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On the Limiting Behavior of the “Probability of
Claiming Superiority” in a Bayesian Context

Morris L. Eaton˚, Robb J. Muirhead: and Adina I. Soaita;

Abstract. In the context of Bayesian sample size determination in clinical trials,
a quantity of interest is the marginal probability that the posterior probability of
an alternative hypothesis of interest exceeds a specified threshold. This marginal
probability is the same as “average power”; that is, the average of the power func-
tion with respect to the prior distribution when using a test based on a Bayesian
rejection region. We give conditions under which this marginal probability (or av-
erage power) converges to the prior probability of the alternative hypothesis as the
sample size increases. This same large sample behavior also holds for the average
power of a (frequentist) consistent test. We also examine the limiting behavior
of “conditional average power”; that is, power averaged with respect to the prior
distribution conditional on the alternative hypothesis being true.

Keywords: Bayesian design, probability of a successful trial, average power, Bayesian
hypothesis testing, clinical trials, sample size determination

1 Introduction

In a recent paper, Muirhead and Soaita (2012) discuss the problem of sample size
determination (SSD) in a clinical trial setting from a Bayesian viewpoint. They focus
on a criterion for SSD they call the “probability of a successful trial” (PST). (Many
statisticians involved in clinical trials use the informal term “successful trial” to mean
that the trial data supports the hypothesis that the experimental drug is superior to
a control (placebo or an existing drug).) To describe this notion, consider data Xpnq
from a parametric model Pnp¨|θq, with θ an element of a parameter space Θ. In all
practical situations, both Xpnq and θ will be elements of subspaces of finite dimensional
Euclidean spaces.

Now, consider a proper prior distribution π on Θ and partition Θ into two disjoint
subsets Θ0 and Θ1. The inferential interest is in concluding that θ P Θ1. Let Qnp¨|xpnqq
denote the posterior distribution on Θ given the sample Xpnq “ xpnq; and let η P p0, 1q
be a pre-specifed threshold value. Muirhead and Soaita (2012) define a “successful trial”
(i.e. a trial where we are able to declare superiority) as one for which

QnpΘ1|xpnqq ě η. (1)

At the design stage, the left side of (1) cannot be evaluated, as the sample has not yet
been observed. Thus we consider the set of all samples leading to a successful trial,
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namely
E˚n “ txpnq : QnpΘ1|xpnqq ě ηu (2)

and look at the marginal probability (under the model and the prior) of E˚n . In other
words, we calculate

ψpnq “ E
 

IE˚n pXpnqq
(

(3)

where the expectation E is under the marginal distribution of Xpnq and IE˚n is the
indicator function of the set E˚n . Muirhead and Soaita (2012) refer to ψpnq in (3) as the
“probability of a successful trial” (PST) and discuss its use in Bayesian SSD.

It is reasonable to refer to the set E˚n as a “Bayesian rejection region”. We note that
the (classical) power function of the test of H0 : θ P Θ0 versus H1 : θ P Θ1 based on E˚n
is just

βnpθq “ EθtIE˚n pXpnqqu, (4)

with expectation taken with respect to the model. Then ψpnq in (3) is the same as

ψpnq “

ż

Θ

βnpθqπpdθq “ Eπtβnpθqu, (5)

with expectation taken with respect to the prior π. The expressions (3) and (5) may help
to explain why there is no consistent terminology in the literature. When the rejection
region of a test is taken to be one that is based on a frequentist (non-Bayesian) con-
struction, ψpnq has been called “average power”, “predictive power”, and “assurance”
(see Whitehead et al. (2008), O’Hagan et al. (2005)). When it is based on a Bayesian re-
jection region (such as E˚n in (2)), ψpnq has also been called “expected Bayesian power”
(see Spiegelhalter et al. (2004)) and “predictive probability” (see Brutti et al. (2008)).
In what follows, we will generally refer to ψpnq, based on the rejection region E˚n , as
either the PST or simply as “average power”.

A goal of this paper is to show that for each η P p0, 1q, under conditions specified in
Section 2

lim
nÑ8

ψpnq “ πpΘ1q, (6)

i.e., the average power, as given in (3) and (5), converges to the prior probability that
Θ P Θ1. This is Theorem 1 in Section 2. Brutti et al. (2008) derive (6) in a very special
case, a single sample from a normal distribution with known variance. The limiting
result in (6) plays an important role in the applied use of ψpnq in determining a sample
size at the design stage. See Muirhead and Soaita (2012) for illustrative examples and
further discussion.

