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ROBUST T -OPTIMAL DISCRIMINATING DESIGNS1
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St. Petersburg State University

This paper considers the problem of constructing optimal discriminat-
ing experimental designs for competing regression models on the basis of
the T -optimality criterion introduced by Atkinson and Fedorov [Biometrika
62 (1975a) 57–70]. T -optimal designs depend on unknown model parame-
ters and it is demonstrated that these designs are sensitive with respect to
misspecification. As a solution to this problem we propose a Bayesian and
standardized maximin approach to construct robust and efficient discrimi-
nating designs on the basis of the T -optimality criterion. It is shown that
the corresponding Bayesian and standardized maximin optimality criteria are
closely related to linear optimality criteria. For the problem of discriminat-
ing between two polynomial regression models which differ in the degree by
two the robust T -optimal discriminating designs can be found explicitly. The
results are illustrated in several examples.

1. Introduction. An important problem of regression analysis is the identifi-
cation of an appropriate model to describe the relation between the response and
a predictor. Typical examples include dose response studies [see, e.g., Bretz, Pin-
heiro and Branson (2005)] in medicine or toxicology or problems in pharmacoki-
netics, where a model has usually to be chosen from a class of competing regres-
sion functions; see, for example, Atkinson, Bogacka and Bogacki (1998), Asprey
and Macchietto (2000), Uciński and Bogacka (2005) or Foo and Duffull (2011).
Because a misspecification of a regression model can result in an inefficient—in
the worst case, incorrect—data analysis, several authors argue that the design of the
experiment should take the problem of model identification into account. Mean-
while a huge amount of literature can be found which addresses the construction
of efficient designs for model discrimination. The literature can be roughly decom-
posed into two groups.

Hunter and Reiner (1965), Stigler (1971), Hill (1978), Studden (1982), Spruill
(1990), Dette (1994, 1995), Dette and Haller (1998), Song and Wong (1999),
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Dette, Melas and Wong (2005) (among many others) considered two nested mod-
els, where the extended model reduces to the “smaller” model for a specific choice
of a subset of the parameters. The optimal discriminating designs are then con-
structed such that these parameters are estimated most precisely. This concept re-
lies heavily on the assumption of nested models, and as an alternative Atkinson
and Fedorov (1975a) introduced in a fundamental paper the T -optimality crite-
rion for discriminating between two competing regression models. Since its in-
troduction this criterion has been studied by numerous authors [Atkinson and Fe-
dorov (1975b), Ponce de Leon and Atkinson (1991) Uciński and Bogacka (2005),
Waterhouse et al. (2008), Dette and Titoff (2009), Atkinson (2010), Tommasi and
López-Fidalgo (2010), Wiens (2009, 2010) or Dette, Melas and Shpilev (2012)
among others].

The T -optimal design problem is essentially a maximin problem, and the cri-
terion can also be applied for nonnested models. Except for very simple models,
T -optimal discriminating designs are not easy to find and even their numerical de-
termination is a very challenging task. Moreover, an important drawback of this
approach consists of the fact that the criterion and, as a consequence, the corre-
sponding optimal discriminating designs depend sensitively on the parameters of
one of the competing regression models. In contrast to other optimality criteria this
dependence appears even in the case where only linear models have to be discrim-
inated. Therefore T -optimal designs are locally optimal in the sense of Chernoff
(1953) as they can only be implemented if some prior information regarding these
parameters is available. Moreover, we will demonstrate in Example 2.1 that the ef-
ficiency of a T -optimal design depends sensitively on a precise specification of the
unknown parameters in the criterion. This problem has already been recognized
by Atkinson and Fedorov (1975a) who proposed Bayesian or minimax versions of
the T -optimality criterion. However—to the best knowledge of the authors—there
exist no results in the literature investigating optimal design problems of this type
more rigorously (we are not even aware of any numerical solutions).

The present paper is devoted to a more detailed discussion of robust T -optimal
discriminating designs. We will study a Bayesian and a standardized maximin ver-
sion of the T -optimal discriminating design problem; see Chaloner and Verdinelli
(1995) and Dette (1997). It is demonstrated that optimal designs with respect to
these criteria are closely related to optimal designs with respect to linear opti-
mality criteria. For the particular case of discriminating between two competing
polynomial regression models which differ in the degree by two, robust T -optimal
discriminating designs are found explicitly. These results provide—to our best of
our knowledge—the first explicit solution in this context. Interestingly, the struc-
ture of these Bayesian and standardized maximin T -optimal discriminating de-
signs is closely related to the structure of designs for a most precise estimation of
the two highest coefficients in a polynomial regression model; see Gaffke (1987)
or Studden (1989).
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The remaining part of the paper is organized as follows. In Section 2 we revisit
the T -optimality criterion introduced by Atkinson and Fedorov (1975a) for two
regression models, which will be called locally T -optimality criterion in order to
reflect the dependence on the parameters of one of the competing models. In par-
ticular it is demonstrated that locally T -optimal designs can be inefficient if the
parameters in the optimality criterion have been misspecified. Section 3 is devoted
to robust versions of the T -optimality criterion and properties of the corresponding
optimal designs, while Section 4 gives explicit results for Bayesian and standard-
ized maximin T -optimal discriminating designs for two competing polynomial re-
gression models. In Section 5 we illustrate the results and construct robust optimal
discriminating designs for a constant and quadratic regression. These two models
have been proposed in Bretz, Pinheiro and Branson (2005) to detect dose response
signal in phase II clinical trial if there is some evidence that the shape of the dose
response might be u-shaped. In particular it is demonstrated by a small simulation
study that the T -optimal discriminating designs improve the power of the F -test
for discriminating between the two polynomial models.

