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Conventionally, the construction of a pair-matched sample selects treated
and control units and pairs them in a single step with a view to balancing ob-
served covariates X and reducing the heterogeneity or dispersion of treated-
minus-control response differences, Y. In contrast, the method of cardinality
matching developed here first selects the maximum number of units subject
to covariate balance constraints and, with a balanced sample for x in hand,
then separately pairs the units to minimize heterogeneity in Y. Reduced het-
erogeneity of pair differences in responses Y is known to reduce sensitivity to
unmeasured biases, so one might hope that cardinality matching would suc-
ceed at both tasks, balancing x, stabilizing Y. We use cardinality matching in
an observational study of the effectiveness of for-profit and not-for-profit pri-
vate high schools in Chile—a controversial subject in Chile—focusing on stu-
dents who were in government run primary schools in 2004 but then switched
to private high schools. By pairing to minimize heterogeneity in a cardinality
match that has balanced covariates, a meaningful reduction in sensitivity to
unmeasured biases is obtained.

1. Introduction.

1.1. Educational test scores and school profits. In Chile, as in the US, Britain,
Canada and elsewhere, some secondary schools are operated by the government
and others are private enterprises that charge parents a fee to educate their children.
In Chile, some of the private schools are not-for-profit enterprises, for instance,
a school operated by a church, and others are for-profit enterprises not different
in concept than a restaurant or retail store. Whether schools should be allowed to
profit is an intensely controversial issue in Chile. On the one hand, supporters of
for-profit schools argue that they have incentives for efficiency and innovation, and
that this in turn results in better education. Opposing this view, detractors say that,
in reducing costs, for-profit schools tend to also reduce the quality of education
and that one cannot allow a desire for profits to take precedence over the quality of
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a child’s education [see Elacqua (2009) for further discussion]. In 2011, in support
of the latter view, and in part with the goal of ending for-profit education in Chile,
thousands of students rallied through the streets demanding a change in the model
of education and better opportunities.

Here, we compare the 2006 academic test performance of Chilean students who
entered for-profit private high schools and students who entered not-for-profit pri-
vate high schools. All of these students were in government run primary/middle
schools in Santiago in 2004 and subsequently moved to private high schools. We
have test scores at baseline in 2004 in language (Spanish), mathematics, natural
science and social science, and we have outcome test scores in 2006 in language
and mathematics. In addition, we have extensive data about parents and children
in 2004, such as the education of the parents, their income, the number of books
at home and so on, recorded in an observed covariate X. An obvious concern is
that even after adjusting for a high-dimensional observed covariate x, children in
different types of schools may differ in terms of some other covariate u that was
not observed, and differences in ¥ may bias the comparison.

The test scores come from the SIMCE, the Spanish acronym for “System of
Measurement of Quality in Education.” For the same students, we use test scores
for the 8th grade of primary school in 2004 and the second year of high school
in 2006. For the typical student, these are test scores at ages 14 and 16. For-profit
and not-for-profit are determined by the official definitions of the Chilean IRS
based on the institutional identification number (RUT).

Do profits boost or depress test scores in similar students? Or are profits irrele-
vant to test scores?

1.2. Matching for covariate balance, pairing for heterogeneity. To be credi-
ble, the comparison must compare children in not-for-profit schools (the treated
group) to children similar at baseline in for-profit schools (the control group), and
there are many ways the children may differ. It is typically difficult to match closely
for all coordinates of a high-dimensional observed covariate x, but it is often not
difficult to create matched treated and control groups with similar distributions
of x. For instance, if x consisted of 20 binary covariates, it would distinguish 220 op
about a million categories of students, so it would be very difficult to match thou-
sands of students exactly for all 20 covariates. However, it is not difficult to balance
X in treated and control groups, for instance, by matching for an estimate of the
one-dimensional propensity score, that is, for an estimate of the conditional prob-
ability of treatment given the observed covariates [Rosenbaum and Rubin (1983)].
The resulting matched pairs are heterogeneous in x but the heterogeneity in X is
unrelated to treatment and so tends to balance out in the treated and control groups
as whole groups. Randomized treatment assignment also balances covariates with-
out eliminating heterogeneity in covariates, but of course randomization balances
both observed covariates X and unobserved covariate u, whereas matching for the



206 J. R. ZUBIZARRETA, R. D. PAREDES AND P. R. ROSENBAUM

observed x cannot be expected to balance u. It is typically difficult to randomly
assign students to schools, although it has happened in special situations.