The result (6) is established under two important assumptions. The first of these is
that

πpBΘ1q “ 0 (7)

where BΘ1 is the topological boundary of Θ1. We note that (7) is just the well known
definition of “Θ1 is a π-continuity set” (see Billingsley (1968)). The second assumption
is that the posterior is “π-consistent”. This notion, defined carefully in Section 2,
has its origins in a result of Doob (1949). In essence, this result shows that in the
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case of an i.i.d. sample, there is a set C0 Ď Θ such that πpC0q “ 1 and for each
θ0 P C0, the posterior Qnp¨|Xpnqq converges weakly to the point mass at θ0, a.s. P p¨|θ0q.
(Assumptions, and the nature of P , are detailed in Section 2.) Doob’s theorem is
discussed more completely in the Appendix, where an extension to the two sample
problem is described. A careful statement and illustrative proof of Doob’s theorem can
be found in Ghosh and Ramamoorthi (2003).

In Section 2 we also examine the limiting behavior of “average power given that
θ P Θ1”, a quantity defined later in (18). The main results here are given in Theo-
rems 2 and 3. Section 3 contains examples, the most important of which concerns the
comparison of two normal means. The paper concludes with a discussion (Section 4).

2 Main Theorems

In this section, notation and assumptions are given, followed by statements and proofs.
First, to formulate our asymptotic result, (6), consider a sequence of random vectors
Xpnq “ pX1, . . . , Xnq, (n ě 1q, with each Xi in R1. Thus the sample space for Xpnq is
Rn, for n “ 1, 2, . . .. The coordinates of Xpnq are not assumed here to be independent,
although they will be so in the examples in Section 3.

Let Θ be a parameter space which is assumed to be a Polish space. Let Pnp¨|θq
denote the distribution of Xpnq on Rn, n “ 1, 2, . . .. We further assume that there is a
probability space pR8,B8, P p¨|θqq so that Pnp¨|θq is the projection of P p¨|θq onto Rn.
That is, if B is a Borel set in Rn (so B ˆR1 ˆR1 ˆ ¨ ¨ ¨ P B8), then

PnpB|θq “ P pB ˆR1 ˆR1 ˆ ¨ ¨ ¨ |θq. (8)

For x “ px1, x2, . . .q P R
8, let xpnq denote the vector of the first n coordinates of x.

Because the Pnp¨|θq’s are the projections of P p¨|θq onto Rn, for each integrable f defined
on Rn, we have

ż

Rn

fpxpnqqPnpdxpnq|θq “

ż

R8
fpxpnqqP pdx|θq (9)

for each θ P Θ.

Next, let π be a proper prior distribution on Θ. Given Xpnq “ xpnq P Rn, let
Qnp¨|xpnqq be a version of the posterior distribution of θ.

Definition 2.1: The sequence of posteriors tQnp¨|xpnqqu is consistent at θ0 P Θ if there
is a set B0 Ď R8 such that P pB0|θ0q “ 1, and for each x P B0 and each neighborhood
U of θ0,

lim
nÑ8

QnpU |xpnqq “ 1.

Remark 2.1: Because Θ is a Polish space, it follows from Remark 1.3.1 in Ghosh and
Ramamoorthi (2003) that tQnp¨|xpnqqu is consistent at θ0 iff Qnp¨|xpnqq converges weakly
to δθ0 (point mass at θ0) a.s. P p¨|θ0q.

Definition 2.2: The sequence of posteriors tQnp¨|xpnqqu is π-consistent if there is a
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set C0 Ď Θ such that πpC0q “ 1 and for each θ0 P C0, the sequence of posteriors is
consistent at θ0.

In essence, the theorem of Doob (1949) states that in the i.i.d. case, when both the
sample space and parameter space are Polish spaces, then the sequence of posteriors is
π-consistent for each prior π.

We now proceed to formulate Theorem 1 below that will imply equation (6). To this
end, let C be a Borel subset of Θ. Fix η P p0, 1q and let

En “ txpnq : QnpC|xpnqq ě ηu. (10)

Note that the dependence of En on the set C is suppressed. Our general result below
is formulated for an arbitrary Borel set C.

