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We consider stochastic dynamical systems on R, that is, random pro-
cesses defined by Xx

n = �n(Xx
n−1), Xx

0 = x, where �n are i.i.d. random
continuous transformations of some unbounded closed subset of R. We
assume here that �n behaves asymptotically like Anx, for some random
positive number An [the main example is the affine stochastic recursion
�n(x) = Anx + Bn]. Our aim is to describe invariant Radon measures of
the process Xx

n in the critical case, when E logA1 = 0. We prove that those
measures behave at infinity like dx

x . We study also the problem of unique-
ness of the invariant measure. We improve previous results known for the
affine recursions and generalize them to a larger class of stochastic dynam-
ical systems which include, for instance, reflected random walks, stochastic
dynamical systems on the unit interval [0,1], additive Markov processes and
a variant of the Galton–Watson process.

1. Introduction.

1.1. Stochastic dynamical systems. Let F be the semigroup of continuous
transformations of an unbounded closed subset R of the real line R endowed with
the topology of uniform convergence on compact sets. In the most interesting ex-
amples, R is the real line, the half-line [0,+∞) or the set of natural numbers N.
Given a regular probability measure μ on F, we define the stochastic dynamical
system (SDS) on R by

Xx
0 = x;

(1.1)
Xx

n = �n

(
Xx

n−1
)
,

where {�n} is a sequence of i.i.d. random functions, distributed according to μ.
The aim of this paper is to study conditions for the existence and uniqueness,

as well as behavior at infinity, of an invariant infinite Radon measure of the pro-
cess Xx

n , that is, of a measure ν on R such that

μ ∗F ν(f ) = ν(f )(1.2)
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for any f ∈ CC(R), where

μ ∗F ν(f ) =
∫
R

E
[
f

(
Xx

1
)]

ν(dx) =
∫
F

∫
R

f
(
�(x)

)
ν(dx)μ(d�).

There is quite an extensive literature on the case when the process Xn is pos-
itive recurrent, that is, it possesses an invariant probability measure. The exis-
tence of such a measure can be proved supposing that the process has some
contractive property (e.g., if �n are Lipschitz mappings with Lipschitz coefficients
Ln = L(�n) and E[logL1] < 0), [9]). This invariant probability measure is well
described in several specific cases, such as affine recursions [i.e., �(x) = Ax +B],
namely in the seminal paper of Kesten [15]. Goldie [13] and recently Mirek [19]
generalized Kesten’s theorem to stochastic recursions such that �(x) behaves like
Ax for large x. They proved that if EAκ = 1 (and some other hypotheses are sat-
isfied), then

lim
z→∞ zκν

{
x : |x| > z

} = C+ > 0.

In other words, the measure ν is close at infinity to C+dx

x1+κ .
Less is known for the null recurrent case, especially in a general setting. Exis-

tence and uniqueness of an invariant Radon measure have been the topic of two
recent works: Deroin et al. [8] on symmetric SDS of homeomorphism of R, and
Peigné and Woess [20] on the phenomenon of local contraction. We refer to them
for a more complete bibliography on the subject. As in the contracting case, affine
recursions is one of the first models being systematically approached. A seminal
paper in this area is the one of Babillot, Bougerol and Elie [2]. They proved exis-
tence and uniqueness of a Radon measure and gave a first result on its behavior at
infinity.

The goal of the present work is twofold. First of all, we investigate the behavior
at infinity of invariant measures, and for a large class of SDSs, we generalize and
improve results known for affine recursions. Second, we consider the problem of
uniqueness of the invariant measure. We give a relatively simple criterium that can
be applied for very concrete examples.

1.2. Behavior at infinity. It turns out that to prove existence and to describe
the tail of the measure it is sufficient to control the maps that generate the SDS
near infinity. In particular, we suppose that they are asymptotically linear, in the
sense that there exists 0 ≤ α < 1 such that for all ψ ∈ F∣∣ψ(x) − Aα(ψ)x

∣∣ ≤ Bα(ψ)
(
1 + |x|α)

for all x ∈ R(ALα)

with Aα(ψ) and Bα(ψ) strictly positive. We study here the critical case, that is,
E[logAα] = 0.

Existence of an invariant measure supported in R is relatively easy to deduce
from the well-known literature, because in this case the SDS is bounded by a re-
current process (we give more details in Section 2.3). The main result of the paper
is the description of the tail of invariant measures at infinity.
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THEOREM 1.1. Suppose that there exists 0 ≤ α < 1 such that the maps �n

satisfy (ALα) μ-a.s. and that

E[logAα] = 0 and P[Aα = 1] < 1,(1.3)

E
[(| logAα| + log+ |Bα|)2+ε]

< ∞,(1.4)

the law of logAα is aperiodic, that is,
(1.5)

there is no p ∈ R such that logAα ∈ pZ a.s.

Let ν be an invariant Radon measure ν for the process {Xx
n}n. Suppose that ν is

supported by R and it is positive on any neighborhood of +∞. Then the family of
dilated measures δz−1 ∗ν(I ) := ν(zI ) converges vaguely on R

∗+ = (0,∞) to C+ da
a

as z goes to infinity for some C+ > 0, that is,

lim
z→∞

∫
R

∗+
φ

(
z−1u

)
ν(du) = C+

∫
R

∗+
φ(a)

da

a

for any φ ∈ CC(R∗+).

The key example of an asymptotic linear SDS is the affine recursion (called also
the random difference equation). Then F is the set of affine mappings of the real
line �(x) = Ax +B with A > 0 and the process is given by the following formula:

Xx
n = AnX

x
n−1 + Bn, Xx

0 = x.(1.6)

Our results are also valid for Goldie’s recursions, for example, �(x) =
max{Ax,B} + C (with A > 0) and �(x) = √

A2x2 + Bx + C (with A,B,C pos-
itive). Since the problem can be reduced, without any loss of generality, to the
case α = 0 (see Lemma 2.1), our hypotheses essentially coincide, in the one-
dimensional situation, with the class introduced by Mirek [19]. Our main theorem
should be viewed as an analog of Kesten’s and Goldie’s results in the critical case.

Other interesting examples can be obtained conjugating asymptotic linear sys-
tems with an appropriate homeomorphism. For instance, our result can also be
applied to describe invariant measures of SDS on the interval generated by func-
tions that have the same derivative at the two extremities. Theorem 1.1 also says
that invariant measures of SDS on [0,+∞) generated by mappings exponentially
asymptotic to translations, that is,∣∣ψ(x) − x + uψ

∣∣ ≤ vψe−x ∀x ≥ 0

behave at infinity as the Lebesgue measure dx of R, if E(uφ) = 0. This result can
be compared with the Choquet–Deny theorem saying that the only invariant mea-
sure for centered random walks on R is the Lebesgue measure. Another interesting
process that is α-asymptotically linear for α > 1/2 is a Galton–Watson evolution
process with random reproduction laws. In Section 6, we give more details on the
different examples.
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Let us mention that in our previous papers [3–5] we have already studied the
behavior at infinity of the invariant measure ν for the random difference equa-
tion (1.6). However, the main results were obtained there under much stronger
assumptions, namely we assumed existence of exponential moments, that is,
E[Aδ + A−δ + |B|δ] < ∞ for some δ > 0. Theorem 1.1 improves all our previ-
ous results for affine recursions and describes the asymptotic behavior of ν under
optimal assumptions, that is, the weakest-known conditions implying existence of
the invariant measure [2]. To our knowledge, for all the other recursions even par-
tial results are not known.

We would like also to remark that, in the contracting case, Kesten’s theorem
requires moment of order at least κ and, as far as we know, there exist no results on
the behavior of the tail of the invariant probability when the measure is supposed
to have only logarithmic moment.

The proof of Theorem 1.1 is given in Sections 3 and 4. In order to describe ν

at infinity, we give first an upper bound of this measure and prove some regularity
properties of its quotient. The techniques we use in the present paper are more
powerful than those applied in [4], and are heavily based on the renewal theory
for random walks on the affine group. Among other results, we prove directly
that ν[−z, z] grows as log z (Proposition 3.1). Next, in Section 4, we consider the
Poisson equation for the additive convolution on R

f (x) = μ̄ ∗ f (x) + g(x),

where f (x) = ∫
φ(e−xu)ν(du) for some φ ∈ CC(R∗+) and μ̄ is the law of − logA.

Notice that the asymptotic behavior of f and ν is the same, therefore, it is sufficient
to study f . In the contrast to [4], we do not explicitly solve this equation. We
apply techniques borrowed from the work of Durrett and Liggett [10] (see also
Kolesko [16]), reduce the problem to the classical renewal equation with drift and
deduce its asymptotic behavior from the renewal theorem.

1.3. Uniqueness of the invariant measure. Another fundamental question is
to determine whether the invariant measure is unique or not. The nature of this
problem is different from the ones we have considered so far. In fact, uniqueness
depends on the local behavior of the system and it is no more sufficient to control
the random maps only at the infinity.

In the noncontracting case, this problem was studied first by Babillot, Bougerol
and Elie [2] in the context of the affine recursion and they proved uniqueness under
the assumptions of Theorem 1.1. Relying on their ideas Benda [3] studied in full
generality recurrent and locally contractive SDSs. The SDS is called recurrent if
there exists a closed set L such that every open set intersecting L is visited by
Xx

n infinitely often with probability 1. The SDS is locally contractive if for any
x, y ∈ R and every compact set K ⊂ R,

lim
n→∞

∣∣Xx
n − Xy

n

∣∣ · 1K

(
Xx

n

) = 0 almost surely.(1.7)
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Benda [3] proved that if {Xx
n} is a recurrent and locally contractive SDS, then it

possesses a unique (up to a multiplicative constant) invariant Radon measure. He
did not publish his results, however, they have been recently incorporated, with
a complete and simplified proof, into two papers of Peigné and Woess [20, 21],
where they also investigated ergodicity of SDS generated by Lipschitz maps with
centered Lipschitz’s coefficient.

Our aim is to consider very concrete families of Lipschitz mappings of R+,
as the one presented in Goldie’s work [13]. Although recurrence of the corre-
sponding SDSs is immediate, the main obstacle in applying Benda’s theorem is
the local contraction hypothesis (1.7). In [21], the authors considered the reflected
affine stochastic recursion, being a mixture of the reflected random walk (described
below) and the affine stochastic recursion [defined in (1.6)]. Unfortunately, the
method of hyperbolic extensions they introduce cannot be applied to dynamical
systems, whose dependence on the affine recursion cannot be expressed in such a
direct way.

