed as

Y(t) = Y(0) + X(t) + RL(t),(2)

where L(t) is a column vector with its ith coordinate equal to

Li(t) =
∫ t

0
riI

(
Yi(s) = 0

)
ds.
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As mentioned earlier, Y = (Y(t) : t ≥ 0) is a Markov process. Let us assume
that Qn → 0 as n → ∞. This assumption is synonymous with the assumption
that the network is open. In detail, for each i such that λi > 0, there exists a path
(i1, i2, . . . , ik) satisfying that λiQi,i1Qi1,i2 · · ·Qik−1,ik > 0 with ik = 0 and k ≤ d .
In addition, under this assumption the matrix R−1 exists and has nonnegative coor-
dinates. To ensure stability, we assume that R−1EX(1) < 0—inequalities involv-
ing vectors are understood coordinate-wise throughout the paper. It follows from
Theorem 2.4 of Kella and Ramasubramanian (2012) that Y(t) converges in dis-
tribution to Y(∞) as t → ∞, where Y(∞) is an r.v. with the (unique) stationary
distribution of Y(·).

The first contribution of this paper is that we develop an exact sampling algo-
rithm (i.e., simulation without bias) for Y(∞). This algorithm is developed in Sec-
tion 2 of this paper under the assumption that W(k) has a finite moment-generating
function. In addition, we analyze the order of computational complexity (measured
in terms of expected random numbers generated) of our algorithm as d increases,
and we show that it is polynomially bounded.

Moreover, we extend our exact sampling algorithm to the case in which there
is an independent Markov chain driving the arrival rates, the service rates, and
the distribution of job sizes at the time of arrivals. This extension is discussed in
Section 3.

The workload process (Y(t) : t ≥ 0) is a particular case of a reflected (or con-
strained) stochastic network. Although the models introduced in the previous para-
graphs are interesting in their own right, our main interest is the steady-state
simulation techniques for reflected Brownian motion. These techniques are ob-
tained by abstracting the construction formulated in (2). This abstraction is pre-
sented in terms of a Skorokhod problem, which we describe as follows. Let
X =(X(t) : t ≥ 0) with X(0) ≥ 0, and R be an M-matrix R so that the inverse R−1

exists and has nonnegative coordinates. To solve the Skorokhod problem requires
finding a pair of processes (Y,L) satisfying equation (2), subject to:

(i) Y(t) ≥ 0 for each t ,
(ii) Li(·) nondecreasing for each i ∈ {1, . . . , d} and Li(0) = 0,

(iii)
∫ t

0 Yi(s) dLi(s) = 0 for each t .

Eventually we shall take the input process X(·) as a Brownian motion with con-
stant drift v = EX(1) and nondegenerate covariance matrix �. There then exists a
strong solution (i.e., path-by-path and not only in law) to the stochastic differential
equation (SDE) (2) subject to the Skorokhod problem constraints (i) to (iii), and the
initial condition Y(0). This was proved by Harrison and Reiman (1981), who intro-
duced the notion of reflected Brownian motion (RBM). When R is an M-matrix,
R−1μ < 0 is a necessary and sufficient condition for the stability of an RBM; see
Harrison and Williams (1987). Our algorithm for the RBM is motivated by the fact
that in great generality (i.e., only requiring the existence of variances of service
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times and inter-arrival times), the so-called generalized Jackson networks (which
are single-server queues connected with Markovian routing) converge weakly to a
reflected Brownian motion in a heavy traffic asymptotic environment as in Reiman
(1984). Moreover, recent papers from Gamarnik and Zeevi (2006) and Budhiraja
and Lee (2009) have shown that convergence occurs also at the level of steady-
state distributions. Therefore, reflected Brownian motion (RBM) plays a central
role in queueing theory.

The second contribution of this paper is the development of an algorithm that
allows estimation with no bias of E[g(Y(∞))] for positive and continuous func-
tions g(·). Moreover, given ε > 0, we provide a simulation algorithm that outputs
a random variable Yε(∞) that can be guaranteed to be within ε distance (say in the
Euclidian norm) from an unbiased sample Y(∞) from the steady-state distribution
of RBM. This contribution is developed in Section 4 of this paper. We show that
the number of Gaussian random variables generated to produce Yε(∞) is of order
O(ε−aC−2 log(1/ε)) as ε ↘ 0, where aC is a constant only depending on the co-
variance matrix of the Brownian motion; see Section 4.4. In the special case when
the d-dimensional Brownian motion has nonnegative correlations, the number of
random variables generated is of order O(ε−d−2 log(1/ε)).

Our methods allow estimation without bias of E[g(Y(t1),Y(t2), . . . ,Y(tm))]
for a positive function g(·) continuous almost everywhere and for any 0 < t1 <

t2 < · · · < tm. Simulation of RBM has been studied in the literature. In the one-
dimensional setting it is not difficult to sample RBM exactly; this follows, for in-
stance, from the methods in Devroye (2009). The paper of Asmussen, Glynn and
Pitman (1995) also studies the one-dimensional case and provides an enhanced
Euler-type scheme with an improved convergence rate. The work of Burdzy and
Chen (2008) provides approximations of reflected Brownian motion with orthog-
onal reflection (the case in which R = I ).

With regard to steady-state computations, the work of Dai and Harrison (1992)
provides numerical methods for approximating the steady-state expectation by nu-
merically evaluating the density of Y(∞). In contrast to our methods, Dai and Har-
rison’s procedure is based on projections in mean-squared norm with respect to a
suitable reference measure. Since such an algorithm is nonrandomized, it is there-
fore, in some sense, preferable to simulation approaches, which are necessarily
randomized. However, the theoretical justification of Dai and Harrison’s algorithm
relies on a conjecture that is believed to be true but has not been rigorously estab-
lished; see Dai and Dieker (2011). In addition, no rate of convergence is known
for this procedure, even assuming that the conjecture is true.

Finally, we briefly discuss some features of our procedure and our strategy at
a high level. There are two sources of bias that arise in the setting of steady-state
simulation of RBM. First, discretization error in the simulation of the process Y
is inevitable due to the continuous nature of Brownian motion, especially when
the reflection matrix R is not the identity. This issue is present even in finite time
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horizon. The second issue is, naturally, that we are concerned with steady-state
expectations which inherently involve, in principle, an infinite time horizon.

In order to concentrate on removing the bias issues arising from the infinite hori-
zon, we first consider the reflected compound Poisson case where we can simulate
the solution of the Skorokhod problem in any finite interval exactly and without
any bias. Our strategy is based on the dominated coupling from the past (DCFTP).
This technique was proposed by Kendall (2004), following the introduction of
coupling from the past by Propp and Wilson (1996). The idea behind DCFTP is
to construct suitable upper- and lower-bound processes that can be simulated in
stationarity and backward in time. We take the lower bound to be the process iden-
tically equal to zero. We use results from Harrison and Williams (1987) (for the
RBM) and Kella (1996) (for the reflected compound Poisson process), to construct
an upper bound process based on the solution of the Skorokhod problem with re-
flection matrix R = I . It turns out that simulation of the stationary upper-bound
process backward involves sampling the infinite horizon maximum (coordinate-
wise) from t to infinity of a d-dimensional compound Poisson Process with nega-
tive drift. We use sequential acceptance/rejection techniques (based on a exponen-
tial tilting distributions used in rare-event simulation) to simulate from an infinite
horizon maximum process.

Then we turn to RBM. A problem that arises, in addition to the discretization er-
ror given the continuous nature of Brownian motion, is the fact that in dimensions
higher than one (as in our setting) RBM never reaches the origin. Nevertheless, it
will be arbitrarily close to the origin, and we shall certainly leverage off this prop-
erty to obtain simulation that is guaranteed to be ε-close to a genuine steady-state
sample. Now in order to deal with the discretization error we use wavelet-based
techniques. We take advantage of a well-known wavelet construction of Brownian
motion; see Steele (2001).

Instead of simply simulating Brownian motion using the wavelets, which is the
standard practice, we simulate the wavelet coefficients jointly with suitably defined
random times. Consequently, we are able to guarantee with probability one that our
wavelet approximation is ε-close in the uniform metric to Brownian motion in any
compact time interval (note that ε is deterministic and defined by the user; see
Section 4.2).

Finally, we use the following fact. Let process Y be the solution to the Sko-
rokhod problem. Then the process Y, as a function of the input process X, is Lip-
schitz continuous with a computable Lipschitz constant, under the uniform topol-
ogy. These observations combined with an additional randomization, in the spirit
of Beskos, Peluchetti and Roberts (2012), allow estimation with no bias of the
steady-state expectation.

We strongly believe that the use of tolerance-enforced coupling based on
wavelet constructions, as we illustrate here, can be extended more broadly in the
numerical analysis of the Skorokhod and related problems.
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We perform some numerical experiments to validate our algorithms. Our results
are reported in Section 5. Further numerical experiments are pursued in a com-
panion paper, in which we also discuss further implementation issues and some
adaptations, which are specially important in the case of RBM.

The rest of the paper is organized as follows: in Section 2, we consider the
problem of exact simulation from the steady-state distribution of the reflected
compound Poisson process discussed earlier; we then show how our procedure
is adapted without major complications to Markov-modulated input in Section 3;
in Section 4, we continue explaining the main strategy to be used for the reflected
Brownian motion case; finally, the numerical experiments are given in Section 5.

2. Exact simulation of reflected compound Poisson processes. The model
that we consider has been explained at the beginning of the Introduction. We sum-
marize the assumptions that we shall impose next.

Assumptions:
(A1) the matrix R is an M-matrix;
(A2) R−1EX(1) < 0 (recall that inequalities apply coordinate-wise for vectors);
(A3) there exists θ > 0, θ ∈ R

d such that

E
[
exp

(
θT W(k)

)]
< ∞.

We have commented on (A1) and (A2) in the Introduction. Assumption (A3) is
important in order to do exponential tilting when we simulate a stationary version
of the upper-bound process.

In addition to (A1) to (A3), we shall assume that one can simulate from expo-
nential tilting distributions associated to the marginal distribution of W(k). That
is, we can simulate from Pθi

(·) such that

Pθi

(
W1(k) ∈ dy1, . . . ,Wd(k) ∈ dyd

)
= exp(θiyi)

E exp(θiWi(k))
P
(
W1(k) ∈ dy1, . . . ,Wd(k) ∈ dyd

)
,

where θi ∈ R and E exp(θiWi(k)) < ∞. We will determine the value of θi through
assumption (A3b), as given below.

Let us briefly explain our program, which is based on DCFTP. First, we will con-
struct a stationary dominating process (Y+(s) :−∞ < s ≤ 0) that is coupled with
our target process, that is, a stationary version of the process (Y(s) :−∞ < s ≤ 0)

satisfying the Skorokhod problem (2). Under coupling, the dominating process
satisfies

R−1Y(s) ≤ R−1Y+(s),(3)

for each s ≤ 0. We then simulate the process Y+(·) backward up to a time −τ ≤ 0
such that Y+(−τ) = 0. Following the tradition of the CFTP literature, we call a
time −τ such that Y+(−τ) = 0 a coalescence time. Since Y(s) ≥ 0, inequality (3)
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yields Y(−τ) = 0. The next and final step in our strategy is to evolve the solution
Y(s) of the Skorokhod problem (2) forward from s = −τ to s = 0 with Y(−τ) = 0,
using the same input that drives the construction of (Y+(s) :−τ ≤ s ≤ 0) so that Y
and Y+ are coupled. The output is therefore Y(0), which is stationary. The precise
algorithm will be summarized in Section 2.2.

So, a crucial part of the whole plan is the construction of Y+(·) together with
a coupling that guarantees inequality (3). In addition, the coupling must be such
that one can use the driving randomness that defines Y+(·) directly as an input
to the Skorokhod problem (2) that is then used to evolve Y+(·). We shall first
start by constructing a time reversed stationary version of a suitable dominating
process Y+.

2.1. Construction of the dominating process. In order to construct the domi-
nating process Y+(·), we first need the following result attributed to Kella (1996)
(Lemma 3.1).

LEMMA 1. There exists z such that EX(1) < z and R−1z < 0. Moreover, if

Z(t) = X(t) − zt,

and Y+(·) is the solution to the Skorokhod problem

dY+(t) = dZ(t) + dL+(t), Y+(0) = y0,
(4)

Y+(t) ≥ 0, Y+
j (t) dL+

j (t) = 0, L+
j (0) = 0, dL+

j (t) ≥ 0,

then 0 ≤ R−1Y(t) ≤ R−1Y+(t) for all t ≥ 0 where Y(·) solves the Skorokhod
problem

dY(t) = dX(t) + R dL(t), Y(0) = y0,

Y(t) ≥ 0, Yj (t) dLj (t) = 0, Lj (0) = 0, dLj (t) ≥ 0.

