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MINIMAL SUPERSOLUTIONS OF CONVEX BSDES

BY SAMUEL DRAPEAU1, GREGOR HEYNE2 AND MICHAEL KUPPER1

Humboldt University Berlin

We study the nonlinear operator of mapping the terminal value ξ to
the corresponding minimal supersolution of a backward stochastic differen-
tial equation with the generator being monotone in y, convex in z, jointly
lower semicontinuous and bounded below by an affine function of the control
variable z. We show existence, uniqueness, monotone convergence, Fatou’s
lemma and lower semicontinuity of this operator. We provide a comparison
principle for minimal supersolutions of BSDEs.

1. Introduction. On a filtered probability space, where the filtration is gen-
erated by a d-dimensional Brownian motion W , we consider the process Ê g(ξ)

given by

Ê g
t (ξ) = essinf

{
Yt ∈ L0

t : (Y,Z) ∈ A(ξ, g)
}
, t ∈ [0, T ],

where A(ξ, g) is the set of all pairs of càdlàg value processes Y and control pro-
cesses Z such that

Ys −
∫ t

s
gu(Yu,Zu) du +

∫ t

s
Zu dWu ≥ Yt and YT ≥ ξ(1.1)

for all 0 ≤ s ≤ t ≤ T . Here the terminal condition ξ is a random variable, the
generator g a measurable function of (y, z) and the pair (Y,Z) is a supersolution
of the backward stochastic differential equation (BSDE),

dYt = −gt (Yt ,Zt ) dt + Zt dWt, t ∈ [0, T );YT = ξ.

The main objective of this paper is to state conditions which guarantee that there
exists a unique minimal supersolution. More precisely, we show that the process
E g(ξ) = lims↓·,s∈Q Ê g

s (ξ) is a modification of Ê g(ξ) and equals the value process
of the unique minimal supersolution, that is, there exists a unique control process
Ẑ such that (E g(ξ), Ẑ) ∈ A(ξ, g). The existence theorem immediately yields a
comparison theorem for minimal supersolutions. We also study the stability of the
minimal supersolution with respect to the terminal condition and the generator. We
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show that the mapping ξ �→ Ê g
0 (ξ) is a nonlinear expectation, fulfills a monotone

convergence theorem and Fatou’s lemma on the same domain as the expectation
operator E[·], and consequently is L1-lower semicontinuous.

Nonlinear expectations have been a prominent topic in mathematical economics
since Allais’s famous paradox, see Föllmer and Schied [21], Section 2.2. Typi-
cal examples are the monetary risk measures introduced by Artzner et al. [2] and
Föllmer and Schied [20], Peng’s g and G-expectations [29, 31, 32], the variational
preferences by Maccheroni, Marinacci and Rustichini [28] and the recursive utili-
ties by Duffie and Epstein [15]. Especially the g-expectation, which is defined as
the initial value of the solution of a BSDE, is closely related to E g

0 (·), since each
pair (Y,Z) that solves the BSDE corresponding to (1.1) is also a supersolution and
hence an element of A(ξ, g). The concept of a supersolution of a BSDE appears
already in El Karoui, Peng and Quenez [17], Section 2.2. For further references see
Peng [30], who derives monotonic limit theorems for supersolutions of BSDEs and
proves the existence of a minimal constrained supersolution.

Our first contribution is to provide a setting where we relax the usual Lipschitz
requirements for the generator g. Namely, we suppose that g is convex with re-
spect to z, monotone in y, jointly lower semicontinuous, and bounded below by an
affine function of the control variable z. To see in an intuitive way the role these
assumptions play in deriving the existence and uniqueness of a control process Ẑ

such that (E g(ξ), Ẑ) ∈ A(ξ, g), let us suppose for the moment that g is positive.
Given an adequately good space of control processes, the value process of each
supersolution and the process Ê g(ξ) are in fact supermartingales. By suitable past-
ing, we may now construct a decreasing sequence (Y n) of supersolutions, whose
pointwise limit is again a supermartingale and equal to Ê g(ξ) on all dyadic ratio-
nals. Since the generator g is positive, it can be shown that E g(ξ) lies below Ê g(ξ),
P -almost surely, at any time. This suggests to consider the càdlàg supermartingale
E g(ξ) as a candidate for the value process of the minimal supersolution. How-
ever, it is not clear a priori that the sequence (Y n) converges to E g(ξ) in some
suitable sense. Yet, taking into account the additional supermartingale structure, in
particular the Doob–Meyer decomposition, it follows that (Y n) converges P ⊗ dt-
almost surely to E g(ξ). It remains to obtain a unique control process Ẑ such that
(E g(ξ), Ẑ) ∈ A(ξ, g). To that end, we prove that, for monotone sequences of super-
solutions, a positive generator yields, after suitable stopping, a uniform L1-bound
for the sequence of supremum processes of the associated sequence of stochastic
integrals. This, along with a result by Delbaen and Schachermayer [11], and stan-
dard compactness arguments and diagonalization techniques yield the candidate
control process Ẑ as the limit of a sequence of convex combinations. Now, joint
lower semicontinuity of g, positivity and convexity in z allow us to use Fatou’s
lemma to verify that the candidate processes (E g(ξ), Ẑ) are a supersolution of the
BSDE. Thus, E g(ξ) is in fact the value process of the minimal supersolution and
a modification of Ê g(ξ). Finally, the uniqueness of Ẑ follows from the uniqueness
of the Doob–Meyer decomposition of the càdlàg supermartingale E g(ξ).
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Let us give further reference of related assumptions and methods in the existing
literature. Delbaen, Hu and Bao [10] consider superquadratic BSDEs with gen-
erators that are positive and convex in z but do not depend on y. However, their
principal aim and method differ from ours. Indeed, they primarily study the well-
posedness of superquadratic BSDEs by establishing a dual link between cash ad-
ditive time-consistent dynamic utility functions and supersolutions of BSDEs. To
view supersolutions as supermartingales is one of the key ideas in our approach,
and we make ample use of the rich structure supermartingales provide. The classi-
cal limit theorem of supermartingales has been used by El Karoui and Quenez [18]
in the theory of BSDEs, when studying the problem of option pricing in incom-
plete financial markets. However, the analysis is done via dual formulations and
only for linear generators that do not depend on y. The construction of solutions
of BSDEs by monotone approximations is also a classical tool; see, for example,
Kobylanski [27] for quadratic generators and Briand and Hu [6] for generators
that are in addition convex in z. The application of compactness theorems such as
Delbaen and Schachermayer [11], Lemma A1.1 or [12], Theorem A, in order to
derive existence of BSDEs seems to be new to the best of our knowledge. Often
existence proofs rely on a priori estimates combined with a fixed point theorem
(see, e.g., [17]) or on constructing Cauchy sequences in complete spaces; see, for
example, Briand and Confortola [5] or Ankirchner, Imkeller and Dos Reis [1]. Re-
cent exceptions are Réveillac [35] and Heyne, Kupper and Mainberger [25] who
use a compactness result given in Barlow and Protter [3]. As already mentioned,
Peng [30] studies the existence and uniqueness of minimal supersolutions. How-
ever, he assumes a Lipschitz generator, a square integrable terminal condition, and
employs a very different approach. It is based on a monotonic limit theorem, [30],
Theorem 2.4 and the penalization method introduced in El Karoui et al. [16], and
it leads to increasing sequences of supersolutions. Parallel to us, Cheridito and
Stadje [8] have investigated existence and stability of supersolutions of BSDEs.
They consider generators that are convex in z and Lipschitz in y. However, their
setting and methods are quite different from ours. Namely, they approximate by
discrete time BSDEs and work with terminal conditions that are bounded lower
semicontinuous functions of the Brownian motion. An interesting equivalence be-
tween the minimal supersolution and the solution of a reflected BSDEs is given in
Peng and Xu [33]. In [25] the authors show the existence of the minimal supersolu-
tion for generators that are lower semicontinuous, monotone in the value variable,
are bounded below by an affine function of the control variable and which satisfy a
specific normalization condition. Finally, given our local L1-bounds, the compact-
ness underlying the construction of the candidate control process is a special case
of results obtained by Delbaen and Schachermayer [12].

Our second contribution is to allow for local supersolutions, that is, for superso-
lutions (Y,Z), where the stochastic integral of Z is only a local martingale. How-
ever, in order to avoid so-called “doubling strategies,” present even for the sim-
plest generator g ≡ 0 (see Dudley [14] or Harrison and Pliska [23], Section 6.1),
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we require in addition that
∫

Z dW is a supermartingale. This specification inter-
acts nicely with a positive generator and happens to be particularly adequate in
establishing stability properties of the minimal supersolution with respect to the
terminal condition or the generator. In particular, it allows us to formulate theo-
rems such as monotone convergence and Fatou’s lemma for the nonlinear operator
Ê g

0 (·) on the same domain as the standard expectation E[·] and to obtain its L1-
lower semicontinuity. Moreover, under some additional integrability on the termi-
nal condition, our approach also allows us to derive existence results with control
processes, whose stochastic integrals belong to H1.

Dropping the positivity assumption, the value and control processes of our su-
persolutions are supermartingales under another measure closely linked to the gen-
erator g. In fact, for a positive generator we have supermartingales with respect
to the initial probability measure P , while for a nonpositive generator, which is
bounded below by an affine function of the control variable, we consider super-
martingales under the measure given by the corresponding Girsanov transform.

The paper is organized as follows. In Section 2 we fix our notation and the
setting. We define minimal supersolutions and introduce our main conditions and
structural properties of Ê g(ξ) in Section 3. Finally in Section 4 we state and prove
our main results, existence and stability theorems.

2. Setting and notation. We consider a fixed time horizon T > 0 and a fil-
tered probability space (�, F , (Ft )t∈[0,T ],P ), where the filtration (Ft ) is gener-
ated by a d-dimensional Brownian motion W and fulfills the usual conditions. We
further assume that F = FT . The set of F -measurable and Ft -measurable ran-
dom variables is denoted by L0 and L0

t , respectively, where random variables are
identified in the P -almost sure sense. The sets Lp and L

p
t denote the set of ran-

dom variables in L0 and L0
t , respectively, with finite p-norm, for p ∈ [1,+∞].