2. Locally T -optimal designs. We assume that the relation between a predic-
tor x and response y is described by the regression model

y = η(x) + ε,

where x varies in a compact designs space X ⊂ R
k , and ε denotes a centered

random variable with finite variance. We also assume that observations at exper-
imental conditions x1 and x2 are independent and that there exist two competing
continuous parametric models, say η1 or η2, for the regression function η with cor-
responding parameters θ1 ∈ R

m1 ; θ2 ∈ R
m2 , respectively. In order to find “good”

designs for discriminating between the models η1 and η2, we consider approximate
designs in the sense of Kiefer (1974), which are defined as probability measures
on the design space X with finite support. The support points, say x1, . . . , xs , of
an (approximate) design ξ give the locations where observations are taken, while
the weights give the corresponding relative proportions of total observations to be
taken at these points. If the design ξ has masses ωi > 0 at the different points xi

(i = 1, . . . , s) and n observations can be made by the experimenter, the quantities
ωin are rounded to integers, say ni , satisfying

∑s
i=1 ni = n, and the experimenter

takes ni observations at each location xi (i = 1, . . . , s). It has been demonstrated
by Pukelsheim and Rieder (1992) that the loss of efficiency caused by rounding
is of order O(n−2) and O(n−1) for differentiable and nondifferentiable optimality
criteria, respectively.

To determine a good design for discriminating between the two rival regression
models η1 and η2, Atkinson and Fedorov (1975a) proposed in a fundamental paper
to fix one model, say η2 (more precisely its corresponding parameter θ2), and to
determine the design which maximizes the minimal deviation

T (ξ, θ2) = min
θ1∈�1

∫
χ

(
η1(x, θ1) − η2(x, θ2)

)2
ξ(dx)(2.1)
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between the model η2 and the class of models {η1(x, θ1)|θ1 ∈ �1} defined by η1,
that is,

ξ∗ = arg max
ξ

T (ξ, θ2).(2.2)

Note that a design maximizing (2.1) is constructed, such that the deviation be-
tween the given model η2(·, θ2) and its best approximation by models of the form
η1(·, θ1) with respect to the L2(ξ)-distance is maximal. Moreover, in linear and
nested models η1 and η2 it can be shown that the design ξ∗ in (2.4) maximizes the
power of the corresponding F -test. For these and further properties of the crite-
rion we refer to Dette and Titoff (2009). Throughout this paper we call the max-
imizing design and optimality criterion in (2.2) locally T -optimal discriminating
design and local T -optimality criterion, respectively, because they will depend on
the specification of the parameter θ2 used for the model η2. The local T -optimal
design problem is a maximin problem and except for very simple models the cor-
responding optimal designs are extremely hard to find. Even their numerical con-
struction is a difficult and challenging task. Nevertheless, since its introduction the
optimal designs with respect to the criterion (2.1) have found considerable interest
in the literature and we refer the interested reader to the work of Uciński and Bo-
gacka (2005) or Dette and Titoff (2009) among others. The latter authors showed
that the optimization problem (2.2) is closely related to a problem in nonlinear
approximation theory, that is,

R(θ2) := max
ξ

T (ξ, θ2) = inf
θ1∈�1

sup
x∈X

∣∣η1(x, θ1) − η2(x, θ2)
∣∣2,(2.3)

where T (ξ, θ2) is defined in (2.1). Because of its local character, locally T -optimal
designs are rather sensitive with respect to the misspecification of the unknown
parameter and the following example illustrates this fact.

EXAMPLE 2.1. We consider the problem of constructing a T -optimal discrim-
inating design for the Michaelis–Menten model,

η1(x, θ1) = θ1,1x

θ1,2 + x

[see, e.g., Cornish-Bowden (1965)] and the EMAX model

η2(x, θ2) = θ2,0 + θ2,1x

θ2,2 + x
;

see, for example, Danesi et al. (2002). It is easy to see that the T -optimal
discriminating design does not depend on the parameter θ2,1 and therefore we
assume without loss of generality θ2,1 ≡ 1. In Table 1 we display some locally
T -optimal discriminating designs on the interval [1,2] for various values of pa-
rameters θ2,i , i = 0,2. We observe that the resulting designs are rather sensitive
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TABLE 1
The support points and the weights of T -optimal discriminating designs for a Michaelis–Menten

and an EMAX model and various specifications of the parameters θ2,0 and θ2,2 of the EMAX model.
The locally T -optimal design puts weights w1,w2 and w3 at the points 1, x∗ and 2, respectively

θ2,0 θ2,2 x∗ w1 w2 w3 θ2,0 θ2,2 x∗ w1 w2 w3

−2 2 1.368 0.206 0.499 0.295 −2 1 1.352 0.211 0.499 0.29
−1 2 1.347 0.176 0.495 0.329 −1 1 1.321 0.165 0.491 0.344
−1/2 2 1.211 0.040 0.584 0.376 −1/2 1 1.590 0.619 0.336 0.045
1/2 2 1.400 0.260 0.498 0.242 1/2 1 1.384 0.261 0.498 0.239
1 2 1.390 0.247 0.499 0.254 1 1 1.378 0.253 0.499 0.248
2 2 1.387 0.238 0.499 0.263 2 1 1.337 0.244 0.500 0.256

with respect to the specification of the values θ2,0 and θ2,2. Note that in contrast to
the T -optimal discriminating design, the T -efficiency

EffT (ξ, θ2) = T (ξ, θ2)

supη T (η, θ2)
(2.4)

depends also on the parameter θ2,1 of the EMAX model and some efficiencies
are depicted in Figure 1 if the true values are given by θ2,0 = −1, θ2,1 = 1,
θ2,2 ∈ (2,6), and one uses the T -optimal discriminating design calculated under
the assumption θ2,0 = −1/4, θ2,1 = 1 and θ2,2 ∈ (2,6). We observe a substan-
tial loss of T -efficiency in some regions for θ2,2. If θ2,2 ∈ (0,2) the efficiency
is larger than 50%, if θ2,2 ∈ (2,3) ∪ (5.5,6) it varies between 15% and 40%, if
θ2,2 ∈ (3,5.5) the efficiency is smaller than 15%, and the locally T -optimal design
cannot be recommended. On the basis of these observations it might be desirable to
use designs which are less sensitive with respect to misspecification of the param-
eter θ2,0, and the corresponding methodology will be developed in the following
section. Robust T -optimal designs for discriminating between the Michaelis and
EMAX model will be discussed at the end of this paper where we construct a
uniformly better design; see Section 5.3.