We note that computing z from the previous lemma is not difficult. One can
simply pick z = EX(1)+ δ1, where 1 = (1, . . . ,1)T and with δ chosen so that 0 <

δR−11 < −R−1EX(1). In what follows we shall assume that z has been selected
in this form, and we shall assume without loss of generality that E[Z(1)] < 0.

The Skorokhod problem corresponding to the dominating process can be solved
explicitly. It is not difficult to verify [see, e.g., Harrison and Reiman (1981)] that
if Y+(0) = 0, the solution of the Skorokhod problem (4) is given by

Y+(t) = Z(t) − min
0≤u≤t

Z(u) = max
0≤u≤t

(
Z(t) − Z(u)

)
,(5)

where the running maximum is obtained coordinate-by-coordinate.
In order to construct a stationary version of Y+(·) backward in time, we first

extend Z(·) to a two-sided compound Poisson process with Z(0) = 0. We define a
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time-reversal of Z(·) as Z←(t) = −Z(−t). It is easy to check that Z←(·) has sta-
tionary and independent increments that are identically distributed as those of Z(·).

For any given T ≤ 0, we define a process Z←
T via Z←

T (t) = Z←(T + t) for
0 ≤ t ≤ |T |. And for any given y ≥ 0 we define Y+

T (t,y) for 0 ≤ t ≤ |T | to be
the solution to the Skorokhod problem with input process Z←

T , initial condition
Y+

T (0,y) = y and reflection matrix R = I . In detail, Y+
T (·,y) solves

dY+
T (t,y) = dZ←

T (t) + dL+
T (t,y), Y+

T (0,y) = y,

Y+
T (t,y) ≥ 0, Y+

T ,j (t,y) dL+
T ,j (t,y) = 0,(6)

L+
T ,j (0,y) = 0, dL+

T ,j (t,y) ≥ 0.

According to (5), if y = 0,

Y+
T (t,0) = max

0≤u≤t

(
Z←

T (t) − Z←
T (u)

)
.(7)

Since E[Z(1)] < 0, the process Y+ satisfying the Skorokhod problem (4) with
orthogonal reflection (R = I ) possesses a unique stationary distribution. So, we
can construct a stationary version of (Y+(s) :−∞ < s ≤ 0) as

Y+∗ (s) = lim
T →−∞ Y+

T (−T − s,0).(8)

The following representation of Y+∗ (·) is known in the queueing literature; still we
include a short proof to make the presentation self-contained.

PROPOSITION 1. Given any t ≥ 0,

Y+∗ (−t) = −Z(t) + max
t≤u<∞ Z(u).(9)

PROOF. Expression (7) together with the definition of Z←
T (·) yields

Y+
T (−T + s,0) = max

0≤u≤−T +s

(
Z←(s) − Z←(T + u)

) = max
T ≤r≤s

(
Z←(s) − Z←(r)

)
= max

T ≤r≤s

(−Z(−s) + Z(−r)
) = −Z(−s) + max

T ≤r≤s
Z(−r).

Let −s = t ≥ 0 and −r = u ≥ 0, and we obtain Y+
T (−T − t,0) = −Z(t) +

maxt≤u≤−T Z(u). Now send −T → ∞ and arrive at (9), thereby obtaining the
result. �

2.2. The structure of the main simulation procedure. We now are ready to
explain our main algorithm to simulate unbiased samples from the steady-state
distribution of Y. For this purpose, let us first define

M(t) = max
t≤u<∞ Z(u),
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for t ≥ 0 so that Y+∗ (−t) = M(t) − Z(t). Since E[Z(1)] < 0, it follows that
M(0) < ∞, and hence (M(t) : t ≥ 0) is a stochastic process with finite value. We
assume that we can simulate M(·) jointly with Z(·) until the coalescence time τ ,
and we shall explain how to perform such simulation procedures in Section 2.3.

ALGORITHM 1 [Exact sampling of Y(∞)]. Step 1: Simulate (M(t),Z(t))

jointly until time τ ≥ 0 such that Z(τ ) = M(τ ).
Step 2: Set X←−τ (t) = Z(τ ) − Z(τ − t) + z × t , and compute Y−τ (t,0) for 0 ≤

t ≤ τ that solves the Skorokhod problem with input process X←−τ (t) and initial
value Y−τ (0,0) = 0. In detail, Y−τ (t,0) solves

dY−τ (t,0) = dX←−τ (t) + R dL−τ (t,0),

Y−τ (t,0) ≥ 0, Y−τ,j (t,0) dL−τ,j (t,0) = 0,

L−τ,j (0,0) = 0, dL−τ,j (t,0) ≥ 0,

for τ units of time.
Step 3: Output Y−τ (τ,0) which has the distribution of Y(∞).
In step 2, The constant z is chosen according to Lemma 1 such that Z(t) =

X(t)−zt . The time is −τ precisely the coalescence time as in a DCFTP algorithm.
The following proposition summarizes the validity of this algorithm.

PROPOSITION 2. The previous algorithm terminates with probability one, and
its output is an unbiased sample from the distribution of Y(∞).

PROOF. The argument is similar to the classic Lyones construction. Let us
start by first noting that

Y∗+(0) = M(0) = 0 ∨ (−U1μ + W(1) + M′).
Here U1 is the arrival time of the first job and follows an exponential distribution.
M′ = max0≤t<∞ Z(t + U1) − Z(U1) < ∞ is equal in distribution to M(0). Then
P(Y∗+(0) = 0) = P(U1 ≥ maxi (Wi(1) + M ′

i )/μi) > 0 since U1 has infinite sup-
port and is independent of both W(1) and M′. Therefore, Y+(∞) has an atom at
zero. This implies that τ < ∞ with probability one. Actually, we will show later
that E[exp(δτ )] < ∞ for some δ > 0 in Theorem 1. Let T < 0, and note that,
thanks to Lemma 1, for t ∈ (0, |T |]

R−1YT (t,0) ≤ R−1Y+
T (t,0).(10)

In addition, by monotonicity of the solution to the Skorokhod problem in terms of
its initial condition [see Kella and Whitt (1996)], we also have [using the definition
of Y+

T (t,y) from (6) and Y+∗ (T ) from (8)] that

Y+
T (t,0) ≤ Y+

T

(
t,Y+∗ (T )

) = Y+∗ (T + t).(11)
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So Y+∗ (T + t) = 0 implies Y+
T (t,0) = 0. One step further, as R−1 has nonnegative

coordinates, equations (10) and (11) imply that YT (t,0) = 0. Consequently, if
−T > τ ≥ 0,

YT

(|T | − τ,0
)= 0,

which in particular yields that YT (−T ,0) = Y−τ (τ,0). We then obtain that

lim
T →−∞ YT (−T ,0) = Y−τ (τ,0),

thereby concluding that Yτ (−τ,0) follows the distribution Y(∞) as claimed. �

Step 2 in Algorithm 1.1 is straightforward to implement because the process
X←−τ (·) is piecewise linear, and the solution to the Skorokhod problem, namely
Y−τ (·,0), is also piecewise linear. The gradients are simply obtained by solving
a sequence of linear system of equations which are dictated by evolving the ordi-
nary differential equations given in (1). Therefore, the most interesting part is the
simulation of the stochastic object (M(t) : 0 ≤ t ≤ τ) in step 1, as we will discuss
in Section 2.3.

2.3. Simulation of the stationary dominating process. As customary, we use
the notation E0(·) or P0(·) to indicate the conditioning Z(0) = 0. We define
φi(θ) = E0[exp(θZi(1))] to be the moment-generating function of Zi(1), and let
ψi(θ) = log(φi(θ)). In order to simplify the explanation of the simulation proce-
dure to sample (M(t) : t ≥ 0), we introduce the following assumption:

Assumption: (A3b) Suppose that in every dimension i there exists θ∗
i ∈ (0,∞)

such that

ψi

(
θ∗
i

) = logE0 exp
(
θ∗
i Zi(1)

) = 0.

This assumption is a strengthening of assumption (A3), and it is known as
Cramer’s condition in the large deviations literature. As we shall explain at the
end of Section 2.3, it is possible to dispense this assumption and only work under
assumption (A3). For the moment, we continue under assumption (A3b).

We wish to simulate (Z(t) : 0 ≤ t ≤ τ) where τ is a time such that

Z(τ ) = M(τ ) = max
s≥τ

Z(s) and hence ∀0 ≤ t ≤ τ, M(t) = max
t≤s≤τ

Z(s).

Recall that −τ is precisely the coalescence time since Y+∗ (−τ) = 0. We also keep
in mind that our formulation at the beginning of the Introduction implies that

Z(t) = J(t) − Rrt − zt =
N(t)∑
k=1

W(k) − Rrt − zt,

where z is selected according to Lemma 1. Define

μ = Rr + z,
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and let μi > 0 be the ith coordinate of μ. In addition, we assume that we can
choose a constant m > 0 large enough such that

d∑
i=1

exp
(−θ∗

i m
)
< 1.(12)

Define

Tm = inf
{
t ≥ 0 :Zi(t) ≥ m, for some i

}
.(13)

Now we are ready to propose the following procedure to simulate τ :

ALGORITHM 1.1 (Simulating the coalescence time). The output of this algo-
rithm is (Z(t) : 0 ≤ t ≤ τ), and the coalescence time τ . Choose the constance m

according to (12):

(1) Set τ = 0, Z(0) = 0.
(2) Generate an inter-arrival time U distributed Exp(λ), and sample W =

(W1, . . . ,Wd) independent of U .
(3) Let Z(τ + t) = Z(τ )− tμ for 0 ≤ t < U and Z(τ +U) = Z(τ )+ W −Uμ.
(4) If there exists an index i, such that Wi − Uμi ≥ −m, then return to

step 2 and reset τ ←− τ + U . Otherwise, sample a Bernoulli I with parameter
p = P0(Tm < ∞).

(5) If I = 1, simulate a new conditional path (C(t) : 0 ≤ t ≤ Tm) following the
conditional distribution of (Z(t) : 0 ≤ t ≤ Tm) given that Tm < ∞ and Z(0) = 0.
Let Z(τ + t) = Z(τ ) + C(t) for 0 ≤ t ≤ Tm, and reset τ ←− τ+ Tm. Return to
step 2.

(6) Else, if I = 0, stop and return τ along with the feed-in path (Z(t) : 0 ≤ t ≤
τ).

We shall now explain how to execute the key steps in the previous algorithm,
namely, steps 4 and 5.

2.3.1. Simulating a path conditional on reaching a positive level in finite
time. The procedure that we shall explain now is an extension of the one-
dimensional procedure given in Blanchet and Sigman (2011); see also the related
one-dimensional procedure by Ensor and Glynn (2000). The strategy is to use ac-
ceptance/rejection. The proposed distribution is based on importance sampling by
means of exponential tilting. In order to describe our strategy, we need to introduce
some notation.

We think of the probability measure P0(·) as defined on the canonical space
of right-continuous with left-limits R

d -valued functions, namely, the ambient
space of (Z(t) : t ≥ 0) which we denote by 
 = D[0,∞)(R

d). We endow the
probability space with the Borel σ -field generated by the Skorokhod J1 topol-
ogy; see Billingsley (1999). Our goal is to simulate from the conditional law of
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(Z(t) : 0 ≤ t ≤ Tm) given that Tm < ∞ and Z(0) = 0, which we shall denote by P ∗
0

in the rest of this part.
Now let us introduce our proposed distribution, P ′

0(·), defined on the space 
′ =
D[0,∞)(R

d) × {1,2, . . . , d}. We endow the probability space with the product σ -
field induced by the Borel σ -field generated by the Skorokhod J1 topology and all
the subsets of {1,2, . . . , d}. So, a typical element ω′ sampled under P ′

0(·) is of the
form ω′ = ((Z(t) : t ≥ 0), Index), where Index ∈ {1,2, . . . , d}. The distribution of
ω′ induced by P ′

0(·) is described as follows. First, set

P ′
0(Index = i) = wi := exp(−θ∗

i m)∑d
j=1 exp(−θ∗

j m)
.(14)

Now, given Index = i, for every set A ∈ σ(Z(s) : 0 ≤ s ≤ t),

P ′
0(A| Index = i) = E0

[
exp

(
θ∗
i Zi(t)

)
IA

]
.

So, in particular, the Radon–Nikodym derivative (i.e., the likelihood ratio) between
the distribution of ω = (Z(s) : 0 ≤ s ≤ t) under P ′

0(·) and P0(·) is given by

dP ′
0

dP0
(ω) =

d∑
i=1

wi exp
(
θ∗
i Zi(t)

)
.

