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OPTIMAL LEARNING WITH Q-AGGREGATION

BY GUILLAUME LECUÉ1 AND PHILIPPE RIGOLLET2

CNRS, Ecole Polytechnique and Princeton University

We consider a general supervised learning problem with strongly convex
and Lipschitz loss and study the problem of model selection aggregation. In
particular, given a finite dictionary functions (learners) together with the prior,
we generalize the results obtained by Dai, Rigollet and Zhang [Ann. Statist.
40 (2012) 1878–1905] for Gaussian regression with squared loss and fixed
design to this learning setup. Specifically, we prove that the Q-aggregation
procedure outputs an estimator that satisfies optimal oracle inequalities both
in expectation and with high probability. Our proof techniques somewhat de-
part from traditional proofs by making most of the standard arguments on the
Laplace transform of the empirical process to be controlled.

1. Introduction and main results. Let X be a probability space and let
(X,Y ) ∈ X × R be a random couple. Broadly speaking, the goal of statistical
learning is to predict Y given X. To achieve this goal, we observe a dataset
D = {(X1, Y1), . . . , (Xn,Yn)} that consists of n independent copies of (X,Y ) and
use these observations to construct a function (learner) f :X →R such that f (X)

is close to Y in a certain sense. More precisely, the prediction quality of a (possibly
data dependent) function f̂ is measured by a risk function R :RX →R associated
to a loss function � :R2 →R in the following way:

R(f̂ ) = E
[
�
(
Y, f̂ (X)

)|D]
.

We focus hereafter on loss functions � that are convex in their second argument.
Moreover, for the sake of simplicity, throughout this article we restrict ourselves
to functions f and random variables (X,Y ) for which |Y | ≤ b and |f (X)| ≤ b

almost surely, for some fixed b ≥ 0. For any real-valued measurable f on X , for

which this quantity is finite, we define ‖f ‖2 =
√
E[f (X)2].

We are given a finite set F = {f1, . . . , fM} of measurable functions from X
to R. This set is called a dictionary. The elements in F may have been constructed
using an independent, frozen, dataset at some previous step or may simply be good
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candidates for the learning task at hand. To focus our contribution on the aggrega-
tion problem, we restrict our attention to the case where F consists of deterministic
functions and, because of the diversity of dictionaries that can be considered, we
do not want to assume anything on the dictionary except boundedness.

The aim of model selection aggregation [7, 8, 16, 30] is to use the data D to
construct a function f̂ having an excess-risk R(f̂ ) − minf ∈F R(f ) as small as
possible. Namely, we seek the smallest deterministic residual term �n(F) > 0
such that the excess risk is bounded above by �n(F), either in expectation or with
high probability, or, in this instance, in both. In the high probability case, such
bounds are called oracle inequalities. This problem was introduced and studied
in [7, 16]. Many results have been obtained in aggregation theory during the last
decade, for instance, in [2], the suboptimality in deviation of the Gibbs aggregates
is proved, in [3], several procedures related to Gibbs aggregates are proved to be
optimal (in expectation) even under moment assumptions, in [6], a “universal” ag-
gregation method is constructed to solve several type of aggregation problems in
the Gaussian regression model. Other construction of optimal aggregation proce-
dures in various setups can also be found in [18, 19, 23, 30–33].

From a minimax standpoint, it has been proved that �n(F) = C(logM)/n,
C > 0 is the smallest residual term that one can hope for the regression problem
with quadratic loss [30]. An estimator f̂ achieving such a rate (up to some multi-
plying constant) is called an optimal aggregate. One of the first procedures proved
to achieve this optimal rate is a progressive mixture rule of Gibbs estimators (cf.
[3, 7, 19, 33]). The optimality of this procedure holds for any “exponentially con-
cave” loss function (cf. Theorem 4.2 in [19]) but only in expectation (cf. [2]).

The aim of this paper is to construct optimal aggregates (both in expectation and
deviation) under general conditions on the loss function � and for a random design.
We also want these procedures to have the ability to take into account some prior
information on the dictionary unlike the existing optimal aggregation procedures
that have been constructed in this setup so far (cf. [2, 23]).