3. Robust T -optimal discriminating designs. Because the previous exam-
ple indicates that locally T -optimal discriminating designs are sensitive with re-
spect to misspecification of the parameters θ2 of the model η2 in the T -optimality
criterion (2.1), the consideration of robust optimality criteria for model discrim-
ination is of great interest. In the context of constructing efficient robust designs
for parameter estimation in nonlinear regression models Bayesian and standard-
ized maximin optimality criteria have been discussed intensively in the literature;
see Chaloner and Verdinelli (1995), Dette (1997) or Müller and Pázman (1998),
among many others. However, to our best knowledge, these methods have not been
investigated rigorously in the context of model discrimination so far, and in this
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FIG. 1. T -efficiency (2.4) of the locally T -optimal discriminating design for Michaelis–Menten
and EMAX model calculated under the assumption θ2,0 = −1/4, θ2,1 = 1 while the “true” values
are given by θ2,0 = −1, θ2,1 = 1. The efficiencies depend on the parameter θ2,2 ∈ (2,6).

section we will define a robust version of the local T -optimality criterion. Recall
the definition of this criterion in (2.1) and its optimal value R(θ2) in (2.3); then a
design ξ∗

M is called standardized maximin T -optimal discriminating (with respect
to the set �2) if it maximizes the criterion

VM(ξ) = inf
θ2∈�2

T (ξ, θ2)

R(θ2)
,(3.1)

where �2 is a pre-specified set, reflecting the experimenter’s belief about the un-
known parameter θ2. Similarly, if π denotes a prior distribution on the set �2,
then a design ξ∗

B is called Bayesian T -optimal (with respect to the prior π ) if it
maximizes the criterion

VB(ξ) =
∫
�2

T (ξ, θ2)π(dθ2).(3.2)

We would like to point out here that criteria (3.1) and (3.2) yield to different op-
timal designs. Some interesting relations between both optimality criteria can be
found in Dette, Haines and Imhof (2007). In particular, these authors showed that,
under appropriate regularity assumptions, a design maximizing criterion (3.1) is al-
ways a Bayesian T -optimal design with respect to a prior supported at the extreme
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points of the best approximation of the function η2(·, θ2) by the function η1(·, θ1)

with respect to the sup-norm ‖g‖∞ = supx∈X |g(x)|. From a practical point of
view the use of criterion (3.1) or (3.2) is a matter of taste and depends on the
concrete application. If some regions of the parameter space are more likely than
others a Bayesian criterion could be preferred; otherwise the maximin or Bayesian
criterion with an uninformative prior might be appropriate.

In the following discussion we investigate the problem of constructing robust
discriminating designs for two linear regression models

η1(x, θ1) =
m1−1∑
i=0

θ1,ifi(x), η2(x, θ2) =
m2−1∑
i=0

θ2,ifi(x),(3.3)

where m2 > m1, f0, . . . , fm2−1 are given linearly independent regression func-
tions, and θi = (θi,0, . . . , θi,mi−1)

T denotes the parameter in the model ηi (i =
1,2). We introduce the notation b1 = θ2,m1/θ2,m2−1, . . . , bm2−m1−1 = θ2,m2−2/

θ2,m2−1, m = m2 − 1, s = m2 − m1, qi = θ1,i − θ2,i (i = 0,1, . . . ,m − s) and
obtain for the difference η1(x, θ1) − η2(x, θ2) the representation

η̄
(
x, q, θc

2,m, θ2,m

)
(3.4)

=
m−s∑
i=0

qifi(x) − (
b1fm−s+1(x) + · · · + bs−1fm−1(x) + fm(x)

)
θ2,m,

where θc
2,m = (θ2,m−s+1, . . . , θ2,m−1)

T . Thus the locally T -optimality criterion in
(2.1) can be rewritten as

T (ξ, θ2) = inf
θ1∈Rm−s+1

∫
X

(
η1(x, θ1) − η2(x, θ2)

)2
dξ(x)

= θ2
2,m inf

q∈Rm−s+1

∫
X

η̄2(x, q, b,1) dξ(x),

where b = (b1, . . . , bs−1)
T . Consequently, locally T -optimal designs depend only

on the ratios bi = θ2,m−s+i/θ2,m (i = 1, . . . , s − 1). Similarly, if π is a prior dis-
tribution for the vector θ2, then it follows from these discussions that the Bayesian
T -optimality criterion depends only on the induced prior distribution, say π̄ , for
the parameter b = (b1, . . . , bs−1). Therefore we assume that the vector b varies in
a subset B ⊂ R

s−1 and define π̄ as a prior distribution on B. With these notations
the Bayesian T -optimality criterion in (3.2) simplifies to

VB(ξ) =
∫

B
inf

q∈Rm−s+1

∫
X

η̄2(x, q, b,1)ξ(dx)π̄(db).(3.5)

Similarly, we have with the notation θ̄2 = θ2/θ2,m,

R(θ2) = max
ξ

T (ξ, θ2) = θ2
2,mR(θ̄2)
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and defining B = {(θ2,m−s+1/θ2,m, . . . , θ2,m−1/θ2,m)T |θ2 ∈ �2} ⊂ R
s−1 and for

b ∈ B
R̄(b) = R

(
(b1, . . . , bs−1,1)T

)
(3.6)

the factor θ2
2,m in (3.1) cancels and the standardized maximin T -optimality crite-

rion reduces to

VM(ξ) = inf
b∈B

infq∈Rm−s+1
∫

X η̄2(x, q, b,1)ξ(dx)

R̄(b)
= inf

b∈B
effT (ξ, b),(3.7)

where the efficiency is defined in an obvious manner, that is,

effT (ξ, b) = T (ξ, (b1, . . . , bs−1,1)T )

R̄(b)
.