The distribution of (Z(s) : s ≥ 0) under P ′
0(·) is precisely the proposed distribu-

tion that we shall use to apply acceptance/rejection. It is straightforward to simu-
late under P ′

0(·). First, sample Index according to the distribution (14). Then, con-
ditional on Index = i, the process Z(·) also follows a compound Poisson process.
Given Index = i, under P ′

0(·), it follows that J(t) can be represented as

J(t) =
N̂(t)∑
k=1

W′(k),(15)

where N̂(·) is a Poisson process with rate λE[exp(θ∗
i Wi)]. In addition, the distri-

bution of W′ is obtained by exponential titling such that for all A ∈ σ(W),

P ′(W′ ∈ A
) = E

[
exp

(
θ∗
i Wi

)
IA

]
.(16)

In sum, conditional on Index = i, we simply let

Z(t) =
N̂(t)∑
k=1

W′(k) − μt.(17)

Now, note that we can write

E′
0
(
ZIndex(t)

) =
d∑

i=1

E0
(
Zi(t) exp

(
θ∗
i Zi(t)

))
P ′(Index = i)

=
d∑

i=1

dφi(θ
∗
i )

dθ
wi > 0,
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where the last inequality follows by convexity of ψk(·) and by definition of θ∗
k . So,

we have that ZIndex(t) ↗ ∞ as t ↗ ∞ with probability one under P ′
0(·) by the law

of large numbers. Consequently Tm < ∞ a.s. under P ′
0(·).

Recall that P ∗
0 (·) is the conditional law of (Z(t) : 0 ≤ t ≤ Tm) given that Tm <

∞ and Z(0) = 0. In order to assure that we can indeed apply acceptance/rejection
theory to simulate from P ∗

0 (·), we need to show that the likelihood ratio dP0/dP ′
0

is bounded:

dP ∗
0

dP ′
0

(
Z(t) : 0 ≤ t ≤ Tm

)
= 1

P0(Tm < ∞)
× dP0

dP ′
0

(
Z(t) : 0 ≤ t ≤ Tm

)
(18)

= 1

P0(Tm < ∞)
× 1∑d

i=1 wi exp(θ∗
i Zi(Tm))

.

Upon Tm, there is an index L (L may be different from Index) such that
exp(θ∗

LZL(Tm)) ≥ exp(θ∗
Lm), therefore

1∑d
i=1 wi exp(θ∗

i Zi(Tm))
≤ 1

wL exp(θ∗
Lm)

=
d∑

i=1

exp
(−θ∗

i m
)
< 1,(19)

where the last inequality follows by (12). Consequently, plugging (19) into (18)
we obtain that

dP ∗
0

dP ′
0

(
Z(t) : 0 ≤ t ≤ Tm

) ≤ 1

P0(Tm < ∞)
.(20)

We now are ready to summarize our acceptance/rejection procedure and the proof
of its validity.

ALGORITHM 1.1.1 (Simulation of paths conditional on Tm < ∞).
Step 1: Sample (Z(t) : 0 ≤ t ≤ Tm) according to P ′

0(·) as indicated via equa-
tions (14), (15) and (17).

Step 2: Given (Z(t) : 0 ≤ t ≤ Tm), simulate a Bernoulli I with probability

1∑d
i=1 wi exp(θ∗

i Zi(Tm))
.

[Note that the previous quantity is less than unity due to (19).]
Step 3: If I = 1, output (Z(t) : 0 ≤ t ≤ Tm) and Stop, otherwise go to step 1.

PROPOSITION 3. The probability that I = 1 at any given call of step 3 in
Algorithm 1.1.1 is P0(Tm < ∞). Moreover, the output of Algorithm 1.1.1 follows
the distribution P ∗

0 .
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PROOF. The result follows directly from the theory of acceptance/rejection;
see Asmussen and Glynn (2007), pages 39–42. According to it, since the two prob-
ability measures P ∗

0 and P ′
0 satisfy

dP ∗
0

dP ′
0

≤ c = 1

P0(Tm < ∞)
,

as indicated by (18) and (20), one can sample exactly from P ∗
0 by the so-called

acceptance/rejection procedure:

(1) Generate i.i.d. samples {ωi} from P ′
0 and i.i.d. random numbers Ui ∼

U [0,1] independent of {ωi}.
(2) Define N = inf{n ≥ 1 :Un ≤ c−1 dP ∗

0
dP ′

0
(ωi)}.

(3) Output ωN .

The output wN follows exactly the law P ∗
0 , and N is a geometric random variable

with mean c; in other words, the probability of accepting a proposal is c. In our
specific case, we have c = 1/P0(Tm < ∞), and according to (18) the likelihood
ration divided by constant c is

c−1 dP ∗
0

dP ′
0
(ω) = 1∑d

i=1 wi exp(θ∗
i Zi(Tm))

.

Therefore, Algorithm 1.1.1 has acceptance probability P(I = 1) = P0(Tm < ∞),
and it generates a path exactly from P ∗

0 upon acceptance. �

As the previous result shows, the output of the previous procedure follows ex-
actly the distribution of (Z(t) : 0 ≤ t ≤ Tm) given that Tm < ∞ and Z(0) = 0.
Moreover, the Bernoulli random variable I has probability P0(Tm < ∞) of suc-
cess. So this procedure actually allows both steps 4 and 5 in Algorithm 1.1 to be
executed simultaneously. In detail, one simulates a path following the law of P ′

0
until Tm, and then, if the proposed path is accepted, it can be concluded that Tm

is finite and the proposed path is exactly a sample path following the law of P ∗
0 ;

otherwise one can conclude that T = ∞.

REMARK. As mentioned earlier, assumption (A3b) is a strengthening of as-
sumption (A3). We can carry out our ideas under assumption (A3) as follows.
First, instead of (M(t) : t ≥ 0), we consider the following process Za(·) and Ma(·)
defined by

Za(t) := Z(t) + at, Ma(t) = max
s≥t

(
Za(s)

)
.

We shall explain how to choose the nonnegative vector a = (a1, a2, . . . , ad)T in a
moment. Note that we can simulate (M(t) : t ≥ 0) jointly with (Z(t) : t ≥ 0) if we
are able to simulate (Ma(t) : t ≥ 0) jointly with (Za(t) : t ≥ 0). Now note that ψi(·)
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is strictly convex and that ψ̇i(0) < 0, so there exists ai > 0 large enough to force
the existence of θ∗

i > 0 such that E exp(θ∗
i Zi(1) + aiθ

∗
i ) = 1, but at the same time

small enough to keep E(Zi(1) + ai) < 0; again, this follows by strict convexity
of ψi(·) at the origin. So, if assumption (A3b) does not hold, but assumption (A3)
holds, one can then execute Algorithm 1.1 based on the process Za(·).

2.4. Computational complexity. In this section we provide a complexity anal-
ysis of our algorithm. We first make some direct observations assuming the dimen-
sion of the network remains fixed. In particular, we note that the expected number
of random variables simulated has a finite moment-generating function in a neigh-
borhood of the origin.

THEOREM 1. Suppose that (A1) to (A3) are in force. Let τ be the coalescence
time, and N be the number of random variables generated to terminate the overall
procedure to sample Y(∞). Then there exists δ > 0 such that

E exp(δτ + δN) < ∞.

PROOF. This follows directly from classical results about random walks; see
Gut (2009). In particular it follows that E′

0(exp(δTm)) < ∞. The rest of the proof
follows from elementary properties of compound geometric random variables aris-
ing from the acceptance/rejection procedure. �

We are more interested, however, in complexity properties as the network in-
creases. We shall impose some regularity conditions that allow us to consider a
sequence of systems indexed by the number of dimensions d . We shall grow the
size of the network in a meaningful way; in particular, we need to make sure that
the network remains stable as the dimension d increases. Additional regularity will
also be imposed.

Assumptions:
There exists two constants 0 < δ < 1 < H < ∞ independent of d satisfying the

following conditions:
(C1) R−1E[X(1)] < −2δR−11 in each network.
(C2) Let θ∗

i for i = 1, . . . , d be the tilting parameters as defined in assump-
tion (A3b), then

E exp
[(

δ + θ∗
i

)
Wi

] ≤ H < ∞
and

H > δ + θ∗
i for all 1 ≤ i ≤ d.

(C3) The arrival rate λ ∈ (δ,H).
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REMARK. Assumption (C1) implies that μ = Rr + z > δ1, where z is defined
according to Lemma 1. In detail, we choose z = E[X(1)]+ δ1 and therefore, Rr+
z = E[J(1)] + δ1 > δ1.

Note that x ≤ exp(ax)/(ae) for any a > 0 and x ≥ 0. Plugging in a = θ∗
i + δ,

we have E[Wi] ≤ E[exp((θ∗
i + δ)Wi)]/(e(δ + θ∗

i )) < H/(eδ) and therefore

μ = λE[W] + δ1 <
(
H 2/(eδ) + δ

)
1 = H ′1,

where H ′ = H 2/(eδ) + δ. Similarly, we also have that E[W 2
i ] ≤ E[4 exp((θ∗

i +
δ)Wi)]/(e2(θ∗

i + δ)2) ≤ 4H/(e2δ2), and then we can compute

E
[
Zi(1)2] = E

[(
N(1)∑
k=1

Wi(k) − μi

)2]
≤ 2E

[
μ2

i +
(

N(1)∑
k=1

Wi(k)

)2]

≤ 2μ2
i + 2

(
λ + λ2) 4H

e2δ2 ≤ 2H ′2 + 8(H 2 + H 3)

e2δ2 := H ′′.

In sum, we can conclude that

max
1≤i≤d

E0
[
Zi(1)2] ≤ H ′′.

In the complexity analysis, we shall only use the fact that H , H ′ and H ′′ are
constants independent of d . As a result, for the simplicity of notation, we shall
write H for H , H ′ and H ′′ in the rest of this section and assume, without loss of
generality, that

μ ≤ H1 and max
1≤i≤d

E0
[
Zi(1)2] ≤ H.

As discussed in Section 2.3.1, in Algorithm 1.1, we actually do steps 4 and 5
simultaneously. Therefore, we can rewrite Algorithm 1.1 as follows:

ALGORITHM 1.1′ (Simulate the coalescence time).

(1) Set τ = 0, Z(0) = 0, N = 0.
(2) Simulate a sample from W − Uμ. Here U is exponentially distributed with

mean 1/λ and independent of W. Record the value of Z(t) for τ ≤ t ≤ τ + U .
Reset N ← N + 1, Z(τ + U) ← Z(τ ) + W − Uμ, τ ← τ + U .

(3) If there exists some index i, such that Wi − Uri ≥ −m, return to step 2.
(4) Otherwise, simulate a random walk {C(n)} such that C(0) = 0 and C(n) =

C(n − 1) + W′(n) − U ′(n)μ, where W′(n) − U ′(n)μ are independent and identi-
cally distributed as W′ − U ′μ under the tilted measure P ′ defined in Section 2.3.1
through (15) to (17). Perform the simulation until Nm = inf{n ≥ 0 :Ci(n) >

m for some i}.
(5) Reset N ← N + Nm. Compute p = 1/

∑d
k=1 wk exp(θ∗

k Ck(Nm)), and sam-

ple a Bernoulli I with probability p. If I = 1, Z(τ +∑Nm

k=1 U ′(k)) = Z(τ )+C(Nm)

and τ = τ +∑Nm

k=1 U ′(k). Return to step 2.
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(6) If I = 0, stop and output τ with (Z(t) : 0 ≤ t ≤ τ).

In this algorithm, the total number of random variables required to generate
is d · N . Use N(d) instead of N to emphasize the dependence on the number
of dimensions d . The following result shows that our algorithm has polynomial
complexity with respect to d:

THEOREM 2. Under assumptions (C1) to (C3),

E
[
N(d)

] = O
(
dγ ) as d → ∞,

for some γ depending on δ and H .

Denote the number of Bernoulli’s generated in step 5 by Nb and the number of
random variables generated before executing step 4 in a single iteration by Na . By
Wald’s identity, we can conclude

E
[
N(d)

] = E[Nb](E[Na] + E[Nm]).
The following proposition gives an estimate for E[Nm].

PROPOSITION 4. Under assumptions (C1) to (C3),

E[Nm] = O(logd),

and the coefficient in the bound depends only on δ and H .

PROOF. First, let us consider the cases in which Wi are uniformly bounded
from above by some constant B .

Recall that φi(θ) = E0[exp(θZi(1))]. Given Index = i, one can check that
E′

0[Ci(1)] = φ̇i(θ
∗
i )/(λE[exp(θ∗

i Wi)]) ≥ φ̇i(θ
∗
i )/(λH). Nm is a stopping time and

Ci(Nm) < m + B . By the optional sampling theorem, we have

E[Nm] =
d∑

i=1

ωi

E′
0[Ci(Nm)]
E′

0[Ci(1)] ≤
d∑

i=1

ωi

λH(m + B)

φ̇i(θ
∗
i )

.