With Mnp¨q denoting the marginal distribution of Xpnq (under the model and the
prior), our main result describes the asymptotic behavior of

ψpnq “MnpEnq. (11)

Obviously, for each Borel subset B of Rn,

MnpBq “

ż

Θ

ż

Rn

IBpxpnqqPnpdxpnq|θqπpdθq

“

ż

Θ

ż

R8
IBpxpnqqP pdx|θqπpdθq. (12)

Finally, we recall some standard topological notation. For a subset D Ď Θ, D˝ is the
interior of D, D̄ is the closure of D, Dc is the complement of D and BD is the boundary
of D. Note that the boundary of D is equal to the boundary of Dc.

Theorem 1: Suppose that tQnp¨|xpnqqu is π-consistent and that πpBCq “ 0. Then

lim
nÑ8

ψpnq “ πpCq, (13)

where ψpnq is given by (11).

Proof: By assumption, there is a set C0 Ď Θ with πpC0q “ 1 and such that the sequence
of posteriors is consistent at θ0 for each θ0 P C0. Because πpBCq “ 0, we can write

ψpnq “

ż

C˝

ż

R8
IEnpxpnqqP pdx|θqπpdθq `

ż

pCcq˝

ż

R8
IEnpxpnqqP pdx|θqπpdθq

“ ψ1pnq ` ψ2pnq. (14)

To analyze ψ1pnq, fix θ0 P C
˝ X C0. Since C is a neighborhood of θ0 and the posterior

is consistent at θ0, it follows that

lim
nÑ8

QnpC|xpnqq “ 1 a.s. P p¨|θ0q.
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Thus
lim
nÑ8

IEn
pxpnqq “ 1 a.s. P p¨|θ0q.

Since πpC0q “ 1, we can apply the dominated convergence theorem to see that

lim
nÑ8

ψ1pnq “

ż

C0

πpdθq “ πpC0q.

But πpBCq “ 0, so πpCq “ πpC0q.

A similar argument shows that

lim
nÑ8

ψ2pnq “ 0.

This completes the proof.

The application of Theorem 1 to the problem described in Section 1 requires the
verification of two main assumptions. We need to show that BΘ1 has prior probability
zero and that the posterior distribution is π-consistent. In the i.i.d. case, the theorem
of Doob (1949) applies to show that π-consistency holds. The boundary condition on
Θ1 needs to be checked in each application.

Remark 2.2: Theorem 1 above is proved under two assumptions, namely that the
posterior is π-consistent and that πpBCq “ 0. Modifications of these are possible while
maintaining the validity of (13). For example, if we assume that (i) C is open,

piiq QnpBC|xpnqq Ñ 1 a.s. P p¨|θq for all θ P BC,

and (iii) π-consistency, then (13) holds. A simple modification of the proof of Theorem 1
establishes this assertion.

An example of this is the following. Assume X1, . . . , Xn are i.i.d. Npθ, 1q, Θ “ R1,
Θ0 “ p´8, 0s, Θ1 “ p0,8q, so BΘ1 “ t0u. Consider the prior π “ 1

2π0 `
1
2π1, where

π0 is a point mass at 0 and π1 is Np0, 1q. With C “ Θ1, πpBCq “
1
2 , but a routine

calculation shows
Qnpt0u|xpnqq Ñ 1 a.s. P p¨|0q

and we have

ψpnq Ñ
1

4
“ πpΘ1q.

A frequentist version of Theorem 1 is easy to formulate. Suppose that Rn is the
rejection region of a test of Θ0 versus Θ1 and let φn be the corresponding test function
(the indicator function of Rn). The power function of the test φn is just

βnpθq “ Eθpφnq,

with expectation taken with respect to the model. The frequentist testing procedure
defined by φn is asymptotically consistent for testing Θ0 versus Θ1 if, as nÑ8, βnpθq
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converges to 1 on the interior of Θ1 and converges to 0 on the interior of Θ0. Now, if π
is a proper prior distribution on Θ such that πpBΘ1q “ 0, it is routine to show that

lim
nÑ8

ż

Θ

βnpθqπpdΘq “ πpΘ1q

for asymptotically consistent tests. This of course is a frequentist analog of Theorem 1.
Taking Rn “ E˚n (as defined in (2)) establishes the Bayesian-frequentist connection.

Because of the limit result (6), and because ψpnq is increasing in n in their examples,
Muirhead and Soaita (2012) suggested that it may be preferable, when choosing a sample
size, to focus attention on a “normalized index” ψ˚pnq given by

ψ˚pnq “
ψpnq

πpΘ1q
, (15)

for which

lim
nÑ8

ψ˚pnq “ 1, (16)

so that ψ˚pnq represents the proportion of the maximum value of the PST (average
power) explained by the sample size n. We now look at an alternative proposal.