Throughout this paper we denote by f (x) = (f0(x), f1(x), . . . , fm(x))T the vector
of regression functions with corresponding decomposition

f(1)(x) = (
f0(x), f1(x), . . . , fm−s(x)

)T ∈ R
m−s+1,

f(2)(x) = (
fm−s+1(x), . . . , fm(x)

)T ∈ R
s .

We assume that the functions f0, . . . , fm are linearly independent and continuous
on X and define

M(ξ) =
∫

X
f (x)f T (x)ξ(dx)

as the information matrix of a design with corresponding blocks

Mij (ξ) =
∫

X
f(i)(x)f T

(j)(x)ξ(dx), i, j = 1,2,

and Schur complement

M(s)(ξ) = M22(ξ) − XT M11(ξ)X,

where X ∈ R
m−s+1×s is an arbitrary solution of the equation M11(ξ)X = M12(ξ)

[if this equation has no solutions, then the matrix M(s)(ξ) remains undefined].
Our first main result relates the Bayesian and standardized maximin T -optimality
criteria to linear optimality criteria.

THEOREM 3.1. Let π̄ denote a prior distribution for the vector b ∈ B, such
that the matrix

L =
∫

B

(
bbT b

bT 1

)
π̄ (db)

exists; then the two following statements are equivalent:

(1) The design ξ∗ is a Bayesian T -optimal discriminating design with respect
to the prior π̄ for the linear regression models defined in (3.3).
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(2) The design ξ∗ maximizes the linear criterion

trLM(s)(ξ)

in the class of all approximate designs ξ , for which there exists a solution X ∈
R

m−s+1×s of the equation

M11(ξ)X = M12(ξ).(3.8)

PROOF. If the matrix M(s)(ξ) is nonsingular, then it follows from Karlin and
Studden [(1966), Section 10.8], that

(
M(s)(ξ)

)−1 = (
OT : Is

)
M−(ξ)

(
O
Is

)
,

where Is ∈ R
s×s is the identity matrix, O ∈ R

m−s+1×s is the matrix with all entries
equal to 0 and M−(ξ) is an arbitrary generalized inverse of the matrix M(ξ). For
any (m − s + 1) × s matrix K we have the inequality

(−KT : Is

)(
M11(ξ) M12(ξ)

M21(ξ) M22(ξ)

)(−K

Is

)
≥ M(s)(ξ),

where there is equality if and only if the matrix K is a solution of the equation
(3.8); see Karlin and Studden (1966), Section 10.8. From (3.4) and the discussion
in the subsequent paragraph, we obtain the representation

T (ξ, θ2) = θ2
2,m min

q∈Rm−s+1

(
qT , bT ,1

)
M(ξ)

(
qT , bT ,1

)T
(3.9)

= θ2
2,m

(
bT ,1

)
M(s)(ξ)

(
bT ,1

)T
,

where the last equality follows from the fact that each vector (qT , bT ,1)T can be
represented in the form(

qT , bT ,1
)T = (−KT : Is

)T (
bT ,1

)T
for some appropriate matrix K ∈ R

m−s+1×s [just use the matrix K = −q(bT ,1)/

(bT b + 1)]. The assertion of Theorem 3.1 is now obvious. �

A similar result for standardized maximin T -optimal discriminating designs is
formulated in the following theorem. Throughout this paper we will use the nota-
tion R̄ = R ∪ {−∞,∞} with the usual compactification.

THEOREM 3.2. If B ⊂ R̄
s−1 be a given compact set, then the following two

statements are equivalent:

(1) The design ξ∗ is a standardized maximin T -optimal discriminating design
for the regression models defined in (3.3) with respect to the set B.
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(2) For the design ξ∗ there exists a solution to equation (3.8) and a matrix
L∗ ∈ R

s×s such that the pair (L∗, ξ∗) satisfies

trL∗M(s)

(
ξ∗) = sup

ξ

trL∗M(s)(ξ),(3.10)

trL∗M(s)

(
ξ∗) = inf

L
trLM(s)

(
ξ∗)

,(3.11)

where the supremum in (3.10) is taken with respect to all approximate designs, and
the set L in (3.11) is defined by{

k∑
i=1

(
bT
i ,1

)T (
bT
i ,1

) ωi

R̄(bi)

∣∣∣bi ∈ B,ωi > 0, i = 1, . . . , k,

k∑
i=1

ωi = 1

}
.

PROOF. By a similar argument as that used in the proof of Theorem 3.1, the
standardized T -optimality criterion in (3.7) can be represented as

VM(ξ) = inf
b∈B

inf
q∈Rm−s+1

(qT , bT ,1)M(ξ)(qT , bT ,1)T

R̄(b)

= inf
b∈B

(bT ,1)M(s)(ξ)(bT ,1)T

R̄(b)
= inf

L∈L
trLM(s)(ξ).

The assertion now follows from the von Neumann theorem on minimax problems;
see Osborne and Rubinstein (1994). �

A lower bound for the efficiencies of a standardized maximin T -optimal dis-
criminating design is given in the following theorem.

THEOREM 3.3. Let ξ∗ denote a standardized maximin T -optimal discrimi-
nating design for the linear regression models defined in (3.3) with respect to set
B. Then for all b ∈ B

effT
(
ξ∗, b

) ≥ 1

s
.