For each 1 ≤ i ≤ d , we are going to estimate a lower bound for φ̇(θ∗
i ). Using

Taylor’s expansion around 0, we have

φi

(
θ∗
i

) = φi(0) + θ∗
i φ̇i(0) + (θ∗

i )2

2
φ̈i

(
u1θ

∗
i

)
,

for some u1 ∈ [0,1]. As φi(θ
∗
i ) = φi(0) = 1, we have

θ∗
i φ̇i(0) + (θ∗

i )2

2
φ̈i

(
u1θ

∗
i

) = 0.
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As θ∗
i > 0,

φ̇i(0) + θ∗
i

2
φ̈i

(
u1θ

∗
i

) = 0.(21)

Under assumption (C1), φ̇i(0) = E0[Zi(1)] < −δ. Under assumption (C2), we
have that

E0
[
exp

((
δ + θ∗

i

)
Zi(1)

)] ≤ exp
(
λ log

(
E
[
exp

((
δ + θ∗

i

)
Wi

)]))
≤ Hλ ≤ HH � H1 < ∞.

As a result,

φ̈i

(
u1θ

∗
i

) = E
[
Zi(1)2 exp

(
u1θ

∗
i Zi(1)

)]
≤ E

[
Zi(1)2I

(
Zi(1) ≤ 0

)]+ E
[
Zi(1)2 exp

(
θ∗
i Zi(1)

)
I
(
Zi(0) > 0

)]
≤ E

[
Zi(1)2]+ E

[
Zi(1)2 exp

(
θ∗
i Zi(1)

)
I
(
Zi(0) > 0

)]
≤ E

[
Zi(1)2]+ E

[
Zi(1)2 exp

(−δZi(1)
) · exp

((
δ + θ∗

i

)
Zi(1)

)]
.

Besides, one can check that for any x > 0, x2 exp(−δx) ≤ 4e−2/δ2. Therefore,

φ̈i

(
uθ∗

i

) ≤ E
[
Zi(1)2]+ 4

δ2 e−2E
[
exp

((
δ + θ∗

i

)
Zi(1)

)]
≤ H + 4

δ2 e−2H1.

Plug this result into equation (21) and use that φ̇i(0) < −δ to complete the inequal-
ity

θ∗
i ≥ 2δ

H + 4e−2H1/δ2 .(22)

On the other hand, by a Taylor expansion of φi(·) around θ∗
i , we can conclude

that

φ̇i

(
θ∗
i

) = θ∗
i

2
φ̈
(
u2θ

∗
i

)
,(23)

for some u2 ∈ [0,1]. Note that

φ̈i

(
u2θ

∗
i

) = E0
[
Zi(1)2 exp

(
u2θ

∗
i Zi(1)

)] ≥ E0
[
Zi(1)2 exp

(
u2θ

∗
i Zi(1)

)
I (U > 1)

]
≥ E

[
μ2

i exp
(−θ∗

i μi

)
I (U > 1)

] ≥ μ2
i exp(−Hμi) exp(−λ)

≥ δ2 exp
(−H 2 − H

)
.

Thus (22) together with (23) imply

φ̇i

(
θ∗
i

) ≥ 1

2
θ∗
i δ2e−H 2−H ≥ δ3e−H 2−H

H + 4e−2H1/δ2 .(24)
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Note that for lower bound (24) to hold, we do not require Wi to be bounded.
Therefore,

E[Nm] ≤
d∑

i=1

ωi

λH(m + B)

φ̇i(θ
∗
i )

≤ λH(m + B)(H + 4e−2H1/δ
2)

δ3e−H 2−H
,

as ωi > 0 and
∑

i ωi = 1.
By (22), we have that θ∗

i are all uniformly bounded away from 0, so we can
choose m = O(logd/mini θ

∗
i ) = O(logd) to satisfy equation (12). Now we can

conclude that E[Nm] = O(logd) as B , H and δ are all constants independent of d .
Now, let us consider the more general cases when the Wi’s are not bounded

from above. Recall that W′ is derived from W by exponential tilting; see (16). For
any B > 0, define W̃′ by W̃ ′

i = W ′
i I (W ′

i ≤ B) as the truncation of W′, and define
the random walk C̃i(n) = C̃i(n−1)+ W̃ ′

i (n)−U ′(n)μi . Let Ñm = inf{n : C̃i(n) >

m for some i}. Since C̃i(n) ≤ Ci(n), we have Ñm ≤ Nm. Our goal is to show that
one can choose a proper value for B such that E[Ñm] = O(logd) and hence so is
E[Nm].

Since W̃ ′
i is bounded from above by B , by the optimal stopping theorem, we

have

E[Ñm] ≤
d∑

i=1

ωi

m + B

E[C̃i(1)] .

By definition,

E
[
C̃i(1)

] = E
[(

WiI (Wi ≤ B) − Uμi

)
exp

(
θ∗
i

(
WiI (Wi ≤ B) − Uμi

))]
.

Since Uμi ≥ 0, we have

E
[(

WiI (Wi ≤ B) − Uμi

)
exp

(
θ∗
i

(
WiI (Wi ≤ B) − Uμi

))]
≥ E

[
(Wi − Uμi) exp

(
θ∗
i (Wi − Uμi)

)]− E
[
Wi exp

(
θ∗
i Wi

)
I (Wi > B)

]
.

By assumption (C2), δ and H > 0 are constants independent of d such that

E
[
exp

((
δ + θ∗

i

)
Wi

)] ≤ H < ∞.

As a consequence,

E
[
Wi exp

(
θ∗
i Wi

)
I (Wi > B)

] ≤ E
[
Wi exp(−δWi)I (Wi > B) exp

((
δ + θ∗

i

)
Wi

)]
≤ max

w>B

{
w exp(−δw)

}
E
[
exp

((
δ + θ∗

i

)
Wi

)]
≤ B exp(−δB)H

for all B > 1/δ. Recall that by (24),

E
[
(Wi − Uμi) exp

(
θ∗
i (Wi − Uμi)

)] = E
[
Ci(1)

] ≥ φ̇i

(
θ∗
i

)
/(λH)

≥ δ3e−H 2−H

λH(H + 4e−2H1/δ2)
,
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where H1 = HH . Therefore, we can take B = O(−1
δ

log( δ3e−H2−H

2λH 2(H+4δe−2H1/δ
2)

))

independent of d such that

B exp(−δB)H <
δ3e−H 2−H

2λH(H + 4e−2H1/δ2)
and hence

E
[
C̃i(1)

] ≥ δ3e−H 2−H

2λH(H + 4e−2H1/δ2)
.

In the end, since m = O(log(d)), we have

E[Nm] ≤ E[Ñm] ≤ 2λH(m + B)(2H + 8e−2H1/δ
2)

δ3e−H 2−H
= O(logd). �

Now we give the proof of the main result in this subsection.

PROOF OF THEOREM 2. Recall that

E[N ] = E[Nb](E[Na] + E[Nm]).
Since Nb is the number of trials required to obtain I = 0, E[Nb] = 1/P (I = 0).
As discussed in Section 2.3.1, P(I = 0) ≥ 1 −∑d

i=1 exp(−θ∗
i m) and hence

E[Nb] ≤ 1

1 −∑d
i=1 exp(−θ∗

i m)
≤ 1

1 − 1/d

if we take m = 2 logd/mini θ
∗
i .

Similarly, we have E[Na] = 1/P (U > (m + Wi)/μi,∀i). For any K > 0,

P

(
U >

m + Wi

μi

,∀i

)
≥ P

(
U >

m + K

mini μi

;Wi ≤ K for all i

)
.

Under assumption (C2), we have

P(Wi ≤ K for all i) ≥ 1 −
d∑

i=1

P(Wi > K) ≥ 1 − dH exp (−Kδ).

Under assumption (C3), we have

P

(
U >

m + K

mini μi

)
≥ exp

(
−H(m + K)

mini μi

)
.

As U and W are independent,

P

(
U >

m + Wi

μi

,∀i

)
≥ exp

(
−H(m + K)

mini μi

)(
1 − dH exp(−Kδ)

)
.

Choosing K = (2 logd + logH)/δ and plugging in m = 2 logd/mini θ
∗
i , we get

E[Na] ≤ 1

1 − 1/d
d(2H/(mini μi mini θ∗

i )+2H/(δ mini μi ))HH/(δ mini μi ).
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By Proposition 4 we have E[Nm] = O(logd). In summary, we have

E[N ] = E[Nb](E[Na] + E[Nm]) = O

((
1

1 − 1/d

)2

logdd2H/(mini μi mini θ∗
i )

)
= O

(
d1+2H/(mini μi mini θ∗

i )).
As discussed in the proof of Proposition 4, θ∗

i ≥ δ/(H +4e−2H1/δ
2) and μi ≥ δ

are uniformly bounded away from 0, therefore,

E[N ] = O
(
d1+2H(H+4e−2H1/δ)/δ

2)
. �

3. Extension to Markov-modulated processes. We shall briefly explain how
our development in Section 2, specifically Algorithm 1, can be implemented be-
yond input with stationary and independent increments. As an example, we shall
concentrate on Markov-modulated stochastic fluid networks. Our extension to
Markov-modulated networks is first explained in the one-dimensional case, and
later we will indicate how to treat the multidimensional setting.

Let (Î (t) : t ≥ 0) be an irreducible continuous-time Markov chain taking values
on the set {1, . . . , n}. We assume that, conditional on Î (·), the number of arrivals,
N̂(·), follows a time-inhomogeneous Poisson process with rate λ

Î(·). We further

assume that
∫ t

0 λ
Î(s)

ds > 0 with positive probability. The process N̂(·) is said to

be a Markov-modulated Poisson process with intensity λ
Î(·). Define Âk to be the

time of the kth arrival, for k ≥ 1; that is, Âk = inf{t ≥ 0 : N̂(t) = k}.
We assume that the kth arrival brings a job requirement equal to Ŵ (k). We

also assume that the Ŵ (k)’s are conditionally independent given the process Î (·).
Moreover, we assume that the moment-generating function φi(·) defined via

φi(θ) = E
(
exp

(
θX̂(k)

)|Î (Âk) = i
)
,

is finite in a neighborhood of the origin. In simple words, the job requirement of
the kth arrival might depend upon the environment, Î (·), at the time of arrival. But,
conditional on the environment, the job sizes are independent. Finally, we assume
that the service rate at time t is equal to μ

Î(t)
≥ 0.

Let X̂(t) = ∑N̂(t)
k=1 Ŵ (k)−∫ t

0 μ
Î(s)

ds. Then the workload process, (Y (t) : t ≥ 0),
can be expressed as

Y(t) = X̂(t) − inf
0≤s≤t

X̂(s),

assuming that Y(0) = 0. In order for the process Y(·) to be stable, in the sense of
having a stationary distribution, we assume that

∑
i πi(λiE[Ŵ |Î = i] − μi) < 0,

where πi is the stationary distribution of the Markov chain Î . Following the same
argument as in Section 2, we can construct a stationary version of the process Y(·)
by a time reversal argument.
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Since Î (·) is irreducible, one can define its associated stationary time-reversed
Markov chain I (·) with transition rate matrix A; for the existence and detailed de-
scription of such reversed chain, see Chapter 2.5 of Asmussen (2003). Let us write
N(·) to denote a Markov-modulated Poisson process with intensity λI (·), and let
Ak = inf{t ≥ 0 :N(t) = k}. We consider a sequence (W(k) :k ≥ 1) of conditionally
independent random variables representing the service requirements (backward in
time) such that φi(θ) = E(exp(θW(k))|I (Ak) = i).

We then can define Z(t) = ∑N(t)
k=1 W(k)− ∫ t

0 μI(s) ds. Following the same argu-
ments as in Section 2, we can run a stationary version Y ∗ of Y backward via the
process

Y ∗(−t) = sup
s≥t

(
Z(s) − Z(t)

)
.

Therefore, Y ∗(−t) can be simulated exactly as long as a convenient change of
measure can be constructed for the process (I (·),Z(·)), so that a suitable adapta-
tion of Algorithm 1.1.1 can be applied. Once the adaptation of Algorithm 1.1.1 is
in place, the adaptation of Algorithms 1.1 and 1 is straightforward.

In order to define such change of measure, let us define the matrix M(θ, t) ∈
R

n×n, for t ≥ 0, via

Mij (θ, t) = Ei

[
exp

(
θZ(t)

); I (t) = j
]
,

where the notation Ei(·) means that I (0) = i. Note that M(·, t) is well defined
in a neighborhood of the origin. In what follows we assume that θ is such that all
coordinates of M(θ, t) are finite.