A different approach can be found in [8], where the authors proved a local con-
traction property for a symmetric SDS generated by homeomorphisms of R. Their
proof is very elegant but is heavily based on the additional assumption that the SDS
is generated by invertible mappings distributed according to a symmetric measure.
In particular, their results cannot be applied to noninvertible SDS, as the one gen-
erated by ψ(x) = max{Ax,B} + C, one of the most interesting in applications.

Our contribution to the subject is to give sufficient conditions for uniqueness
that can be applied to some concrete mappings of R+ = [0,∞), such as ψ(x) =
max{Ax,B} + C and other Goldie’s recursions.

THEOREM 1.2. Suppose that R = [0,∞), α = 0 and that the hypotheses of
Theorem 1.1 are satisfied. Assume moreover that:

(1) there exists β > 0 such that P(�[0,+∞) ⊆ [β,+∞)) > 0;
(2) A(�)x ≤ �(x) ≤ A(�)x + B(�) for all x ≥ 0;
(3) the functions � are Lipschitz and their Lipschitz coefficients are equal

to A(�).

Then the SDS defined on [0,∞) by (1.1) is locally contractive. Therefore, there
exists a unique invariant Radon measure of the process {Xx

n} on [0,+∞).

The proof of this theorem is contained in Section 5.

1.4. Reflected random walk. The reflected random walk is the SDS defined
for x ∈ R+ = [0,∞), by

Yx
0 = x,

(1.8)
Yx

n = ∣∣Yx
n−1 − un

∣∣,
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where un is a sequence of i.i.d. real valued random variables with a given law μ.
If un ≥ 0 a.s., then it was proved by Feller [12] that this process possesses a

unique invariant probability measure ν, that is, a measure satisfying

μ ∗ ν(f ) =
∫
R+

∫
R+

f
(|x − y|)ν(dx)μ(dy) =

∫
R+

f (x)ν(dx) = ν(f ).

Moreover, the measure ν can be explicitly computed: ν(dx) = (1 − F(x)) dx,
for F being the distribution function of μ. The process has been also studied in
more general settings when un admits also negative values (see Peigné, Woess
[20] for recent results and a comprehensive bibliography).

Here, we are interested in the critical case when Eun = 0. Peigné and Woess
[20] proved that if E(u+

1 )3/2 < ∞, for u+
1 = max{u1,0}, then the process {Xn}

is recurrent on R+. As a consequence of Benda’s theorem, the process possesses
a unique invariant Radon measure ν on R+ (local contractivity is easy to prove).
The reflected random walk can be transformed in an asymptotically linear system
by conjugating with an invertible function s of [0,+∞) such that s(x) = ex for
large x. Then ψ(x) = s(|s−1(x) − u|) is asymptotically linear with A(ψ) = e−u.
Hence, Theorem 1.1 can be used to justify that the invariant measure of Y x

n behaves
at infinity like the Lebesgue measure. Nevertheless, in this case, one can prove
the same result under weaker moment assumptions and a much simpler proof.
A short argument based only on the duality lemma and the renewal theorem gives
the following.

THEOREM 1.3. Assume Eu1 = 0, E(u+
1 )3/2 < ∞, E(u−

1 )2 < ∞ and the law
μ of u1 is aperiodic, then for every φ ∈ CC(R+)

lim
x→∞

∫
R+

φ(u − x)ν(du) = C+
∫
R+

φ(u)du

for some positive constant C+.

The proof of this theorem will be given in Section 6.6.
We are grateful to the referees for their careful reading of the manuscript and

many helpful suggestions for improvement in the presentation.

2. Notation and preliminary results.

2.1. Reduction to condition (AL). Observe first that, conjugating the SDS
with an appropriate function, we can suppose without loss of generality that the
distance of the random map to a linear function is smaller than some constant. In
fact, we have the following lemma whose proof is postponed to Appendix.

LEMMA 2.1. Let 0 ≤ α < 1. Suppose that ψ satisfies∣∣ψ(x) − Aαx
∣∣ ≤ Bα

(
1 + |x|α)

.(ALα)
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Then the conjugate function ψr = r ◦ ψ ◦ r−1, where r(x) = sign(x)|x|1−α , satis-
fies (AL0) with A0 = A1−α

α . The appropriate constant B0 can be chosen such that
log+ B0 ≤ Cα(| logAα| + log+ Bα + 1), for the constant Cα depending only on α.

If ψ is distributed according to μ, the law ψr is given by μr = δr ∗μ∗ δr−1 , and
if ν is a μ-invariant measure then νr = δr ∗ ν is μr -invariant. Thus, if Theorem 1.1
holds for νr , then it holds for ν. Indeed

lim
z→∞

∫
R

∗+
φ

(
z−1u

)
ν(du) = lim

z→∞

∫
R

∗+
φ

(
z−1r−1(u)

)
νr(du)

= lim
z→∞

∫
R

∗+
φ

(
z−1u1/(1−α))νr(du)

= lim
z→∞

∫
R

∗+
φ

((
z−(1−α)u

)1/(1−α))
νr(du)

= C+
∫
R

∗+
φ

(
a1/(1−α))da

a

= C+(1 − α)

∫
R

∗+
φ(a)

da

a
.

In order to simplify our notation, we will suppose from now on that α = 0, that is,
for all ψ ∈ F

A(ψ)x − B(ψ) < ψ(x) < A(ψ)x + B(ψ) for all x ∈R.(AL)

Since R is closed, we can extend the property (AL) to all x ∈ R for a suitable
continuous extension of ψ to R. With a slight abuse of notation, we will denote
with the same letter (e.g., ψ), the map from R to R and its continuous extension
that verifies (AL) for all x ∈ R. In the same way, ν will be seen both as a measure
on R and as a measure on R whose support is contained in R.

2.2. Comparison of Xx
n with the affine recursion. We assume that the maps

A = A(ψ) and B = B(ψ) from F to R
∗+ = (0,∞) are measurable and that F is a

monoid closed by composition. Assumption (AL) implies

lim
x→+∞

x∈R
ψ(x)/x = lim

x→−∞
x∈R

ψ(x)/x = A(ψ),

therefore, the map A is a homomorphism from F to R
∗+, that is, A(ψ1 ◦ ψ2) =

A(ψ1)A(ψ2). The choice of B is not unique and it can be chosen as big as needed.
Let {�n}∞n=1 be an i.i.d. sequence of random variables with values in F of law μ.

We are interested in the study of the iterated stochastic function system

Xx
n = �n

(
Xx

n−1
) = �n · · ·�1(x) and Xx

0 = x.
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If hypothesis (AL) is satisfied, the trajectories of the process Xx
n can be dominated

from below and from above by the affine recursions

Zx
n = AnZ

x
n−1 − Bn and Yx

n = AnY
x
n−1 + Bn,(2.1)

where, to simplify our notation, we note An = A(�n) and Bn = B(�n). We will
also assume, according to hypotheses of Theorem 1.1, a logarithmic moment of
order 2 + ε and that logA1 is nontrivially centered. Without any loss of generality,
we can also choose B(ψ), such that

Bn ≥ 1 a.s.,(2.2)

P(Anx + Bn = x) < 1 for all x.(2.3)

In such a way, the two-dimensional process (Zx
n,Y x

n ) satisfies all the assumptions
required by Babillot, Bougerol and Elie [2]. Thus, it is recurrent, locally contrac-
tive and possesses a unique invariant measure.

It will be convenient to use in the proof the language of groups. Namely, let
G = Aff(R) = R�R

∗+ be the group of all affine mappings of R, that is, the set of
pairs (b, a) ∈ R×R

∗+ acting on R : (b, a) :x 
→ ax + b. Then the group product is
given by the formula

(b, a) · (
b′, a′) = (

b + ab′, aa′),
the identity element is (0,1) and the inverse element is given by

(b, a)−1 = (−b/a,1/a).

Let μG be the probability distribution of (Bn,An) on the group G. Then the ran-
dom elements gn = (Bn,An) are i.i.d. random variables in G with law μG. We
define the left and the right random walk on G:

Ln = gn · · · · · g1, Rn = g1 · · · · · gn.(2.4)

Then Yx
n = Ln(x).

A very important role in our proofs will be played by the random walk on R

generated by − logAi , that is,

Sn = −(logA1 + · · · + logAn)(2.5)

(we put the sign minus to follow notations of our previous works). Since
E logA = 0, the random walk Sn is recurrent. Moreover, since we assume ape-
riodicity, the support of Sn is just R. We often use the downward and upward
sequence of stopping times

ln := inf{k > ln−1 :Sk < Sln−1}, tn := inf{k > tn−1 :Sk ≥ Stn−1}(2.6)

and l0 = t0 = 0. Observe that t1 and l1 are almost surely finite, but have infinite
mean. On the other hand, hypothesis E(| logA|2+ε) < ∞ guarantees that St1 and
Sl1 are integrable (see [7]).
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In the sequel, we will use, depending on the situation, different convolutions.
We define a convolution of a function f on R with a measure η on R as a measure
on R given by

f ∗ η(K) =
∫
R

1K

(
f (u)

)
η(du) = η

(
f −1(K)

)
.(2.7)

Given z ∈ R
∗+ and a measure η on R, we define

δz ∗R∗+ η(K) =
∫
R

1K(zu)η(du) = η
(
z−1K

)
.(2.8)

2.3. Existence of an invariant measure. We conclude this section observing
that the existence of the invariant measure on R ⊆ R for a SDS satisfying the
hypotheses of Theorem 1.1 follows immediately from recurrence of the process
{Xx

n} and Lin’s theorem [18].
More precisely, consider the positive operator Pf (x) = ∫

f (�(x))μ(d�) on
Cb(R). Then, since Zx

n ≤ Xx
n ≤ Yx

n and (Zx
n,Y x

n ) is recurrent, the process {Xx
n}

is recurrent, that is, there exists a nonnegative function u ∈ Cc(R) such that∑∞
n=0 P nu(x) = ∞ for all x. Therefore, by [18], there exists a nonnull invariant

Radon measure ν on R of the process {Xx
n}.