Note that the optimal residuals for model selection aggregation are of the order
1/n as opposed to the standard parametric rate 1/

√
n. This fast rate essentially

comes from the strong convexity of the quadratic loss. In what follows, we show
that indeed, strong convexity is sufficient to obtain fast rates. It is known that rates
of optional order 1/n cannot be achieved if the loss function is only assumed to
be convex. Indeed, it follows from [21], Theorem 2, that if the loss is linear then
the best achievable residual term is at least of the order

√
(log |F |)/n. Recall that

a function g is said to be strongly convex on a nonempty convex set C ⊂R if there
exists a constant c such that

g
(
αa + (1 − α)a′) ≤ αg(a) + (1 − α)g

(
a′) − c

2
α(1 − α)

(
a − a′)2

for any a, a′ ∈ C,α ∈ (0,1). In this case, c is called modulus of strong convexity.
For technical reasons, we will also need to assume that the loss function is Lips-
chitz. We now introduce the set of assumptions that are sufficient for our approach.
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ASSUMPTION 1. The loss function � is such that for any f,g ∈ [−b, b], we
have ∣∣�(Y,f ) − �(Y, g)

∣∣ ≤ Cb|f − g| a.s.

Moreover, almost surely, the function �(Y, ·) is strongly convex with modulus of
strong convexity C� on [−b, b].

A central quantity that is used for the construction of aggregates is the empirical
risk defined by

Rn(f ) = 1

n

n∑
i=1

�
(
Yi, f (Xi)

)
(1.1)

for any real-valued function f defined over X . A natural aggregation procedure
consists in taking the function in F that minimizes the empirical risk. This pro-
cedure is called empirical risk minimization (ERM). It has been proved that ERM
is suboptimal for the aggregation problem (cf. Proposition 2.1 in [19] or Chap-
ter 3.5 in [7], Theorem 1.1 in [24], Theorem 3 in [22], Theorem 2 in [26] and
Theorem 2.1 in [29]). Somehow, this procedure does not take advantage of the
convexity of the loss since the class of functions on which the empirical risk is
minimized to construct the ERM is F , a finite set. As it turns out, the performance
of ERM relies critically on the convexity of the class of functions on which the
empirical risk is minimized [24, 26]. Therefore, a natural idea is to “improve the
geometry” of F by taking its convex hull conv(F) and then by minimizing the em-
pirical risk over it. However, this procedure is also suboptimal [9, 23]. The weak
point of this procedure lies in the metric complexity of the problem: taking the
convex hull of F indeed “improves the geometry” of F but it also increases by too
much its complexity. The complexity of the convex hull of a set can be much larger
than the complexity of the set itself and this leads to a failure of this naive con-
vexification trick. Nevertheless, a compromise between geometry and complexity
was stricken in [2] and [23] where optimal aggregates have been successfully con-
structed. In [2], this improvement is achieved by minimizing the empirical risk
over a carefully chosen star-shaped subset of the convex hull of F . In [23], a better
geometry was achieved by taking the convex hull of an appropriate subset of F
and then by minimizing the empirical risk over it.

In this paper, we show that a third procedure, called Q-aggregation, and that
was introduced in [9, 27] for fixed design Gaussian regression, also leads to op-
timal rates of aggregation. Unlike the above two procedures that rely on finding
an appropriate constraint for ERM, Q-aggregation is based on a penalization of
the empirical risk but the constraint set is kept to be the convex hull of F . Let �

denote the flat simplex of RM defined by

� =
{
(θ1, . . . , θM) ∈ R

M : θj ≥ 0,

M∑
j=1

θj = 1

}
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and for any θ ∈ �, define the convex combination fθ = ∑M
j=1 θjfj . For any

fixed ν, the Q-functional is defined for any θ ∈ � by

Q(θ) = (1 − ν)Rn(fθ ) + ν

M∑
j=1

θjRn(fj ).(1.2)

We keep the terminology Q-aggregation from [9] in purpose. Indeed, Q stands for
quadratic and while do not employ a quadratic loss, we exploit strong convexity
in the same manner as in [9] and [27]. Indeed the first term in Q acts as a regular-
ization of the linear interpolation of the empirical risk, and is therefore a strongly
convex regularization.