It is known [see, e.g., Chapters 11.2 and 13.8 of Asmussen (2003) and the ref-
erences therein] that M(θ, t) = exp(tG(θ)) where the matrix G is defined by

Gij (θ) =
{Aij , if i �= j ,
Aii − μiθ + λiφi(θ), if i = j.

Besides, G(θ) has a unique eigenvalue β(θ) corresponding to a strictly positive
eigenvector (u(i, θ) : 1 ≤ i ≤ n). The eigenvalue β(θ) has the following properties
which follow from Propositions 2.4 and 2.10 in Chapter 11.2 of Asmussen (2003):

LEMMA 2.

(1) β(θ) is convex in θ and β̇(θ) is well defined.
(2) limt→∞ Z(t)/t = β̇(0) = limt→∞ X̂(t)/t < 0.
(3) (M(t, θ) : t ≥ 0) defined via

M(t, θ) = u(I (t), θ)

u(I (0), θ)
exp

(
θZ(t) − tβ(θ)

)
is a martingale.
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As explained in Chapter 13.8 of Asmussen (2003), the martingale M(·) induces
a change of measure for the process (I (·),Z(·)) as we shall explain. Let P be
the probability law of (I (·),Z(·)), and define a new probability measure P̃ for
(I (s),Z(s) : s ≤ t) as dP̃ = M(t, θ) dP .

We now describe the law of (I (·),Z(·)) under P̃ . The process I (·) is a contin-
uous time Markov chain with rate matrix Ãij = Aij u(j, θ)/u(i, θ) for i �= j (and
Ãii = −∑

j �=i Ãij ). In addition,

Z(t)
d=

Ñ(t)∑
k=1

W̃ (k) −
∫ t

0
μI(s) ds,

where Ñ is a Markov-modulated Poisson process with rate at time t equal to
φI (t)(θ)λ(I (t)), and the W̃ (k)’s are conditionally independent given I (·) with mo-
ment generating function φ̃i(·) defined via

φ̃i(η; θ) = Ẽ
(
exp

(
ηW̃(k)

)|Ak = i
) = φi(η + θ)/φi(η),

which is finite in a neighborhood of the origin. In addition, Z(t)/t → β̇(θ) un-
der P̃ .

Because of the stability condition of the system, we have that β̇(0) < 0. Then,
following the same argument as in the remark given at the end of Section 2.3,
we may assume the existence of the Cramer root θ∗ > 0 such that β(θ∗) = 0 and
β̇(θ∗) > 0. The change of measure that allows adaption of Algorithm 1.1.1 is given
by selecting θ∗ > 0 as indicated. Now, select m > 0 such that

K := exp
(−θ∗m

)
max
i,j

u(i, θ∗)
u(j, θ∗)

≤ 1.(25)

We will use the notation P0,i (·) to denote the law P(·) conditional on Z(0) = 0
and I (0) = i. Let us write P ∗

0,i (·) to denote the law of (Z(t) : 0 ≤ t ≤ Tm) [under

P0,i (·)] conditional on Tm < ∞. Further, we write P̃0,i(·) to denote the law of
P̃ (·), selecting θ = θ∗, conditional on Z(0) = 0 and I (0) = i. Then we have that
P̃0,i (Tm < ∞) = 1 [by Lemma 2 since β̇(θ∗) > 0], and therefore [by (25)], we
have

dP ∗
0,i

dP̃0,i

((
I (t),Z(t)

)
: 0 ≤ t ≤ Tm

)
= u(i, θ∗)

u(I (Tm), θ∗)
× exp(−θ∗Z(Tm))I (Tm < ∞)

P0,i(Tm < ∞)

≤ K

P0,i (Tm < ∞)
≤ 1

P0,i (Tm < ∞)
.

It is clear from this identity, which is completely analogous to identities (18)
and (20), which are the basis for Algorithm 1.1.1, that the corresponding adap-
tation to our current setting follows.
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For the d-dimensional case (d > 1), we first assume the existence of the Cramer
root θ∗

j > 0 for each dimension j ∈ {1, . . . , d}. In this setting we also must
compute the corresponding positive eigenvector (uj (i, θ

∗
j ) : 1 ≤ i ≤ n) for each

j ∈ {1, . . . , d}. The desired change of measure that allows the adaptation of Al-
gorithm 1.1.1 is just a mixture of changes of measures such as those described
above induced by M(·, θ∗

j ) in each direction, just as discussed in Section 2.3.1,
with weight wj = exp(−θ∗

j m)/
∑m

k=1 exp(−θ∗
k m). The corresponding likelihood

ratio is then
dP ∗

0,i

dP̃0,i

((
I (t),Z(t)

)
: 0 ≤ t ≤ Tm

)
= 1∑d

j=1 wj exp(θ∗
j Zj (Tm))uj (I (Tm), θ∗

j )/uj (i, θ
∗
j )

,

and m must be selected so that
d∑

j=1

exp
(−θ∗

j m
)

sup
j,i,k

uj (i, θ
∗
j )

uj (k, θ∗
j )

≤ 1.

4. Algorithm for reflected Brownian motion. In this section, we revise our
algorithm and explain how we can apply it to the case of reflected Brownian mo-
tion. Consider a multidimensional Brownian motion

X(t) = vt + AB(t),

where v ∈ R
d is the drift vector, and A ·AT � � ∈ R

d×d is the positive definite co-
variance matrix. Our target process Y(t) is the solution to the following Skorokhod
problem with input process X(·) and initial value Y(0) = y0:

dY(t) = dX(t) + R dL(t), Y(0) = y0,

Y(t) ≥ 0, Yj (t) dLj (t) ≥ 0, Lj (0) = 0, dLj (t) ≥ 0.

We assume that the reflection matrix R is an M-matrix of the form R = I − QT ,
where Q has nonnegative coordinates and a spectral radius equal to α < 1 so
that R−1 has only nonnegative elements; see page 304 of Harrison and Reiman
(1981). We also assume the stability condition R−1v < 0 for the existence of the
steady-state distribution. As discussed in the Harrison and Reiman (1981), there
is a unique solution pair (Y,L) to the Skorokhod problem associated with X, and
the process Y is called a reflected Brownian Motion (RBM). We wish to sample
Y(∞) (at least approximately, with a pre-defined controlled error).

The stochastic dominance result for reflected Brownian motions that is analo-
gous to Lemma 1 was first developed in the proof of Lemma 12 in Harrison and
Williams (1987). In detail, we can construct a dominating process Y+(·) as fol-
lows. First, we can choose z ∈ R

d such that v < z and R−1z < 0. Define a process

Z(t) = X(t) − zt := AB(t) − μt,(26)
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where μ = v − z, and let Y+(·) be the RBM corresponding to the Skorokhod prob-
lem (4), which has orthogonal reflection. Then R−1Y(t) ≤ R−1Y+(t). As a re-
sult, we can assume without loss of generality that the input Brownian motion has
strictly negative drift coordinatewise. In sum, the following assumption is in force
throughout this section:

ASSUMPTION (D). The input process Z(·) satisfies (26) with μi > δ0 > 0 for
all 1 ≤ i ≤ d , and we assume that A is nondegenerate so that AT A is positive
definite.

Since Z(·) has strictly negative drift, following the same argument given for
Proposition 1, we can construct a stationary version of the dominating process as

Y+(−t) = −Z(t) + max
u≥t

Z(u) � Z(t) − M(t) for all t ≥ 0.(27)

In order to apply the same strategy as in Algorithm 1 to the RBM, we need to ad-
dress two problems. First, the input process Z requires a continuous path descrip-
tion while the computer can only encode and generate discrete objects. Second,
the dominating process is a reflected Brownian motion with orthogonal reflection.
Therefore the hitting time τ to the origin is almost surely infinity [see Varadhan and
Williams (1985)], which means that Algorithm 1 will not terminate in finite time,
in this case. To solve the first problem, we take advantage of a wavelet represen-
tation of Brownian motion and use it to simulate a piecewise linear approximation
with uniformly small (deterministic) error. To solve the second problem, we de-
fine an approximated coalescent time τε as the first passage time to a small ball
around the origin so that E[τε] < ∞ and the error caused by replacing τ with τε

is bounded by ε. In sum, we concede to an algorithm that is not exact but one that
could give any user-defined ε precision. Nevertheless, at the end of Section 4.1 we
will show that we can actually use this ε-biased algorithm to estimate without any
bias the steady-state expectation of continuous functions of RBM by introducing
an extra randomization step.

Section 4 is organized as follows. In Section 4.1, we will describe the main
strategy of our algorithm. In Section 4.2, we use a wavelet representation to simu-
late a piecewise linear approximation of Brownian motion. In Section 4.3, we will
discuss the details in simulating jointly τε and the stationary dominating process
based on the techniques we have already used for the compound Poisson cases. In
the end, in Section 4.4, we will give an estimate of the computational complexity
of our algorithm.

4.1. The structure of the main simulation procedure. The main strategy of the
algorithm is almost the same as Algorithm 1, except for two modifications due
to the two issues discussed above: first, instead of simulating the input process
Z exactly, we simulate a piecewise linear approximation Zε such that |Zε

i (t) −
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Zi(t)| < ε for all indices i and t ≥ 0; second, instead of sampling the coalescence
time τ such that M(τ ) = Z(τ ), we simulate an approximation coalescence time,
τε , such that M(τε) ≤ Z(τε) + ε.

With this notation, we now give the structure of our algorithm. The details will
be given later in Sections 4.2 and 4.3:

ALGORITHM 2 [Sampling with controlled error of Y(∞)].
Step 1: Let τε ≥ 0 be any time for which M(τε) ≤ Z(τε) + ε, and simulate,

jointly with τε , Z←−τε
(t) = −Zε(τε − t) for 0 ≤ t ≤ τε .

Step 2: Define X←−τε
(t) = Zε(τε) − Zε(τε − t) + zt , and compute Yε−τε

(τε,0)

which is obtained by evolving the solution Yε−τε
(·,0) to the Skorokhod problem

dYε−τε
(t,0) = dX←−τε

(t) + R dL−τ (t,0),

Yε−τε
(t,0) ≥ 0, Y ε−τε,j

(t,0) dL−τε,j (t,0) ≥ 0,

L−τε,j (0,0) = 0, dL−τε,j (t,0) ≥ 0,

for τε units of time.
Step 3: Output Yε−τε

(τε,0).

First, we show that there exists a stationary version {Y∗(t) : t ≤ 0} that is cou-
pled with the dominating stationary process {Y+(t) : t ≤ 0} as given by (27).

LEMMA 3. There exists a stationary version {Y∗(t) : t ≤ 0} of Y such that
R−1Y∗(t) ≤ R−1Y+(t) for all t ≤ 0.

PROOF. The proof follows the same argument as that of Proposition 2. �

The following proposition shows that the error of the above algorithm has a
small and deterministic bound.

PROPOSITION 5. Suppose X ∈ R
d . Let r = maxi,j R−1

ij /mini,j {R−1
ij :R−1

ij >

0}. Then there exists a stationary version Y∗of Y such that in each index i,∣∣Y ∗
i (0) − Y ε

τε,i
(τε,0)

∣∣ ≤ (
1

1 − α
+ dr

)
ε.

Here 0 ≤ α < 1 is the spectral radius of the matrix Q.