Throughout this work, inequalities and strict inequalities between any two ran-
dom variables or processes X1,X2 are understood in the P -almost sure or in
the P ⊗ dt-almost sure sense, respectively; that is, X1 ≤ (<)X2 is equivalent to
P [X1 ≤ (<)X2] = 1 or P ⊗ dt[X1 ≤ (<)X2] = 1, respectively. Given a process
X and t ∈ [0, T ] we denote X∗

t := sups∈[0,t] |Xs |. We denote by T the set of stop-
ping times with values in [0, T ] and hereby call an increasing sequence of stop-
ping times (τn), such that P [⋃n{τn = T }] = 1, a localizing sequence of stopping
times. By S := S(R) we denote the set of all càdlàg progressively measurable pro-
cesses Y with values in R. For p ∈ [1,+∞[, we further denote by Lp := Lp(W)

the set of progressively measurable processes Z with values in R1×d , such that
‖Z‖Lp := E[(∫ T

0 ZsZ


s ds)p/2]1/p < +∞. For any Z ∈ Lp , the stochastic integral

(
∫ t

0 Zs dWs)t∈[0,T ] is well defined (see [34]) and is by means of the Burkholder–
Davis–Gundy inequality, a continuous martingale. For the Lp-norm, the set Lp is
a Banach space; see [34]. We further denote by L := L(W) the set of progressively



MINIMAL SUPERSOLUTIONS OF CONVEX BSDES 3977

measurable processes with values in R1×d , such that there exists a localising se-
quence of stopping times (τn) with Z1[0,τn] ∈ L1, for all n ∈ N. Here again, the
stochastic integral

∫
Z dW is well defined and is a continuous local martingale.

For adequate integrands a,Z, we generically write
∫

a ds or
∫

Z dW for the re-
spective integral processes (

∫ t
0 as ds)t∈[0,T ] and (

∫ t
0 Zs dWs)t∈[0,T ]. Finally, given a

sequence (xn) in some convex set, we say that a sequence (yn) is in the asymptotic
convex hull of (xn), if yn ∈ conv{xn, xn+1, . . .}, for all n.

A generator is a jointly measurable function g from � × [0, T ] × R × R1×d to
R ∪ {+∞} where � × [0, T ] is endowed with the progressive σ -field.

3. Minimal supersolutions of BSDEs.

3.1. Definitions. Given a generator g, and a terminal condition ξ ∈ L0, a pair
(Y,Z) ∈ S × L is a supersolution of the BSDE

dYt = −gt (Yt ,Zt ) dt + Zt dWt, t ∈ [0, T );YT = ξ,

if, for all s, t ∈ [0, T ], with s ≤ t , it holds

Ys −
∫ t

s
gu(Yu,Zu) du +

∫ t

s
Zu dWu ≥ Yt and YT ≥ ξ.(3.1)

For such a supersolution (Y,Z), we call Y the value process and Z its control
process. Due to the càdlàg property, relation (3.1) holds for all stopping times
0 ≤ σ ≤ τ ≤ T , in place of s and t , respectively. Note that the formulation in (3.1)
is equivalent to the existence of a càdlàg increasing process K , with K0 = 0, such
that

Yt = ξ +
∫ T

t
gu(Yu,Zu) du + (KT − Kt) −

∫ T

t
Zu dWu, t ∈ [0, T ].(3.2)

Although the notation in (3.2) is standard in the literature concerning superso-
lutions of BSDEs (see, e.g., [17, 30]), we will keep with (3.1) since the proofs
of our main results exploit this structure. We consider only those supersolutions
(Y,Z) ∈ S × L of a BSDE where Z is admissible, that is, where the continuous
local martingale

∫
Z dW is a supermartingale. We are then interested in the set

A(ξ, g) = {
(Y,Z) ∈ S × L :Z is admissible and (3.1) holds

}
(3.3)

and the process

Ê g
t (ξ) = essinf

{
Yt ∈ L0

t : (Y,Z) ∈ A(ξ, g)
}
, t ∈ [0, T ].(3.4)

By Ê g we mean the functional mapping terminal conditions ξ ∈ L0 to the process
Ê g(ξ). If necessary, we write AT (ξ, g) and Ê g

·,T (ξ) for A(ξ, g) and Ê g(ξ), respec-
tively, to indicate their dependence on the time horizon. Note that the essential
infima in (3.4) can be taken over those (Y,Z) ∈ A(ξ, g), where YT = ξ . A pair
(Y,Z) is called a minimal supersolution, if (Y,Z) ∈ A(ξ, g), and if for any other
supersolution (Y ′,Z′) ∈ A(ξ, g), holds Yt ≤ Y ′

t , for all t ∈ [0, T ].
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3.2. General properties of A(·, g) and Ê g . In this section we collect various
statements regarding the properties of A(·, g) and Ê g . The first lemma ensures
that the set of admissible control processes is stable under pasting and that we
may concatenate elements of A(ξ, g) along stopping times and partitions of our
probability space.

LEMMA 3.1. Fix a generator g, a terminal condition ξ ∈ L0, a stopping time
σ ∈ T and (Bn) ⊂ Fσ a partition of �:

(1) Let (Zn) ⊂ L be admissible. Then Z̄ = Z11[0,σ ] + ∑
n≥1 Zn1Bn1]σ,T ] is

admissible.
(2) Let ((Y n,Zn)) ⊂ A(ξ, g) such that Y 1

σ 1Bn ≥ Yn
σ 1Bn , for all n ∈ N. Then

(Ȳ , Z̄) ∈ A(ξ, g), where

Ȳ = Y 11[0,σ [ + ∑
n≥1

Yn1Bn1[σ,T ] and

(3.5)
Z̄ = Z11[0,σ ] + ∑

n≥1

Zn1Bn1]σ,T ].

PROOF. (1) Let Mn and M̄ denote the stochastic integrals of the Zn and Z̄,
respectively. It follows from (Zn) ⊂ L and from (Bn) being a partition that Z̄ ∈ L
and that

∫ t∨σ
s∨σ Z̄u dWu = ∑

1Bn

∫ t∨σ
s∨σ Zn

u dWu. Now observe that the admissibility
of all Zn yields

E[M̄t − M̄s |Fs] = E
[
M1

(t∧σ)∨s − M1
s |Fs

]

+ E

[∑
n≥1

1BnE
[
Mn

t∨σ − Mn
s∨σ |Fs∨σ

]|Fs

]
≤ 0

for 0 ≤ s ≤ t ≤ T .
(2) Z̄ is admissible by item (1). Since Y 1

σ 1Bn ≥ Yn
σ 1Bn , for all n ∈ N, it follows

on the set {s < σ ≤ t} that

Y 1
s −

∫ σ

s
gu

(
Y 1

u ,Z1
u

)
du +

∫ σ

s
Z1

u dWu −
∫ t

σ
gu(Ȳu, Z̄u) du +

∫ t

σ
Z̄u dWu

≥ Y 1
σ − ∑

n≥1

1Bn

(∫ t

σ
gu

(
Yn

u ,Zn
u

)
du −

∫ t

σ
Zn

u dWu

)

≥ ∑
n≥1

1Bn

(
Yn

σ −
∫ t

σ
gu

(
Yn

u ,Zn
u

)
du +

∫ t

σ
Zn

u dWu

)
≥ ∑

n≥1

1BnY n
t .

Hence,

Ȳs −
∫ t

s
gu(Ȳu, Z̄u) du +

∫ t

s
Z̄u dWu

≥ 1{σ>t}Y 1
t + ∑

n≥1

1Bn

(
1{σ≤s}Yn

t + 1{s<σ≤t}Yn
t

) = Ȳt
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and thus (Ȳ , Z̄) ∈ A(ξ, g). �

For convenience, a generator is said to be:

(POS) positive if g(y, z) ≥ 0, for all (y, z) ∈ R × R1×d .
(INC) increasing if g(y, z) ≥ g(y′, z), for all y, y′ ∈ R with y ≥ y′, and all

z ∈ R1×d .
(DEC) decreasing if g(y, z) ≤ g(y′, z), for all y, y′ ∈ R with y ≥ y′, and all

z ∈ R1×d .

In the following lemma, we show that the value process of a supersolution is a
supermartingale if the generator is positive.

LEMMA 3.2. Let g be a generator fulfilling (POS), and ξ ∈ L0 be a terminal
condition such that ξ− ∈ L1. Let (Y,Z) ∈ A(ξ, g). Then ξ ∈ L1, Y is a super-
martingale, Z is unique and Y has the unique decomposition

Y = Y0 − A + M,(3.6)

where M denotes the supermartingale
∫

Z dW , and A is a predictable, increasing,
càdlàg process with A0 = 0.

PROOF. Relation (3.1), positivity of g, admissibility of Z and ξ− ∈ L1 imply
E[|Yt |] < +∞, for all t ∈ [0, T ]. Since −ξ− ≤ ξ ≤ YT , we deduce that ξ ∈ L1.
Again, from (3.1), admissibility of Z and positivity of g we derive by taking
conditional expectation, that Ys ≥ E[Yt |Fs]. Thus Y is a supermartingale with
Yt ≥ E[ξ |Ft ]. Relation (3.1) implies further that there exist an increasing and
càdlàg process K , with K0 = 0, such that (3.6) holds with A = ∫

g(Y,Z)ds + K .
Note that A is optional and therefore predictable due to the Brownian filtra-
tion; see [36], Corollary V.3.3. Since Y is a càdlàg supermartingale the Doob–
Meyer theorem, see [34], Theorem III.3.13, implies the unique decomposition
Y = Y0 + M̃ − Ã, where M̃ is a local martingale and Ã is an increasing process
which is predictable, and M̃0 = Ã0 = 0. In our filtration every local martingale is
continuous (see [34], Corollary IV.3.1, page 187), and thus Ã is càdlàg. Hence
A and Ã and M and M̃ are indistinguishable. Moreover, from the predictable
representation property of local martingales and from P(

⋃
n{τn = T }) = 1, for

τn = inf{t ≥ 0||Mt | ≥ n} ∧ T , we obtain the P ⊗ dt-almost sure uniqueness of Z.
�

PROPOSITION 3.3. For t ∈ [0, T ], generators g,g′ and terminal conditions
ξ, ξ ′ ∈ L0, it holds:

(1) the set {Yt : (Y,Z) ∈ A(ξ, g)} is directed downwards;
(2) assuming (POS), ξ− ∈ L1 and A(ξ, g) �= ∅, then for all ε > 0, there exists

(Y ε,Zε) ∈ A(ξ, g) such that Ê g
t (ξ) ≥ Y ε

t − ε;
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(3) (monotonicity) if ξ ′ ≤ ξ and g′(y, z) ≤ g(y, z), for all y, z ∈ R × R1×d ,

then A(ξ ′, g′) ⊃ A(ξ, g) and Ê g′
t (ξ ′) ≤ Ê g

t (ξ);
(4) (convexity) if (y, z) �→ g(y, z) is jointly convex, then A(λξ + (1 −

λ)ξ ′, g) ⊃ λA(ξ, g) + (1 − λ)A(ξ ′, g), for all λ ∈ (0,1), and so

Ê g
t

(
λξ + (1 − λ)ξ ′) ≤ λÊ g

t (ξ) + (1 − λ)Ê g
t

(
ξ ′).