We consider the following aggregation procedure. Unlike the procedures intro-
duced in [2, 23], the Q-aggregation procedure allows us to put a prior weight given
by a prior probability π = (π1, . . . , πM) on each element of the dictionary F . This
feature turns out to be crucial for applications [1, 10–15, 28, 29]. Let β > 0 be
the temperature parameter and 0 < ν < 1. Consider any vector of weights θ̂ ∈ �

defined by

θ̂ ∈ argmin
θ∈�

[
(1 − ν)Rn(fθ ) + ν

M∑
j=1

θjRn(fj ) − β

n

M∑
j=1

θj logπj

]
.(1.3)

It comes out of our analysis that f
θ̂

achieves an optimal rate of aggregation if β

satisfies

β > max
[

8C2
b(1 − ν)2

μ
,4

√
3bCb(1 − ν),

Cbν(νCb + 4μb)

μ

]
,(1.4)

where μ = min(ν,1 − ν)(C�)/10.
This procedure was studied in the case of fixed design in [9], where it is shown

that greedy algorithms similar to the Frank–Wolfe algorithm, can be employed to
solve the optimization problem in (1.3). In particular, such algorithms can yield
solutions θ̂ that are very sparse: they can have a little as two nonzero coordinates.
In this case, and when the prior π is uniform, this two-step procedure recovers
the STAR algorithm of Audibert [2]. Furthermore, unlike the STAR algorithm, the
greedy algorithm of [9] was shown to (i) allow to handle any prior π and (ii) yield
better constants as well as better numerical performance for a larger number of
iterations (see [9] for more details). Similar algorithms can be employed in the
present case and it follows trivially from [9], Proposition 4.1, that n iterations
suffice to obtain an optimization error of the same order as the statistical error.
Going down to two iterations as in [9], Theorem 4.2, requires a more delicate
analysis, similar to the one employed in [9], but is beyond the scope of this paper.

THEOREM A. Let F be a finite dictionary of cardinality M and (X,Y ) be
a random couple of X × R such that |Y | ≤ b and maxf ∈F |f (X)| ≤ b a.s. for
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some b > 0. Assume that Assumption 1 holds and that β satisfies (1.4). Then, for
any x > 0, with probability greater than 1 − exp(−x)

R(f
θ̂
) ≤ min

j=1,...,M

[
R(fj ) + β

n
log

(
1

πj

)]
+ 2βx

n
.

Moreover,

E
[
R(f

θ̂
)
] ≤ min

j=1,...,M

[
R(fj ) + β

n
log

(
1

πj

)]
.

If π is the uniform distribution, that is πj = 1/M for all j = 1, . . . ,M , then we
recover in Theorem A the classical optimal rate of aggregation (logM)/n and the
estimator θ̂ is just the one minimizing the Q-functional defined in (1.2). In partic-
ular, no temperature parameter β is needed for its construction. As a result, in this
case, the parameter b need not be known for the construction of the Q-aggregation
procedure.

2. Preliminaries to the proof of Theorem A. An important part of our analy-
sis is based upon concentration properties of empirical processes. While our proofs
are similar to those employed in [27] and [9], they contain genuinely new argu-
ments. In particular, this learning setting, unlike the denoising setting considered
in [9, 27] allows us to employ various new tools such as symmetrization and con-
traction. A classical tool to quantify the concentration of measure phenomenon is
given by Bernstein’s inequality for bounded variables. In terms of Laplace trans-
form, Bernstein’s inequality [5], Theorem 1.10, states that if Z1, . . . ,Zn are n i.i.d.
real-valued random variables such that for all i = 1, . . . , n,

|Zi | ≤ c a.s. and EZ2
i ≤ v,

then for any 0 < λ < 1/c,

E exp

[
λ

(
n∑

i=1

{Zi −EZi}
)]

≤ exp
(

nvλ2

2(1 − cλ)

)
.(2.1)

Bernstein’s inequality usually yields a bound of order
√

n for the deviations of a
sum around its mean. As mentioned above, such bounds are not sufficient for our
purposes and we thus consider the following concentration result.

