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Abstract. We review a success story regarding Bayesian inference in fish-
eries management in the Baltic Sea. The management of salmon fisheries is
currently based on the results of a complex Bayesian population dynamic
model, and managers and stakeholders use the probabilities in their discus-
sions. We also discuss the technical and human challenges in using Bayesian
modeling to give practical advice to the public and to government officials
and suggest future areas in which it can be applied. In particular, large
databases in fisheries science offer flexible ways to use hierarchical mod-
els to learn the population dynamics parameters for those by-catch species
that do not have similar large stock-specific data sets like those that exist for
many target species. This information is required if we are to understand the
future ecosystem risks of fisheries.
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1. INTRODUCTION

We introduce a case of fisheries management where
Bayesian inference has been extensively used. Fish-
eries management is a field of applied science, and one
could easily argue that fisheries science is as close to
politics as science can be. Fisheries scientists routinely
advise managers and politicians about possible catch
allocations for the near future. This advice has to be
concentrated on aspects relevant to the objectives de-
fined by legislation and international agreements [8].
Such advice is a highly charged issue, since fishing
is probably the best known example of the tragedy of
commons (i.e., the depletion of a shared resource by in-
dividuals contrary to the group’s long-term best inter-
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ests [6]) brought into public awareness by the collapse
of arctic cod stocks in 1992 which rapidly resulted in
the loss of over 40,000 jobs in Canada [9]. Even though
Bayesian models are becoming increasingly common
in fisheries management due to the adoption of the pre-
cautionary approach, it remains a challenge for a sci-
entist to tell a fisherman, “You need to cut down your
income this year because I am so uncertain about the
consequences of your fishing.”

Thus, fisheries management is an area of risk anal-
ysis where it is crucial for effective decision-making
to utilize all potential information sources and to make
scientifically sound estimates. Specifically, fish man-
agement policymakers need to be given sound esti-
mates of the uncertainties involved in predictions about
how stock will develop under each alternative manage-
ment action that can be made in the near future.

This application requires Bayesian decision analy-
sis [12], by which one can analyze the role of alterna-
tive information sources in support of decision-making
and the effects of alternative decisions on various aims
of stakeholders and society. Moreover, the possibility
of using expert knowledge in addition to data [14] is
useful when creating complex models for risks which
have not yet occurred.

In addition to the obvious scientific reasons for
applying Bayesian inference in fish stock assess-
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ment [24], there is also a legislative reason for method-
ology. Because all fisheries legislation has incorporated
a precautionary approach [2], policies should be risk
averse and account for uncertainty estimates. By pro-
viding scientifically justified statements of uncertainty,
Bayesian stock assessment models can help in such
a process. In particular, assembling prior probabilities
from existing literature, still an underutilized approach,
can be useful.

2. BALTIC SALMON FISHERIES MANAGEMENT

2.1 The Baltic Sea

The Baltic Sea is a brackish water ecosystem with
several unique features. The salinity varies from around
20 per mille in the south to close to freshwater at the
end of the Bothnian Bay and the Gulf of Finland [Fig-
ure 1(a)]; as a result, most Baltic sea species are genet-
ically unique. Predicting future changes in the Baltic
sea ecosystem is challenging owing to, for example,
the unpredictable periods of low oxygen levels. Future
salinity and nutrient levels may also be different than
those observed in historical data [3]. It is also expected
that climate change will further impact both the salinity
and the temperature of the sea [7]. For these reasons,

historical data alone is not sufficient for predicting the
future.

2.2 Baltic Salmon

Baltic salmon are a geographically isolated popula-
tion of Atlantic salmon (Salmo salar L.), which can be
further divided into subpopulations, called stocks, cor-
responding to their spawning rivers. The salmon is a
migratory species that spends its first years in a river,
travels to the open sea for its feeding migration and
returns to the river to spawn [see Figure 1(b)]. Since
each salmon subpopulation returns only to its native
river to spawn, maintaining all stocks in a healthy con-
dition is an important task for fisheries management.
Owing to the high level of exploitation in the early 20th
century, the abundance of wild Baltic salmon dropped
significantly until the 1980s. In addition, the damming
of rivers has reduced or even eliminated the possibil-
ity for successful natural reproduction in many Baltic
rivers [10, 11, 25]. In order to compensate for the
losses of natural reproduction, hydropower companies
are obliged to release reared salmon annually into the
mouths of dammed rivers. This activity increases the
fishing potential but provides yet another challenge for