(5) for m ∈ L0
t :

• (cash superadditivity) assuming (INC) and m ≥ 0, then Ê g
t (ξ +m) ≥ Ê g

t (ξ)+m.
• (cash subadditivity) assuming (DEC), m ≥ 0, and the existence of (Y,Z) ∈

A(ξ, g), such that At (Yt + m,g) �= ∅, then Ê g
t (ξ + m) ≤ Ê g

t (ξ) + m.
• (cash additivity) assuming that g does not depend on y, the existence of (Y,Z) ∈

A(ξ, g), such that At (Yt + m+, g) �= ∅, and the existence of (Y,Z) ∈ A(ξ +
m,g), such that At (Yt + m−, g) �= ∅, then Ê g

t (ξ + m) = Ê g
t (ξ) + m.

PROOF. (1) Given (Y i,Zi) ∈ A(ξ, g), for i = 1,2, we have to construct
(Ȳ , Z̄) ∈ A(ξ, g), such that Ȳt ≤ min{Y 1

t , Y 2
t }. To this end, we define the stopping

time

τ = inf
{
s > t :Y 1

s > Y 2
s

} ∧ T

and set Ȳ = Y 11[0,τ [ +Y 21[τ,T [, ȲT = ξ , and Z̄ = Z11[0,τ ] +Z21]τ,T ]. Since Y 1
τ ≥

Y 2
τ , Lemma 3.1 yields (Ȳ , Z̄) ∈ A(ξ, g) and by definition holds Ȳt = min{Y 1

t , Y 2
t }.

(2) In view of the first assertion, there exists a sequence ((Ỹ n, Z̃n)) ⊂ A(ξ, g)

such that (Ỹ n
t ) decreases to Ê g

t (ξ). Set Yn = Ỹ 11[0,t) + Ỹ n1[t,T ] and Zn =
Z̃11[0,t] + Z̃n1(t,T ]. From Lemma 3.1 it follows that ((Y n,Zn)) ⊂ A(ξ, g) and
(Y n

t ) decreases to Ê g
t (ξ) by construction. Lemma 3.2 implies that Ê g

t (ξ) ≥
E[ξ−|Ft ]. Hence, given ε > 0, the sets Bn = An \ An−1 ∈ Ft , where An =
{Ê g

t (ξ) ≥ Yn
t − ε} and A0 = ∅, form a partition of �. Since (Y n

t ) is decreasing, it
follows that Y 1

t 1Bn ≥ Yn
t 1Bn , for all n ∈ N. Consequently, by means of Lemma 3.1,

(Ȳ , Z̄), defined as in (3.5), is an element of A(ξ, g) and Ê g
t (ξ) ≥ Ȳt − ε by con-

struction.
(3) Follows from definitions (3.3) and (3.4).
(4) The joint convexity of g yields (λY + (1 − λ)Y ′, λZ + (1 − λ)Z′) ∈

A(λξ + (1 − λ)ξ ′, g), for all (Y,Z) ∈ A(ξ, g), all (Y ′,Z′) ∈ A(ξ ′, g) and all
λ ∈ (0,1). Hence, λA(ξ, g) + (1 − λ)A(ξ ′, g) ⊂ A(λξ + (1 − λ)ξ ′, g) and in par-
ticular, Ê g

t (λξ + (1 − λ)ξ ′) ≤ λÊ g
t (ξ) + (1 − λ)Ê g

t (ξ ′).
(5) Let us show the cash superadditivity. For m ∈ L0

t with m ≥ 0, given (Y,Z) ∈
A(ξ + m,g), and 0 ≤ s ≤ t ′ ≤ T , it follows from (3.1) and (INC) that

Ys − m1[t,T ](s) −
∫ t ′

s
gu

(
Yu − m1[t,T ](u),Zu

)
du +

∫ t ′

s
Zu dWu

≥ Ys − m1[t,T ](s) −
∫ t ′

s
gu(Yu,Zu) du +

∫ t ′

s
Zu dWu ≥ Yt ′ − m1[t,T ]

(
t ′

)
.
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Hence, (Y − m1[t,T ],Z) ∈ A(ξ, g) and thus Ê g
t (ξ + m) − m ≥ Ê g

t (ξ). For the cash
subadditivity the same argument yields

Ys +m1[t,T ](s)−
∫ t ′

s
gu

(
Yu +m1[t,T ](u),Zu

)
du+

∫ t ′

s
Zu dWu ≥ Yt ′ +m1[t,T ]

(
t ′

)

for all t ≤ s ≤ t ′ ≤ T , and all (Y,Z) ∈ A(ξ, g). In order to apply our usual past-
ing argument we now need the assumption that At (Yt + m,g) �= ∅. It provides
(Ỹ , Z̃) ∈ At (Yt + m,g) such that we may construct (Ȳ , Z̄) ∈ A(ξ + m,g), with
Yt + m = Ȳt and thus Ê g

t (ξ) + m ≥ Ê g
t (ξ + m). The cash additivity in the case

where g is independent of y follows from Ê g
t (ξ) + m = Ê g

t (ξ + m+) − m− =
Ê g

t (ξ + m + m−) − m− = Ê g
t (ξ + m), since (DEC) and (INC) are simultaneously

fulfilled. �

Proposition 3.3 addresses the dependence of A(ξ, g) on ξ and g and its impact
on Ê g(ξ). The first two assertions are crucial in the subsequent proof of the exis-
tence and uniqueness theorem in Section 4. The third assertion concerns the mono-
tonicity of Ê g(ξ) with respect to ξ and g. Combined with the existence theorem,
this yields, in fact, a comparison principle for minimal supersolutions of BSDEs.
The last assertion concerns the cash (super/sub) additivity of the functional Ê g(ξ).

We now prove that for a positive generator Ê g(ξ) is in fact a supermartingale,
which, in addition, dominates its right-hand-limit process. This is crucial for the
proof of the existence and uniqueness theorem.

PROPOSITION 3.4. Let g be a generator fulfilling (POS), and ξ ∈ L0 be a
terminal condition such that ξ− ∈ L1. Suppose that A(ξ, g) �= ∅. Then Ê g(ξ) is a
supermartingale,

E g
s (ξ) := lim

t↓s,t∈Q
Ê g

t (ξ) for all s ∈ [0, T ), E g
T (ξ) := ξ,

is a well-defined càdlàg supermartingale and

Ê g
s (ξ) ≥ E g

s (ξ) for all s ∈ [0, T ].(3.7)

PROOF. Note first that Ê g(ξ) is adapted by definition. Furthermore, given
(Y,Z) ∈ A(ξ, g) �= ∅, Lemma 3.2 implies ξ ∈ L1 and Yt ≥ E[ξ |Ft ]. Hence Yt ≥
Ê g

t (ξ) ≥ E[ξ |Ft ] and Ê g
t (ξ) ∈ L1. As for the supermartingale property and (3.7),

fix 0 ≤ s ≤ t ≤ T . In view of item (2) of Proposition 3.3, for all ε > 0, there exists
(Y ε,Zε) ∈ A(ξ, g) such that Ê g

s (ξ) ≥ Y ε
s − ε. Due to (3.1) it follows

Ê g
t (ξ) ≤ Y ε

t ≤ Y ε
s −

∫ t

s
gu

(
Y ε

u ,Zε
u

)
du +

∫ t

s
Zε

u dWu

≤ Ê g
s (ξ) −

∫ t

s
gu

(
Y ε

u ,Zε
u

)
du +

∫ t

s
Zε

u dWu + ε(3.8)

≤ Ê g
s (ξ) +

∫ t

s
Zε

u dWu + ε.
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Taking conditional expectation on both sides with respect to Fs , the super-
martingale property of

∫
Zε dW yields Ê g

s (ξ) ≥ E[Ê g
t (ξ)|Fs], and so Ê g(ξ) is

a supermartingale. That E g(ξ) is a well-defined càdlàg supermartingale follows
from Karatzas and Shreve [26], Proposition 1.3.14. Finally, (3.7) follows directly
from (3.8) and the definition of E g(ξ). �

REMARK 3.5. The previous proposition suggests to consider the càdlàg su-
permartingale E g(ξ) as a candidate for the value process of the minimal superso-
lution. Note further that if E g(ξ) is the value process of the minimal supersolution,
it is a modification of Ê g(ξ) by definition.

The final result of this section shows that our setup allows us to derive various
properties that are important in the context of nonlinear expectations and dynamic
risk measures. In particular, we prove that E g(ξ), if it is the value process of the
minimal supersolution, fulfills the flow-property and, under the additional assump-
tion g(y,0) = 0, for all y ∈ R, we show projectivity, with time-consistency as a
special case. In the context of BSDE solutions such properties were first estab-
lished in [29], for the case of Lipschitz generators. For dynamic risk measures the
(strong) time-consistency has been investigated in discrete time in [7, 19] as well
as in continuous time in [4, 9], for instance.

PROPOSITION 3.6. For t ∈ [0, T ], generator g and terminal condition ξ ∈ L0,
it holds:

(1) Ê g
s,T (ξ) ≤ Ê g

s,t (Ê g
t,T (ξ)), for all 0 ≤ s ≤ t . Suppose that E g(ξ) is a minimal

supersolution, then the flow-property holds; that is,

E g
s,T (ξ) = E g

s,t

(
E g

t,T (ξ)
)

for all 0 ≤ s ≤ t.(3.9)

(2) If g(y,0) = 0, for all y ∈ R, then Ê g
s (Ê g

t (ξ)) ≤ Ê g
s (ξ), for all 0 ≤ s ≤ t .

Assuming (POS), ξ− ∈ L1, and supposing that E g(ξ) is a minimal supersolution,
then E g(ξ) is time-consistent, that is,

E g
s

(
E g

t (ξ)
) = E g

s (ξ) for all 0 ≤ s ≤ t.(3.10)

(3) Assuming (POS), g(y,0) = 0, for all y ∈ R, ξ− ∈ L1, and E g(ξ) is a mini-
mal supersolution, then the projectivity holds, that is,

E g
s

(
1AE g

t (ξ)
) = E g

s (1Aξ) for all 0 ≤ s ≤ t and A ∈ Ft .(3.11)

PROOF. (1) Fix 0 ≤ s ≤ t . Obviously, (Ys,Zs)s∈[0,t] ∈ At (Ê g
t,T (ξ), g), for all

(Y,Z) ∈ AT (ξ, g). Hence Ê g
s,t (Ê g

t,T (ξ)) ≤ Ê g
s,T (ξ). Suppose now that E g

·,T (ξ) is a

minimal supersolution with corresponding admissible control process Ẑ ∈ L. For
all (Y,Z) ∈ At (E g

t,T (ξ), g), holds Yt ≥ E g
t,T (ξ) and, with the same argumentation

as in Lemma 3.1, we can paste in a monotone way to show that (Ȳ , Z̄) ∈ AT (ξ, g),
where Ȳ = Y1[0,t[ + E g

·,T (ξ)1[t,T ] and Z̄ = Z1[0,t] + Ẑ1]t,T ]. Thus, by definition,



MINIMAL SUPERSOLUTIONS OF CONVEX BSDES 3983

E g
s,t (E g

t,T (ξ)) ≥ E g
s,T (ξ).