Observe that the support of this measure can be bounded (e.g., if the functions
� fix the point 0, then the Dirac measure at 0 is an invariant measure). In this
paper, we are interested in measures having unbounded support. A sufficient (but
not necessary) condition to ensure that the invariant measure is not bounded is to
assume that the random functions � do not fix a compact subset C of R [i.e., there
is no compact C such that P(�(C) ⊆ C) = 1].

3. First bounds of the tail of the invariant measure. We start to study the
behavior of ν at infinity. In particular, we will prove in this section that ν(dx)

does not grow faster than dx
x

, the Haar measure of R∗+. The behavior of ν at ∞ is
related to the behavior of the family of measures δz−1 ∗ ν. In this section, we prove
the following.

PROPOSITION 3.1. Under the hypotheses of Theorem 1.1, we have the follow-
ing:

(1) There exists C0 > 0 such that

ν[−z, z] < C0(1 + log z) for all z > 1.

Moreover, if the support of ν is not bounded on the right, that is, ν(z,+∞) > 0 for
all z ∈ R, then:

(2) There exist M > 1 and δ > 0 such that ν[z, zM] > δ for all z ≥ 1.
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(3) For all u2 > u1 > 0, there exists C = C(u1, u2,M) > 0 such that

ν[ex+yu1, ex+yu2]
ν[ex, exM] < C(1 + y) for all x > 0, y > 0.(3.1)

In particular, the family of measures 1
ν[z,zM]δz−1 ∗ν on (0,+∞) is vaguely compact

when z goes to +∞.

There are two key arguments in the proof of this proposition. One is the follow-
ing lemma that we will use several times in the sequel.

LEMMA 3.2. Let ν be a positive μ-invariant measure on R. Then for any pair
of intervals V,U ⊂R,

ν(V ) ≥ P(TW < ∞) · ν(U),

where

W =W(V ,U) = {
ψ ∈ F|ψ(U) ⊂ V

}
and TW is the stopping time defined by TW = inf{n ≥ 0 :�1 · · ·�n ∈ W}.

PROOF. Observe that the backward process

Mn = �1 · · ·�n ∗ ν(V ) M0 = ν(V )

is a positive martingale with respect to the filtration generated by the �n. In fact,

E(Mn|Fn−1) = �1 · · ·�n−1 ∗ μ ∗ ν(V ) = �1 · · ·�n−1 ∗ ν(V ).

Since (�1 · · ·�TW)−1(V ) ⊇ U , for any fixed n ∈ N, by the optional stopping time
theorem,

ν(V ) = E(MTW∧n) ≥ E
(
1{TW≤n}�1 · · ·�TW ∗ ν(V )

) ≥ P(TW < n)ν(U).

We let n go to infinity to conclude. �

The other crucial observation is that the backward recursion �1 · · ·�n(x) is
controlled by the right random walk Rn on the affine group generated by the prod-
uct of gi = (Bi,Ai) [see (2.4)]. More precisely, given g ∈ Aff(R), we denote by
a(g) and b(g) its projections on R

∗+ and R, respectively, then

a(Rn)x − b(Rn) ≤ �1 · · ·�n(x) ≤ a(Rn)x + b(Rn).

We use these bounds to estimate the stopping time that appears in Lemma 3.2.
In particular, as an immediate consequence of the lemma above, we obtain the
following.
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FIG. 1. The set W = W(m1,m2, k1, k2).

COROLLARY 3.3. Let

W = W(m1,m2, k1, k2) = {
(B,A) ∈ Aff(R)|Ak2 + B ≤ m2;Ak1 − B ≥ m1

}
(see Figure 1) and TW = inf{n ≥ 0 :Rn ∈ W }. Then we have

ν(m1,m2) ≥ P[TW < ∞]ν(k1, k2).

PROOF. The corollary follows from Lemma 3.2, taking U = [k1, k2], V =
[m1,m2] and noticing that TW ≥ TW. �

Since the potential theory of the affine group is well understood, we have
enough tools to estimate P(TW < +∞) in many situations. For a continuous and
compactly supported function f on Aff(R), we define the potential

U ∗ δg(f ) := E

[ ∞∑
n=0

f (Lng)

]
= E

[ ∞∑
n=0

f (Rng)

]
.

A renewal theorem for the potential U , that is, description of its behavior at infinity,
was given in [2], where the authors proved that for all h ∈ CC(Aff(R)):

lim
a→0

U ∗ δ(0,a)(h) = νG ⊗ dx

x
(h)(3.2)

for νG being a suitable nontrivial multiple of the invariant measure of the process
Yx

n = Ln(x).
Now we are ready to prove the following lemma.

LEMMA 3.4. Suppose (1.3), (1.4), (2.2) and (2.3). There exist a compact sub-
set

V0 = {
(B,A) ∈ Aff(R)||B| < b0, a

−1
0 < A < a0

}
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and a constant δ > 0 such that:

(1) if Wz = (0, z) · V0 = {(B,A)||B| < zb0, za
−1
0 < A < za0}, then

P(TWz < ∞) > δ

for all z ≥ 1;
(2) if Vz = V0 · (0, z−1) = {(B,A)||B| < b0, a

−1
0 /z < A < a0/z}, then

P(TVz < ∞) >
δ

1 + log z

for all z ≥ 1.

PROOF. Step 1. First observe that for every V ⊂ Aff(R)

U
(
V −1V

)
P(TV < ∞) ≥ U(V ).(3.3)

In fact,

U(V ) =
∞∑

n=0

P[Rn ∈ V ] = E

[
1{TV <∞}

∞∑
n=TV

1{RTV
R

TV
n ∈V }

]

≤ P(TV < ∞)U
(
V −1V

)
,

where Rl
n := R−1

l Rn = gl+1 · · ·gn.
Step 2: Proof of (1). By (3.3), we write (assuming the denominator is nonzero)

P(TWz < ∞) ≥ U(Wz)

U(W−1
z Wz)

= U((0, z) · V0)

U(V −1
0 V0)

.(3.4)

A simple calculation relates the right random walk on the affine group to the
reversed left random walk L̆n = R−1

n = g−1
n · · ·g−1

1 . Observe that for any V ⊂
Aff(R) we have

U
(
(0, z)V

) = ∑
n

P
[
Rn ∈ (0, z)V

] = ∑
n

P
[
R−1

n ∈ V −1(
0, z−1)]

= ∑
n

P
[
L̆n(0, z) ∈ V −1] = Ŭ

(
V −1(

0, z−1))
,

where Ŭ is the potential of the reversed random walk L̆n. Since the law of g−1
n

is also centered and verifies the hypotheses of [2], there exists a unique Radon
measure ν̆G on R invariant under μ̆G, the law of g−1 = (B,A)−1. Then by (3.2)

lim
z→+∞U

(
(0, z)V

) = lim
z→+∞ Ŭ

(
V −1(

0, z−1)) =
(
ν̆G × dx

x

)(
V −1)

.

We take sufficiently large V0 such that

U
(
W−1

z Wz

) = U
(
V −1

0 V0
)
> 0 and

(
ν̆G × dx

x

(
V −1

0

))
> 0
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and, in view of (3.3), we conclude.
Step 3: Proof of (2). As in the previous step, by (3.3), we write

P(TVz < ∞) >
U(Vz)

U(V −1
z Vz)

= U(V0(0, z−1))

U((0, z)V −1
0 V0(0, z−1))

.(3.5)

Now we have to estimate U(Vz) from below and U(V −1
z Vz) from above. The latter

is the most difficult part of the proof.
To deal with this second problem, we decompose the centered random walk

on the affine group in a contracting part and a dilating part using ladder stopping
times. This key idea has been applied in several different ways in important works
on the subject, for instance, [2, 11, 14, 17]. We use here a potential theoretic ver-
sion. Let {ḡi} be another sequence of i.i.d. elements of Aff(R) independent and of
the same law as {gi}. We define �Sn, t̄k, l̄k as in (2.5) and (2.6). We claim that

U(f ) = E

[ ∞∑
n=0

f (Ln)

]
= E

[ ∞∑
k,i=0

f (�Rl̄i
Ltk )

]
.(3.6)

In fact, for n > k define Lk
n = gn · · ·gk+1 and Lk

k = e. Observe that

E

[ ∞∑
n=0

f (Ln)

]
= E

[ ∞∑
k=0

tk+1−1∑
i=tk

f (Li)

]
= E

[ ∞∑
k=0

E

[tk+1−1∑
i=tk

f
(
L

tk
i Ltk

)∣∣Ltk

]]
.

Since for fixed k, the sequence {Ltk
tk+i}i≥0 is independent of Ltk and has the same

law as {Li}i≥0, by the duality lemma (see Lemma 5.4 [4]) we have

E

[tk+1−1∑
i=tk

f
(
L

tk
i Ltk

)∣∣Ltk = g

]
= E

[
t1−1∑
i=0

f (Lig)

]
= E

[ ∞∑
i=0

f (�Rl̄i
g)

]

and we obtain (3.6).
Observe that �Sl̄i

(resp., Stk ) is a random walk with finite mean and negative
(resp., positive) steps. Take a, b > 2, then by (3.6) and the classical renewal theo-
rem [12], we have

U
([−b, b] × [1/a, a])

=
∞∑

k,i=0

P
[
b(�Rl̄i

Ltk ) ≤ b;− loga ≤ �Sl̄i
+ Stk ≤ loga

]

=
∞∑

k,i=0

P
[
e−�Sl̄i b(Ltk ) + b(�Rl̄i

) ≤ b;− loga ≤ �Sl̄i
+ Stk ≤ loga

]

≤
∞∑

k,i=0

P
[
b(�Rl̄i

) ≤ b;− loga ≤ �Sl̄i
+ Stk ≤ loga

]
since b(Ltk ) ≥ 0
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=
∞∑
i=0

E

[
1[b(�Rl̄i

)≤b]E
[ ∞∑

k=0

1{− loga≤�Sl̄i
+Stk

≤loga}|ḡi , i ≥ 0

]]

≤ C loga

∞∑
i=0

P
[
b(�Rl̄i

) ≤ b
]
.

Since we assume B ≥ 1 a.s., we have for i ≥ 1:

b(�Rl̄i
) = b

(�Rl̄i−1
�Rl̄i−1

l̄i

) = e
−�Sl̄i−1 b

(�Rl̄i−1

l̄i

) + b(�Rl̄i−1
) ≥ e

−�Sl̄i−1 .