Recall from (5) that the average power ψpnq may be written as

ψpnq “

ż

Θ

βnpθqπpdθq, (17)

where βnpθq is the (classical) power function of the test with rejection region E˚n given
by (2). A referee suggested that since our hope is to be able to conclude that θ P Θ1, it
would also be of interest to consider “average Bayesian power given that θ P Θ1”; that
is, to investigate the quantity ψ̃pnq given by

ψ̃pnq “
1

πpΘ1q

ż

Θ1

βnpθqπpdθq. (18)

Of course, ψ̃pnq is the average power with respect to the prior distribution conditional
on “θ P Θ1”. That is, let

π̃pAq “ πpAXΘ1q

πpΘ1q
, A Ď Θ. (19)

Then π̃ is the conditional prior obtained from π given that θ P Θ1. It is clear that

ψ̃pnq “

ż

Θ

βnpθqπ̃pdθq. (20)

It is now natural to ask how ψ̃pnq behaves as nÑ8. An obvious analog to Theorem 1
answers this question.
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Theorem 2: Suppose that tQnp¨|xpnqqu is π-consistent and that πpBΘ1q “ 0. Then

lim
nÑ8

ψ̃pnq “ 1.

Proof: The proof is a minor modification of the proof of Theorem 1. The details are
omitted.

A useful alternative form of Theorem 2 is available when the alternative Θ1 is actu-
ally an open set, as in the case of many interesting examples.

Theorem 3: Suppose that tQnp¨|xpnqqu is π-consistent and that Θ1 is a non-empty
open set. Then

lim
nÑ8

ψ̃pnq “ 1.

Proof: Since tQnp¨|xpnqqu is π-consistent, the test with rejection region E˚n is (frequen-
tist) asymptotically consistent. The openness of Θ1 implies that βnpθq Ñ 1 for each
θ P Θ1. The bounded convergence theorem gives the desired conclusion.

3 Examples

The simplest examples of Theorem 1 concern i.i.d. samples, since Doob’s theorem
implies π-consistency. For example, with data Xpnq “ pX1, . . . , Xnq where X1, . . . , Xn

are i.i.d. Npµ, σ2q, consider testing Θ0 “ tµ, σ
2|µ ď 0u versus Θ1 “ tµ, σ

2|µ ą 0u. For
any prior π on Θ “ Θ0 Y Θ1 that is absolutely continuous with respect to Lebesgue
measure dµdσ, we have πpBΘ1q “ 0, so Theorem 1 implies that ψpnq converges to πpΘ1q.

The main example of this section involves data from two independent normal sam-
ples.

Example 3.1: Let X1, . . . , Xm and Y1, . . . , Yn be independent, with the X’s i.i.d.
Npµ1, σ

2q and the Y ’s i.i.d. Npµ2, σ
2q. We consider the case where the three parameters

are unknown (the case of known σ2 is a little easier). In this example,

Θ “ tµ1, µ2, σ
2|µi P R

1, i “ 1, 2 and σ ą 0u,

Θ0 “ tµ1, µ2, σ
2|µ1 ď µ2u, and Θ1 “ tµ1, µ2, σ

2|µ1 ą µ2u.

Clearly BΘ1 “ tµ1, µ2, σ
2|µ1 “ µ2u and BΘ1 has Lebesgue measure zero when Θ is

considered a subset of R3.

Let π be a prior on Θ that is absolutely continuous with respect to Lebesgue measure.
Given this prior for θ “ pµ1, µ2, σq, let Qm,npdθ|Xpmq, Ypnqq denote the posterior. With
p “ mintm,nu, the argument in the Appendix shows that when p Ñ 8, the posterior
is π-consistent. Since πpBΘ1q “ 0, Theorem 1 implies that

lim
pÑ8

ψppq “ πpΘ1q. (21)

The use of this result in determining sample sizes is discussed in Muirhead and Soaita
(2012).
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Example 3.2: This example is intended to illustrate the two measures ψ˚pnq given
by (15) and ψ̃pnq given by (18). It is based on Example 3.1.1 in Muirhead and Soaita
(2012) where the subjects in the clinical trial have “Restless Legs Syndrome”. Let U
be the difference between the disease score sample means of two goups (experimental
drug and placebo), with equal sample sizes n1 in each group, so that the total sample
size is n “ 2n1. Under standard normality assumptions, U „ Npδ, 4σ2{nq, where σ2

is the common variance in each group, and where δ ą 0 favors the experimental drug.
The variance σ2 is assumed known (from an earlier study), with σ “ 8. For a 1-sided
0.025-level z-test to have 80% power at the “clinically meaningful difference”of 4 (drug
versus placebo), 64 subjects in each group are required, for a total sample size of 128.