(2) Given (Y,Z) ∈ A(ξ, g), we define Ȳ = Y1[0,t[ + Ê g
t (ξ)1[t,T ] and Z̄ =

Z1[0,t]. Since Yt ≥ Ê g
t (ξ) and g(y,0) = 0, it is straightforward to verify that

(Ȳ , Z̄) ∈ A(Ê g
t (ξ), g). From Ys ≥ Ȳs , for all s ∈ [0, t], follows that Ê g

s (Ê g
t (ξ)) ≤

Ê g
s (ξ), for all s ∈ [0, t]. The case where E g(ξ) is a minimal supersolution and

assumption (POS) holds, follows from (3.11) for A = �.
(3) Fix A ∈ Ft . Suppose that E g(ξ) is a minimal supersolution with correspond-

ing control process Ẑ. Then, from ξ− ∈ L1 and Lemma 3.2 it follows that E g(ξ)

is a supermartingale and ξ ∈ L1.
Given (Y,Z) ∈ A(1AE g

t (ξ), g), it follows from (1AE g
t (ξ))− ∈ L1 and Lem-

ma 3.2 that Yt ≥ E[1AE g
t (ξ)|Ft ] = 1AE g

t (ξ). Since g(y,0) = 0, it is straight-
forward to check that Ỹ = Y1[0,t[ + E g

t (ξ)1A1[t,T ], and Z̃ = Z1[0,t] is such that
(Ỹ , Z̃) ∈ A(1AE g

t (ξ), g). We can henceforth assume that Ys = 1AE g
t (ξ), for all

s ≥ t . Now, we define Ȳ = Y1[0,t[ + E g(ξ)1A1[t,T ] and Z̄ = Z1[0,t] + Ẑ1A1]t,T ],
for 0 ≤ s < t ≤ t ′ ≤ T holds

Ȳs −
∫ t ′

s
g(Ȳu, Z̄u) du +

∫ t ′

s
Z̄u dWu

≥ Yt +
(
−

∫ t ′

t
gu

(
E g

u (ξ), Ẑu

)
du +

∫ t ′

t
Ẑu dWu

)
1A

≥
(

E g
t (ξ) −

∫ t ′

t
gu

(
E g

u (ξ), Ẑu

)
du +

∫ t ′

t
Ẑu dWu

)
1A ≥ E g

t ′ (ξ)1A.

Hence, for all 0 ≤ s ≤ t ′ ≤ T it holds that

Ȳs −
∫ t ′

s
g(Ȳu, Z̄u) du +

∫ t ′

s
Z̄u dWu ≥ Yt ′1{t ′<t} + E g

t ′ (ξ)1A1{t≤t ′} = Ȳt ′

and ȲT = 1Aξ , which implies that (Ȳ , Z̄) ∈ A(1Aξ, g). Since Ȳs = Ys , for all s ≤ t ,
we deduce E g

s (1Aξ) ≤ E g
s (1AEt (ξ)).

On the other hand, consider (Y,Z) ∈ A(1Aξ, g). From Yt ≥ E[1Aξ |Ft ] =
1AE[ξ |Ft ], we obtain Yt1Ac ≥ 0. Since E g(ξ) is a minimal supersolution, it
follows that Yt ≥ E g

t (ξ)1A. Indeed, let B = {Yt < E g
t (ξ)1A}; then Yt1Ac ≥ 0

implies B ⊂ A. Consequently, by arguments similar to those in Lemma 3.1,
the processes Ỹ = E g(ξ)(1[0,t[ + 1Bc1[t,T ]) + Y1B1[t,T ] and Z̃ = Ẑ(1[0,t[ +
1Bc1[t,T ]) + Z1B1[t,T ] are such that (Ỹ , Z̃) ∈ A(ξ, g), which implies P [B] = 0.
It is also straightforward to check that Ỹ = Y1[0,t[ + E g(ξ)1A1[t,T ] and Z̃ =
Z1[0,t] + Ẑ1(t,T ]1A are such that (Ỹ , Z̃) ∈ A(1Aξ, g). Thus we can assume that
Yt = 1AE g

t (ξ). Defining Ȳ = Y1[0,t[ + E g
t (ξ)1A1[t,T ] and Z̄ = Z1[0,t], it holds

(Ȳ , Z̄) ∈ A(1AE g
t (ξ), g). Thus E g

s (1AE g
t (ξ)) ≤ E g

s (1Aξ), since Ȳs = Ys , for all
s ≤ t . �

4. Existence, uniqueness and stability. In this section, we give conditions
that guarantee the existence and uniqueness of a minimal supersolution. We show
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that the corresponding value process is given by E g(ξ). Moreover, we analyze the
stability of Ê g(ξ) with respect to perturbations of the terminal condition or the gen-
erator. In addition to the assumptions (POS) and (INC) or (DEC) introduced above,
we require convexity of g in the control variable and joint lower semicontinuity.
To that end, we say that a generator g is:

(CON) convex if g(y,λz+(1−λ)z′) ≤ λg(y, z)+(1−λ)g(y, z′), for all y ∈ R,
all z, z′ ∈ R1×d and all λ ∈ (0,1);

(LSC) if (y, z) �→ g(y, z) is lower semicontinuous.

4.1. Existence and uniqueness of minimal supersolutions. The following the-
orem on existence and uniqueness of a minimal supersolution is the first main
result of this paper.

THEOREM 4.1. Let g be a generator fulfilling (POS), (LSC), (CON) and ei-
ther (INC) or (DEC) and ξ ∈ L0 be a terminal condition, such that ξ− ∈ L1. If
A(ξ, g) �= ∅, then there exists a unique minimal supersolution (Ŷ , Ẑ) ∈ A(ξ, g).
Moreover, E g(ξ) is the value process of the minimal supersolution, that is,
(E g(ξ), Ẑ) ∈ A(ξ, g).

Note that, under the assumptions of Theorem 4.1, Remark 3.5 implies that the
process E g(ξ) is a modification of Ê g(ξ). Further, in the context of finding minimal
elements in some set, the assumption A(ξ, g) �= ∅ is quite standard; see [30] for
an example in the setting of minimal supersolutions. However, let us point out
that in many applications A(ξ, g) �= ∅ might be guaranteed by specific model
assumptions; see, for instance, an example on utility maximization in Heyne [24].
It might also be automatically granted under further assumptions (see Cheridito
and Stadje [8]) or, for instance, if the BSDE Yt − ∫ T

t gs(Ys,Zs) ds + ∫ T
t Zs dWs =

ξ̂ has a solution (Y,Z) ∈ S × L, such that Z is admissible. In the latter case,
A(ξ, g) �= ∅, for all ξ ∈ L0 such that ξ− ∈ L1, with ξ̂ ≥ ξ .

PROOF OF THEOREM 4.1. Step 1. Uniqueness. Given Ẑ ∈ L such that
(E g(ξ), Ẑ) ∈ A(ξ, g), the definition of E g(ξ) implies that for any other superso-
lution (Y,Z′) ∈ A(ξ, g) holds E g

t (ξ) ≤ Yt , for all t ∈ [0, T ]. The uniqueness of Ẑ

follows as in Lemma 3.2.
The remainder of the proof provides existence of Ẑ ∈ L such that (E g(ξ), Ẑ) ∈

A(ξ, g).
Step 2. Construction of an approximating sequence. For any n, i ∈ N, let tni =

iT /2n. There exist ((Y n,Zn)) ⊂ A(ξ, g) such that

Ê g

tni
(ξ) ≥ Yn

tni
− 1/n for all n ∈ N and all i = 0, . . . ,2n − 1(4.1)

and

Yn
t ≥ Yn+1

t for all t ∈ [0, T ] and all n ∈ N.(4.2)
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Indeed, by means of Proposition 3.3(2), for each n ∈ N, we may select a family
((Y n,i,Zn,i))i=0,...,2n−1 in A(ξ, g), such that Ê g

tni
(ξ) ≥ Y

n,i
tni

−1/n, i = 0, . . . ,2n −
1. We suitably paste this family in order to obtain (4.1). We start with

Ȳ n,0 = Yn,0, Z̄n,0 = Zn,0

and continue by recursively setting, for i = 1, . . . ,2n − 1,

Ȳ n,i = Ȳ n,i−11[0,τn
i [ + Yn,i1[τn

i ,T [, Ȳ
n,i
T = ξ,

Z̄n,i = Z̄n,i−11[0,τn
i ] + Zn,i1]τn

i ,T ],

where τn
i are stopping times given by τn

i = inf{t > tni : Ȳ n,i−1
t > Y

n,i
t } ∧ T . From

the definition of these stopping times and Lemma 3.1 follows that the pairs
(Ȳ n,i , Z̄n,i), i = 0, . . . ,2n − 1, are elements of A(ξ, g). Hence the sequence

((
Yn,Zn) := (

Ȳ n,2n−1, Z̄n,2n−1))
fulfills (4.1) by construction. Note that ((Y n,Zn)) is not necessarily monotone
in the sense of (4.2). However, this can be achieved by pasting similarly. More
precisely, we choose

Ȳ 1 = Y 1, Z̄1 = Z1,

and continue by recursively setting, for n ∈ N,

Ȳ n =
2n−1∑
i=0

(
Yn1[tni ,τn

i [ + Ȳ n−11[τn
i ,tni+1[

)
, Ȳ n

T = ξ,

Z̄n =
2n−1∑
i=0

(
Zn1]tni ,τn

i ] + Z̄n−11]τn
i ,tni+1]

)
,

where τn
i are stopping times given by τn

i = inf{t > tni :Yn
t > Ȳ n−1

t } ∧ tni+1, for
i = 0, . . . ,2n − 1. By construction ((Ȳ n, Z̄n)) fulfills both (4.1) and (4.2), and
((Ȳ n, Z̄n)) ⊂ A(ξ, g) with Lemma 3.1.

Step 3. Bound on
∫

Zn dW . We now take the sequence ((Y n,Zn)) fulfilling (4.1)
and (4.2) and provide an inequality which will enable us to use compactness argu-
ments for (Zn) later in the proof. More precisely, we argue that, for all n ∈ N, it
holds that∣∣∣∣

∫ t

0
Zn

s dWs

∣∣∣∣ ≤ Bn
t := ∣∣Y 1

t

∣∣ + E
[
ξ−|Ft

] + E
[
ξ−] + ∣∣Y 1

0
∣∣ + An

t(4.3)

for all t ∈ [0, T ], where An
t is the positive increasing process defined in Lemma 3.2.