PROPOSITION 1. Let Z1, . . . ,Zn be i.i.d. real-valued random variables and
let c0 > 0. Assume that |Z1| ≤ c a.s. Then, for any 0 < λ < (2c0)/(1 + 2c0c),

E exp

[
nλ

(
1

n

n∑
i=1

Zi −EZi − c0EZ2
i

)]
≤ 1

and

E exp

[
nλ

(
1

n

n∑
i=1

EZi − Zi − c0EZ2
i

)]
≤ 1.
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PROOF. It follows from Bernstein’s inequality (2.1) that for any 0 < λ <

(2c0)/(1 + 2c0c),

E exp

[
nλ

(
1

n

n∑
i=1

Zi −EZi − c0EZ2
i

)]

≤ exp
(

nEZ2
1λ2

2(1 − cλ)

)
exp

[−nλc0EZ2
1
] ≤ 1.

The second inequality is obtained by replacing Zi by −Zi . �

We also recall the following exponential bound for Rademacher processes: let
ε1, . . . , εn be independent Rademacher random variables and a1, . . . , an be some
real numbers then, by Hoeffding’s inequality,

E exp

(
n∑

i=1

εiai

)
≤ exp

(
1

2

n∑
i=1

a2
i

)
.(2.2)

We will also use a slightly modified version of the symmetrization inequality: let
F be a function class, Af ,f ∈ F be a given function on F and � be a convex
nondecreasing function then

E�
(

sup
f ∈F

[Pf − Pnf − Af ]
)

≤ E�
(
2 sup

f ∈F
[Pn,εf − Af ]

)
,(2.3)

where P is a measure, Pn its associated empirical measure and Pn,ε the sym-
metrized empirical measure defined by

Pf = Ef (Z), Pnf = 1

n

n∑
i=1

f (Zi) and Pn,εf = 1

n

n∑
i=1

εif (Zi),

where Z,Z1, . . . ,Zn are i.i.d. random variables distributed according to P and
ε1, . . . , εn are independent Rademacher independent of Z,Z1, . . . ,Zn. The proof
of (2.3) follows the same line as the symmetrization inequality (cf. e.g., Theo-
rem 2.1 in [20]).

Our analysis also relies upon some geometric argument. Indeed, the strong con-
vexity of the loss function in Assumption 1 implies the 2-convexity of the risk in
the sense of [4]; cf. (2.4) for an explicit definition of the 2-convexity of a func-
tion R(·). This translates into a lower bound on the gain obtained when applying
Jensen’s inequality to the risk function R.

PROPOSITION 2. Let (X,Y ) be a random couple in X × R and F =
{f1, . . . , fM} be a finite dictionary in L2(X ,PX) such that |fj (X)| ≤ b, ∀j =
1, . . . ,M and |Y | ≤ b a.s. Assume that, almost surely, the function �(Y, ·) is
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strongly convex with modulus of strong convexity C� on [−b, b]. Then it holds
that, for any θ ∈ �,

R

(
M∑

j=1

θjfj

)
≤

M∑
j=1

θjR(fj ) − C�

2

M∑
j=1

θj

∥∥∥∥∥fj −
M∑

j=1

θjfj

∥∥∥∥∥
2

2

.(2.4)

PROOF. Define the random function �(·) = �(Y, ·). By strong convexity
and [17], Theorem 6.1.2, it holds almost surely that for any a, a′ in [−b, b],

�(a) ≥ �
(
a′) + (

a − a′)�′(a′) + C�

2

(
a − a′)2

for any �′(a′) in the subdifferential of � at a′. Plugging a = fj (X), a′ = fθ(X),
we get almost surely

�
(
Y,fj (X)

)
≥ �

(
Y,fθ (X)

) + (
fj (X) − fθ (X)

)
�′(fθ (X)

) + C�

2

[
fj (X) − fθ (X)

]2
.

Now, multiplying both sides by θj and summing over j , we get almost surely,

∑
j

θj �
(
Y,fj (X)

) ≥ �
(
Y,fθ (X)

) + C�

2

∑
j

θj

[
fj (X) − fθ (X)

]2
.