PROOF. Consider three processes on [−τε,0]. The first is the coupled sta-
tionary process Y∗(·) as constructed in Lemma 3, which is the solution to the
Skorokhod problem with initial value Y∗(−τε) at time −τε and input process
X̃(·) = X(τε)− X(−·) on [−τε,0]; the second is a process Ỹ(·), which is the solu-
tion to the Skorokhod problem with initial value 0 at time −τε and input process
X̃(·); the third is the process Yε−τε

(t,0) as we described in the algorithm, which is
the solution to the Skorokhod problem with initial value 0 at time −τε and input
process X←−τε

(t) as defined in step 2 of Algorithm 2.
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By definition, we know that for each index i, |Y+
i (−τε)| < ε. Since R−1Y(τε) ≤

R−1Y+(τε), the coupled process Y ∗
i (−τε) < dr ε. Note that Y∗(·) has the same

input data as Ỹ(·) except for their initial values. According to the comparison the-
orem of Ramasubramanian (2000), the difference between these two processes is
uniformly bounded by the difference of their initial values coordinate-wise. There-
fore, we can conclude |Y ∗

i (0) − Ỹi(0)| < dr ε.
On the other hand, Ỹ(·) and Yε−τε

(·,0) have common initial value 0 and input
processes whose difference is uniformly bounded by ε. It was proved in Harrison
and Reiman (1981) that the Skorokhod mapping is Lipschitz continuous under the
uniform metric dT (Y 1(·), Y 2(·)) � max1≤i≤d sup0≤t≤T |Y 1

i (t) − Y 2
i (t)| for all 0 <

T < ∞, and the Lipschitz constant is equal to 1/(1 − α), where 0 ≤ α < 1 is the
spectral radius of Q. Therefore, we have that |Ỹi(0) − Y ε−τε,i

(τε,0)| < ε/(1 − α).
Simply applying the triangle inequality, we obtain that∣∣Y ∗

i (0) − Y ε
τε,i

(τε,0)
∣∣ ≤ (

1

1 − α
+ dr

)
ε. �

We conclude this subsection by explaining how to remove the ε-bias induced
by Algorithm 2. Let T be any positive random variable with positive density
{f (t) : t ≥ 0} independent of Y∗(0). Let g :Rd → R be any positive Lipschitz
continuous function such that there exists constant K > 0 and for all x and
y ∈ R

d , |g(x) − g(y)| ≤ K maxi=1 |xi − yi |. As illustrated in Beskos, Peluchetti
and Roberts (2012),

E
[
g
(
Y∗(0)

)] = E

[∫ g(Y∗(0))

0
dt

]
= E

[∫ g(Y∗(0))

0

f (t)

f (t)
dt

]

= E

[
1(g(Y∗(0)) > T )

f (T )

]
.

Since |Y ∗
i (0) − Y ε

τε,i
(τε,0)| ≤ (1 + dr)ε, we can sample T first, and then select

ε > 0 small enough, output 1(g(Yε
τε

(τε,0)) > T )/f (T ) as an unbiased estimator
of E[g(Y∗(0))] without the need for computing Y∗(0) exactly. It is important to
have (Yε

τε
(τε,0) : ε > 0) coupled as ε → 0, and this can be achieved thanks to the

wavelet construction that we will discuss next.

4.2. Wavelet representation of Brownian motion. In this part, we give an algo-
rithm to generate piecewise linear approximations to a Brownian motion path-by-
path, with uniform precision on any finite time interval. The main idea is to use a
wavelet representation for Brownian motion.

By the Cholesky decomposition, any multidimensional Brownian motion can
be expressed as a linear combination of independent one-dimensional Brownian
motions. Our goal is to give a piecewise linear approximation to a d-dimensional
Brownian motion Z with uniform precision ε on [0,1]. Suppose that we can write
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Z = AB, where A is the Cholesky decomposition of the covariance matrix, and the
Bi’s are independent standard Brownian motions. If we are able to give a piece-
wise linear approximation B̃i to each Bi on [0,1] with precision ε/(d · a) where
a = maxi,j |Aij |, then AB̃ is a piecewise linear approximation to Z with uniform
error ε. Therefore, in the rest of this part, we only need to work with a standard
one-dimensional Brownian motion.

Now let us introduce the precise statement of a wavelet representation of Brow-
nian motion; see Steele (2001), pages 34–39. First we need to define step function
H(·) on [0,1] by

H(t) =
⎧⎪⎨⎪⎩

1, for 0 ≤ t < 1
2 ,

−1, for 1
2 ≤ t ≤ 1,

0, otherwise.

Then define a family of functions

Hk(t) = 2j/2H
(
2j t − l

)
for k = 2j + l where j > 0 and 0 ≤ l ≤ 2j . Set H0(t) = 1. The following wavelet
representation theorem can be seen in Steele (2001):

THEOREM 3. If {Wk : 0 ≤ k < ∞} is a sequence of independent standard nor-
mal random variables, then the series defined by

Bt =
∞∑

k=0

(
Wk

∫ t

0
Hk(s) ds

)
converges uniformly on [0,1] with probability one. Moreover, the process {Bt }
defined by the limit is a standard Brownian motion on [0,1].

Choose ηk = 4 · √
log k, and note that P(|Wk| > ηk) = O(k−4), so∑∞

k=0 P(|Wk| > ηk) < ∞. Therefore, P(|Wk| > ηk, i.o.) = 0. The simulation
strategy will be to sample {Wk} jointly with the finite set {k : |Wk| ≥ ηk}.

Note that if we take j = �log2 k�, as shown in Steele (2001),

∞∑
k=1

(
Wk

∫ t

0
Hk(s) ds

)
≤

∞∑
j=0

(
2−j/2 · max

2j≤k≤2j+1−1

∣∣Wk
∣∣).

Since
∑

j=0 2−j/2√j + 1 < ∞, for any ε > 0 there exists K0 > 0, such that∑
j=�logK0�

2−j/2
√

j + 1 < ε.(28)

As a result, define

K = max
{
k :

∣∣Wk
∣∣ > ηk

}∨ K0 < ∞,(29)
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then
∑∞

k=K+1 |Wk| ∫ t
0 Hk(s) ds ≤ ε. If we can simulate {(Wk)Kk=1,K} jointly,

Bε(t) =
K∑

k=0

Wk
∫ t

0
Hk(s) ds(30)

will be a piecewise linear approximation to a standard Brownian motion within
precision ε in C[0,1].

Now we show how to simulate K jointly with {Wk : 1 ≤ k ≤ K}. The algorithm
is as below with ρ = 4 as we have chosen ηk = 4 · √logk:

ALGORITHM 2w (Simulate K jointly with {Wk}).
Step 0: Initialize G = K0 and S to be an empty array.
Step 1: Set U = 1, D = 0. Simulate V ∼ Uniform(0,1).
Step 2: While U > V > D, set G ← G+1 and U ← P(|WG| ≤ ρ

√
logG)×U

and D ← (1 − G1−ρ2/2) × U .
Step 3: If V ≥ U , add G to the end of S, that is, S = [S,G], and return to step 1.
Step 4: If V ≤ D, K = max(S,K0).
Step 5: For every k ∈ S, generate Wk according to the conditional distribution

of Z given {|W | > ρ
√

logk}; for other 1 ≤ k ≤ K , generate Wk according to the
conditional distribution of W given {|W | ≤ ρ

√
log k}.

In this algorithm, we keep an array S, which is used to record the indices such
that |Wk| > ρ

√
log k, and a number G which is the next index to be added into S.

Precisely speaking, given that the last element in array S is N , say, max(S) = N ,
G = inf{k ≥ N + 1 : |Wk| > ρ

√
log k}. The key part of the algorithm is to simulate

a Bernoulli with success parameter P(G < ∞) and to sample G given G < ∞.
For this purpose, we keep updating two constants U and D such that U >

P(G = ∞) > D and (U − D) → 0 as the number of iterations grows. To illus-
trate this point, denote the value of U and D in the mth iteration by Um and Dm,
respectively. Then for all m > 0,

P(G = ∞) =
∞∏

k=N+1

P
(∣∣Wk

∣∣ ≤ ρ
√

log k
)
<

N+m∏
k=N+1

P
(∣∣Wk

∣∣ ≤ ρ
√

log k
) = Um.

On the other hand, for all ρ >
√

2 and N large enough,

∞∏
k=N+m+1

P
(∣∣Wk

∣∣ ≤ ρ
√

log k
)
> 1 −

∞∑
k=N+m+1

P
(∣∣Wk

∣∣ > ρ
√

logk
)

≥ 1 − (N + m + 1)1−ρ2/2,

and hence we conclude that Dm = (1 − (N + m + 1)1−ρ2/2)Um < P(G = ∞).
Because (1 − (N + m + 1)1−ρ2/2) → 1 as m → ∞, the algorithm proceeds to
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steps 3 or 4 after a finite number of iterations, and we can decide whether G < ∞
or not.

Now we show that we can actually sample G simultaneously as the Bernoulli
with success probability P(G < ∞) is generated. If V < D, we conclude that
V < P(G = ∞) and hence G = ∞ and K = max(S). Otherwise, we have G < ∞.
In this case, suppose step 2 ends in the (m + 1)th iteration and V > U . Since
Um = P(|Wk| ≤ ρ

√
log k for k = K + 1, . . . ,K + m), Um+1 ≤ V < Um implies

nothing but that K + m + 1 = inf{k ≥ K + 1 : |Wk| > ρ
√

log k}. Therefore, by
definition, G = K + m + 1 and should be added into array S. Once S and K are
generated, {Wk : 1 ≤ k ≤ K} can be generated jointly with S and K according to
step 5.

Also we note that Bε(t) has the following nice property:

PROPOSITION 6.

Bε(1) = B(1).

PROOF. The equality follows from the fact that
∫ 1

0 Hn(s) ds = 0 for any n ≥ 1
and m ≥ 1. �

As a consequence of this property, for any compact time interval [0, T ] (without
loss of generality, assume T is an integer), in order to give an approximation for
B(t) on [0, T ] with guaranteed ε precision uniformly in [0, T ], we only need to
run the above algorithm T times to get T i.i.d. sample paths {Bε,(i)(t) : t ∈ [0,1]}
for i = 1,2, . . . , T , and define recursively

Bε(t) =
�t�∑
i=1

Bε,(i)(1) + Bε�t�
(
t − �t�).

4.3. A conceptual framework for the joint simulation of τε and Zε . Our goal
now is to develop an algorithm for simulating τε and (Zε(t) : 0 ≤ t ≤ τε) jointly.
In detail, we want to simulate Zε(t) forward in time and stop at a random time τε

such that for any time s > τε , Zi(s) ≤ Zi(τε) + ε for 1 ≤ i ≤ d .
Because of the special structure of the wavelet representation used in simulating

the process Zε(·), the time Tm � inf{t ≥ 0 :Zε
i (t) > m for some 1 ≤ i ≤ d} is no

longer a stopping time with respect to the filtration generated by Z(·). As a conse-
quence, we cannot directly carry out importance sampling as in Algorithm 1.1.1.
To remedy this problem, we decompose the process Zε(t) into two parts: a ran-
dom walk {Zε(n) :n ≥ 0} with Gaussian increment and a series of independent
Brownian bridges {B̄n(s) � Zε(n + s) − Zε(n) : s ∈ [0,1], n ≥ 0}. Our strategy is
to first carry out the importance sampling as in Algorithm 1.1.1 to the random walk
{Zε(n) :n ≥ 0} to find its upper bound, and next develop a new scheme to control
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the upper bounds attained in the intervals {(n,n+1) :n ≥ 0} for the i.i.d. Brownian
bridges {B̄n(s) : s ∈ [0,1], n ≥ 0}.

The whole procedure is based on the wavelet representation of Brownian mo-
tion. Let {Wk

n (i) :n, k ∈ N, i = 1,2, . . . , d} be a sequence of i.i.d. standard nor-
mal random variables. According to the expression given in Theorem 3, for any
t = n + s, s ∈ [0,1],

Zi(t) = Zi(n) + s
(
Zi(n + 1) − Zi(n)

)
(31)

+
d∑

j=1

Aij

( ∞∑
k=1

Wk
n (j)

∫ s

0
Hk(u)du

)
.

Let us put (31) in matrix form,

Z(t) = Z(n) + s
(
Z(n + 1) − Z(n)

)+ A

∞∑
k=1

Wk
n ·

∫ s

0
Hk(u)du.

For all n ≥ 0 and s ∈ [0,1], B̄n(s) = A
∑∞

k=1 Wk
n · ∫ s

0 Hk(u)du. Then the sequence
{B̄n(·) :n ≥ 0} is i.i.d. Note that (Zi(n+1)−Zi(n)) is independent of {Wk

n (i) :k ≥
1}. We can split the simulation into two independent parts:

(1) Simulate the discrete-time random walk {Z(n) :n ≥ 0} with i.i.d. Gaus-
sian increments and Z(0) = 0. That is, Zi(0) = 0 and Zi(n + 1) = Zi(n) +∑d

j=1 AijW
0
n+1(j) − μi , where {W 0

n (j) :n ≥ 0} are i.i.d. standard normals.

(2) For each n, simulate B̄n(s) to do bridging between Z(n) and Z(n + 1).

Now, any time t0 > 0 is an approximate coalescence time τε if there exists some
positive constant ζ > 0 such that the following two conditions hold for all n ≥ t0:
Condition (1), Z(n) ≤ Z(t0)− ζ(n−�t0�)1+ε, and condition (2), max{B̄n(s) : s ∈
[0,1]} ≤ ζ(n − �t0�)1. Based on these observations, we develop an algorithm to
simulate the approximate coalescence time τε jointly with {Zε(t) : 0 ≤ t ≤ τε}.