Moreover, it holds that

E
[
An

T

] ≤ Y 1
0 − E[ξ ].
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Indeed, by the same arguments as in the proof of Lemma 3.3(2), recall Yn
0 ≤ Y 1

0 , it
follows that ∫ t

0
Zn

s dWs ≥ −E
[
ξ−|Ft

] − Y 1
0 .(4.4)

On the other hand, from Yn
t ≤ Y 1

t and −Yn
0 ≤ E[ξ−], recall Lemma 3.2, it follows

that ∫ t

0
Zn

s dWs ≤ Y 1
t + An

t − Yn
0 ≤ Y 1

t + An
t + E

[
ξ−]

.(4.5)

Combining (4.4) and (4.5) yields (4.3). The L1 bound on An follows from Yn
0 −

An
T + ∫ T

0 Zn
s dWs = ξ , Y 1

0 ≥ Yn
0 and the supermartingal property of

∫
Zn dW .

Note that if (B
n,∗
T ) in (4.3) were bounded in L1, then, by means of the

Burkholder–Davis–Gundy inequality, (Zn) would be a bounded sequence in L1,
and we could apply [12], Theorem A, to find a sequence in the asymptotic convex
hull of (Zn) converging in L1 and P ⊗ dt-almost surely along some localizing
sequence of stopping times to some limit Z ∈ L1. Here, even if (A

n,∗
T ) = (An

T )

is uniformly bounded, this is, however, not necessarily the case for Y
1,∗
T and

(E[ξ−|F·])∗T , and this is the reason why we introduce the following localization.
Step 4. First localization. Due to our Brownian setting and since ξ− ∈ L1, we

know that the martingale E[ξ−|F·], has a continuous version; see [36], Theo-
rem V.3.5. Moreover, Y 1 is a càdlàg supermartingale and thus we may take the
localizing sequence

σk = inf
{
t > 0 :

∣∣Y 1
t

∣∣ + E
[
ξ−|Ft

]
> k

} ∧ T , k ∈ N,(4.6)

which is independent of n ∈ N. For a fixed k ∈ N, inequality (4.3) yields(∫
Zn1[0,σk] dW

)∗

T

≤ Bk,n for all n ∈ N,(4.7)

where Bk,n = |Y 1
0 | + E[ξ−] + k + An

T . Due to E[An
T ] ≤ Y 1

0 − E[ξ ] we have

sup
n∈N

E
[
Bk,n]

< ∞.(4.8)

Since (Bk,n)n∈N is a sequence of positive random variables, we may apply [11],
Lemma A1.1. It provides a sequence (B̃k,n)n∈N in the asymptotic convex hull of
(Bk,n)n∈N, which converges almost surely to a random variable B̃k ≥ 0. The B̃k,n

inherit the integrability of the Bk,n, and we can conclude with Fatou’s lemma that

E
[
B̃k] < ∞.(4.9)

Let Z̃k,n be the convex combination of (Zn) corresponding to B̃k,n so that(∫
Z̃k,n1[0,σk] dW

)∗

T

≤ B̃k,n for all n ∈ N.(4.10)
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Step 5. Second localization. The next two steps follow some known compact-
ness arguments, which, in the case of L1, can be found in [12]. For the sake of
completeness we develop the argumentation. Given an m ∈ N, we start by taking a
fast subsequence (B̃k,m,n)n∈N of (B̃k,n)n∈N converging in probability to B̃k . More
precisely, we choose (B̃k,m,n)n∈N such that

P
[∣∣B̃k,m,n − B̃k

∣∣ ≥ 1
] ≤ 2−n

m
.(4.11)

Consider now the stopping time τ k,m given by

τ k,m = inf
{
t ≥ 0 :

(∫
Z̃k,m,n1[0,σk] dW

)∗

t

≥ m, for some n ∈ N
}

∧ T ,(4.12)

where the sequence (Z̃k,m,n1[0,σk])n∈N is the subsequence of (Z̃k,n1[0,σk])n∈N cor-
responding to the fast subsequence (B̃k,m,n)n∈N. The definition of τ k,m as well
as the Burkholder–Davis–Gundy inequality imply that the sequence of processes
(Z̃k,m,n1[0,σk]1[0,τ k,m])n∈N is bounded in L2. The Alaoglu–Bourbaki theorem and
the Eberlein–Šmulian theorem in the Banach space L2 imply the existence of
Ẑk,m ∈ L2, such that, up to a subsequence, (Z̃k,m,n1[0,σk]1[0,τ k,m])n∈N converges

weakly to Ẑk,m. As a consequence of the Hahn–Banach theorem, there exists a se-
quence in the asymptotic convex hull of (Z̃k,m,n1[0,σk]1[0,τ k,m])n∈N, again denoted

with (Z̃k,m,n1[0,σk]1[0,τ k,m])n∈N, which converges in L2 to Ẑk,m. By taking another
subsequence we also have the P ⊗ dt-almost sure convergence.

Step 6. (τ k,m)m∈N is a localizing sequence of stopping times. We estimate as
follows:

P
[
τ k,m = T

] = P

[(∫
Z̃k,m,n1[0,σk] dW

)∗

T

< m, for all n ∈ N
]

≥ 1 − P
[
B̃k,m,n ≥ m, for some n ∈ N

]
≥ 1 − P

[{∣∣B̃k,m,n − B̃k
∣∣ ≥ 1, for some n ∈ N

} ∪ {
B̃k > m − 1

}]
≥ 1 − ∑

n

P
[∣∣B̃k,m,n − B̃k

∣∣ ≥ 1
] − P

[
B̃k > m − 1

]

≥ 1 − 1

m
− E[B̃k + 1]

m
−→
m→∞ 1,

where we used (4.10) in the second line and (4.11), the Markov inequality and the
fact that E[B̃k] < ∞ in the last one.

Step 7. Construction of the candidate Ẑ. For given k,m > 0, we constructed in
step 5 the process Ẑk,m as the L2 and P ⊗ dt-almost sure limit of a sequence in
the asymptotic convex hull of (Z̃k,m,n1[0,σk]1[0,τ k,m])n∈N. With (B̃k,m,n)n∈N we

denote the corresponding subsequence of convex combinations of (B̃k,m,n)n∈N
and note that (

∫
Z̃k,m,n1[0,σk] dW)∗T ≤ B̃k,m,n, for all n ∈ N, as in (4.10). Hence,
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by the same procedure as in step 5, we can find, for m′ > m, a fast subse-
quence (Z̃k,m′,n1[0,σk])n∈N in the asymptotic convex hull of (Z̃k,m,n1[0,σk])n∈N and
a Ẑk,m′ ∈ L2 such that (Z̃k,m′,n1[0,σk]1[0,τ k,m′ ])n∈N converges in L2 and P ⊗ dt-

almost surely to Ẑk,m′
. We iterate this procedure and define (Z̃k,n)n∈N as the diag-

onal sequence Z̃k,n = Z̃k,n,n and Ẑk as

Zk
0 = 0, Ẑk =

∞∑
m=1

Ẑk,m1]τ k,m−1,τ k,m].(4.13)

From Ẑk,m′
1[0,τ k,m] = Ẑk,m, for m′ > m, follows that (Z̃k,n1[0,σk]1[0,τ k,n])n∈N con-

verges in L2 and P ⊗ dt-almost surely to Ẑk . With the sequence (Z̃k,n)n∈N and
the process Ẑk at hand, we now diagonalize our program above with respect to k

and n. As before, we get a diagonal sequence Z̃n = Z̃n,n, and a process Ẑ given
by

Ẑ0 = 0, Ẑ =
∞∑

k=1

1]σk−1,σk]Ẑk,(4.14)

such that

Z̃n1[0,τn]
P⊗dt-almost surely−−−−−−−−−−−→

n→∞ Ẑ(4.15)

for τn = σn ∧ τn,n, where σn and τn,n are as in (4.6) and (4.12), respectively.
For later reference, note that by construction it holds that Ẑk′,m1[0,σk]1[0,τ k,m] =
Ẑk,m, as soon as k′ ≥ k and also Ẑ1[0,σk]1[0,τ k,m] = Ẑk,m. Likewise (Z̃n1[0,τl ])n∈N

converges in L2 and P ⊗dt-almost surely to Ẑl,l . This yields, via the Burkholder–
Davis–Gundy inequality, up to a subsequence,∫ t∧τl

0
Z̃n

s dWs −→
n→+∞

∫ t∧τl

0
Ẑs dWs

(4.16)
for all t ∈ [0, T ],P -almost surely.

Hence, diagonalizing yields∫ t

0
Z̃n

s dWs −→
n→+∞

∫ t

0
Ẑs dWs for all t ∈ [0, T ],P -almost surely.(4.17)

Step 8. Monotone convergence to E g(ξ). Let Ỹt = limn Y n
t , for t ∈ [0, T ], be the

pointwise monotone limit of the sequence (Y n). By monotone convergence Ỹ is
a supermartingale and, since our filtration is right-continuous, by standard argu-
ments we may define the càdlàg supermartingale Ŷ by setting Ŷt = lims↓t,s∈Q Ỹs ,
for all t ∈ [0, T ), and ŶT = ξ . By construction, Ỹt in

= Ê g

tin
(ξ). Hence, Ŷt = E g

t (ξ),

for all t ∈ [0, T ], and

Yn
t ≥ Ỹt ≥ Ê g

t (ξ) ≥ E g
t (ξ) ≥ E[ξ |Ft ],(4.18)
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where the third inequality follows from Proposition 3.4. Now, the process E g(ξ)

is the natural candidate for the value process of the minimal supersolution for
two reasons. It is càdlàg and it is dominated by Ê g(ξ) as (4.18) shows. However,
it is not clear a priori that the sequence (Y n) converges to E g(ξ) in some suitable
sense. Taking into account the additional structure provided by the supermartingale
property of the Yn we can prove nonetheless

E g(ξ) = Ŷ = lim
n→∞Yn, P ⊗ dt-almost surely.(4.19)

To see this note first that by right continuity the limit Ỹt = limn Y n
t is defined, for

all t ∈ [0, T ], P -almost surely. We now consider the sequence ((Ỹ n, Z̃n)) in the
asymptotic convex hull of (Y n,Zn), which corresponds to the sequence (Z̃n) con-
structed in step 7. From the decomposition of the Yn (see Lemma 3.2), we obtain
that Ỹ n

t = Ỹ n
0 − Ãn

t + M̃n
t , for all t ∈ [0, T ]. Since (Ỹ n

t ) and (M̃n
t ) converge for

all t ∈ [0, T ], P -almost surely, the sequence (Ãn
t ) also converges, that is, there

exists an increasing positive integrable process Ã, such that limn→∞ Ãn
t = Ãt , for

all t ∈ [0, T ], P -almost surely. Thus Ỹt = Ỹ0 − Ãt + M̃t , for all t ∈ [0, T ]. Conse-
quently, the jumps of Ỹ are given by the countably many jumps of the increasing
process Ã, which implies

Ŷt = Ỹ0 − lim
s↓t,s∈Q

Ãs + M̃t for all t ∈ [0, T ), ŶT = ξ.