PROOF. Recall the definition of the standardized maximin optimality criterion
in (3.7). Because for any b ∈ B

effT
(
ξ∗, b

) ≥ inf
b∈B

effT
(
ξ∗, b

) = VM

(
ξ∗)

the assertion follows, if the inequality

sup
ξ

VM(ξ) ≥ 1

s

can be established. For this purpose we define the function

ψ(x) = f(2)(x) − XT f(1)(x),(3.12)
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where X is an (m − s + 1) × s-matrix (the dependence of the function ψ on this
matrix is not reflected in the notation). Let ξ be an arbitrary design such that the
matrix M(s)(ξ) is nonsingular. Then it follows from the Cauchy–Schwarz inequal-
ity that

inf
l∈Rs\0

lT M(s)(ξ)l

supx∈X (lT ψ(x))2 ≥ 1

supx∈X ψT (x)M−1
(s) (ξ)ψ(x)

.(3.13)

By the equivalence theorem for Ds -optimal designs [see Karlin and Studden
(1966), Section 10.8] there exists a design ξ̃ and a matrix X̃ satisfying M11(ξ̃ )X̃ =
M12(ξ̃ ), such that the corresponding matrix M(s)(ξ̃ ) and the vector ψ̃(x) =
f(2)(x) − X̃T f(1)(x) satisfy

max
x∈X

ψ̃T (x)M−1
(s) (ξ̃ )ψ̃(x) = s.

Consider any design ξ for which a solution X of (3.8) exists. Then we have for
the corresponding function ψ in (3.12),

M(s)(ξ) =
∫

X
ψ(x)ψT (x)ξ(dx).

Therefore we obtain from formula (3.9)

R̄(b) = θ2
2,m max

ξ

∫
X

((
bT ,1

)
ψ(x)

)2
ξ(dx) = θ2

2,m max
x∈X

((
bT ,1

)
ψ(x)

)2
,

which gives for the vector l = (θ2,m−s+1, . . . , θ2,m)T

sup
x∈X

(
lT ψ(x)

)2 = R̄(b),

where b = (θ2,m−s+1/θ2,m, . . . , θ2,m−1/θ2,m)T . Thus the left-hand side in (3.13)
equals VM(ξ) and

sup
ξ

VM(ξ) ≥ VM(ξ̃) ≥ 1

s
,

which proves the assertion of Theorem 3.3. �

4. Robust T -optimal designs for polynomial regression. In general locally
T -optimal discriminating designs have to be found numerically, and this statement
also applies to the construction of robust T -optimal discriminating designs with
respect to the Bayesian or standardized maximin criterion. In order to get more
insight in the corresponding optimal design problems we consider in this section
the case of two competing polynomial regression models which differ in the degree
by two. Remarkably, for this situation the robust T -optimal discriminating designs
can be found explicitly. To be precise, let s = 2, consider the vectors of monomials

f(1)(x) = (
1, x, . . . , xm−2)T

, f(2) = (
1, x, . . . , xm)T
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and define

Un(x) = sin((n + 1) arcosx)

sin(arcosx)

as the Chebyshev polynomial of the second kind; see Szegö (1959). We assume
that the design space is given by the symmetric interval [−a, a] and consider for
β > 0 designs ξm,β defined as follows. If β = 1, then the design ξm,1 puts masses
1/(2(m − 1)) at the points −a, a and masses 1/(m − 1) at the m − 2 roots of the
polynomial Um−2(x/a). If β 
= 1 the design ξm,β is supported at the m + 1 roots
−a = x0 < x1 < · · · < xm−1 < xm = a of the polynomial

(
x2 − a2){

Um−1

(
x

a

)
+ βUm−3

(
x

a

)}
,

where the corresponding weights are given by

ξm,β(∓a) = 1 + β

2[m + β(m − 2)] ,

ξm,β(xj ) =
[
m − 1 − (1 + β)Um−2(xj /a)

Um(xj/a) + βUm−2(xj /a)

]−1

, j = 1, . . . ,m − 1.

THEOREM 4.1. (1) Let π̄ denote a symmetric prior distribution on B ⊆
(−∞,∞) with existing second moment, and define

βB = min
{

1,

∫
B b2π̄(db)

a2

}
.(4.1)

The design ξm,βB
is a Bayesian T -optimal discriminating on the interval [−a, a]

for the polynomial regression models of degree m − 2 and m.
(2) Define βM = 1 − 2h∗, where h∗ is the unique maximizer of the function

inf
b∈B

b2 + a2h

a2R̄(b, a)
(1 − h),(4.2)

where

R̄(b, a) = inf
q0,...,qm−2∈R

sup
x∈[−1,1]

a2m

∣∣∣∣xm + b

a
xm−1 + qm−2x

m−2 + · · · + q1x + q0

∣∣∣∣
2

in the interval [0, 1
2 ]. Then the design ξm,βM

is a standardized maximin T -optimal
discriminating design on the interval [−a, a] for the polynomial regression models
of degree m − 2 and m.

PROOF. We will prove the statement using some basic facts of the theory of
canonical moments; see Dette and Studden (1997) for details. To be precise, let
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P([−a, a]) denote the set of all probability measures on the interval [−a, a], and
denote for a design ξ ∈ P([−a, a]) its moments by

ci = ci(ξ) =
∫ a

−a
xiξ(dx), i = 1,2, . . . .

Define Mk = {(c1, . . . , ck)
T |ξ ∈ P([−a, a])} as the kth moment space and

�k(x) = (x, . . . , xk) as the vector of monomials of order k. Consider for a fixed
vector c = (c1, . . . , ck)

T ∈ Mk the set

Sk(c) :=
{
μ ∈ P

([−a, a]) :
∫ a

−a
�k(x)μ(dx) = c

}

of all probability measures on the interval [0,1] whose moments up to the
order k coincide with c = (c1, . . . , ck)

T . For k = 2,3, . . . and for a given
point (c1, . . . , ck−1)

T ∈ Mk−1 we define c+
k = c+

k (c1, . . . , ck−1) and c−
k =

c−
k (c1, . . . , ck−1) as the largest and smallest value of ck such that (c1, . . . , ck)

T ∈
∂Mk , that is,

c−
k = min

{∫ a

−a
xkμ(dx)

∣∣∣μ ∈ Sk−1(c1, . . . , ck−1)

}
,

c+
k = max

{∫ a

−a
xkμ(dx)

∣∣∣μ ∈ Sk−1(c1, . . . , ck−1)

}
.