That is,

U
([−b, b] × [1/a, a]) ≤ C loga

(
1 +

∞∑
i=1

P[�Sl̄i−1
≥ − logb]

)

≤ C loga(1 + C logb).

Therefore, since

V −1
z Vz ⊆ {

(B,A)||B| ≤ 2b0a0z, a
−2
0 ≤ A ≤ a2

0
}
,

we obtain

U
(
V −1

z Vz

) ≤ K loga0
(
1 + log z + log(2b0a0)

)
.

To estimate U(Vz) from below as in the previous case, we just apply the renewal
theorem (3.2). Plugging those estimates into (3.5), we conclude. �

PROOF OF PROPOSITION 3.1. Step 1: Proof of (1). We apply Corollary 3.3
with [k1, k2] = [−z, z] and [m1,m2] = [−2b0,2b0] and consider, according to the
notation there, the subset of Aff(R)

W(−2b0,2b0,−z, z) = {
g ∈ Aff(R)|g([−z, z]) ⊆ [−2b0,2b0]}

= {
(B,A)|Az + B < 2b0

}
.

This subset contains the set

Vz =
{
(B,A)

∣∣∣∣b
−1
0

z
< A <

b0

z
, |B| < b0

}
.

We can apply Corollary 3.3 and, choosing b0 large enough, Lemma 3.4(2) to con-
clude:

ν(−z, z) ≤ ν[−2b0,2b0]
P(TVz < ∞)

< C0(1 + log z).

Step 2: Proof of (2). Take M > 1 and 0 < k1 < k2. Set [m1,m2] = [z, zM].
Then by Corollary 3.3

ν[z, zM] ≥ P(TWz < ∞)ν[k1, k2],
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FIG. 2. The set W = W(z, zM1, k1, k2).

where

Wz = W(z, zM,k1, k2) = (0, z)W(1,M,k1, k2) =: (0, z)W1

(see Figure 2). Observe that if k1, M and M/k2 tend to infinity, then

W1 = {
(B,A)|Ak1 − B > 1,Ak2 + B < M

}
grows to Aff(R). Thus, there exists C > 0 such that if k1 ≥ C, M > C and
M/k2 ≥ C, the set W1 contains the compact set V0 defined in Lemma 3.4. There-
fore, P(TWz < ∞) is uniformly bounded from below for large values of z. More-
over, since we require the support of ν to be unbounded on the right, one can
choose k2 such that ν[k1, k2] > 0 and we conclude.

Step 3. Proof of (3). Let a0, b0 be sufficiently large numbers such that
Lemma 3.4 holds. Take M > max{2,4a2

0}.
First suppose that u2

u1
< M

4a2
0
. Take [m1,m2] = [ex, exM] and [k1, k2] =

[ex+yu1, ex+yu2]. For x > log(b0), the set

W
(
ex, exM, ex+yu1, ex+yu2

)
= {

(B,A) ∈ Aff(R)|Aex+yu2 + B ≤ exM;Aex+yu1 − B ≥ ex}
contains the set

V (y) =
{
(B,A) ∈ Aff(R)|B < b0,

2

eyu1
≤ A ≤ M

ey2u2

}
.

Since ( M
ey2u2

)/( 2
eyu1

) = Mu1
4u2

> a2
0 , we can apply Lemma 3.4 and prove that there

exists C > such that

ν[ex+yu1, ex+yu2]
ν[ex, exM] ≤ 1

P(TV (y) < ∞)
< C(1 + y) for all x > logb0, y > 0.
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By the previous steps, the last inequality is satisfied for 0 < x ≤ logb0 and all
y > 0.

For general U = [u1, u2] with u2
u1

≥ M

4a2
0
, we can deduce (3.1) covering U with a

finite number of small intervals. �

Since the law of logA is aperiodic, proceeding as in [2] and [4], one can prove
that the family of quotient measures is asymptotically invariant under the action of
R

∗+ and converges to the Haar measure of R∗+.

COROLLARY 3.5. Under the hypotheses of Theorem 1.1

lim inf
z→∞ δz−1 ∗ ν(φ) > 0,

where φ is an arbitrary nonzero and nonnegative element of Cc(0,+∞).
Furthermore, for φ1, φ2 ∈ Cc(0,+∞) and φ2 not identically zero,

lim
z→∞

δz−1 ∗ ν(φ1)

δz−1 ∗ ν(φ2)
=

∫
R

∗+ φ1(a)((da)/a)∫
R

∗+ φ2(a)((da)/a)
.(3.7)

Therefore,

lim
x→+∞

δe−(x+y) ∗ ν(φ)

δe−x ∗ ν(φ)
= 1(3.8)

and
δe−(x+y) ∗ ν(φ)

δe−x ∗ ν(φ)
≤ Kφ(1 + y) for all x, y > 0.

In particular, the function L(z) = δz−1 ∗ ν(φ) is slowly varying.

PROOF. For the reader’s convenience, we present a sketchy proof (see Propo-
sition 2.2 [4] for more details). First, take a Lipschitz function � whose compact
support contains (1,M) and let L(z) = δz−1 ∗ ν(�). Since the family of measures
ν̃z = 1

L(z)
δz−1 ∗ ν is vaguely compact, for every sequence we can extract its subse-

quence ν̃zn convergent to a limit measure η.
For every Lipschitz compactly supported function φ and � ∈ F, there exists a

compact set U = U(φ,�) such that∣∣∣∣φ
(

�(u)

z

)
− φ

(
Au

z

)∣∣∣∣ ≤ B

z
· 1U

(
Au

z

)
and

lim
n→∞

| ∫ φ(�(u)/zn)ν(du) − ∫
φ((Au)/zn)ν(du)|

L(zn)

≤ lim
n→∞

C|z−1
n b|ν(a−1znU)

L(zn)

≤ Cη
(
a−1U

) · lim
n→∞

∣∣z−1
n b

∣∣ = 0.
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Thus, the function

h(y) = δy ∗ η(φ) = lim
n→∞

δ
(0,z−1

n y)
∗G ν(φ)

L(zn)

on R
∗+ is superharmonic with respect to the action of μA, the law A1. Since h

is positive and continuous, by the Choquet–Deny theorem it must be a constant
function, that is δa ∗ η(φ) = η(φ) for every a ∈ R

∗+. Because η(�) = 1, then η is
a fixed multiple of the Haar measure of R∗+ and

lim
z→+∞

δz−1 ∗ ν(φ)

δz−1 ∗ ν(�)
=

∫
φ(a)((da)/a)∫
�(a)((da)/a)

.

This proves (3.7) and (3.8). In particular, if φ is nonzero, by Proposition 3.1, we
have

lim inf
z→∞ δz−1 ∗ ν(φ) ≥

∫
φ(a)

da

a
· lim inf

z→∞ δz−1 ∗ ν(�) > 0.

Take k such that the support of φ is contained in [1/k, k]. Then

e−(x+y) ∗ ν(φ)

e−x ∗ ν(φ)
≤ ν[ex/M, exM]

e−x ∗ ν(φ)

ν[ex+y/k, ex+yk]
ν[ex/M, exM] ≤ K(1 + y),

because the first quotient is bounded. �

4. Homogeneity at infinity. In this section, we finish the proof of Theo-
rem 1.1. The main idea of the proof is similar to our previous papers [4–6]. Given
a nice function φ on R

∗+ we define the function

f (x) =
∫
R

∗+
φ

(
e−xu

)
ν(du).

Behavior at infinity of the measure ν is coded in the asymptotic behavior of f . To
describe f , we consider it as a solution of the Poisson equation

μ̄ ∗R f (x) = f (x) + g(x),

where μ̄ is the law of − logA and the function g is defined by the equation above.
We cannot use the classical renewal theorem, since the measure μ̄ is centered. In
our previous papers, we expressed f as a special potential of g. However, this ap-
proach was technically involved and it was not possible to establish the optimal
hypotheses. Here, we apply ideas due to Durrett and Liggett [10], who studying a
similar equation and applying the duality lemma, were able to reduce the problem
to the classical renewal theorem. In Proposition 4.1, we determine weak assump-
tions in the terms of the Poisson equation that enable to control the asymptotic
behavior of the solution.

In the second part of the section, we apply this result to our problem. We show
that there exist slight perturbations of the functions f and g defined above which
satisfy all the required conditions. Finally, we deduce our main result proving that
the tail of the measure ν converges at infinity.
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PROPOSITION 4.1. Let μ̄ be a centered probability measure on R with finite
moment of order 2 + ε for some ε > 0 and let f be a continuous function on R

such that

0 ≤ f (x) ≤ C
(
1 + x+)

and
∫ y

−∞
f (x) dx ≤ C

(
1 + y+)

,(4.1)

where x+ := max{0, x}. Let g be the continuous function on R defined by the
Poisson equation:

μ̄ ∗ f (x) = f (x) + g(x).(4.2)

Suppose also that g is directly Riemann integrable, then

lim
x→+∞E

[
f (x + St )

] − f (x) = −1

E[Sl]
∫
R

g(x) dx,(4.3)

where Sn is the random walk of law μ̄ and t and l are the stopping times

t = inf{n > 0 :Sn ≥ 0} and l = inf{n > 0 :Sn < 0}.
Moreover, if

∫
R

g(x) dx = 0 and
∫
R

|xg(x)|dx < ∞,

lim
x→+∞E

[∫ x+St

x
f (z) dz

]
= 1

E[Sl]
∫
R

xg(x) dx.(4.4)

The notion of directly Riemann integrable functions is fundamental in renewal
theory and allows to apply the classical renewal theorem to the function g (see,
e.g., Feller [12]). The proof of this proposition will be given in Appendix.

Let ν be a μ-invariant Radon measure on R. We would like to apply the previous
proposition to the function f (x) = δe−x ∗ν(φ) for some fixed positive function φ ∈
C1

C(R∗+). Unfortunately, we are not able to justify that f satisfies all the required
hypotheses. The main reason is that we are not able to control local properties of
a general measure ν, namely its behavior near 0. Thus, the function f may not be
sufficiently integrable at −∞. However, it turns out that one can slightly translate
the measure ν to overcome the problem.

For this purpose, given φ ∈ C1
C(R∗+) and w0 > 0 define

fφ(x) :=
∫
R

φ
(
e−x(u − w0)

)
ν(du),

gφ(x) := μ̄ ∗R fφ(x) − fφ(x).