Moreover, the jump times of the càdlàg process Ŷ are exhausted by a sequence
of stopping times (ρj ) ⊂ T , which coincide with the jump times of Ã. Therefore,
Ŷ = Ỹ , P ⊗ dt-almost surely, which implies (4.19).

Step 9. Verification. Let us now show that (E g(ξ), Ẑ) ∈ A(ξ, g), which, by
means of (4.18), would end the proof. We start with the verification of (3.1) un-
der the assumption (INC). Due to (4.19) there exists a set B ⊂ � × [0, T ] with
P ⊗ dt (Bc) = 0, such that E g

t (ξ)(ω) = limn→∞ Yn
t (ω), for all (ω, t) ∈ B . Hence,

there exists a set A ⊂ {ω : (ω, t) ∈ B, for some t}, with P(A) = 1, such that, for
all ω ∈ A, the set I (ω) = {t ∈ [0, T ] : (ω, t) ∈ B} is a Lebesque set of measure
T and E g

t (ξ)(ω) = limn→∞ Yn
t (ω), for all t ∈ I (ω). In the following we suppress

the dependence of I on ω and just keep in mind that s and t may depend on ω.
Let s, t ∈ I with s ≤ t . By using (4.17), the P ⊗ dt-almost sure convergence of
Z̃n1[0,τn] to Ẑ, and Fatou’s lemma we obtain

E g
s −

∫ t

s
gu

(
E g

u , Ẑu

)
du +

∫ t

s
Ẑu dWu

(4.20)

≥ lim sup
n

(
Ỹ n

s −
∫ t

s
gu

(
E g

u , Z̃n
u1[0,τn](u)

)
du +

∫ t

s
Z̃n

u dWu

)
,

where Ỹ n denotes the convex combination of (Y n) corresponding to Z̃n. We denote
by λ

(n)
i , n ≤ i ≤ M(n), λ

(n)
i ≥ 0,

∑
i λ

(n)
i = 1 the convex weights of Z̃n. Since our
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generator fullills (CON), and since, for n large enough, we have Z̃n
u1[0,τn](u) =

Z̃n
u , for all s ≤ u ≤ t , we may further estimate the above by

E g
s −

∫ t

s
gu

(
E g

u , Ẑu

)
du +

∫ t

s
Ẑu dWu

≥ lim sup
n

M(n)∑
i=n

λ
(n)
i

(
Y i

s −
∫ t

s
gu

(
E g

u ,Zi
u

)
du +

∫ t

s
Zi

u dWu

)
.

Since Y i
t ≥ Ê g

t (ξ) ≥ E g
t (ξ), for all t ∈ [0, T ], and i ∈ N, we use (INC) and the fact

that the (Y n,Zn) are supersolutions to conclude

E g
s −

∫ t

s
gu

(
E g

u , Ẑu

)
du +

∫ t

s
Ẑu dWu

≥ lim sup
n

M(n)∑
i=n

λ
(n)
i

(
Y i

s −
∫ t

s
gu

(
Y i

u,Z
i
u

)
du +

∫ t

s
Zi

u dWu

)
(4.21)

≥ lim sup
n

M(n)∑
i=n

λ
(n)
i Y i

t = lim sup
n

Ỹ n
t = lim sup

n
Y n

t = E g
t .

As for the case of s, t ∈ I c, with s ≤ t , we approximate them both from the right
with some sequences (sn) ⊂ I and (tn) ⊂ I , such that sn ↓ s, tn ↓ t , sn ≤ tn. For
each sn and tn, (4.21) holds. Passing to the limit by using the right-continuity of
E g and the continuity of − ∫

g(E g, Ẑ) du + ∫
Ẑ dW , we deduce that (4.21) holds

for all s, t ∈ [0, T ] with s ≤ t .
It remains to show admissibility of Ẑ. By means of (4.21), (4.18) and positivity

of g it holds that
∫ t

0
Ẑs dWs ≥ E[ξ |Ft ] − E0.(4.22)

Being bounded from below by a martingale, the continuous local martingale∫
Ẑ dW is by Fatou’s lemma a supermartingale, and thus Ẑ is admissible. Hence,

the proof under assumptions (POS), (CON) and (INC) is complete.
The proof under (DEC) replacing (INC) only differs in the verification of (3.1).

Indeed, instead of only approximating Ẑ in the Lebesgue integral, we approxi-
mate E g(ξ) P ⊗ dt-almost surely with the sequence (Y n) as well, that is, (4.20)
becomes, by means of (4.19) and Fatou’s lemma,

E g
s −

∫ t

s
gu

(
E g

u , Ẑu

)
du +

∫ t

s
Ẑu dWu

≥ lim sup
n

(
Ỹ n

s −
∫ t

s
gu

(
Yn

u , Z̃n
u1[0,τn](u)

)
du +

∫ t

s
Z̃n

u dWu

)
.
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This entails, by monotonicity of the sequence (Y n) and the fact that the convex
combinations in Z̃n consist of elements of (Zi) with index greater or equal than n,
that we may write − ∫ t

s gu(Y
n
u ,Zi

u) du ≥ − ∫ t
s gu(Y

i
u,Z

i
u) du in (4.21), and this

ends the proof. �

REMARK 4.2. Note that the existence theorem also holds if we additionally
take into account a volatility process in the stochastic integral. More precisely,
consider a progressively measurable process σ :�×[0, T ] → S>0

d , where S>0
d de-

notes the set of strictly positive definite d × d matrices and define Lσ as the set of
progressively measurable processes Z :� × [0, T ] → R1×d such that Zσ 1/2 ∈ L.
Analogously to the previous setting, given a generator g and a terminal condition
ξ ∈ L0, we say that (Y,Z) ∈ S × Lσ is a supersolution of the BSDE under volatil-
ity σ if

Ys −
∫ t

s
gu(Yu,Zu) du +

∫ t

s
Zuσ

1/2
u dWu ≥ Yt and YT ≥ ξ(4.23)

for all 0 ≤ s ≤ t ≤ T . We say that the control process is admissible if
∫

Zσ 1/2 dW

is a supermartingale, and define

A(ξ, g, σ ) = {
(Y,Z) ∈ S × Lσ :Z is admissible and (4.23) holds

}
(4.24)

as well as

Ê g,σ
t (ξ) = essinf

{
Yt : (Y,Z) ∈ A(ξ, g, σ )

}
, t ∈ [0, T ].(4.25)

We can formulate the following existence theorem.

THEOREM 4.3. Let g be a generator fulfilling (POS), (LSC), (CON) and ei-
ther (INC) or (DEC) and ξ ∈ L0 be a terminal condition, such that ξ− ∈ L1.

If A(ξ, g, σ ) �= ∅, then there exists a unique minimal supersolution (Ŷ , Ẑ) ∈
A(ξ, g, σ ). Moreover, E g,σ (ξ) is the value process of the minimal supersolution,
that is, (E g,σ (ξ), Ẑ) ∈ A(ξ, g, σ ).

The proof follows exactly the same scheme as the proof of Theorem 4.1 with a
compactness argument in the Hilbert space L2,σ , the set of processes in Lσ such
that E[∫ T

0 (Zuσ
1/2
u )(Zuσ

1/2
u )
du] < +∞, instead of L2.

Theorem 4.1 ensures the existence and uniqueness of the minimal supersolu-
tion which is càdlàg. The following proposition provides a condition under which
E g(ξ) is in fact continuous.

PROPOSITION 4.4. Let g be a generator fulfilling (POS), (LSC), (CON) and
either (INC) or (DEC) and ξ ∈ L0 be a terminal condition, such that ξ− ∈ L1.
Suppose that A(ξ, g) �= ∅. Assume that for any ζ ∈ L∞(Fτ ), τ ∈ T , there exist
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Y ∈ S and an admissible Z ∈ L, which solve the backward stochastic differential
equation

Yt −
∫ τ

t
gs(Ys,Zs) ds +

∫ τ

t
Zs dWs = ζ for all t ∈ [0, τ ].

Then E g(ξ) is continuous.

PROOF. In view of Theorem 4.1, there exists Ẑ ∈ L such that (E g, Ẑ) ∈
A(ξ, g). Hence, E g can only have downward jumps. Assume that E g has a negative
jump, that is, P [τ ≤ T ] > 0, for the stopping time τ = inf{t > 0 :�E g

t < 0}. We
then fix m big enough such that the stopping time τm = inf{t > 0 : |E g

t | > m} ∧ τ

satisfies P [{−m < �E g
τm < 0} ∩ {τm = τ }] > 0. Since E g is continuous on [0, τ [,

and E g has only negative jumps, E g
τm ∨−m ∈ L∞(Fτm). By assumption there exist

Ȳ ∈ S and an admissible Z̄ ∈ L such that

Ȳs +
∫ τm

s
gu(Ȳu, Z̄u) −

∫ τm

s
Z̄u dWu = E g

τm ∨ −m for all s ∈ [
0, τm]

.

Similarly to Lemma 3.1, we derive (Ȳ1[0,τm[ + E g1[τm,T ], Z̄1[0,τm] + Ẑ1]τm,T ]) ∈
A(ξ, g). Hence, by optimality of E g in A(ξ, g), it holds that E g ≤ Ȳ1[0,τm[ +
E g1[τm,T ]. Moreover, we have

E g
τm− > E g

τm ∨ −m = Ȳτm = Ȳτm− on the set
{−m < �E g

τm < 0
} ∩ {

τm = τ
}
.