Note that c−
k ≤ ck ≤ c+

k and that both inequalities are strict if and only if
(c1, . . . , ck−1)

T ∈ M0
k−1 where M0

k−1 denotes the interior of the set Mk−1;
see Dette and Studden (1997). For a moment point c = (c1, . . . , cn)

T , such that
c = (c1, . . . , cn−1)

T is in the interior of the moment space Mn−1, the canonical
moments or canonical coordinates of the vector c are defined by p1 = c1 and

pk = ck − c−
k

c+
k − c−

k

, k = 2, . . . , n.(4.3)

Note that pk ∈ (0,1), k = 1, . . . , n − 1 and pn ∈ {0,1} if and only if (c1, . . . ,

cn−1) ∈ M0
n−1 and (c1, . . . , cn)

T ∈ ∂Mn. In this case the canonical moments pi

or order i > n remain undefined.
We begin with a proof of the first part of Theorem 4.1. By Theorem 3.1 the

determination of Bayesian T -optimal discriminating designs can be obtained by
minimizing the linear optimality criterion

trLM(2)(ξ)

for some appropriate matrix L, which is diagonal by the symmetry of the prior
distribution. A standard argument of optimal design theory shows that there ex-
ists a symmetric Bayesian T -optimal discriminating design, say ξ , for which the
corresponding 2 × 2 matrix M(2)(ξ) is also diagonal, that is,

M(2)(ξ) =
(

am−1 0
0 am

)
.
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It now follows from Dette and Studden [(1997), Section 5.7], that for such a design,
the elements in this matrix are given by

ak(ξ) = (2a)2k
k∏

i=1

q2i−2p2i−1q2i−1p2i , k = m − 1,m,(4.4)

where q0 = 1, qi = 1 −pi (i ≥ 1). Consequently, by Theorem 3.1 the Bayesian T -
optimal discriminating design problem is reduced to maximization of the function

trLM(2)(ξ) = am(ξ) + βam−1(ξ),(4.5)

where the quantities am(ξ) are defined in (4.4), and β = ∫
b2π̄(db) denotes the

second moment of the prior distribution. This expression can now be directly
maximized in terms of the canonical moments, which gives p2m = 1, pi = 1

2 ,
i = 1,2, . . . ,2m − 1, i 
= 2m − 2 and

p2m−2 = min
{
a2 + β

2a2 ,1
}

= 1 + βB

2
,

where βB is defined in (4.1). The corresponding design is uniquely determined
and can be obtained from Theorems 4.4.4 and 1.3.2 in Dette and Studden (1997),
which proves the first part of the theorem.

For a proof of the second part we note that it follows from the proof of Theo-
rem 3.2 that the standardized maximin T -optimal criterion reduces to

inf
b∈B

am(ξ) + b2am−1(ξ)

R̄(b)
→ sup

ξ

,(4.6)

where R̄(b) is defined in (3.6), that is,

R̄(b) = inf
q0,...,qm−2∈R

sup
x∈[−a,a]

∣∣xm + bxm−1 + qm−2x
m−2 + · · · + q1x + q0

∣∣2
= R̄(b, a).

From (4.4) it is obvious that the canonical moments of a (symmetric) standardized
maximin T -optimal discriminating design satisfy p2m = 1,

pi = 1
2 , i = 1,2, . . . ,2m − 3,2m − 1,

and it remains to maximize (4.6) with respect to the quantity p2m−2. A straight-
forward calculation shows that the optimal value of p2m−2 is determined by the
condition p2m−2 = 1 − h∗, where h∗ is a solution of the problem

inf
b∈B

a2h + b2

R̄(b, a)a2
(1 − h) → max

0≤h≤1/2
.

The corresponding design is uniquely determined and can again be obtained from
Theorems 4.4.4 and 1.3.2 in Dette and Studden (1997), which completes the proof
of Theorem 4.1. �
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REMARK 4.1. The structure of the Bayesian and standardized maximin T -
optimal designs determined in Theorem 4.1 is the same as the structure of the φp-
optimal design for estimating the two coefficients corresponding to the powers xm

and xm−1 in a polynomial regression model of degree m on the interval [−a, a].
More precisely, it was shown in Gaffke (1987), Studden (1989) (for the interval
[−1,1]) and in Dette and Studden (1997) (for arbitrary symmetric intervals) that
the designs minimizing

φp(ξ) = (
trM−p

(2) (ξ)
)1/p

, −1 < p ≤ ∞,

is given by the design ξm,β(p) where β(p) is the unique solution of the equation(
1 − β

2

)p+1

− a−2pβ = 0

in the interval [0,1].
5. Some illustrative examples. In this section we illustrate the results in a

few examples. We restrict ourselves to the problem of discriminating between a
constant and the quadratic regression model on the interval [−1,1]. Additionally,
we construct robust designs for the situation considered in Example 2.1. Further
results for other models are available from the authors.

5.1. Standardized maximin T -optimal discriminating designs for quadratic
regression. Consider the problem of discriminating between a constant and a
quadratic regression on the interval X = [−1,1]. As pointed out in Bretz, Pinheiro
and Branson (2005), these models are of importance for detecting dose response
signals in phase II clinical trials. If B = [−d, d], then it follows from Theorem 4.1
(m = 2) that a standardized maximin T -optimal design is given by

ξ∗
M =

( −1 0 1
1 − h∗

2
h∗ 1 − h∗

2

)
,

where h∗ is a solution of the problem (4.2). Due to formula (3.9) in Dette, Melas
and Shpilev (2012) we have

R̄(b) = R̄(b,1) =
⎧⎪⎨
⎪⎩

1

4

(
1 + |b|

2

)4

, |b| ≤ 2,

b2, |b| ≥ 2.