Observe that fφ(x) = δe−x ∗ ν0(φ) where ν0 is the measure ν translated by w0:

ν0(φ) =
∫
R

φ(u − w0)ν(du),

that is, the invariant measure of the SDS obtained by conjugating the original one
with the translation by w0:

ψ0(x) = ψ(x + w0) − w0.
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Denote by μ0 its law. Observe that A(ψ0) = A(ψ) and we can choose B(ψ0) =
Aw0 + w0 + B , hence μ0 satisfies our main hypotheses if μ does. Since the trans-
lation does not change the asymptotic behavior, the measures ν0 and ν behave in
the same way at +∞, namely

lim
x→+∞fφ(x) − δe−x ∗ ν(φ) = 0.(4.5)

In fact,∫ +∞
−∞

∣∣φ(
e−x(u − w0)

) − φ
(
e−xu

)∣∣ν(du) ≤ C

∫ ∞
0

∣∣e−xw0
∣∣1[exm,ex(M+w0)]ν(du)

≤ C
∣∣e−xw0

∣∣ log
(
ex(M + w0)

)
,

when supp(φ) ⊂ [m,M]. Summarizing, translation of the invariant measure does
not change the problem we study, nor our assumptions. Existence of a correspond-
ing w0 is provided by the following lemma, whose proof will be given in Ap-
pendix.

LEMMA 4.2. There exists w0 > 0 such that for all φ ∈ C1
C(R∗+) the functions

fφ and gφ satisfy the hypotheses of Proposition 4.1.

Now we are ready to prove our main result.

PROOF OF THEOREM 1.1. We claim that
∫

gφ(y) dy = 0. In fact for all y we
can apply Corollary 3.5

lim
x→+∞

fφ(x + y)

fφ(x)
= lim

x→+∞
δe−(x+y) ∗ ν0(φ)

e−x ∗ ν0(φ)
= 1;

thus, since E(St ) is finite, by dominated convergence E(fφ(x + St )/fφ(x)) also
converges to 1. Fix ε > 0, then there exists xε such that for all x ≥ xε∣∣∣∣E[

fφ(x + St )
] − fφ(x) + 1

ESt

∫
gφ(y) dy

∣∣∣∣ < ε

and ∣∣∣∣E[fφ(x + St )]
fφ(x)

− 1
∣∣∣∣ < ε.

Therefore, fφ(x) ≥ | ∫ gφ(y) dy|/(εESt ) − 1. Since by Lemma 4.2,∫ x

−∞
fφ(y) dy < C(1 + x),

for all x > xε > 0

C(1 + x) ≥
∫ x

xε

fφ(y) dy ≥
( | ∫ gφ(y) dy|

εESt

− 1
)
(x − xε).
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That is, ∣∣∣∣
∫
R

gφ(y) dy

∣∣∣∣ ≤ εESt

(
lim inf
x→+∞

C(1 + x)

x − xε

+ 1
)

= εESt (C + 1).

Letting ε ↘ 0, we conclude.
In view of Corollary 3.5, the quotient fφ(x + y)/fφ(x) is uniformly dominated

by 1 + St for x > 0 and 0 < y < St , thus

lim
x→∞

∫ St

0

fφ(x + y)

fφ(x)
dy =

∫ St

0
1dy = St . P a.s.

By Fatou’s lemma,

lim inf
x→∞ E

[∫ St

0

fφ(x + y)

fφ(x)
dy

]
≥ E

[
lim inf
x→∞

∫ St

0

fφ(x + y)

fφ(x)
dy

]
= E[St ].(4.6)

Therefore, by Proposition 4.1,

lim sup
x→∞

fφ(x) = lim sup
x→∞

E[∫ St

0 fφ(x + y)dy]
E[∫ St

0 (fφ(x + y)/fφ(x)) dy]

≤ 1

E[Sl]E[St ]
∫
R

gφ(x)x dx.

In particular, this proves that fφ(x) is bounded above. Since by Corollary 3.5, we

already know that fφ(x) is bounded below,
∫ St

0
fφi

(x+y)

fφ(x)
dy < CSt . This allow to

use the dominated convergence theorem instead of Fatou’s lemma in (4.6) and to
replace the inferior limit with the real limit and the inequality with the equality.
Thus, we have

lim
x→∞fφ(x) = lim

x→∞
E[∫ St

0 fφ(x + y)dy]
E[∫ St

0 (fφ(x + y)/fφ(x)) dy]

= 1

E[Sl]E[St ]
∫
R

gφ(x)x dx = 1

σ 2

∫
R

gφ(x)x dx,

where σ 2 = ∫
x2μ̄(dx) (see [12] for the proof that E[Sl]E[St ] = σ 2).

To conclude, take a nonzero nonnegative function � ∈ C1
c (0,+∞). We have

proved that the following limit exists:

lim
z→+∞ δz−1 ∗ ν(�) = lim

x→+∞f�(x) = C

and by Corollary 3.5 the constant C is strictly positive. The same corollary also
implies that for all φ ∈ Cc(0,+∞)

lim
z→+∞ δz−1 ∗ ν(φ) = lim

z→+∞
δz−1 ∗ ν(φ)

δz−1 ∗ ν(�)
lim

z→+∞ δz−1 ∗ ν(�)

= C∫
R

�(a)((da)/a)

∫
R

φ(a)
da

a
. �
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5. Uniqueness of the invariant measure.

PROOF OF THEOREM 1.2. Notice first that for any compact set K

lim
n→∞ 1K

(
Xy

n

)∣∣Xy
n − Xy′

n

∣∣ ≤ ∣∣y − y′∣∣ lim sup
n→∞

A1 · · ·An1K

(
Xy

n

)

= ∣∣y − y′∣∣ lim sup
n→∞

X
y
n1K(X

y
n)

X
y
n/(A1 · · ·An)

≤ lim sup
n→∞

C(K)

X
y
n/(A1 · · ·An)

.

Thus, it is sufficient to prove that

lim
n→∞

X
y
n

A1 · · ·An

= +∞.

Notice that the sequence X
y
n

A1···An
in nondecreasing. Indeed, since �n(X

y
n−1) ≥

AnX
y
n−1,

X
y
n

A1 · · ·An

= �n(X
y
n−1)

A1 · · ·An

≥ X
y
n−1

A1 · · ·An−1
.

Therefore, it is enough to justify that for arbitrary large fixed M > 0 the sequence
is a.s. at least once greater than M . Let

Uβ,γ := {
� ∈ F|�[0,+∞) ⊆ [β,+∞) and A(�) < γ

}
and

Vα := {
� ∈ F|A(�) < α

}
.

In view of our hypotheses, there exist α < 1, β > 0, and γ such that these two sets
have positive probability. For a fixed x0, take N > 0 such that αN−1Mγx0 < β

and let ψ0 = ψ1ψ2 with ψ1 ∈ Uβ,γ and ψ2 ∈ V N−1
α . We claim that

ψ0(x)

A(ψ0)x
> M for all 0 ≤ x ≤ x0.(5.1)

In fact,

ψ0(x) = ψ1
(
ψ2(x)

) ≥ β > M
(
γαN−1x0

)
> MA(ψ1)A(ψ2)x > MA(ψ0)x.

Observe that since X
y
n is recurrent, there exists x0 > 1 such that P[0 ≤ X

y
n <

x0 i.o.] = 1 for every y ≥ 0. Let us fix y, x0 and define a sequence Tk of hitting
times of [0, x0]

T0 = 0,

Tk = inf
{
n > Tk−1 + N :Xy

n < x0
}
.
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By recurrence, all Tk are almost surely finite. Let �
j
i := �j ◦ · · · ◦ �i+1, then

{�Tk+N
Tk

} is a sequence of i.i.d. random transformations distributed as μN . Since

μN(Uβ,γ V N−1
α ) > 0 there exists almost surely k0 such that �

Tk0+N

Tk0
∈ Uβ,γ V N−1

α .
Then, by (5.1), we have

X
y
Tk0+N

A1 · · ·ATk0+N

=
�

Tk0+N

Tk0
(X

y
Tk0

)

A1 · · ·ATk0+N

≥
�

Tk0+N

Tk0
(X

y
Tk0

)x0

ATk0+1 · · ·ATk0+NX
y
Tk0

> M.
�

6. Examples. In this section, we present some of the more significant classes
of stochastic dynamical system to which the results of the previous sections apply.

6.1. The random difference equation. The first example is naturally the SDS
induced by random affinities, that is �n(x) = Anx + Bn, for a random pair
(Bn,An) ∈ R×R

∗+. Then Xx
n is given by formula (1.6). This process is called the

random difference equation or the affine recursion. It is well known that under the
assumptions of Theorem 1.1 this process is recurrent and locally contractive, thus
it possesses a unique invariant Radon measure ν; see [2]. Behavior of this measure
at infinity was studied previously in [4–6] under a number of additional strong hy-
potheses. Theorem 1.1 provides an optimal result, in the sense that the hypotheses
implying existence and uniqueness of the invariant measure, are sufficient also to
deduce that this measure must behave at infinity like C dx

x
.

6.2. Stochastic recursions with unique invariant measure. Our results can also
be applied to a more general class of stochastic recursions that behave at infinity
as Ax [i.e., �(x) ∼ Ax for large x]. In the contracting case (E[logA] < 0), those
recursions were studied by Goldie [13] (see also Mirek [19], who described this
class of recursions in general settings, including more examples). Just to give some
concrete examples let us mention that our results are valid (under rather obvious
and easy to formulate assumptions) for the following examples:

• �1,n(x) = max{Anx,Bn} + Cn, for An,Bn,Cn > 0.

• �2,n(x) =
√

A2
nx

2 + Bnx + Cn, for An,Bn,Cn > 0 and � = B2 − 4A2C ≤ 0.

In both cases above, the mappings �i,n are Lipschitz with the Lipschitz coefficient
equal to A. This is obvious for the first example. For the second one, denote x0 =
− B

2A2 , D = − �
4A2 . Observe that since �2,n(x) = √

A2(x − x0)2 + D, its derivative

� ′
2,n(x) = A2(x − x0)√

A2(x − x0)2 + D
= A

1√
1 + (D/(A2(x − x0)2))

↗ A

is an increasing function that tends to A. Hence, under appropriate moment as-
sumptions, the SDS on R+ generated by the random functions defined above sat-
isfies assumptions of both Theorems 1.1 and 1.2. Therefore, the corresponding
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random process possesses a unique invariant measure, which behaves at infinity
like C dx

x
.