By Assumption (D), μi > δ0 for some δ0 > 0. Let ζ = δ0/2, and define
S(n) = Z(n)+nζ1 such that {S(n) :n ≥ 0} is a random walk with strictly negative
drift. Therefore, condition (1) can be checked by carrying out the importance sam-
pling procedure as in Algorithm 1.1.1 for the random walk {S(n) :n ≥ 0}. More
precisely, since Si(n) has Gaussian increments, we can compute explicitly that
θ∗
i = 2(μi − ζ )/σi and choose m > 0 satisfying (12) in order to carry out the im-

portance sampling procedure for the random walk {S(n) :n ≥ 0}. Suppose we use
the importance sampling procedure and find t0 such that S(n) ≤ S(t0) for all n ≥ t0,
and hence condition (1) is satisfied for t0.

About condition (2), recall that B̄n(·)’s are i.i.d. linear combinations of Brown-
ian bridges, and let M be a random time, finite almost surely, such that

M ≥ max
{
n ≥ t0 : max

0≤s≤1

(
B̄n,i(s) − ζ(n − t0)

)
> 0 for some i

}
.(32)
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Observe that for t0 to be an approximate coalescence time, conditions (1) and (2)
must hold simultaneously. If for time t0, for example, condition (1) is satisfied
while condition (2) is not, we need to continue the testing procedure and simula-
tion of the process for t > t0. Then, however, the random walk {S(n) :n ≥ �t0�}
should be conditioned on that S(n) ≤ S(t0) for the fact that condition (1) holds
for t0 reveals “additional information” on the random walk for n ≥ t0. Therefore,
such “additional information” or “conditioning event” must be incorporated and
tracked when conditions (1) and (2) are sequentially tested. All of these condition-
ing events are described and accounted for in Section 4.3.2, which also includes
the overall procedure to sample τε jointly with Zε .

Now, let us first provide a precise description of M and explain the simulation
algorithm for M in Section 4.3.1.

4.3.1. Simulating M and {B̄ε
n(·) : 1 ≤ n ≤ M}. Recall that B̄n(t) =

A
∑∞

k=1 Wk
n · ∫ t

0 Hk(u)du, where {Wk
n (i) :n ≥ 0, k ≥ 1,1 ≤ i ≤ d} are i.i.d. stan-

dard normals. Note that∑
n=0

∑
k=1

P
(∣∣Wk

n (i)
∣∣ ≥ 4

√
log(n + 1) + 4

√
log k

) ≤ ∑
n=0

∑
k=1

1

((n + 1)k)4 < ∞.

By the Borel–Cantelli lemma, we can conclude that for each i ∈ {1, . . . , d}
there exists Mi < ∞ such that for all (n + 1)k > Mi , |Wk

n (i)| ≤ 4
√

log(n + 1) +
4
√

log k. Clearly,
√

log t = o(t) as t → ∞, so we can select a m0 large enough
such that for any n > m0,

(n + 1)ζ − ad

(
4
√

log(n + 1) −
∞∑

j=1

2−j
√

j

)
≥ 0.

Note that Mi can be simulated jointly with (Wk
n (i) :n ≥ 0, k ≥ 1,1 ≤ i ≤ d, (n +

1)k ≤ Mi) by adapting Algorithm 2w in Section 4.2 and Mi ’s are independent of
each other. Then, for any n > maxd

i=1 Mi ∨ m0,

B̄n(t) = A

∞∑
k=1

Wk
n ·

∫ t

0
Hk(u)du

≤ ad

(
4
√

log(n + 1) +
∞∑

j=1

2−j/2√j

)
≤ (n + 1)ζ,

where, j = �log2 k�. Therefore, we can choose M = maxi M
i ∨ m0.

Now we introduce a variation of Algorithm 2w that will be used in the procedure
to simulate M and {B̄ε

n(·) : 1 ≤ n ≤ M} jointly. In the following algorithm, a se-
quence of “conditioning events” of the form |Wk| ≤ βk , for some given constants
{βk :βk > 4

√
log k}, is in force. Let �(a) = P(|W | < a) for all a > 0, where W is

a standard normal. The random number K to be simulated is defined as in (29).
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ALGORITHM 2w′ (Simulate K jointly with {Wk : 1 ≤ k ≤ K} conditional on
|Wk| ≤ βk for all k ≥ 1).

Step 0: Initialize G = K0 as defined in (28) and S to be an empty array.
Step 1: Set U = 1, D = 0. Simulate V ∼ Uniform(0,1).

Step 2: While U > V > D, set G ← G + 1 and U ← �(4
√

logG)

�(βk)
× U and D ←

(1 − G−7) × U .
Step 3: If V ≥ U , add G to the end of S, that is, S = [S,G], and return to step 1.
Step 4: If V ≤ D, K = max(S,K0).
Step 5: For every k ∈ S, generate Wk according to the conditional distribution

of Z given {4√
logk < |W | ≤ βk}; for other 1 ≤ k ≤ K , generate Wk according to

the conditional distribution of W given {|W | ≤ 4
√

log k}.

The main difference between Algorithm 2w′ and the original Algorithm 2w
is that U and V are now computed from the conditional probability; however,
the relations U > V > D and U − D → 0 still hold, and hence Algorithm 2w′
is valid. Based on this, we can now give the main procedure to simulate M and
{B̄ε

n(·) : 1 ≤ n ≤ M} jointly:

ALGORITHM 2m (Simulating of M and {B̄ε
n(·) : 1 ≤ n ≤ M} jointly).

(1) For each index i, simulate Mi and (Wk
n (i) :n ≥ 0, k ≥ 1, nk < M). Com-

pute M = maxi M
i ∨ m0. (As discussed earlier, Mi’s are simulated by adapting

Algorithm 2w.)
(2) For each 0 ≤ n ≤ M and each index i, {Wk

n (i) :k < Mi/n} are already
given in step 1. For k ≥ Mi/n, use Algorithm 2w′ to simulate Ki

n jointly with
{Wk

n (i) :Mi/n ≤ k ≤ K} conditional on |Wk
n (i)| ≤ 4(

√
log(n + 1) + √

log k) �
βk > 4

√
log k.

(3) For any 0 ≤ n ≤ M , compute and output

B̄ε
n,i(t) =

d∑
i=1

Aij

( Ki
n∑

k=1

Wk
n (i)

∫ t

0
Hk(u)du

)
.(33)

In step 1 of Algorithm 2m, we can use a similar procedure as in Algorithm 2w′
to impose conditioning events of form |Wk

n (i)| ≤ βk
n(i) while simulating Mi’s

jointly with Wk
n (i)’s. In this way, we derive an algorithm that is able to sim-

ulate M jointly with {B̄ε
n(·) : 1 ≤ n ≤ M} conditional on |Wk

n (i)| ≤ βk
n(i) for

all n ≥ 0, k ≥ 1 and 1 ≤ i ≤ d for any given sequence of {βk
n(i)} such that

βk
n(i) > 4(

√
log(n + 1) + √

log k).

ALGORITHM 2m′ (Simulating of M and {B̄ε
n(·) : 1 ≤ n ≤ M} jointly conditional

on |Wk
n (i)| ≤ βk

n(i) for all n ≥ 0, k ≥ 1 and 1 ≤ i ≤ d).
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(1) For each index i, simulate Mi and (Wk
n (i) :n ≥ 0, k ≥ 1, nk < M) condi-

tional on |Wk
n (i)| ≤ βk

n(i) using a similar procedure as in Algorithm 2w′. Compute
M = maxi M

i ∨ m0.
(2) For each 0 ≤ n ≤ M and each index i, {Wk

n (i) :k < Mi/n} are already
given in step 1. For k ≥ Mi/n, use Algorithm 2w′ to simulate Ki

n jointly with
{Wk

n (i) :Mi/n ≤ k ≤ K} conditional on |Wk
n (i)| ≤ 4(

√
log(n + 1) + √

logk).
[Note that βk

n(i) > 4(
√

log(n + 1) + √
log k) > 4

√
log k, and hence this step is

well defined.]
(3) For any 0 ≤ n ≤ M , compute and output

B̄ε
n,i(t) =

d∑
i=1

Aij

( Ki
n∑

k=1

Wk
n (i)

∫ t

0
Hk(u)du

)
.

Algorithm 2m′ will be used in the next section in order to keep track of “condi-
tioning events” corresponding to condition (2).

4.3.2. Keeping track of the conditioning events. As we have discussed just
prior to the beginning of Section 4.3.1, we need to keep track of several condi-
tioning events introduced by conditions (1) and (2). First, let us explain how to
deal with the conditioning event corresponding to condition (1). These condition-
ing events involve only the random walk S(·). Now we split S(·) according to the
sequences of {�l : l ≥ 1} and {�l : l ≥ 1} of random times defined as follows:

(1) Set �1 = min{n :Si(n) ≤ −2m for every i}.
(2) Define �l = min{n ≥ �l :Si(n) > Si(�l) + m for some i}.
(3) Put �l+1 = min{n ≥ �lI (�l < ∞)∨�l :Si(n) < Si(�l)−2m for every i}.
Figure 1 illustrates a sample path of the random walk with the sequence of

random times {�l : l ≥ 1} and {�l : l ≥ 1} in one dimension. The message is that
the joint simulation of {S(n) :n ≥ 0} with {�l : l ≥ 1} and {�l : l ≥ 1} allows us
to keep track of the process {maxm≥n S(m) :n ≥ 0}, which includes the “addi-
tional information” introduced by condition (1). The main steps in the simulation
of {S(n) :n ≥ 0} jointly with {�l : l ≥ 1} and {�l : l ≥ 1} are explained in Lemma 2
through Lemma 4 in Blanchet and Sigman (2011). The approach of Blanchet and
Sigman (2011), which works in one dimension, could be modified for multidimen-
sional cases using the change-of-measure as described in Section 2.3.1.

Regarding the verification of condition (2) involving M and the Brownian
bridges, as per the discussion in Section 4.3.1, we just need to keep track of cer-
tain deterministic βk

n(i) for each |Wk
n (i)|, in order to condition on the events of the

form |Wk
n (i)| ≤ βk

n(i). These events are related to the sequential construction of
the random variable M when testing condition (2) as described in Section 4.3.1.
Now, we can write down the integrated version of our algorithm for sampling τε

and {Zε(t) : 0 ≤ t ≤ τε} jointly.
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FIG. 1. Illustration for the random times {�n} and {�n}.

ALGORITHM 2.1 (Simulating τε and {Zε(t) : 0 ≤ t ≤ τε}).
The output of this algorithm is {Zε(t) : 0 ≤ t ≤ τε}, and the approximation coa-

lescence time τε .

(1) Set βk
n(i) = ∞ for all n ≥ 1, k ≥ 1 and 1 ≤ i ≤ d . Set L = 0 and τε = 0.

(2) Simulate S(n) until �l , where l = min{j :�j = ∞,�j > τε}. Compute
Zε(n) = S(n) − nζ .

(3) For each n ∈ [τε,�l] ∩ Z+ and each index 1 ≤ i ≤ d , compute the i.i.d.
bridges {B̄ε

n(·)} using (33), in which Ki
n is jointly simulated with (Wk

n (i) : 1 ≤
k ≤ Ki

n) conditional on that |Wk
n (i)| ≤ βk

n(i) for all k ≥ 1 using Algorithm 2w′.
Given B̄ε

n(·) and S(n) for n ∈ [τε,�l] ∩Z+, the process Zε(t) for t ∈ [τε,�l] can
be directly computed. If there exists some t ≥ �l−1 such that for all t ≤ s ≤ �l ,
Zε

i (t) ≥ Zε
i (s) − 2ε and Zε

i (t) ≥ Zε
i (�l) + m − 2ε, set τε ← t , and go to step 4.

Otherwise, set τε ← �l and return to step 2.
(4) Use Algorithm 2m′ to simulate M jointly with (B̄ε

τε+n(·) : 0 ≤ n ≤ M) con-
ditional on |Wk

τε+n(i)| ≤ βk
τε+n(i) for all n ≥ 0, k ≥ 1 and 1 ≤ i ≤ d . Update

βk
τε+n(i) ← 4

√
log (n + 1) + 4

√
log k for all n · k ≥ Mi . Keep simulating S(n)

until n = �l + M , and compute {Zε(t) : t ∈ [�l,�l + M]}. If there exist some t

and i such that Zε
i (t) > Zε

i (τε) + ε, set τε ← t and return to step 2.
(5) Otherwise, stop and output τε as the approximation coalescence time along

with (Zε(t) : 0 ≤ t ≤ τε).

4.4. Computational complexity. In this part, we will discuss the complexity
of our algorithm when d and the other parameters μ and A are fixed but send the
precision parameter ε to 0. Denote the total number of random variables needed
by N(ε) when the precision parameter for the algorithm is ε.
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According to Assumption (D), the input process Z(t) equals −μt +AB(t) with
μi > δ0 > 0. Let maxi,j |Aij | = a. The following result shows that our algorithm’s
running time is polynomial in 1/ε:

THEOREM 4. Under Assumption (D),

E
[
N(ε)

] = O

(
ε−aC−2 log

(
1

ε

))
as ε → 0,

where aC is a computable constant depending only on A.