(a) The spawning rivers and assessment units (b) The life cycle of salmon

of Baltic salmon [11]

FIG. 1. The Baltic sea and the life cycle of salmon.
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wild salmon management, since the fisheries cannot
distinguish between reared and wild salmon. Recruit-
ment of reared stocks cannot collapse due to overfish-
ing, while many wild stocks have collapsed.

The migration routes of salmon are long, extending
from the northernmost spawning river, the Tornion-
joki River, to the feeding areas in the southern Baltic
Sea. These long migration routes expose the salmon to
high pressure from fishing and lead to political debates
about “who is taking our salmon” between the coastal
countries of the Baltic Sea. On the other hand, spatial
migration offers a lot of data from various parts of the
life cycle of salmon that can be utilized in population
dynamics models applied to the Baltic Sea salmon as-
sessments.

2.3 Baltic Salmon Fisheries Management

The Baltic fisheries are controlled by the EU’s Com-
mon Fisheries Policy [2] and by bilateral agreements
between the EU and Russia that aim at ensuring eco-
nomically, environmentally and socially sustainable
fisheries. The management decisions concerning the
EU fisheries are made annually. Based on scientific ad-
visories, the European Commission prepares proposals
for management measures and the actual regulations
are adopted by the Council of Fisheries Ministers. In
1997, new international long-term management goals
were agreed upon and incorporated into the Salmon
Action Plan [10]. One of the most important goals was
to safeguard the wild salmon populations by attaining
at least 50% of the potential smolt production capac-
ity (PSPC) in each wild salmon river by 2010. Smolts
are juvenile salmon that leave their native river for the
feeding migration at the sea. The aim was not easy
to implement in practice, as the stock specific PSPCs
were poorly known [26].

Thus, the Salmon Action Plan created a need to en-
hance scientific knowledge about different stages of the
salmon life cycle. Because salmon population dynam-
ics are complex and data about most of the stocks are
sparse, the only realistic approach for developing the
necessary decision tools is Bayesian modeling. Com-
pared to more traditional statistical methods, Bayesian
models make it possible to combine relevant data from
many sources and integrate their information content
with a vast amount of expert knowledge in a probabilis-
tic manner. Such a framework provides both estimates
for the historical status of the stock and predictions for
future stock development under diverse possible man-
agement actions. Thanks to the Bayesian interpretation
of their probabilities, one can also answer the essential

questions of interest, such as, “What are the probabili-
ties for each stock reaching 50% or 75% of the PSPC in
the next four to six years?” Fisheries management de-
cisions must have their desired effect within this time
period because salmon stocks have short life cycles.

2.4 Assessment of Baltic Salmon Stocks

In the beginning of the 1990s, Baltic salmon stock
assessment was performed using simple spreadsheet
calculus without any Bayesian features. One of the
problems with such deterministic models is that natural
and fishing mortalities are assumed to be known with-
out uncertainty, and that the values chosen have a huge
impact on the abundance estimates of the stocks. After
Varis and Kuikka [27] first applied Bayesian inference
to salmon assessment in the Baltic Sea, the need to dis-
tinguish effectively between well-known and poorly-
known populations led to the wide application of hier-
archical models. Today the scientific advisory on Baltic
salmon is entirely based on Bayesian methods. The
greatest advantage of Bayesian models compared to
the traditional statistical models is that uncertainties
in large data sets with lots of variation will be taken
into account and be visible in the posterior estimates.
Thus, traditional methods that are based on point es-
timates are considered misleading and dangerous by
fisheries scientists familiar with the current methods.
When scientific advice is given for the management
of the stocks, it is highly important to take into con-
sideration the probability of not reaching management
objectives because of certain fishing pressure. This is
possible only within Bayesian models.