If we do not suppose � = B2 − 4A2C ≤ 0, then �2,n are still asymptotically
linear functions to which Theorem 1.1 applies, but we cannot prove uniqueness of
an invariant measure.

6.3. Random automorphisms of the interval [0,1]. SDSs acting on the real
line after conjugating by an appropriate function can be seen as random automor-
phisms of the interval [0,1] fixing the end points. Our key property (AL) is trans-
lated in this setting into requiring that the automorphisms “reflect” at the same
way in 0 and in 1, in the sense that the derivative in these two points has to be the
same. The B term is then related to the term of order two at these end points [or
order 2 − α, if we conjugate a SDS that satisfy (ALα)]. More precisely, we have
the following.

COROLLARY 6.1. Consider a SDS on [0,1] defined by random functions φ ∈
C([0,1]) fixing 0 and 1, differentiable at the extremities of the interval and such
that

φ′(0) = φ′(1) =: aφ.

Let

β0
1 = inf

u∈[0,1/2]
(
1 − φ(u)

)
> 0, β0

2 = inf
u∈[0,1/2]

φ(u)

u
> 0,

β0
3 = sup

u∈[0,1/2]

∣∣∣∣φ(u) − aφu

u2

∣∣∣∣ < ∞,

β1
1 = inf

u∈[1/2,1]φ(u) > 0, β1
2 = inf

u∈[1/2,1]
1 − φ(u)

1 − u
> 0,

β1
3 = sup

u∈[1/2,1]

∣∣∣∣φ(u) − 1 − aφ(u − 1)

(u − 1)2

∣∣∣∣ < ∞.

Suppose that E[| logaφ|2+ε] < ∞, E[| logβi
k|2+ε] < ∞, for some ε > 0, all i, k,

and that E[logaφ] = 0. Then the SDS on [0,1] is conjugated to an asymptotically
linear SDS on R that satisfy the hypotheses of Theorem 1.1. Therefore, there exists
at least one invariant Radon measure ν̃ on (0,1) and for every such a measure ν̃,
which charges a neighborhood of 0, there exists a strictly positive constant C such
that for all 0 < a < b < 1

lim
z→+∞ ν̃(a/z, b/z) = C logb/a.

PROOF. Let

r(u) = −1

u
+ 1

1 − u
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be a diffeomorphism of (0,1) onto R. In the technical Lemma A.3, whose proof
is postponed to Appendix, we prove that the conjugated function �φ = r ◦ φ ◦ r−1

satisfy (AL) for A(�φ) = 1/aφ and

B(�φ) < Cr

(
(1 + aφ + β0

3 )

aφβ0
2

+ 1

β0
1

+ (1 + aφ + β1
3 )

aφβ1
2

+ 1

β1
1

)
,

where Cr depends only on the function r . Thus, under the hypotheses of the corol-
lary, the conjugated SDS satisfies the assumptions of our main theorem.

Let μ̃ be the law of φ and μ = r ∗ μ̃ ∗ r−1 be the law of the conjugated SDS
on R. Then ν is a μ-invariant Radon measure on R if and only if ν̃ = r−1 ∗ ν is
a μ̃-invariant Radon measure on (0,1). Then by Theorem 1.1 and since |r(u) +
1/u| < 2 for 0 < u < 1/2,∣∣∣∣ν̃

(
a

z
,
b

z

)
− ν

(
− z

a
,− z

b

)∣∣∣∣ =
∣∣∣∣ν

(
r

(
a

z

)
, r

(
b

z

))
− ν

(
− z

a
,− z

b

)∣∣∣∣
≤ ν

(
− z

a
− 2,− z

a
+ 2

)
+ ν

(
− z

b
− 2,− z

b
+ 2

)
→ 0

for z → +∞. Thus,

lim
z→+∞ ν̃(a/z, b/z) = lim

z→+∞ν

(
− z

a
,− z

b

)
= C logb/a. �

6.4. Additive Markov processes and power functions. When an asymptotically
linear SDS is conjugated by a homeomorphism of the real line which behaves as
the exponential at infinity, it is transformed into a SDS that is asymptotically a
translation or, by the reversed conjugation, a power function.

More precisely, consider a SDS generated by functions φ such that∣∣φ(x) − x + sign(x)uφ

∣∣ ≤ vφe−|x|(6.1)

for some constants uφ and vφ . This class contains mappings of [0,∞) that are
equal to translations outside a bounded set, that is, a Markov additive process as
defined in Aldous ([1], Sections C11, C33). Let s be a continuous bijection of R
such that

s(x) = ex for x > 1 and s(x) = −e−x for x < −1.

Then the SDS generated by ψφ(x) = s ◦ φ ◦ s−1 satisfies hypothesis (AL) with
A(ψφ) = e−uφ . Hence, under moment conditions that can be obtained with stan-
dard calculations, if E(uφ) = 0 there exists an invariant measure which behaves at
infinity as the Lebesgue measure dx, that is,

lim
z→+∞ ν̃(α + z,β + z) = C(β − α)

for every measure of unbounded support, some constant C > 0 and all β > α.
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In a similar way, a SDS generated by function φ such that

|x|a · sign(x)e−b1 log(|x|+2)α ≤ φ(x) ≤ |x|a · sign(x)e+b1 log(|x|+2)α

for some α is associated to an α-asymptotically linear system by the reverse con-
jugation ψφ(x) = s−1 ◦ φ ◦ s and A(ψφ) = a. Thus, if E(loga) = 0 and some
moments are finite, for any invariant measure ν̃, whose support in unbounded on
the positive half-line, there exists a strictly positive constant C such that for all
1 < α < β

lim
z→+∞ ν̃

(
αz,βz) = C log

logβ

logα
.

6.5. Population of Galton–Watson tree with random reproduction law. Con-
sider the following model of reproduction of a population. Let {ρω|ω ∈ �} be the
set of probability measures on the set of natural numbers N and λ(dω) be a proba-
bility law on �. At each generation, a law of reproduction ρω is chosen according
to λ(dω) and each individual j is replaced by rj offsprings, rj chosen according
to the law ρω and independently from the other individuals. To prevent the ex-
tinction of the population, a random immigration iω it added to the population.
More formally, if the population consists of x ∈ N individuals, the population of
the following generation is

ψω,r(x) = iω +
x∑

j=1

rj ,

where the reproduction law ω ∈ � is chosen according to λ(dω), r = {rj }j are
i.i.d. of law ρω and iω is a random variable. If every generation is independent
from the previous one, then the evolution of the population is a SDS on R = N of
law μ(dψ) = ⊗ρω(dr)λ(dω). If Er2

1 < ∞, the law of iterated logarithm proves
that the ψω,r are μ-almost surely α-asymptotically linear with an error of order xα

for all α > 1/2 and

A(ψ) = Aω =
∫
N

rρω(dr) = average number of offspring per individual for ρω.

Unlike the classical Galton–Watson process, in our context Aω is not constant, but
varies from one generation to another. The key parameter, that decides whether
the system is recurrent, is E(logAω) = ∫

logAωλ(dω). To apply Theorem 1.1, we
need to control moments of B(ψ). The details are stated in the following lemma.
Our estimates are fairly rough and the hypotheses could be probably improved, but
this go beyond the purpose of our paper.

LEMMA 6.2. Suppose E(r4
1 ) = ∫

�

∫
N

r4
1ρω(dr)λ(dω) < ∞. Let α > 3/4 and

B(ψ) = Bω,r = sup
x∈N

|ψω,r(x) − Aωx|
xα + 1

,
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then there exists a finite constant Cα that only depends on α such that

E
((

log+ B(ψ)
)2+ε) ≤ Cα

(
1 +E

((
log+ iω

)2+ε) +E
(
r4

1
))

.

PROOF. Observe first

|ψω,r(x) − Aωx|
xα + 1

≤ iω + |∑x
j=1(rj − Aω)|

xα + 1
.

Thus,

(
log+ B(ψ)

)2+ε ≤ C

((
C + log+ iω

)2+ε + sup
x∈N

(
log+ |∑x

j=1(rj − Aω)|
xα + 1

)2+ε)
.

Let yj := rj − Aω be centered random variables. For a fixed reproduction law ω,
denote by Pω the quenched probability. Since under Pω the variables yj are inde-
pendent, Eω(yj1yj2yj3yj4) = 0 if there exists an index jk that is different from all
the others. Then standard calculus shows that

Eω

[
x∑

j=1

yj

]4

=
x∑

j1,j2,j3,j4=1

Eω(yj1yj2yj3yj4)

= xEω

(
y4

1
) + 3x(x − 1)

(
Eω

[
y2

1
])2 ≤ 4x2

Eω

(
y4

1
)
.

Finally, since α > 3/4, we have

E

(
sup
x∈N

(
log+ |∑x

j=1(rj − Aω)|
xα + 1

)2+ε)

≤ CE

(∑
x∈N

( |∑x
j=1 yj |

xα + 1

)4)
= CE

(∑
x∈N

Eω[|∑x
j=1 yj |4]

(xα + 1)4

)

≤ CE

(∑
x∈N

4x2
Eω(y4

1)

(xα + 1)4

)
= C

∑
x∈N

4x2
E(y4

1)

(xα + 1)4 < ∞.
�

6.6. Reflected random walk in critical case. The reflected random walk

Yx
n = ∣∣Yx

n−1 − un

∣∣,
is an example of an asymptotic translation for which (6.1) holds. Thus, we can
apply our main Theorem 1.1. However, in this case the same results hold under
weaker hypotheses and a much more direct proof. We give here the proof of The-
orem 1.3, stated in the Introduction.

PROOF OF THEOREM 1.3. Define the upward ladder times of Sn = ∑n
i=1 ui :

t0 = 0,

tk+1 = inf{n > tk :Sn ≥ Stk }
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and put ūk = Stk − Stk−1 . Then {ūk} is a sequence of i.i.d. random variables and
every ūk is equal in distribution to St1 . We define reflected random walk for {ūk}:

�Y x
0 = x,

�Yx
k+1 = ∣∣�Yx

k − ūk+1
∣∣,

then �Yx
k = Yx

tk
. In view of the result of Chow and Lai [7], E(ūk)

1/2 < ∞ and this is
sufficient for existence of a unique invariant probability measure νt of the process
{�Yx

k } (see [20] for more details). Let us define the measure

ν0(f ) =
∫
R+

E

[
t−1∑
n=0

f
(
Yx

n

)]
νt (dx).