The random variables we need to simulate in the algorithm can be divided into
two parts: first, the random variables used to construct the discrete random walk
Z(n) for n ≤ T and second, the conditional normals used to bridging between
Z(n − 1) and Z(n).

Since 1(|W | > η) and 1(|W | ≤ β) are negatively correlated, it follows that

P
(|W | > η||W | ≤ β

) ≤ P
(|W | > η

)
.

Therefore, the expected number of conditional Gaussian random variables used for
Brownian bridges between Z(n−1) and Z(n) is smaller than the expected number
that we would obtain if we use standard Gaussian random variables instead in
steps 3 and 4 in Algorithm 2.1. Let K = max{k : |Wk| > ηk}∨K0 as defined in (29).
As discussed above, the expected number of truncated Gaussian random variables
needed for each bridge B̄ε

n,i(·) is bounded by E[K].
Therefore,

E
[
N(ε)

] ≤ (
dE[K] + 1

)(
E[T ] + 1

)
.

To prove Theorem 2, we first need to study E[K] and E[T ].

PROPOSITION 7.

E[K] = O

(
ε−2 log

(
1

ε

))
.

PROOF. Recall that ηk = 4
√

log k, and let pk = P(|Wk| > ηk). Then pk =
O(k−4). Therefore

E[K] =
∞∑

n=1

P(K > n) ≤ K0 +
∞∑

n=K0+1

∞∑
k=n

pk

= K0 +
∞∑

k=K0+1

k · pk ≤ K0 + O

( ∞∑
k=1

k−3
)
.

The second term of the left-hand side is finite and independent of ε and K0.
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On the other side,∑
j=log2 K0

2−j/2
√

j + 1 ≤ 2

log 2
(
√

K0)
−1

(√
log2 K0 + 2

log 2

)
.

Therefore, we can choose K0 = O(ε−2 log (1
ε
)) such that

∑
j=log2 K0

2−j/2 ×√
j + 1 < ε.
In order to get the approximation within error at most ε for the d-dimensional

process, according to the Cholesky decomposition as discussed in Section 4.2, we
should replace ε by ε

da
. Therefore,

E[K] = O

((
ε

da

)−2

log
(

da

ε

))
= O

(
ε−2 log

(
1

ε

))
. �

What remains is to estimate E[T ]. Let Ta be the time before the algorithm
executes step 4 in a single iteration. Using the same notation as in Algorithm 2.1
and a similar argument as in Section 2.4, we have

E[T ] = E[Ta] + E[Tm|Tm < ∞] + E[M]
P(Tm < ∞)p

,

where

p = P
(
max

i
Zε

i (t) < m + ε,∀0 ≤ t ≤ M|Z(0) = 0;S(n) < m
)
.

As Zε(t) = S(n)−nζ1+AB̄n(t −n) and the Brownian bridge B̄n(·) is independent
of S(·), it follows that

p ≥ P
(
max

i
max
t≥0

Zi(t) < m|Z(0) = 0
)
.

Since S(1) is a multidimensional Gaussian random vector with strictly nega-
tive drift, assumptions (C1) to (C3) are satisfied. Applying Proposition 4, we can
get upper bounds for E[Tm|Tm < ∞], 1/P (Tm < ∞) and 1/P (maxi maxt Zi(t) <

m|Z(0) = 0), which depend only on d, a and δ and thus are independent of ε.
Besides, the bound for E[M] can be estimated by the same method as in Proposi-
tion 7 in terms of ζ = δ/2; hence such a bound is also independent of ε. Therefore,
we only need to estimate E[Ta].

PROPOSITION 8. E[Ta] = O(ε−aC ) as ε → 0. Here aC only depends on the
matrix A. Moreover, in the special cases where Aij ≥ 0, aC = d .

PROOF. Recall that Z(t) = −μt + AB(t) and μi > δ = 2ζ > 0 as given in
Assumption (D). We divide the path of Z(t) into segments with length 2(m+ε)/ζ ,{(

Z

(
k · 2(m + ε)

ζ
+ s

)
: 0 ≤ s ≤ 2(m + ε)

ζ

)
:k ≥ 0

}
.
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Let

Nb = min
{
k :AB

(
k · 2(m + ε)

ζ
+ s

)
− AB

(
k · 2(m + ε)

ζ

)
≤ ε

for all 0 ≤ s ≤ 2(m + ε)

ζ

}
.

By independence and stationarity of the increments of Brownian motion, Nb is a
geometric random variable with parameter

p = P

(
AB(s) ≤ ε for all 0 ≤ s ≤ 2(m + ε)

ζ

)
.

On the other hand, since −μi < −2ζ , we have:

(1) Zi(Nb · 2(m+ε)
ζ

+ s) ≤ Zi(Nb · 2(m+ε)
ζ

) + ε, for all 0 ≤ s ≤ 2(m+ε)
ζ

.

(2) Zi((Nb + 1) · 2(m+ε)
ζ

) ≤ Zi(Nb · 2(m+ε)
ζ

) − m.

Therefore, Algorithm 2.1 should execute step 4 after at most 2(m+ε)
ζ

(Nb + 1)

units of time in a single iteration,

E[Ta] ≤ 2(m + ε)

ζ
E[Nb + 1] = 2(m + ε)

ζ

(
1 + 1

p

)
.

From this inequality, it is now sufficient to show that p = O(εaC ).
Note that the set C = {y ∈ R

d :Ay ≤ ε} forms a cone with vertex A−1ε in R
d

since A is of full rank under Assumption (D). Define τC = inf{t ≥ 0 : B(t) /∈ C}
given B(0) = 0, then

p = P

(
τC >

2(m + ε)

ζ

)
.

If d = 2, it is proved by Burkholder (1977) that aC = π
θ

where θ ∈ [0, π) is the
angle formed by the column vectors of A−1. Therefore, we can compute explicitly
that

θ = arccos
(
− A11A21 + A12A22√

(A2
11 + A2

12)(A
2
21 + A2

22)

)
,

which only depends on A.
On the other hand, if d ≥ 3, applying the results on exit times for Brownian

motions given by Corollary 1.3 in DeBlassie (1987),

P

(
τC >

2(m + ε)

ζ

)
∼ u · ∥∥A−1ε

∥∥aC

as ε → 0. Here ‖ · ‖ represent the Euclidian norm, and u is some constant indepen-
dent of ε. The rate aC is determined by the principal eigenvalue of the Laplace–
Beltrami operator on (Sd−1 ∩C), where Sd−1 is a unit sphere centered at the vertex
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of C, namely A−1ε. The principal eigenvalue only depends on the geometric fea-
tures of C, and it is independent of ε; hence so is aC . Since A is given, we have

P

(
τC >

2(m + ε)

ζ

)
= O

(
εaC

)
as ε → 0.

Computing aC for d ≥ 3 is not straightforward in general. However, when Aij ≥
0, we can estimate aC from first principles. Indeed, if Aij ≥ 0 and we let a =
maxAij , we have that

C = {
y ∈ R

d :Ay ≤ ε
} ⊂

{
y ∈R

d :yi ≤ ε

ad

}
.

As the coordinates of B(t) are independent,

p ≥ P

(
max

0≤t≤2(m+ε)/ζ
B(t) ≤ ε

ad

)d

,

where B(·) is a standard Brownian motion on real line.
Applying the reflection principle, we have

P

(
max

0≤t≤2(m+ε)/ζ
B(t) ≤ ε

ad

)

=
∫ ε/(ad)

−ε/(ad)

1√
2π(2(m + ε)/ζ )

exp
(
− x2

2(2(m + ε)/ζ )

)
= O(ε).

As a result, p = O(εd) when the correlations are all nonnegative. �

Given these propositions, we can now prove the main result in this part.

PROOF OF THEOREM 4. As we have discussed,

E
[
N(ε)

] ≤ (
dE[K] + 1

)(
E[τε] + 1

)
.

First, by Proposition 7, E[K] = O(ε−2 log (1
ε
)). Besides, as discussed above,

E[T ] ≤ E[Ta] + E[Tm|Tm < ∞] + E[M]
P(Tm < ∞)P (maxi maxt≥0 Zi(t) < m|Z(0) = 0)

.

According to Proposition 8, E[Ta] = O(ε−aC ), and aC is a constant when
A is fixed. In the end, as we have discussed, E[Tm|Tm < ∞], P(Tm < ∞),
P(maxi maxt Zi(t) < m|Z(0) = 0) and E[M] are independent of ε. Therefore,

E[T ] = O
(
ε−aC

)
.

In sum, we have

E
[
N(ε)

] = O

(
ε−aC−2 log

(
1

ε

))
. �



3248 J. BLANCHET AND X. CHEN

TABLE 1
Unbiased estimates of E[Yi(∞)] and E[Y 2

i (∞)] for a network with ten stations in tandem

E[Yi(∞)] E[Y 2
i (∞)]

Station Simulation result True value Simulation result True value

1 1.7919 ± 0.0521 1.8182 10.2755 ± 0.5289 10.2479
2 0.1761 ± 0.0068 0.1818 0.1511 ± 0.0170 0.1642
3 0.2171 ± 0.0083 0.2222 0.2242 ± 0.0224 0.2382
4 0.2706 ± 0.0102 0.2778 0.3462 ± 0.0339 0.3610
5 0.3516 ± 0.0131 0.3571 0.5717 ± 0.0590 0.5778
6 0.4737 ± 0.0171 0.4762 0.9840 ± 0.0871 0.9921
7 0.6632 ± 0.0233 0.6667 1.8472 ± 0.1513 1.8715
8 1.0033 ± 0.0345 1.0000 4.1004 ± 0.3377 4.0300
9 1.6497 ± 0.0542 1.6667 10.3734 ± 0.7823 10.6065

10 3.3200 ± 0.1040 3.3333 39.2015 ± 2.9950 39.3631

5. Numerical results. We first implemented Algorithm 1 in order to generate
exact samples from the steady-state distribution of stochastic fluid networks, and
then we implemented Algorithm 2. Our implementations were performed in Mat-
lab. In all the experiments we simulated 10,000 independent replications, and we
displayed our estimates with a margin of error obtained using a 95% confidence
interval based on the central limit theorem.

For the case of stochastic fluid networks, we considered a 10-station sys-
tem in tandem. So, Qi,i+1 = 1 for i = 1,2, . . . ,9 and Q10,j = 0 for all j =
1, . . . ,10. We assume the arrival rate λ = 1 and the job sizes are exponen-
tially distributed with unit mean. The service rates (μ1, . . . ,μ10)

T are given by
(1.55,1.5,1.45,1.4,1.35,1.3,1.25,1.2,1.15,1.1). We are interested in comput-
ing the steady-state mean and the second moment of the workload at each station
(i.e., E[Yi(∞)] and E[Yi(∞)2] for i = 1,2, . . . ,10). For a network of this type, it
turns out that the true values of the quantities we are interested in can be computed
from the corresponding Laplace transforms as given in Debicki, Dieker and Rolski
(2007).

Both the simulation results and the true values are reported in Table 1. The pro-
cedure took a few minutes (less than 5) on a desktop, which is quite a reasonable
time.

We then implemented a two-dimensional RBM example. Let us denote
the RBM by Y(t). The parameters to specify Y are as follows: drift vector
μ = (−1,−1), covariance matrix � = [1,0;0,1] and reflection matrix R =
[1,−0.2;−0.2,1]. For this so-call symmetric RBM, one could compute in close
that E[Y1(∞)] = E[Y2(∞)] = 5/12 � 0.4167; see, for instance, Dai and Harrison
(1992). The output of our simulation algorithm is reported in Table 2.

Our implementations here are given with the objective of verifying empirically
the validity of the algorithms proposed. We stress that a direct implementation of
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TABLE 2
Estimates of E[Yi(∞)] for a 2-dimensional RBM with precision ε = 0.01

Simulation result True value

E[Y1(∞)] 0.4164 ± 0.0137 0.4167
E[Y2(∞)] 0.4201 ± 0.0131 0.4167

Algorithm 2, although capable of ultimately producing unbiased estimations of the
expectations of RBM, might not be practical. The simulations took substantially
more time to be produced than those reported for the stochastic fluid models. This
can be explained by the dependence on ε in Theorem 4. The bottleneck in the algo-
rithm is finding a time at which both stations are close to ε. An efficient algorithm
based on suitably trading a strongly controlled bias with variance can be used to
produce faster running times; we expect to report this algorithm in the future.
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