The objectives of wild salmon fisheries management
include ensuring a level of smolt production in rivers
that will keep the stocks alive and healthy and, at the
same time, enable salmon fisheries. Thus, the main fo-
cus of the stock assessment is to predict the near-future
development of stocks under alternative management
plans. However, in order to undertake this, it is impor-
tant to acknowledge the high complexity of the salmon
life cycle and to model all of the factors that influence
salmon survival at different life stages in a biologically
justifiable manner. Only by understanding the reasons
behind the historic changes in levels of abundance and
the uncertainties in the biological processes is it possi-
ble to advocate management actions that will both pre-
vent the stocks from collapsing and enable their sensi-
ble economic exploitation.

Current salmon stock-assessments are based on de-
scribing the population life history using an age-
structured state–space model (see life-history model,
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FIG. 2. The structure of the Baltic salmon assessment model. The most essential blocks of the model are shown in the boxes enclosed
by solid lines. The data are illustrated with thin dashed-line boxes on the left and the model outputs with thick dashed-line boxes on the
right [11].

Figure 2) [20]. The state variables describe the tem-
poral and spatial changes in the demography of the
salmon population. These include the abundance of
wild smolts, Ri,t , the abundance of salmon in the sea,
Ni,t,a , the spawning population, Si,t,a , and the num-
ber of eggs, Oi,t , for each stock i and year t . The
subscript a denotes the number of years the salmon
have spent in the sea after leaving the river. The model
structure and state transitions are described according
to existing biological knowledge about the life cycle
of salmon, which is illustrated in Figure 1(b). For ex-
ample, the transition from smolts to the one-sea-year
salmon population is controlled by the general rela-
tion, Ni,t+1,1 = Ri,t exp(−Ft,0 − Mt,0)ε, where F and
M are the instantaneous fishing and natural mortality
rates and ε is the process error [21].

The number of eggs produced by stock i is lin-
early dependent on the stock’s spawning population,
Si,t,a = LaNi,t,a exp(−Ft,a − Mt,a)ε, where La is the
fraction of the salmon population maturing at sea year
age a. The recruitment of new smolts is described
by the Beverton–Holt [1] stock-recruit (SR) function
Ri,t+T = Oi,t/(αi + βiOi,t ), which describes the re-

lationship between the number of eggs and the abun-
dance of new recruits T time steps later. This function
and its parameter values are some of the most impor-
tant model specifications in fisheries stock assessment,
since they determine the predicted impacts of manage-
ment actions on stock development in the future [18].
Another important factor in Baltic salmon recruitment
is early mortality syndrome, M74 syndrome, outbursts
of which can kill the majority of juveniles during their
first year of life [19].

The inference for the life-history model is performed
sequentially, as illustrated in Figure 2 and described
by Michielsens et al. [20]. The Bayesian models A,
D, E provide prior distributions for the parameters of
the life-history model. These prior distributions are
based on expert knowledge (e.g., PSPC, A), data from
other Atlantic salmon stocks (e.g., parameters of the
stock-recruit function, D [18]) or data sets of Baltic
salmon that are computationally too heavy to analyze
within the full life-history model but can be analyzed
separately (e.g., the early mortality syndrome M74
model, E). The posterior distributions of parameters
from these models are used as informative prior dis-
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tributions in the life-history model. The (final) poste-
rior distributions of parameters and state variables are
calculated by conditioning on (indirect) observations
of the state variables. These data include the time se-
ries of catch and effort from different fisheries, spawner
count data sets for some rivers, Carlin-tag mark recap-
ture data and data about smolt abundances for a num-
ber of rivers. All of the data sets except the last one
directly provide likelihood functions for the state vari-
ables. Since the observation model for the annual smolt
abundances is computationally too demanding, it is ap-
proximated as described below.

The data for smolt abundances consist of river-
specific smolt mark-recapture data and electrofishing
data that contain information about parr (juvenile, 1–
4 year-old salmon) densities. The electrofishing data
are more often available than the smolt mark-recapture
data. First a mark-recapture analysis (model B, [16]) is
conducted for rivers with mark-recapture data. These
results are then used in a river model (model C, [17])
which describes the relationship between the smolt
and parr abundances. The river model is hierarchical
over all rivers and, thus, provides smolt abundance es-
timates for all wild salmon stocks. The posterior distri-
butions of yearly smolt abundances provided by model
C are used to construct an approximation for the like-
lihood function with respect to R in the life-history
model [20].