Notice first that this is a Radon measure. Indeed, define li = inf{n > li−1 :Sn <

Sli−1}. Since E(u−
1 )2 < ∞, −∞ < ESl < 0 (see [7]). Take any f ∈ CC(R+), then

by the duality lemma [12]

ν0(f ) =
∫
R+

E

[
t−1∑
n=0

f (x − Sn)

]
νt (dx)

(6.2)

=
∫
R+

E

[ ∞∑
n=0

f (x − Sln)

]
νt (dx).

By the renewal theorem,

E

[ ∞∑
n=0

f (x − Sln)

]
≤ CE[#n :α < x − Sln < β] ≤ C|β − α|,

therefore, ν0(f ) is finite, and thus ν0 is a Radon measure.
Next, since μt ∗ νt = νt , we have

μ ∗ ν0(f ) =
∫
R+

∫
R

E

[
t−1∑
n=0

f
(
Y |x−y|

n

)]
μ(dy)νt (dx)

=
∫
R+

E

[
t∑

n=1

f
(
Yx

n

)]
νt (dx) = ν0(f ).

Therefore, ν0 is a μ invariant Radon measure, so ν0 = Cν and without any loss of
generality we may assume ν = ν0.

Finally, by (6.2), the Lebesgue theorem and the renewal theorem

lim
z→∞

∫
R+

f (u − z)ν(du) = lim
z→∞

∫
R+

E

[ ∞∑
n=0

f (x − Sln − z)

]
νt (dx)

= 1

−ESl

∫
R+

f (x) dx

and the theorem is proved. �



ON UNBOUNDED INVARIANT MEASURES OF SDS 1483

APPENDIX: PROOFS OF TECHNICAL RESULTS

In this appendix, we give the postponed proofs of the technical results stated
in Lemma 2.1, Proposition 4.1, Lemma 4.2. At the end, we formulate and prove
Lemma A.3, which is used in Section 6.3.

PROOF OF LEMMA 2.1. We will prove the result only for positive x, since for
negative values of x the same argument is valid just by conjugating with the map
x 
→ −x.

Suppose first x ≥ 1. We have

r
(
Aαr−1(x) − Bα

(
1 + ∣∣r−1(x)

∣∣α))
≤ ψr(x) ≤ r

(
Aαr−1(x) + Bα

(
1 + ∣∣r−1(x)

∣∣α))
,

r
(
Aαx1/(1−α) − Bα

(
1 + xα/(1−α)))

≤ ψr(x) ≤ r
(
Aαx1/(1−α) + Bα

(
1 + xα/(1−α))),

r
(
Aαx1/(1−α) − Bαcαxα/(1−α))

≤ ψr(x) ≤ r
(
Aαx1/(1−α) + Bαcαxα/(1−α)),

where cα only depends on α. Suppose further x > cαBα/Aα , then Aαx1/(1−α) −
Bαcαxα/(1−α) > 0 and

(
Aαx1/(1−α) − Bαcαxα/(1−α))1−α

≤ ψr(x) ≤ (
Aαx1/(1−α) + Bαcαxα/(1−α))1−α

,

A1−α
α x(1−α)/(1−α) − A−α

α x−α/(1−α)Bαcαxα/(1−α)

≤ ψr(x) ≤ A1−α
α x(1−α)/(1−α) + (1 − α)A−α

α x−α/(1−α)Bαcαxα/(1−α),

A1−α
α x − A−α

α Bαcα

≤ ψr(x) ≤ A1−α
α x + (1 − α)A−α

α Bαcα

since for x0 > 0 and h > 0, by concavity (x0 + h)1−α ≤ x1−α
0 + (1 − α)x−α

0 h

and (x0 − h)1−α ≥ x1−α
0 − x−α

0 h. Hence, we proved the lemma for x >

max{1, cαBα/Aα} Now, for x < 1

r
(
Aαx1/(1−α) − Bα

(
1 + xα/(1−α)))

≤ ψr(x) ≤ r
(
Aαx1/(1−α) + Bα

(
1 + xα/(1−α))),

−(2Bα)1−α

≤ ψr(x) ≤ (Aα + 2Bα)1−α
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and for x ≤ cαBα/Aα .

−
(
Bα

(
1 +

(
cαBα

Aα

)α/(1−α)))1−α

≤ ψr(x) ≤
(
Aα

(
cαBα

Aα

)1/(1−α)

+ Bα

(
1 +

(
cαBα

Aα

)α/(1−α)))α/(1−α)

.

Hence, the lemma follows. �

PROOF OF PROPOSITION 4.1. Step 1. Let tk and lk be the stopping times
defined in (2.6). Let Ul be the potential of the random walk Slk and let

R(x) :=
∞∑

k=0

E
[
g(x + Slk )

] = Ul(δx ∗R g).

Since the function g is directly Riemann integrable and −∞ < ESl < 0, the func-
tion R is well defined and finite for every x. Notice also that by the duality
lemma [12]

R(x) =
∞∑

k=0

E
[
g(x + Slk )

] = E

[
t−1∑
k=0

g(x + Sk)

]
.(A.1)

Step 2. We claim that

E
[
f (x + St )

] − f (x) = E

[
t−1∑
k=0

g(x + Sk)

]
= R(x).(A.2)

Indeed, the process f (x + Sn) − ∑n−1
k=0 g(x + Sk) forms a martingale [for this

purpose one just has to iterate the Poisson equation (4.2)]. Then for any fixed n,
T ∧n is a bounded stopping time, therefore, by the optional stopping time theorem
we have

f (x) = E
[
f (x + St∧n)

] −E

[
(t∧n)−1∑

k=0

g(x + Sk)

]
.

To justify that, we can let n tend to infinity and change the order of the limit and
the expected value to obtain (A.2) observe that

E
[
f (x + St∧n)

] ≤ CE
[
1 + (x + St∧n)

+] ≤ CE
[
1 + (x + St )

+]
< ∞.

The second term is uniformly dominated in n by

E

[
t−1∑
k=0

|g|(x + Sk)

]
=

∞∑
k=0

E
[|g|(x + Slk )

]
< ∞,

therefore converges to R(x) when n goes to infinity.
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This proves that

E
[
f (x + St )

] − f (x) = R(x) = Ul(δx ∗R g)

and by the renewal theorem we obtain (4.3).
Step 3. Let

G(x) :=
∫ x

−∞
g(z) dz.

If we suppose
∫

g(x) dx = 0 then

G(x) =
∫ +∞
−∞

g(z) dz −
∫ ∞
x

g(z) dz = −
∫ +∞
x

g(z) dz.

Thus,∣∣G(x)
∣∣ ≤

∫ x

−∞
∣∣g(z)

∣∣dz1(−∞,0](x) +
∫ ∞
x

∣∣g(z)
∣∣dz1[0,+∞)(x) =: G1(x) + G2(x)

and G is directly Riemann integrable since functions Gi are monotone and inte-
grable on their support:∫ 0

−∞
G1(x) dx =

∫ +∞
−∞

∫ +∞
−∞

1[z<x<0]
∣∣g(z)

∣∣dx dz =
∫ 0

−∞
∣∣zg(z)

∣∣dz < ∞,

∫ +∞
0

G2(x) dx =
∫ +∞
−∞

∫ +∞
−∞

1[z>x>0]
∣∣g(z)

∣∣dx dz =
∫ +∞

0

∣∣zg(z)
∣∣dz < ∞.

Furthermore, ∫ ∞
−∞

G(x)dx =
∫ +∞
−∞

∫ +∞
−∞

1[z<x<0]g(z) dx dz

−
∫ +∞
−∞

∫ +∞
−∞

1[z>x>0]g(z) dx dz

= −
∫ +∞
−∞

zg(z) dz.

Step 4. By the renewal theory, Ul(δx ∗R G) is well defined and by Fubini’s
theorem ∫ x

−∞
R(z)dz =

∫ 0

−∞

∫ x

−∞
g(z + u)dzUl(du)

=
∫ 0

−∞

∫ x+u

−∞
g(z) dzUl(du)

= Ul(δx ∗R G).

On the other hand,∫ x

−∞
R(z)dz = E

[∫ x

−∞
f (z + St ) dz −

∫ x

−∞
f (z) dz

]
= E

[∫ x+St

x
f (z) dz

]
.
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In fact, the two integrals above are finite because by our hypotheses∫ x

−∞
E

[
f (y + St )

]
dy = E

[∫ x+St

−∞
f (y) dy

]
≤ CE

[
1 + (x + St )

+]
and ESt < ∞ since μ̄ has moment of order 2 + ε, see [7]. Thus, we proved

E

[∫ x+St

x
f (z) dz

]
= δx ∗R Ul(G)

and we can conclude using again the renewal theorem. �

PROOF OF LEMMA 4.2. Step 1. Let 0 < γ < 1, then the set of v > 0 such
that the function u 
→ (u − v)−γ is ν-integrable on (v,+∞) is of full Lebesgue
measure. In fact, for any interval [a, b] ⊂ (0,∞),∫ b

a

(∫ ∞
v

(u − v)−γ ν(du)

)
dv

=
∫ 2b

a

(∫ u∧b

a
(u − v)−γ dv

)
ν(du) +

∫ ∞
2b

(∫ u∧b

a
(u − v)−γ dv

)
ν(du)

≤
∫ 2b

a

(∫ 2b−a

0
w−γ dw

)
ν(du) +

∫ ∞
2b

(∫ u−a

u−b
w−γ dw

)
ν(du)

= C +
∫ ∞

2b
(u − b)−γ (b − a)ν(du) < ∞.

Take w0, such that
∫ ∞
w0

(u − w0)
−γ ν(du) < ∞, then

fφ(x) =
∫ ∞
w0

φ
(
e−x(u − w0)

)
ν(du) ≤ C

∫ ∞
w0

eγ x(u − w0)
−γ ν(du) ≤ Ceγx,

this gives good estimates of fφ for negative x’s.
Step 2. Let supp(φ) ⊂ [m,M]. By Proposition 3.1, the tail of ν is at most loga-

rithmic, therefore for x ≥ 0,

fφ(x) ≤ ν
([

exm + w0, e
xM + w0

]) ≤ ν
([

exm, ex(M + w0)
]) ≤ C(1 + x)

and ∫ x

−∞
fφ(y) dy ≤ C

∫
R

∫ ∞
−∞

1[y<x]1[m,M]
(
e−y(u − w0)

)
dyν(du)

≤ C

∫
R

1[w0<u≤ex(M+w0)] log
M

m
ν(du) ≤ C

(
1 + x+)

.