To complete the proof, it remains to take the expectation. �

3. Proof of Theorem A. Let x > 0 and assume that Assumption 1 holds
throughout this section. We start with some notation. For any θ ∈ �, define

�θ (y, x) = �
(
y,fθ (x)

)
and R(θ) = E�θ (Y,X) = E�

(
Y,fθ (X)

)
,

where we recall that fθ = ∑M
j=1 θjfj for any θ ∈ R

M . Let 0 < ν < 1. Let
(e1, . . . , eM) is the canonical basis of RM and for any θ ∈ R

M define

�̃θ (y, x) = (1 − ν)�θ (y, x) + ν

M∑
j=1

θj �ej
(y, x) and R̃(θ) = E�̃θ (Y,X).

We also consider the functions

θ ∈ R
M �→ K(θ) =

M∑
j=1

θj log
(

1

πj

)

and

θ ∈ R
M �→ V (θ) =

M∑
j=1

θj‖fj − fθ‖2
2.
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Let μ > 0. Consider any oracle θ∗ ∈ � such that

θ∗ ∈ argmin
θ∈�

(
R̃(θ) + μV (θ) + β

n
K(θ)

)
.

We start with a geometrical aspect of the problem. The two following results
follow from the strong convexity of the loss function �.

PROPOSITION 3. When μ ≤ (1 − ν)C�/2, the function θ �→ H(θ) = R̃(θ) +
μV (θ) + (β/n)K(θ) is convex over the convex set �.

PROOF. Let θ,β ∈ � and 0 ≤ α ≤ 1. It follows from some computation that

V
(
αθ + (1 − α)β

) = (1 − α)V (β) + αV (θ) + α(1 − α)‖fθ − fβ‖2
2.

It follows from the strong convexity of �(y, ·) that

R
(
αθ + (1 − α)β

) ≤ (1 − α)R(β) + αR(θ) − C�

2
α(1 − α)‖fθ − fβ‖2

2.

Therefore, when μ ≤ (1 − ν)C�/2, we have

H
(
αθ + (1 − α)β

) ≤ (1 − α)H(β) + αH(θ). �

PROPOSITION 4. Let μ ≤ (1 − ν)C�/2. For any θ ∈ �,

R̃(θ) − R̃
(
θ∗)

≥ μ
(
V

(
θ∗) − V (θ)

) + β

n

(
K

(
θ∗) − K(θ)

) +
(

(1 − ν)C�

2
− μ

)
‖fθ − fθ∗‖2

2.

PROOF. Since θ �→ H(θ) = R̃(θ) + μV (θ) + (β/n)K(θ) is convex over the
convex set � and θ∗ is a minimizer of H over �, then there exists a subgradient
∇H(θ∗) such that for any θ ∈ � it holds, 〈∇H(θ∗), θ − θ∗〉 ≥ 0. It yields〈∇R̃

(
θ∗)

, θ − θ∗〉
≥ μ

〈∇V
(
θ∗)

, θ∗ − θ
〉 + (β/n)

〈∇K
(
θ∗)

, θ∗ − θ
〉

(3.1)

= μ
(
V

(
θ∗) − V (θ)

) − μ‖fθ − fθ∗‖2
2 + (β/n)

(
K

(
θ∗) − K(θ)

)
.

It follows from the strong convexity of �(y, ·) that

R̃(θ) − R̃
(
θ∗)

≥ 〈∇R̃
(
θ∗)

, θ − θ∗〉 + (1 − ν)C�

2
‖fθ − fθ∗‖2

2

≥ μ
(
V

(
θ∗) − V (θ)

) + β

n

(
K

(
θ∗) − K(θ)

) +
(

(1 − ν)C�

2
− μ

)
‖fθ − fθ∗‖2

2,

where the second inequality follows from the previous display. �
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Let H be the M ×M matrix with entries Hj,k = ‖fj −fk‖2
2 for all 1 ≤ j, k ≤ M .

Let s and x be positive numbers and consider the random variable

Zn = (P − Pn)(�̃θ̂
− �̃θ∗) − μ

M∑
j=1

θ̂j‖fj − fθ∗‖2
2 − μθ̂Hθ∗ − 1

s
K(θ̂).

PROPOSITION 5. Assume that 10μ ≤ min(1 − ν, ν)C� and β ≥ 2n/s. Then it
holds

R(θ̂) ≤ min
1≤j≤M

[
R(ej ) + β

n
log

(
1

πj

)]
+ 2Zn.