In one of the settings in Muirhead and Soaita (2012), the prior distribution for the
treatment effect δ is Np∆, 64q, and the threshold in (1) used to define a “successful trial”
is η “ 0.975. Graphs of the normalized index ψ˚pnq versus n are given in Figure 1 of
Muirhead and Soaita (2012) for various values of the prior mean ∆. It is pointed out (for
example) that, when ∆ “ 4 (the “clinically meaningful” effect size), ψ˚p100q “ 0.79,
and there is not much to be gained (in terms of the PST (average power)) by taking
a larger total sample size than n “ 100. What is interesting is that, for the range of
∆’s considered, there turns out to be no discernible difference between the graphs of
ψ˚pnq versus n and ψ̃pnq versus n. The primary reason for this here is the fact that the
threshold η “ 0.975 is set very high, as it would need to be for regulatory drug approval.

A lower value of the the threshold η would be appropriate in exploratory and early
phase trials, and this is where we see a difference between ψ˚pnq and ψ̃pnq. Figure 1
gives the graphs of both ψ˚pnq and ψ̃pnq when η “ 0.8 (and ∆ “ 4). (Both functions
converge to one as n Ñ 8.) As is to be expected, ψ̃pnq ă ψ˚pnq for each n. For
example, if the total sample size is n “ 20, we have ψ˚p20q “ 0.82 and ψ̃p20q “ 0.79.
For further discussion, see Section 4.

4 Discussion and summary

We began this paper with a focus on (unconditional) average power given in (3) and
(5), namely

ψpnq “ P pXpnq P E
˚
nq “ P preject H0q,

where the set E˚n given in (2) is a Bayesian rejection region, and where the probability
involved is computed using the marginal distribution of Xpnq. We established conditions
(Theorem 1) under which, as nÑ8,

ψpnq Ñ πpΘ1q (22)

the prior probability of H1. (Under these conditions, the “normalized average power”
ψ˚pnq given by (15) converges to one.) We also noted that the limiting result (22) also
holds if E˚n is replaced by the rejection region of a test that is asymptotically consistent
(in the usual classical sense).

We further considered the “conditional power” ψ̃pnq given by (18), and established
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Figure 1: Graphs of ψ˚pnq and ψ̃pnq when the threshold is η=0.8 (and ∆=4).

conditions (Theorems 2 and 3) under which, as nÑ8,

ψ̃pnq Ñ 1.

The use of the two quantities ψ˚pnq and ψ̃pnq in a sample sizing context was illustrated
in Example 3.2.

The quantities ψ, ψ˚, and ψ̃ are, of course, related. We now detail this, suppressing
the dependence on n. By definition, ψ˚ “ ψ{πpΘ1q. Conditioning on whether H0 or
H1 is true gives

ψ “ P preject H0|H1 trueqπpΘ1q ` P preject H0|H0 trueqπpΘ0q. (23)

Rejecting H0 when it is true represents a false positive (FP), and (23) may be written

ψ “ ψ̃ ¨ πpΘ1q ` P pFPqπpΘ0q

so that

ψ˚ “ ψ̃ ` P pFPq
πpΘ0q

πpΘ1q
. (24)

As nÑ8 (and for any fixed η P p0, 1q),

ψ˚ Ñ 1, ψ̃ Ñ 1, and P pFPq Ñ 0.

Remarks:
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(a) We noted in Example 3.2 that ψ̃ ă ψ˚. Equation (24) shows that ψ˚ is “inflated” by
the probability of a false positive. This latter probability decreases as the threshold
η increases. (We noted in Example 3.2 that there was virtually no difference, for
any n, between ψ˚ and ψ̃ when η “ 0.975, a high threshold. As η is decreased, a
difference appears in the graphs; this difference, of course, decreases as n increases.)