This proves (4.1).
Step 3. We need to justify that gφ = μ̄ ∗ fφ − fφ is directly Riemann integrable,

and moreover
∫
R

|xg(x)|dx < ∞. We recall first that, since g is continuous, to
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prove that it is directly Riemann integrable is sufficient to show that |g| is domi-
nated on (−∞,0] (resp., on [0,+∞)) by an integrable nondecreasing (resp., non-
increasing) function. For x < 0,

μ̄ ∗ fφ(x)

=
∫ +∞
−∞

fφ(x + y)μ̄(dy)

=
∫ −x/2

−∞
Ceγ (x+y)μ̄(dy) +

∫ +∞
−x/2

K
(
1 + (x + y)+

)
μ̄(dy)

≤ Ceγ (x/2) +
∫ ∞
−x/2

K
(
1 + |y|)μ̄(dy)

= Ceγ (x/2) + 1

|x|2+ε

∫ ∞
−x/2

K
(
1 + |y|)|y|1+εμ̄(dy)

≤ C

1 + |x|1+ε
,

since μ̄ has a moment of order 2 + ε. Thus, gφ1(−∞,0] is directly Riemann inte-
grable. Furthermore,∫ 0

−∞
|x|μ̄ ∗ fφ(x) dx

=
∫ +∞
−∞

∫ 0

−∞
|x|fφ(x + y)dxμ̄(dy)

=
∫ +∞
−∞

∫ y

−∞
|x − y|fφ(x) dxμ̄(dy)

=
∫ +∞
−∞

(∫ 0

−∞
|x − y|fφ(x) dx +

∫ y+

0
|x − y|fφ(x) dx

)
μ̄(dy)

≤
∫ +∞
−∞

(
C

∫ 0

−∞
|x − y|eγ x dx + 2|y|

∫ y+

0
fφ(x) dx

)
μ̄(dy)

≤ C

∫ +∞
−∞

(
1 + |y| + |y|2)

μ̄(dy) < ∞.

Step 4. To check that gφ is directly Riemann integrable and |xgφ(x)| is inte-
grable for positive x, we show that

∞∑
n=0

sup
n≤x<n+1

∣∣xgφ(x)
∣∣ < ∞.

Applying μ0 invariance of ν0 and since A(ψ0) = A(ψ), we obtain
∣∣g(x)

∣∣ =
∣∣∣∣
∫ ∫

φ
(
e−x(

A(ψ)u
)) − φ

(
e−x(

ψ(u)
))

ν0(du)μ0(dψ)

∣∣∣∣.
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The function φ̃(x) = φ(ex) is a Lipschitz on R, hence

∣∣φ(
e−x(

A(ψ)u
)) − φ

(
e−xψ(u)

)∣∣
≤ min

{
C

∣∣∣∣log
ψ(u)

A(ψ)u

∣∣∣∣,2‖φ‖∞
}

≤ min
{
C

∣∣∣∣ ψ(u)

A(ψ)u
− 1

∣∣∣∣,2‖φ‖∞
}

≤ min
{
C

∣∣∣∣ B(ψ)

A(ψ)u

∣∣∣∣,2‖φ‖∞
}

=: ρ
(

Au

B

)
,

where we use the convention that log z = −∞ for z ≤ 0 and ρ(y) :=
min{C| 1

y
|,2‖φ‖∞}. Take now 0 ≤ n ≤ x < n + 1

|x|∣∣φ(
e−x(Au)

) − φ
(
e−xψ(u)

)∣∣
≤ log+ Au + B

m

× ρ

(
Au

B

)
(1[log(ψ(u)/(Me))≤n≤log(ψ(u)/m)] + 1[log((Au)/(Me))≤n≤log((Au)/m)]).

Thus,

∞∑
n=0

sup
n≤x<n+1

∣∣xgφ(x)
∣∣

≤
∫ ∫ ∞∑

n=0

sup
n≤x<n+1

|x|∣∣φ(
e−x(Au)

) − φ
(
e−xψ(u)

)∣∣ν0(du)μ0(dψ)

≤
∫ ∫

log+ Au + B

m
· ρ

(
Au

B

)
2 log

eM

m
ν0(du)μ0(dψ)

≤ 2 log
eM

m

×
∫ (∫ (

log+ 1

m
+ log+ B + log+

(
Au

B
+ 1

))
ρ

(
Au

B

)
ν0(du)

)
μ0(dψ).

To estimate the last expression, we use the fact that there exists a constant C such
that for all nonincreasing functions h : [0,+∞) → [0,+∞) and all M > 0∫

R

h
(|u|/M)

ν0(du)

(A.3)

≤ C
(
1 + log+ M

)(‖h‖∞ +
∫ +∞

1
h(z)

(
1 + log(z)

)dz

z

)
.
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Before we prove the last inequality, let us check how it implies the lemma. Since
log+(z + 1)ρ(z) ≤ C/(1 + z)1/2 for z > 0, by (A.3), we have∫ (

log+ 1

m
+ log+ B + log+

(
Au

B
+ 1

))
ρ

(
Au

B

)
ν0(du)

≤ C
(
1 + log+(B/A)

)
×

((
1 + log+ B

)

+
∫ +∞

1

((
1 + log+ B

)
ρ(z) + 1

(1 + z)1/2

)(
1 + log+(z)

)dz

z

)

≤ C
(
1 + (

log+ B
)2 + log+ B log+ A

)
.

The last expression is μ0-integrable and we conclude.
Finally, to prove (A.3) we write∫

R

h
(|u|/M)

ν0(du)

≤ ‖h‖∞ν0
([−Me,Me]) +

∫
1[|u|>eM]h

(|u|/M)
ν0(du)

≤ C
(
1 + log+ M

)‖h‖∞ +
∞∑

n=1

∫
1[en+1M≥|u|>enM]ν0(du)h

(
en)

≤ C
(
1 + log+ M

)‖h‖∞ +
∞∑

n=1

(
log+(

en+1M
) + 1

)
h
(
en)

≤ C
(
1 + log+ M

)‖h‖∞ +
∞∑

n=1

∫ en

en−1

(
log+(

ze2M
) + 1

)
h(z)

dz

z

≤ C
(
1 + log+ M

)‖h‖∞ +
∫ ∞

1

(
log+(z) + log+ M + 3

)
h(z)

dz

z
. �

LEMMA A.3. Let φ ∈ C([0,1]) be a function fixing 0 and 1, derivable at 0
and 1 and such that φ′(0) = φ′(1) =: aφ . Suppose

β0
1 = inf

u∈[0,1/2]
(
1 − φ(u)

)
> 0, β0

2 = inf
u∈[0,1/2]

φ(u)

u
> 0,

β0
3 = sup

u∈[0,1/2]

∣∣∣∣φ(u) − aφu

u2

∣∣∣∣ < ∞,

β1
1 = inf

u∈[1/2,1]φ(u) > 0, β1
2 = inf

u∈[1/2,1]
1 − φ(u)

1 − u
> 0,

β1
3 = sup

u∈[1/2,1]

∣∣∣∣φ(u) − 1 − aφ(u − 1)

(u − 1)2

∣∣∣∣ < ∞.
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Consider the diffeomorphism of (0,1) on R

r(u) = −1

u
+ 1

1 − u
.

Then �φ = r ◦ φ ◦ r−1 satisfy (AL) for A(�φ) = 1/aφ and

B(�φ) < Cr

(
(1 + aφ + β0

3 )

aφβ0
2

+ 1

β0
1

+ (1 + aφ + β1
3 )

aφβ1
2

+ 1

β1
1

)
,

where Cr depends only on the function r .

PROOF. Since the function r satisfies r(u) = −r(1 − u) and our assumptions
on φ near 0 and 1 are symmetric, it is sufficient to prove the condition (AL) only
for negative x. Since β0

3 < ∞, by the Taylor expansion we have

φ(u) = au + εφ(u) with
∣∣εφ(u)

∣∣ ≤ β0
3u2 for u ≤ 1/2.(A.4)

Moreover, simple calculus shows that

r−1(x) = −1

x
+ εr−1(x) with εr−1(x) =

(
1

x2

)
for x → −∞.(A.5)

For x < 0, we write∣∣∣∣ x

aφ

− �φ(x)

∣∣∣∣ =
∣∣∣∣ x

aφ

− r
(
φ

(
r−1(x)

))∣∣∣∣ ≤
∣∣∣∣ x

aφ

+ 1

φ(r−1(x))

∣∣∣∣ + 1

1 − φ(r−1(x))
.

Notice that for x < 0, r−1(x) ∈ (0,1/2), therefore, the second factor can be
bounded by 1

β0
1

. So, we need just to estimate the first term. We write

I (x) =
∣∣∣∣ x

aφ

− 1

φ(r−1(x))

∣∣∣∣ = |φ(r−1(x))x − aφ|
|aφ · φ(r−1(x))| .

Take M = −r(1/10), then for x ∈ [−M,0] we have φ(r−1(x)) ≥ β0
2r−1(x) ≥

β0
2/10 and hence

I (x) ≤ 10
M + aφ

aφβ0
2

.

Now we consider x < −M . Since there exists η such that xr−1(x) > η, by (A.4)
and (A.5), we have

I (x) = |φ(r−1(x))x + aφ| · |x|
aφ · (φ(r−1(x)))/(r−1(x)) · |xr−1(x)|

≤ 1

aφβ0
2η

· ∣∣φ(
r−1(x)

)
x + aφ

∣∣|x|
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= 1

aφβ0
2η

∣∣aφr−1(x)x + εφ

(
r−1(x)

)
x + aφ

∣∣|x|

= 1

aφβ0
2η

∣∣aφεr−1(x)x + εφ

(
r−1(x)

)
x
∣∣

≤ |aφεr−1(x)x| + β0
3 |(r−1(x))2x|

aφβ0
2η

≤ Cr(aφ + β0
3 )

aφβ0
2

. �
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