As an example of updating the parameter estimates
in the sequential model framework, we illustrate the
case of the annual smolt abundance estimates for
Tornionjoki River salmon, which is one of the few
rivers for which smolt mark-recapture data exist [16].
Figure 3 shows how the estimate of smolt abundance
changes in each successive modeling step. The poste-
rior uncertainty is highest after modeling step B, but

FIG. 3. The estimate of smolt abundance in the Tornionjoki River
after sequential modeling steps B, C and the life-history model
shown in Figure 2.

as data accumulates the posterior distribution becomes
tighter. Ideally, we could infer all the models in Fig-
ure 2 jointly, but this is not possible with the current
computational tools within a reasonable time frame.

3. DISCUSSION

3.1 Why Bayes?

The management problem highlighted above is an
example of a problem which could not have been
solved efficiently without Bayesian methods. Here
we summarize the most important reasons for using
Bayes:

• The decision problem is multidimensional. There
are several stakeholders with different aims and,
thus, the statistical methods used have to allow a de-
tailed decision analysis.

• The life-cycle of Baltic salmon and its response to
natural and human induced pressures are complex.
Thus, in order to take all the plausible uncertainties
into account in decision-making, the stock assess-
ment model needs to reflect the biological realism.
This leads to a model with so many parameters that
they cannot be estimated without the use of informa-
tive priors.

• The available data are multifaceted and there is
available essential prior knowledge complementary
to data. Thus, the statistical methods must allow hi-
erarchical model structures and the explicit use of
priors.

• The precautionary approach incorporated in EU fish-
eries legislative demands for methods that take ex-
plicitly into account all sources of uncertainty.

3.2 Future Scientific Challenges

The greatest current challenges involved in the above
example are twofold. First, the computational and tech-
nical tasks related to Bayesian inference are complex
and time-consuming. Second, it is necessary that the
people involved in modeling have a sufficient subject
understanding. The selection of model structures, prior
probabilities and the likelihood function(s) all depend
on subject matter knowledge, in this case biological
knowledge. However, researcher’s subject matter back-
ground easily means that computational problems be-
come overwhelming. It seems that educating method-
ologically orientated scientists in biology is relatively
an easier task than educating, for example, biologists
in Bayesian inference.

Although fairly easy-to-use software is available
(e.g., OpenBugs or JAGS), much of the time spent by
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biologically trained scientists is allotted to technical
problems related to MCMC algorithms and in waiting
for the convergence of runs. This does not represent
optimal use of scientific resources. Moreover, because
the final modeling is usually based on the outcomes
of earlier analysis, and is the last step of a big project,
computational problems easily lead to failure in timing.

The Bayesian approach offers a way to formalize
scientific learning. The posterior distributions of one
study can be used as priors in following studies, if
the results are published in a transparent and sufficient
way. In fisheries, the risk analyses needed for by-catch
species in particular are more or less impossible with-
out meta-analysis [22]. It is necessary to learn more ef-
fectively from existing databases and publications and
to apply, for example, hierarchical Bayesian models to
provide informative priors for case-specific risk analy-
ses and to utilize the correlations of biological features
of species in order to make better predictions [13, 23].

The scientific tradition of publishing only “statisti-
cally significant” results is a major problem for meta-
analysis and systematic learning processes. If only ex-
treme data sets (say, with p < 0.05) are published and
used in meta-analyses or in scientific discussions, a bi-
ased view of the system can be easily obtained. On the
other hand, using published papers as a source of prior
information in Bayesian models can also create prob-
lems when, for example, it is uncertain whether pub-
lished values are representative samples of the system
studied.

The allocation of resources used for data analysis or,
alternatively, for the analysis of priors should be an in-
teractive process during scientific projects. If the avail-
able data will not be informative enough to make justi-
fied scientific and management conclusions, major ef-
fort should be directed toward effective and justified
derivation of priors. In some cases, this may even be a
longer process than a “traditional” data analysis. The
collection of new data can be very costly compared to
the use of published papers or existing databases [23].