(b) In a sample sizing problem, it is natural to ask: If the alternative is true, what is
the probability that (using the Bayesian rejection region (2)) we conclude that this
is so. This probability is the “conditional power” ψ̃pnq (see (18) and (20)). We
would then select a sample size n˚ as the smallest value of n such that ψ̃pnq ě γ,
where γ P p0, 1q is a pre-specified number. In other words, n˚ is the smallest value
of n such that the conditional probability of deciding in favor of the alternative,
given the alternative is true, is at least γ. In our view, the use of ψ̃ (rather than ψ
or ψ˚) appears to be the most plausible of the three “average power functions” in
explaining the application to sample sizing.

(c) Finally, there may be a technical advantage to preferring ψ̃ in some situations.
Theorem 3 shows that the conditional power converges to 1, even when the boundary
BΘ1 of Θ1 has positive probability under the prior.
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Appendix

The purpose of this appendix is to argue that in the two sample case of Example 3.1,
the posterior is π-consistent. Of course, assumptions are needed to make this claim
correct. These will be detailed in the discussion below.

Consider sequences X1, X2, . . . and Y1, Y2, . . . of real valued random variables and
assume that the X’s are i.i.d. P1p¨|θq, the Y ’s are i.i.d. P2p¨|θq, and the X’s and Y ’s
are independent. The parameter θ is an element of a Polish space Θ. Given a positive
integer k, let Zpkq “ pZ1, . . . , Zkq where Zi “ pXi, Yiq, i “ 1, 2, . . . . Then the Zi’s are
i.i.d. on R2 with distribution P3p¨|θq ” P1p¨|θqˆP2p¨|θq. Let Fk be the σ-field generated
by Zpkq and let π be a prior distribution on Θ. Under the assumption that the map
θ ÐÑ P3p¨|θq is 1 ´ 1, Doob’s Theorem (see Theorem 1.3.2 on page 22 of Ghosh and
Ramamoorthi (2003)) implies that the posterior distribution Qkp¨|Zpkqq is π-consistent.
Of course, in standard σ-field notation,

Qkp¨|Zpkqq “ Qkp¨|Fkq.

A basic step in the proof of Doob’s Theorem uses the Martingale Convergence Theorem
to conclude that for each Borel set C Ď Θ,

lim
kÑ8

QkpC|Zpkqq “ lim
kÑ8

EpIC |Fkq “ EpIC |F8q,

where F8 is the limit of increasing σ-fields Fk. One then shows there is a set Θ0 Ď Θ
such that πpΘ0q “ 1 and for θ P Θ0 X C,

EpIC |F8q “ 1 a.e. P8p¨|θq, (25)

where P8p¨|θq is the infinite product measure P3p¨|θqˆP3p¨|θqˆ¨ ¨ ¨ . That this establishes
the π-consistency is argued on pages 23-24 of Ghosh and Ramamoorthi (2003).

To apply the above to the two sample problem of Example 3.1, consider sequences
m1,m2, . . . and n1, n2, . . . of non-decreasing positive integers both converging to infinity.
Let pX1, . . . , Xmp

q “ Xpmpq and pY1, . . . , Ynp
q “ Ypnpq be a sample of X’s and Y ’s.

Let Gp be the σ-field generated by tXpmpq, Ypnpqu and let Q˚p p¨|Gpq be a version of the
conditional distribution of θ given tXpmpq, Ypnpqu. Thus, for a Borel set C Ď Θ,

Q˚p pC|Gpq “ EpIC |Gpq

for p “ 1, 2, . . . . With k “ mintnp,mpu, note that

Fk Ď Gp Ď F8.
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Since Fk converges to F8, it follows that Gp converges to F8. This implies (see Theorem
2 in Blackwell and Dubins (1962)) that

lim
pÑ8

EpIC |Gpq “ EpIC |F8q.

However, this is characterized by (25) which in turn shows that Q˚p p¨|Gpq is a π-consistent
sequence of posteriors.

It is clear that the above argument can be extended to the r-sample case to establish
the π-consistency of a posterior. Note that π-consistency can fail rather dramatically
when observations are not independent. For example, consider Xpnq P Rn which is
Nnpθ,Σ0q, where the vector of means θ P Rn has all its coordinates equal to an unknown
parameter µ, and where the nˆn covariance matrix Σ0 has diagonal elements equal to
1 and off-diagonal elements equal to a known value ρ P p0, 1q. If we take a Np0, 1q prior
for µ, the posterior can be calculated explicitly and is not π-consistent.
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