Hence, for the stopping time τ̂ = inf{t > 0 : E g
t > Ȳt } ∧ τm we deduce P [τ̂ <

τm] > 0, since the processes E g and Ȳ are continuous on [0, τm[. But then E g � Ȳ

on [0, τm[, which is a contradiction. �

Under the assumptions of Theorem 4.1, E g is the value process of the minimal
supersolution with a control process Ẑ in L which defines a supermartingale. Next
we address the following question: under which conditions does the control pro-
cess have enough integrability in order to define a true martingale? That is, when
does Ẑ belong to some Lp , for p ≥ 1? Defining

Ap(ξ, g) := {
(Y,Z) ∈ A(ξ, g) :Z ∈ Lp}

,(4.26)

this means that (E g(ξ), Ẑ) ∈ Ap(ξ, g). Peng [30] provides a positive answer to this
question in the case where p = 2, the terminal condition ξ ∈ L2 and the generator
is not necessarily positive but Lipschitz. Compare this also with Cheridito and
Stadje [8] for supersolutions of BSDEs where the control process is in BMO, if the
terminal condition is a bounded lower semicontinuous function of the Brownian
motion and the generator is convex in z and Lipschitz and increasing in y. Here,
we provide an answer to the case where p = 1 in the context of Section 3. Given a
terminal condition ξ , obtaining E g(ξ) as a minimal solution with a control process
within L1 comes at two costs. Indeed, a stronger integrability condition on the
terminal value is required; that is, we impose that (E[ξ−|F·])∗T ∈ L1. As for the
second cost, A1(ξ, g) �= ∅ is also required, which, in view of A1(ξ, g) ⊂ A(ξ, g),
is also a stronger assumption.
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THEOREM 4.5. Suppose that the generator g fulfills (POS), (LSC), (CON)
and either (INC) or (DEC). Let ξ ∈ L0 be a terminal condition, such that
(E[ξ−|F·])∗T ∈ L1. If A1(ξ, g) �= ∅, then there exists a unique minimal super-
solution (Ŷ , Ẑ) ∈ A1(ξ, g). Moreover, E g(ξ) is the value process of the minimal
supersolution, that is, (E g(ξ), Ẑ) ∈ A1(ξ, g).

REMARK 4.6. As in Section 3, note that for (Y,Z) ∈ A1(ξ, g), the value pro-
cess Y is a supermartingale with terminal value greater or equal than ξ . More-
over, we have Y ∗

T ∈ L1. Indeed, by using the decomposition (3.6), we derive
Y ∗

t ≤ |Y0| + AT + (
∫

Z dW)∗T . We further have AT ≤ Y0 + ∫ T
0 Zs dWs − ξ and

thus E[|AT |] ≤ Y0 + E[ξ−]. Consequently,

E
[
Y ∗

T

] ≤ |Y0| + E
[
ξ−] + Y0 + E

[(∫
Z dW

)∗

T

]
< ∞.

PROOF OF THEOREM 4.5. Since A1(ξ, g) ⊂ A(ξ, g), the assumption
A1(ξ, g) �= ∅ implies the existence of Ẑ ∈ L such that (E g(ξ), Ẑ) ∈ A(ξ, g). We
are left to show that Ẑ ∈ L1. Since A1(ξ, g) �= ∅, we can suppose in the proof of
Theorem 4.1 that (Y 1,Z1) ∈ A1(ξ, g). Since (4.3) holds for (E g(ξ), Ẑ), instead of
(Y n,Zn), we have(∫

Ẑ dW

)∗

T

≤ ∣∣Y 1
0
∣∣ + E

[
ξ−] + ÂT + (

Y 1)∗
T + (

E
[
ξ−|F·

])∗
T ,(4.27)

where 0 ≤ E[ÂT ] ≤ E[ξ ] − Y 1
0 . Since (E[ξ−|F·])∗T ∈ L1, by means of Re-

mark 4.6, the right-hand side of (4.27), is in L1. Thus, by means of the Burkholder–
Davis–Gundy inequality, Ẑ belongs to L1. �

4.2. Stability results. In this section we address the stability of Ê g(·) with re-
spect to perturbations of the terminal condition or the generator. First we show that
the functional Ê g

0 is not only defined on the same domain as the usual expectation,
but also shares some of its main properties, such as Fatou’s lemma as well as a
monotone convergence theorem.

THEOREM 4.7. Suppose that the generator g fulfills (POS), (LSC), (CON)
and either (INC) or (DEC). Let (ξn) be a sequence in L0, such that ξn ≥ η, for all
n ∈ N, where η ∈ L1.

• Monotone convergence: if (ξn) is increasing P -almost surely to ξ ∈ L0, then
Ê g

0 (ξ) = limn Ê g
0 (ξn).

• Fatou’s lemma: Ê g
0 (lim infn ξn) ≤ lim infn Ê g

0 (ξn).

PROOF. Monotone convergence: From Proposition 3.3 and by monotonicity,
it follows that Ê g(ξn) ≤ Ê g(ξn+1) ≤ · · · ≤ Ê g(ξ). Hence, we may define Ŷ0 =
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limn Ê g
0 (ξn). Note that Ŷ0 ≤ Ê g

0 (ξ). If Ŷ0 = +∞, then also Ê g
0 (ξ) = +∞, and there

is nothing to prove. Suppose now that Ŷ0 < ∞. This implies that A(ξn, g) �= ∅,
for all n ∈ N. Since ξn ≥ η, Proposition 3.4 yields (ξn) ⊂ L1 and (E g(ξn)) is
a well-defined increasing sequence of càdlàg supermartingales. We define Yt =
limn E g

t (ξn), for all t ∈ [0, T ]. Note that Y0 = Ŷ0. We show that Y is a càdlàg
supermartingale.

To this end, note that the sequence (E g(ξn) − E g(ξ1)) is positive and increases
to Y − E g(ξ1). Therefore monotone convergence yields

0 ≤ E
[
Yt − E g

t

(
ξ1)] = lim

n
E

[
E g

t

(
ξn) − E g

t

(
ξ1)]

.

The supermartingale property of E g(ξn) implies that E[E g
t (ξn)] ≤ E g

0 (ξn) ≤ Y0.
Furthermore, E[ξ1] ≤ E[E g

t (ξ1)] ≤ Y0 and thus

0 ≤ E
[
Yt − E g

t

(
ξ1)] ≤ −E

[
ξ1] + Y0 < +∞.

From E g
t (ξ1) ∈ L1, we deduce that Yt ∈ L1. Since ξ = YT , this implies in par-

ticular that ξ ∈ L1. The supermartingale property follows by a similar argument.
Moreover, [13], Theorem VI.18 implies that Y is indistinguishable from a càdlàg
process. Hence, Y is a càdlàg supermartingale.

Theorem 4.1 provides a sequence of optimal controls (Zn) such that
(E g(ξn),Zn) ∈ A(ξn, g), for all n ∈ N. Now we apply the procedure introduced
in the proof of Theorem 4.1 and obtain a candidate control process Ẑ. The only
notable difference in the proof, except for the fact that Y is already càdlàg, is that,
here, the sequence (E g(ξn)) is increasing instead of decreasing. Thus, the càdlàg
supermartingales Y and E g(ξ1) serve as upper and lower bounds, respectively.
Consequently, we replace Y 1 by Y and E[ξ−|F·] by E g(ξ1) in the key inequal-
ity (4.3). The verification follows exactly the same argumentation as in the proof
of Theorem 4.1 for both monotonicity assumptions (INC) and (DEC). Finally, to
get the admissibility of Ẑ, we denote with (ξ̃ n) the sequence of convex combina-
tions of (ξn) corresponding to (Z̃n). Monotonicity of the sequence (ξn) implies
ξ1 ≤ ξ̃ n ≤ ξ , for all n ∈ N. We may and do switch to a subsequence such that (ξ̃ n)

is increasing as well. Now, fix an arbitrary t ∈ [0, T ]. Dominated convergence
implies the L1-convergence limn E[ξ̃ n|Ft ] = E[ξ |Ft ]. Hence, we may select a
subsequence such that we have P -almost sure convergence. Similarly to (4.22)
this implies

Y0 −
∫ t

0
gu(Yu, Ẑu) du +

∫ t

0
Ẑu dWu ≥ lim sup

n
E

[
ξ̃ n|Ft

] = E[ξ |Ft ].

As before, this entails that (Y, Ẑ) ∈ A(ξ, g). Hence, from A(ξ, g) �= ∅ and
ξ− ∈ L1, we derive by Theorem 4.1 that there exists a control process Z such that
(E g(ξ),Z) ∈ A(ξ, g). In particular this yields Y0 = E g

0 (ξ), that is, limn E g
0 (ξn) =

E g
0 (ξ), since otherwise E g

0 (ξ) were not optimal.
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Fatou’s lemma: The result follows by applying monotone convergence. In-
deed, denote by ζ n the random variables ζ n = infk≥n ξk . Then from lim infn ξn =
limn ζ n, ζ n ≥ η, ζ n ≤ ξn, for all n ∈ N, and monotone convergence follows

Ê g
0

(
lim inf

n
ξn

)
= Ê g

0

(
lim
n

ζ n
)

= lim
n

Ê g
0

(
ζ n) ≤ lim inf

n
Ê g

0

(
ξn)

. �

REMARK 4.8. An inspection of the proof of Theorem 4.7 shows that un-
der the assumptions implying monotone convergence, if limn Ê g

0 (ξn) < +∞, then
A(ξ, g) �= ∅, and E g

t (ξn) converges P -almost surely to E g
t (ξ), for all t ∈ [0, T ].

Similarly, given a sequence ((Y n,Zn)) ⊂ A(ξ, g) such that (Y n) is increasing
and limn Y n

0 < ∞, then there exists a control process Z ∈ L such that (Y,Z) ∈
A(ξ, g), where Yt is the P -almost sure limit of (Y n

t ), for all t ∈ [0, T ].
A consequence of the preceding theorem is the following result on L1-lower

semicontinuity.

THEOREM 4.9. Let g be a generator fulfilling (POS), (LSC), (CON) and ei-
ther (INC) or (DEC). Then Ê g

0 is L1-lower semicontinuous.

PROOF. Let (ξn) be a sequence of terminal conditions, which converges in L1

to a random variable ξ . Suppose that there exists a subsequence (ξ̃ n) ⊂ (ξn) such
that (Ê g

0 (ξ̃ n)) converges to some real a < Ê g
0 (ξ). We can assume, up to another fast

subsequence, that ‖ξ̃ n − ξ‖L1 ≤ 2−n, for all n ∈ N. Consider now the sequence
(ζ n), with ζ n given by

ζ n = ξ − ∑
k≥n

(
ξ̃ k − ξ

)−
.

Clearly, ζ n ∈ L1 and ζ n ≤ ζ n+1 ≤ · · · ≤ ξ . Moreover, (ζ n) converges in L1 to ξ ,
and, since it is increasing, it converges also P -almost surely. Thus, from Theo-
rem 4.7, we get limn Ê g

0 (ζ n) = Ê g
0 (ξ). Now, ζ n ≤ ξ − (ξ̃ n − ξ)− + (ξ̃ n − ξ)+ ≤ ξ̃ n

and monotony of the functional Ê g
0 imply a = limn Ê g

0 (ξ̃ n) ≥ limn Ê g
0 (ζ n) = Ê g

0 (ξ),
which is a contradiction. Hence, lim infn Ê g

0 (ξn) ≥ Ê g
0 (ξ). �

The preceding results allow us to derive a dual representation, by means of the
Fenchel–Moreau theorem, of the functional Ê g(·) at time zero.