(5.1)

We define

K(h,b) = h + b2

R(b)
(1 − h),

and then the solution of the problem

max
h∈[0,0.5] inf

b∈[−d,d]K(h,b)
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FIG. 2. The behavior of the function K(h∗, b), for different values of d . Left panel d = 1/2, middle
panel d = 2, right panel d = 10.

can be obtained by straightforward but tedious calculations, which are omitted for
the sake of brevity. For the solution one has to distinguish three cases:

(1) If 0 < d ≤ 1
2 the minimum of the function K(h,b) with respect to the vari-

able b is attained at the boundary of the interval B = [−d, d] and the optimal
value is given by h∗ = (1 − d2)/2. A typical situation is depicted in the left part
of Figure 2. A standardized maximin T -optimal discriminating design has masses
(1 + d2)/4, (1 − d2)/2 and (1 + d2)/4 at the points −1, 0 and 1, respectively.

(2) In the case 1/2 < d ≤ 5
√

10/4 the solution is given by h∗ = 3/8, b∗ = 1/2.
Therefore the design with masses 5/16, 3/8 and 5/16 at the points −1, 0 and 1
is a standardized maximin T -optimal discriminating design. The behavior of the
function K(h∗, b) in this case is depicted in the middle panel of Figure 2.

(3) In the case d ∈ [5
√

10
4 ,∞] the structure of the solution changes again. For

this interval the optimal pair h∗, b∗ is obtained as a solution of the system

K(h,b) = K(h,d),
∂

∂b
K(h, b) = 0,

and we find by a direct calculation that b∗ is the unique root of the equation

x4 + 6x3 + (−2d2 + 12
)
x2 + (−16d2 + 8

)
x + 8d2 = 0

in the interval [−4 + 2
√

5,1/2]. We have h∗ = b∗ − (b∗)2

2 and a standardized
maximin T -optimal discriminating design has masses 1/2 − b∗/2 + (b∗)2/4,
b∗ − (b∗)2/2, and 1/2 − b∗/2 + (b∗)2/4 at the points −1, 0 and 1, respec-
tively. In the limiting case d = ∞, that is, B = R, we have b∗ = −4 + 2

√
5,

h∗ = −22 + 10
√

5 and a standardized maximin T -optimal discriminating design
has masses 23/2 − 5

√
5, −22 + 10

√
5, and 23/2 − 5

√
5 at the points −1, 0 and 1,

respectively. A typical case for the function K(h∗, b) in this case is depicted in the
right panel of Figure 2 for d = 10.
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5.2. Bayesian T -optimal discriminating designs for quadratic regression. For
the Bayesian T -optimality criterion a prior has to be chosen, and we propose to
maximize an average of the efficiencies∫ a

−a
effT (ξ, b) db

with respect to the uniform distribution on the interval [−a, a]. In criterion (3.2)
this corresponds to an absolute continuous prior with density proportional to

f (b) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3(2 + a)3

16a(12 + 6a + a2)

1

R̄(b)
, a ≤ 2,

3a

17a − 6

1

R̄(b)
, a ≥ 2,

where R̄(b) is defined in (5.1) and the term depending on a is the corresponding
normalizing constant. By direct calculations we obtain

∫ a

−a
b2f (b) db = 2

∫ a

0
b2f (b) db =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4a2

12 + 6a + a2 , a ≤ 2,

6a2 − 4a

17a − 6
, a ≥ 2.

In order to apply Theorem 4.1 we consider βB = min{1,
∫ a
−a b2f (b) db}, and again

three cases have to be considered:

(1) If 0 < a ≤ 2 we have βB = 4a2

12+6a+a2 and a Bayesian T -optimal discrim-

inating design has masses 5a2+6a+12
4(12+6a+a2)

, −3a2+6a+12
2(12+6a+a2)

and 5a2+6a+12
4(12+6a+a2)

at the points
−1, 0 and 1.

(2) If 2 ≤ a ≤ 7+√
33

4 we have βB = 3a2−4a
17a−6 , and a Bayesian T -optimal discrim-

inating design has masses 6a2+13a−6
4(17a−6)

, −6a2+21a−6
2(17a−6)

and 6a2+13a−6
4(17a−6)

at the points −1,
0 and 1.

(3) If 7+√
33

4 ≤ a we have β = 1 and a Bayesian T -optimal discriminating de-
sign has masses 1/2 and 1/2 at the points −1 and 1.

5.3. Robust T -optimal discriminating designs for the Michaelis–Menten and
EMAX model. In this section we briefly illustrate the application of the methodol-
ogy in the situation described in Example 2.1, where the interest is in designs with
good properties for discriminating between the Michaelis–Menten and EMAX
model. We have calculated the standardized maximin T -optimal discriminating
design for the Michaelis–Menten and EMAX model, where the region for the pa-
rameter (θ2,0, θ2,1, θ2,2) is given by [−1.1,−0.2]×{1}×[2,6]. The corresponding
robust design is given by

ξ =
(

1 1.36 2
0.410 0.205 0.385

)
.
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FIG. 3. T -efficiency (2.4) of the standardized maximin optimal discriminating design (dotted line)
and the locally T -optimal discriminating design for the Michaelis–Menten and EMAX model (cal-
culated under the assumption θ2,0 = −1/4, θ2,2 = 1, solid line). The “true” values are given by
θ2,0 = −1, θ2,1 = 1 and the efficiencies depend on the parameter θ2,2 ∈ (2,6).