PROOF. First note that the following equalities hold:

M∑
j=1

θ̂j‖fj − fθ∗‖2
2 = V (θ̂) + ‖f

θ̂
− fθ∗‖2

2(3.2)

and

θ̂Hθ∗ = V (θ̂) + V
(
θ∗) + ‖fθ∗ − f

θ̂
‖2

2.(3.3)

It follows from the definition of θ̂ that

R̃(θ̂) − R̃
(
θ∗) ≤ (P − Pn)(�̃θ̂

− �̃θ∗) + β

n

(
K

(
θ∗) − K(θ̂)

)
.(3.4)

Then we use (3.2) and (3.3) together with (3.4) to get

R̃(θ̂) − R̃
(
θ∗) ≤ 2μV (θ̂) + μV

(
θ∗) + 2μ‖f

θ̂
− fθ∗‖2

2
(3.5)

+ 1

s
K(θ̂) + β

n

(
K

(
θ∗) − K(θ̂)

) + Zn.

Together with Proposition 4, it yields(
(1 − ν)C�

2
− 3μ

)
‖f

θ̂
− fθ∗‖2

2 ≤ 3μV (θ̂) + 1

s
K(θ̂) + Zn.

We plug the above inequality into (3.5) to obtain

R̃(θ̂) − R̃
(
θ∗) ≤

(
1 + 2μ

(1 − ν)C�/2 − 3μ

)(
1

s
K(θ̂) + Zn

)

+ β

n

(
K

(
θ∗) − K(θ̂)

) + μV
(
θ∗)

+
(

2μ + 6μ2

(1 − ν)C�/2 − 3μ

)
V (θ̂).

Thanks to the 2-convexity of the risk (cf. Proposition 2), we have

R̃(θ̂) ≥ R(θ̂) + ν(C�/2)V (θ̂).
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Therefore, it follows from (3.6) that

R(θ̂) ≤ R̃
(
θ∗) + μV

(
θ∗) + β

n
K

(
θ∗) +

(
1 + 4μ

(1 − ν)C� − 6μ

)
Zn

+
(

2μ + 12μ2

(1 − ν)C� − 6μ
− ν

C�

2

)
V (θ̂)(3.6)

+
(

1

s
+ 4μ

s((1 − ν)C� − 6μ)
− β

n

)
K(θ̂).

Note now that 10μ ≤ min(ν,1 − ν)C� implies that

4μ

(1 − ν)C� − 6μ
≤ 1

and

2μ + 12μ2

(1 − ν)C� − 6μ
− ν

C�

2
≤ 0.

Moreover, together, the two conditions of the proposition yield

1

s
+ 4μ

s((1 − ν)C� − 6μ)
− β

n
≤ 0.

Therefore, it follows from the above three displays that

R(θ̂) ≤ min
θ∈�

[
R̃(θ) + μV (θ) + β

n
K(θ)

]
+ 2Zn

≤ min
j=1,...,M

[
R(ej ) + β

n
log

(
1

πj

)]
+ 2Zn. �

To complete our proof, it remains to prove that P[Zn > (βx)/n] ≤ exp(−x) and
E[Zn] ≤ 0 under suitable conditions on μ and β . Using, respectively, a Chernoff
bound and Jensen’s inequality, it is easy to see that both conditions follow if we
prove that E exp(nZn/β) ≤ 1. It follows from the excess loss decomposition:

�̃
θ̂
(y, x) − �̃θ∗(y, x) = (1 − ν)

(
�
θ̂
(y, x) − �θ∗(y, x)

) + ν

M∑
j=1

(
θ̂j − θ∗

j

)
�ej

(y, x)

and the Cauchy–Schwarz inequality implies that it is enough to prove that

E exp

[
s

(
(1 − ν)(P − Pn)(�θ̂

− �θ∗)

(3.7)

− μ

M∑
j=1

θ̂j‖fj − fθ∗‖2
2 − 1

s
K(θ̂)

)]
≤ 1
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and

E exp

[
s

(
ν(P − Pn)

(
M∑

j=1

(
θ̂j − θ∗

j

)
�ej

)
− μθ̂Hθ∗ − 1

s
K(θ̂)

)]
≤ 1(3.8)

for some s ≥ 2n/β and assume this condition holds in the rest of the proof.
We begin by proving (3.7). To that end, define the symmetrized empiri-

cal process by h �→ Pn,εh = n−1 ∑n
i=1 εih(Yi,Xi) where ε1, . . . , εn are n i.i.d.