COROLLARY 4.10. Let g be a generator fulfilling (POS), (LSC) and either
(INC) or (DEC). Assume that g is jointly convex in y and z. Then, either Ê g

0 ≡ +∞
or

Ê g
0 (ξ) = E g

0 (ξ) = sup
ν∈L∞+

{
E[νξ ] − (

Ê g
0

)∗
(ν)

}
, ξ ∈ L1(4.28)

for the conjugate (Ê g
0 )∗(ν) = supξ∈L1{E[νξ ] − Ê g

0 (ξ)}, where ν ∈ L∞.
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PROOF. Since Ê g
0 > −∞ on L1, either Ê g

0 ≡ +∞ or Ê g
0 is proper. In the lat-

ter case, in view of Proposition 3.3 and Theorem 4.9, the function Ê g
0 is convex

and σ(L1,L∞)-lower semicontinuous on L1. Hence, the Fenchel–Moreau theo-
rem yields the dual representation (4.28). That the domain of (Ê g

0 )∗ is concentrated
on L∞+ follows from the monotonicity of Ê g

0 ; see Proposition 3.3. �

REMARK 4.11. Notice that if the generator in Corollary 4.10 does not de-
pend on y, then by item (5) of Proposition 3.3 the operator Ê g

0 (·) is translation
invariant. Therefore, it is a lower semicontinuous, convex risk measure and repre-
sentation (4.28) corresponds to the robust representation of lower semicontinuous,
convex risk measures; see Föllmer and Schied [21].

Under additional integrability assumptions on the terminal condition we may
also formulate stability results for supersolutions in the set A1(ξ, g) introduced
in (4.26).

THEOREM 4.12. Suppose that the generator g fulfills (POS), (LSC), (CON)
and either (DEC) or (INC). Let (ξn) be a sequence in L0, such that ξn ≥ η, for all
n ∈ N, where (E[η|F·])∗T ∈ L1.

• Suppose (ξn) is increasing P -almost surely to ξ ∈ L0 and A1(ξ, g) �= ∅. Then
E g

t (ξ) = limn E g
t (ξn), P -almost surely, for all t ∈ [0, T ].

• Suppose A1(lim infn ξn, g) �= ∅. Then E g
t (lim infn ξn) ≤ lim infn E g

t (ξn), P -
almost surely, for all t ∈ [0, T ].

We omit the proof of the preceding theorem, as it is a simple adaptation of
the proofs of Theorems 4.5 and 4.7. Note that Theorem 4.12 is a weaker version
of Theorem 4.7. Indeed, here, given a sequence (ξn) increasing to ξ , we need to
assume that A1(ξ, g) is not empty. The underlying reason being the lack of knowl-
edge whether the limit process Y , defined in the proof of Theorem 4.7, fulfills
Y ∗

T ∈ L1.
The theorem above allows us to state the following result on L1-lower semicon-

tinuity of Ê g . Its proof is virtually the same as the proof of Theorem 4.9.

THEOREM 4.13. Suppose that the generator g fulfills (POS), (LSC), (CON)
and either (DEC) or (INC). Then ξ �→ Ê g

0 (ξ) is L1-lower semicontinuous on its
domain, that is, on

{
ξ ∈ L0 :

(
E

[
ξ−|F·

])∗
T ∈ L1 and A1(ξ, g) �= ∅

}
.(4.29)

We conclude this section with a theorem on monotone stability with respect to
the generator.
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THEOREM 4.14. Let ξ ∈ L0 be a terminal condition, such that ξ− ∈ L1, and
let (gn) be an increasing sequence of generators, which converge pointwise to a
generator g. Suppose that each generator fulfills (POS), (LSC), (CON) and either
(INC) or (DEC). Then limn Ê gn

0 (ξ) = Ê g
0 (ξ). If, in addition, limn Ê gn

0 (ξ) < ∞, then

A(ξ, g) �= ∅ and E gn

t (ξ) converges P -almost surely to E g
t (ξ), for all t ∈ [0, T ].

REMARK 4.15. Under additional assumptions on the generators, one can
prove Fatou-type stability results for a P ⊗ dt-almost sure converging sequence
of generators; see Gerdes, Heyne and Kupper [22] for details.

PROOF OF THEOREM 4.14. Note that from Proposition 3.3, we have Ê gn
(ξ) ≤

Ê gn+1
(ξ) ≤ · · · ≤ Ê g(ξ). Hence, we may set Ŷ0 = limn Ê gn

0 (ξ). If Ŷ0 = ∞, then
also Ê g

0 (ξ) = ∞ and we are done. Suppose that Ŷ0 < ∞. By the same arguments
as in the proof of Theorem 4.7, we construct a càdlàg supermartingale Y . With
the same procedure as in Theorem 4.7, we construct the candidate Ẑ. It remains
to show (Y, Ẑ) ∈ A(ξ, g). However, this can be done similarly as in the proof
of Theorem 4.1. We only show how to obtain the analogue of (4.21). Note first
that the pointwise convergence of the generators implies that (gk(Y, Ẑ)) converges
P ⊗ dt-almost surely to g(Y, Ẑ). Hence, Fatou’s lemma yields

Ys −
∫ t

s
gu(Yu, Ẑu) du +

∫ t

s
Ẑu dWu

(4.30)

≥ lim sup
k

(
Ys −

∫ t

s
gk

u(Yu, Ẑu) du +
∫ t

s
Ẑu dWu

)
.

As in the previous proof, we use the expression in the bracket on the right-hand
side to obtain

Ys −
∫ t

s
gk

u(Yu, Ẑu) du +
∫ t

s
Ẑu dWu

≥ lim sup
n

M(n)∑
i=n

λ
(n)
i

(
Y i

s −
∫ t

s
gk

u

(
Y i

u,Z
i
u

)
du +

∫ t

s
Zi

u dWu

)
.

Since on the right-hand side we consider the lim sup with respect to n and k being
fixed for the moment, we may assume k ≤ n, which entails by monotonicity of the
sequence of generators

Ys −
∫ t

s
gk

u(Yu, Ẑu) du +
∫ t

s
Ẑu dWu

≥ lim sup
n

M(n)∑
i=n

λ
(n)
i

(
Y i

s −
∫ t

s
gi

u

(
Y i

u,Z
i
u

)
du +

∫ t

s
Zi

u dWu

)
.
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From here, we obtain as before Ys −∫ t
s gk

u(Yu, Ẑu) du+∫ t
s Ẑu dWu ≥ Yt , where the

right-hand side does not depend on k anymore. Combined with (4.30), this yields
the analogue of (4.21). �

4.3. Nonpositive generators. In this section we extend our results to genera-
tors that are not necessarily positive. Using some measure change, the positivity
assumption on the generator g can be relaxed to a linear bound below. This leads
to optimal solutions under P , where the admissibility is required with respect to
the related equivalent probability measure. More precisely, we say in the following
that a generator g is

(LB) linearly bounded from below if there exist adapted measurable R1×d and
R-valued processes a and b, respectively, such that g(y, z) ≥ az
 +b, for all y, z ∈
R × R1×d . Furthermore,

∫ t
0 bs ds ∈ L1(P a), for all t ∈ [0, T ] and

dP a

dP
= E

(∫
a dW

)
T

,

defines an equivalent probability measure P a .

EXAMPLE 4.16. For instance, given a generator g, assume that there exists
a generator ĝ independent of y fulfilling (CON) and such that g ≥ ĝ. Then, there
exists an R1×d -valued adapted measurable process a such that g(y, z) ≥ az
 −
ĝ∗(a), for all y, z ∈ R × R1×d , where ĝ∗ denotes the convex conjugate of ĝ.

In the following, we say that Z is a-admissible, if
∫

Z dWa is a P a-super-
martingale, where Wa = (W 1 − ∫

a1 ds, . . . ,Wd − ∫
ad ds)
 is the respective

Brownian motion under P a . We are interested in the sets

Aa(ξ, g) = {
(Y,Z) ∈ S × L :Z is a-admissible and (3.1) holds

}
,(4.31)

and define the random process

Ê g,a
t (ξ) = essinf

{
Yt ∈ L0(Ft ) : (Y,Z) ∈ Aa(ξ, g)

}
, t ∈ [0, T ].(4.32)

The analogue of Theorem 4.1 is given as follows:

THEOREM 4.17. Let g be a generator fulfilling (LB), (LSC), (CON) and ei-
ther (INC) or (DEC) and ξ ∈ L0 be a terminal condition, such that ξ− ∈ L1(P a). If
Aa(ξ, g) �= ∅, then there exists a unique minimal supersolution (Ŷ , Ẑ) ∈ Aa(ξ, g).
Moreover, E g(ξ) is the value process of the minimal supersolution, that is,
(E g(ξ), Ẑ) ∈ Aa(ξ, g).

The analogues of Theorems 4.7 and 4.9 read as follows.
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THEOREM 4.18. Suppose that the generator g fulfills (LB), (LSC), (CON)
and either (INC) or (DEC). Let (ξn) be a sequence in L0, such that ξn ≥ η, for all
n ∈ N, where η ∈ L1(P a).

• Monotone convergence: If (ξn) is increasing P -almost surely to ξ ∈ L0, then
Ê g,a

0 (ξ) = limn Ê g,a
0 (ξn).

• Fatou’s lemma: Ê g,a
0 (lim infn ξn) ≤ lim infn Ê g,a

0 (ξn).

In particular, Ê g,a
0 is L1(P a)-lower semicontinuous.

We only prove the first theorem.

PROOF OF THEOREM 4.17. In the setting of Section 4.1, given a positive gen-
erator ḡ and a random variable ζ , let us denote by A(ζ, ḡ,Wa) the set defined
in (3.3) to indicate the dependence of this set on the Brownian motion Wa and the
respective probability measure P a . Let us now define the generator ḡ as

ḡ(y, z) = g

(
y +

∫ ·
0

bs ds, z

)
− az
 − b for all (y, z) ∈ R × R1×d .(4.33)

By assumption (LB), this generator fulfills (POS), (LSC), (CON) and either (INC)
or (DEC). Since

∫
Z dWa is a P a-supermartingale, a simple inspection shows that

the affine transformation Ȳ = Y − ∫
b ds and Z̄ = Z yields a one-to-one relation

between Aa(ξ, g) and A(ξ − ∫ T
0 bs ds, ḡ,Wa). Hence, the assumptions of The-

orem 4.1 are fulfilled for ḡ and A(ξ − ∫ T
0 bs ds, ḡ,Wa), and thus its application

completes the proof. �

REMARK 4.19. Note that if (Ea[(ξ − ∫ T
0 bs ds)−|F·])∗T ∈ L1(P a), then The-

orem 4.5 applies in the same way; that is, under the assumptions of Theorem 4.17,
if

A1,a(ξ, g) := {
(Y,Z) ∈ Aa(ξ, g) :Z ∈ L1(

P a)} �= ∅,

then E g,a(ξ) is the value process of the minimal supersolution with unique control
process Z ∈ L1(P a).
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