Sometimes it may either be very expensive or diffi-
cult to collect data about variables of interest. In such
cases knowledge must be elicited from experts. While
frequentist methods could be used to (point) estimate
some of the model parameters, large parts of the sys-
tem would be entirely left out from the quantitative
analysis owing to complete lack of data. Moreover,
Uusitalo et al. have demonstrated [26] that the high-
est uncertainty in expert knowledge related to salmon
assessment comes from the fact that expert opinions
differ, and Bayesian inference is needed to integrate

those sources of uncertainty. Thus, the classical ap-
proach could not provide appropriate answers to the
problem of management under uncertainty.

The multifaceted nature of the salmon assessment
problem requires use of a complex model, easily
leading to thousands of unknown parameters. A vast
amount of data with high spatio-temporal resolution
would be required to sufficiently identify all of these
parameters, if point estimation without prior knowl-
edge was desired. A reasonable maximum likelihood
estimation of the main target parameters would require
reduction of the model dimensions by effectively as-
suming that many of the uncertain nuisance parameters
were actually known [13]. From the decision-making
point of view, this implies that management would then
be based on overconfident estimates. While not easy
to conduct, the Bayesian approach has made it tech-
nically possible to attempt realistic stock assessment,
which would currently not be feasible with any other
methods.

3.3 Challenges in Applying Bayesian Inference to
Practical Scientific Advice

As mentioned earlier, fisheries science is very close
to political decision-making and, as in any attempts
to model complex systems, there are many subjective
choices involved before model-based advice can be
given. However, it is far easier for a scientist to de-
fend an analysis when as much data and as few ob-
viously subjective choices as possible have been in-
cluded. The time available during meetings of stock
assessment working groups is often too limited for
complex Bayesian models to be applied during the
meeting, as the computational inference may easily re-
quire a week or more to converge. Thus, transition to
Bayesian methods would also demand changes in the
practices of the working group in a way that part of the
work would need to be done beforehand instead of at
the last minute of the meeting.

The need for faster algorithms is obvious, since un-
derstanding of the model dynamics and of the logic by
which the model operates require practically short cal-
culation time to allow for “what if” type of questions.
It is common that in the working groups of fisheries
stock assessment the latest data (most recent year on
which the predictions are based) can give rise to sur-
prising results. These need then to be discussed and
the models adapted accordingly during a very short pe-
riod of time if the results are to be explained to rep-
resentatives of the industry and other stakeholders. In
some cases this implies that the sensitivity of modeling
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outputs has to be tested against alternative informative
priors. Such sensitivity analyses are critically needed
to explain the behavior of complex models to the end
users of the information in order to improve their com-
mitment to modeling results [5]. Unfortunately, fish-
eries scientists are not optimally trusted [4] by indus-
try and improvements in this regard require fully open
approaches and learning improved ways to communi-
cate risks. Salmon assessment models are by necessity
complex given the characteristics of the life cycle of
fishes, but a central goal is nevertheless to make the
results more easily understood. When inference algo-
rithms are so slow that only a single run is possible
during a week-long working group meeting, the model
behavior may not be understood well enough. One ap-
proximate solution to this, as is done, for example, in
oil spill risk analysis, is to use estimation models and
feed the posterior information to a Bayesian network
inference engine, which allows an interactive use of
the probabilistic results, albeit only approximately [12,
15].

To facilitate general adoption of Bayesian reasoning
in risk-averse decision-making, scientists must try to
broaden public understanding about risks and the pro-
jected consequences of different policies, in a way that
is similar to the ongoing debate around climate change.
We call for experts in the cognitive sciences to test
systematically how uncertainties should be communi-
cated. Such developments will help prevent more man-
made fisheries catastrophes such as the arctic cod stock
collapse of 1992. Since aquatic resources are in global
decline and the situation is already alarming for many
ecologically and economically important species, there
is more need now than ever for careful Bayesian rea-
soning to help improve the public’s understanding of
the risks facing these resources.
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