As pointed out in Example 2.1, the efficiency of locally T -optimal discriminating
designs can be low if some of the parameters of the regression models have been
misspecified, and in Figure 3 we compare the performance of the locally and robust
optimal discriminating designs if the true values are θ2,0 = −1, θ2,1 = 1 and θ2,2 ∈
(2,6). We observe a substantial improvement by the standardized maximin T -
optimal discriminating design. Other scenarios showed a similar picture and are
not displayed for the sake of brevity.

5.4. Power and robustness. In order to demonstrate the effect of the optimal
design on the power of the test for the corresponding hypothesis, we have con-
ducted a small simulation study comparing Bayesian T -optimal discriminating
designs and the commonly used uniform designs with respect to their discrimi-
nation properties for the models

η1(x, θ1) = θ1,0; η2(x, θ2) = θ2,0 + θ2,1x + θ2,2x
2,(5.2)

where the explanatory variable x varies in the interval [−1,1]. For the construction
of optimal discriminating designs we assume that the “true” ratio of the coefficients
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of x and x2 is an element of the interval B = [−1,1] or B = [−3,3]. It follows
from Section 5.2 that the Bayesian T -optimal discriminating designs with respect
to the uniform distribution on the interval [−1,1] and [−3,3] are obtained as

ξB1 =
(−1 0 1

23
76

15
38

23
76

)
, ξB2 =

(−1 0 1
29
60

1
30

29
60

)
,

respectively. We assume that 60 observations can be taken, which yield to the
“realized” designs:

• ξB1: 18, 24, 18 observations at the points −1,0,1 if B = [−1,1].
• ξB2 : 29, 2, 29 observations at the points −1,0,1 if B = [−3,3].
For a comparison we use the uniform design:

• 6 observations at the points −1,−7/9,−5/9, . . . ,5/9,7/9,1.

In the left part of Figure 4 we show the simulated rejection probabilities of the
F -test for the hypothesis

H0 : θ2,1 = θ2,2 = 0(5.3)

(nominal level 5%) in the model

η2(x, θ2) = 3 + 1
2ϑ2x + ϑ2x

2,(5.4)

where the errors are centered normal distributed with variance σ 2 = 0.5 (note
that this means that the “true” ratio of the coefficients of x and x2 is given
by b = θ2,1

θ2,2
= 1/2). All results are based on 250,000 simulation runs. We ob-

serve a notable improvement with respect to the power of the F -test if the ex-
periments are conducted according to the T -optimal discriminating designs. The

FIG. 4. The power of the F -test for the hypothesis (5.3). Data are generated according to model
(5.4). Left panel: normal distributed errors; right panel: normal distributed errors contaminated with
10% Cauchy distributed errors.



1712 H. DETTE, V. B. MELAS AND P. SHPILEV

Bayesian T -optimal discriminating design with respect to the uniform distribu-
tion on B = [−1,1] yields a larger power than the Bayesian optimal design with
respect to the uniform distribution on the interval [−3,3]. This corresponds to in-
tuition because this design uses more precise and correct information regarding
the unknown ratio b = θ2,1/θ2,2. In fact, using Bayesian T -optimal discriminating
designs with respect to smaller intervals containing the “true” value b = 1/2 yields
even more powerful tests (these results are not depicted for the sake of brevity).

It was pointed out by a referee that it might be of interest to investigate the sensi-
tivity of the F -test for the different designs with respect to influential observations.
For this purpose we have performed the same simulation where 10% of the normal
distributed errors are replaced by Cauchy distributed random variables. The cor-
responding results are shown in the right part of Figure 4, and the results change
substantially. We observe a loss in power for all three designs. Under the null
hypothesis the Bayesian T -optimal discriminating designs yield a slightly conser-
vative test while the F -test based on the uniform design rejects the null hypothesis
too often. Because of continuity of the power function this phenomenon is also ob-
served for other values of ϑ2. On the other hand, for large values of ϑ2 the Bayesian
T -optimal discriminating design ξB1 with respect to the uniform distribution on the
interval [−1,1] and the uniform design yield a similar power of the F -test, while
a slightly lower power is observed for the F -test based on the Bayesian T -optimal
discriminating design ξB2 with respect to the uniform distribution on the interval
[−3,3].

Model (5.4) keeps the ratio of the coefficients of x and x2 constant and in the
second example of this section we consider an alternative data generating model,
that is,

η2(x, θ2) = 3 + 1
8x + ϑ2x

2,(5.5)

where ϑ2 varies in the interval [−0.5,0.5], which means that the “true” ratio b

of the coefficients of x and x2 varies in R \ [−0.25,0.25]. In particular the ra-
tio of the coefficients of x and x2 in model (5.5) can attain values which are not
contained in the set B used for the construction of the Bayesian T -optimal dis-
criminating designs. Again 60 observations are generated according to the designs
specified in the previous paragraph and the corresponding results are depicted in
Figure 5. Note that none of the values ϑ2 ∈ [−0.5,0.5] corresponds to the null
hypothesis and consequently the curves show only the power under certain alter-
natives. We observe from the left panel in Figure 5 that for normally distributed
errors the Bayesian T -optimal discriminating design ξB1 with respect to the uni-
form distribution on the interval [−1,1] yields uniformly more power than the
uniform design. On the other hand the Bayesian T -optimal discriminating design
ξB2 with respect to the uniform distribution on the interval [−3,3] is preferable to
the uniform design if ϑ2 ≤ 0.3, while for larger values of ϑ2 the F -test based on
the uniform design is more powerful. Moreover, if ϑ2 ≤ 0.1 the design ξB2 is even
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FIG. 5. The power of the F -test for the hypothesis (5.3). Data are generated according to model
(5.5). Left panel: normal distributed errors; right panel: normal distributed errors contaminated with
10% Cauchy distributed errors.

better than the design ξB1 . This corresponds to intuition, because the design ξB2 is
very close to the optimal design for discriminating between a constant and a linear
regression model, which puts equal masses at the points −1 and 1. For Cauchy
distributed errors we observe a very similar behavior, where the power is smaller
due to the contamination of the normal distribution.
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