Rademacher random variables independent of the (Xi, Yi)’s. Moreover, take
s and μ such that

s ≤ μn

[2Cb(1 − ν)]2 .(3.9)

It yields

E exp

[
s

(
(1 − ν)(P − Pn)(�θ̂

− �θ∗) − μ

M∑
j=1

θ̂j‖fj − fθ∗‖2
2 − 1

s
K(θ̂)

)]

≤ E exp

[
s max

θ∈�

(
(1 − ν)(P − Pn)(�θ − �θ∗)

− μ

M∑
j=1

θj‖fj − fθ∗‖2
2 − 1

s
K(θ)

)]

≤ E exp

[
s max

θ∈�

(
2(1 − ν)Pn,ε(�θ − �θ∗)

(3.10)

− μ

M∑
j=1

θj‖fj − fθ∗‖2
2 − 1

s
K(θ)

)]

≤ E exp

[
s max

θ∈�

(
2Cb(1 − ν)Pn,ε(fθ − fθ∗)

(3.11)

− μ

M∑
j=1

θj‖fj − fθ∗‖2
2 − 1

s
K(θ)

)]
,

where (3.10) follows from the slightly modified version of the symmetrization
inequality in (2.3) and (3.11) follows from the contraction principle [25], Theo-
rem 4.12, applied to contractions

ϕi(ti) = C−1
b

[
�
(
Yi, fθ∗(Xi) − ti

) − �
(
Yi, fθ∗(Xi)

)]
and T ⊂ R

n is defined by

T = {
t ∈ R

n : ti = fθ∗(Xi) − fθ(Xi), θ ∈ �
}
.
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Next, using the fact that the maximum of a linear function over a polytope is at-
tained at a vertex, we get

E exp

[
s

(
(1 − ν)(P − Pn)(�θ̂

− �θ∗) − μ

M∑
j=1

θ̂j‖fj − fθ∗‖2
2 − 1

s
K(θ̂)

)]

≤
M∑

k=1

πkEEε exp
[
s
(
2Cb(1 − ν)Pn,ε(fk − fθ∗) − μ‖fk − fθ∗‖2

2
)]

≤
M∑

k=1

πkE exp
[ [2Cb(1 − ν)s)]2

2n

(3.12)

×
(
Pn − 2μn

[2Cb(1 − ν)]2s
P

)
(fk − fθ∗)2

]

≤
M∑

k=1

πkE exp
[
(2Cb(1 − ν)s)2

2n

(3.13)

×
(
(Pn − P)(fk − fθ∗)2 − 1

4b2 P(fk − fθ∗)4
)]

,

where (3.12) follows from (2.2) and (3.13) follows from (3.9). Together with the
above display, Proposition 1 yields (3.7) as long as

s <
n

2
√

3bCb(1 − ν)
.(3.14)

We now prove (3.8). We have

E exp

[
s

(
ν(P − Pn)

(
M∑

j=1

(
θ̂j − θ∗

j

)
�ej

)
− μθ̂Hθ∗ − 1

s
K(θ̂)

)]

≤
M∑

j=1

θ∗
j

M∑
k=1

πkE exp
[
s
(
ν(P − Pn)(�ek

− �ej
) − μ‖fj − fk‖2

2
)]

≤
M∑

j=1

θ∗
j

M∑
k=1

πkE exp
[
sν

(
(P − Pn)(�ek

− �ej
) − μ

νC2
b

P (�ej
− �ek

)2
)]

≤ 1,

where the last inequality follows from Proposition 1 when

s <
2μn

Cbν(νCb + 4μb)
.(3.15)

It is now straightforward to see that the conditions of Proposition 5, the ones
of (3.9), (3.14) and (3.15) are fulfilled when

s = 2n

β
, μ = min(ν,1 − ν)

C�

10
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and

β > max
[

8C2
b(1 − ν)2

μ
,4

√
3bCb(1 − ν),

Cbν(νCb + 4μb)

μ

]
.
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