If pairs matched for x have a not-for-profit-minus-for-profit matched pair dif-
ference Y in outcome test scores that is not centered at zero, then the explanation
may be an effect of not-for-profit-versus-for-profit schools or it may instead reflect
some pretreatment difference in an unobserved covariate u. A sensitivity analysis
in an observational study asks: what would u# have to be like to explain the ob-
served behavior of Y in the absence of a treatment effect? In the first sensitivity
analysis, Cornfield et al. (1959) found that to explain away the observed associ-
ation between heavy smoking and lung cancer as something other than an effect
caused by smoking, the unobserved u would need to be a near perfect predictor
of lung cancer and an order of magnitude more common among smokers than
nonsmokers. In Section 3.2, a closely related though considerably more general
method of sensitivity analysis is reviewed.

It is known that the heterogeneity of Y, its dispersion around its center, af-
fects the degree of sensitivity to unmeasured biases [Rosenbaum (2005)]; see Sec-
tion 3.4 below. A typical effect of, say, t, will be more sensitive to an unobserved
bias u in treatment assignment if the Y’s are widely dispersed about t and less
sensitive if the Y’s are tightly packed around t, and this pattern will persist no
matter how large the sample size becomes. In this sense, reducing the heterogene-
ity or dispersion of individual pair differences Y is more important than increasing
the sample size, because an increase in sample size has little to do with sensitivity
to bias (or, more precisely, heterogeneity affects design sensitivity but sample size
does not). The heterogeneity of the Y’s is partly determined by factors that the
investigator cannot control, but often the investigator has some control. To some
extent, the heterogeneity of ¥ may be affected by the use of special populations,
say, twins or siblings who happened to receive different treatments. To a limited
extent, the heterogeneity of the pair differences, Y, is affected by how the pairing
for x is done. Our goal in the current paper is to reduce sensitivity to unmeasured
biases from u by pairing in such a way that the heterogeneity of Y is reduced.

Conventionally, matching for x and pairing for x are conceived as one task:
treated and control groups are made similar as groups in terms of x by pairing
treated and control individuals with similar x’s. Using a new matching algorithm
called “cardinality matching” in Section 2, we form matched treated and control
groups that are of the largest proportional size possible (i.e., the maximum car-
dinality) such that the distributions of x are balanced in the groups as a whole.
The result is either the maximum number of pairs possible subject to covariate
balance constraints or the largest L-to-1 match using all treated individuals, again
subject to covariate balance constraints. In other words, the marginal distributions
of x in treated and control groups are constrained to be similar, and the maximum
cardinality match is the largest proportional match that makes them similar. The
algorithm that produces the maximum cardinality match is indifferent as to who is
paired with whom; instead, it maximizes the size of a match that meets specified
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requirements for balance on x; see (1) below. This is done using integer program-
ming. Then, with the groups determined and fixed, pairs or L-to-1 matched sets are
formed using minimum distance pair matching for a robust Mahalanobis distance
computed from a few key coordinates of x with a view to reducing heterogeneity
in the outcome within pairs or matched sets. An alternative approach is described
in Section 2.5.

In the Chilean schools in Section 1.1, pairs are formed using test scores in
2004, so treated and control groups are balanced for all of x by maximum car-
dinality matching, yet individual pairs are also paired very closely for 2004 test
scores by optimal pair matching. In other words, the treated and control groups
have the same proportion of boys, the same proportion of mothers who completed
secondary school and so on, so the treated and control groups look comparable
as groups in terms of the measured covariates. However, the pairing is concerned
with test scores in middle school, so a boy with good language scores and poor
math scores may be paired with a girl with similar test scores.

Unlike cardinality matching, typical matching algorithms find matched groups
that are balanced for x at the same time as they find pairs close on x. In doing
this, typical algorithms do not usually find the largest matched sample that bal-
ances observed covariates; after all, this is not the criterion that they optimize.
Additionally, typical algorithms will balance gender by trying to pair boys with
boys, even if gender is not a strong predictor of test performance in high school. If
one is going to break up the initial pairing and pair the same individuals a second
time (henceforth, if one is going to “re-pair”), then effort spent making the initial
pairing close on x is effort wasted; after all, the initial pairing is not used. Car-
dinality matching is most attractive when a convincing comparison must balance
many covariates, even though it is known that a small subset of the covariates is
key for predicting the outcome. Cardinality matching is least attractive when there
is no reason to think that some covariates or covariate summaries are much more
important for prediction than others.

The key covariates for revised pairing are known before the study begins in
many contexts. This is true, for example, of the baseline 2004 test scores in the
Chilean schools in Section 1.1, and it is also true of clinical stage, grade and his-
tology in some clinical cancer studies. In other contexts, there are widely used, ex-
tensively validated summary scores that could be used for the revised pairing, such
as the APACHE score in clinical medicine [Knaus et al. (1985)] or the Charleson
Index in health services research [Deyo, Cherkin and Ciol (1992)]. Obviously, one
can match for both such a summary score and a few key covariates using some
form of the Mahalanobis distance. Rubin (1979) found that covariance adjustment
of matched pair differences is a particularly robust technique, being little affected
by misspecification of the regression model, and his approach using all of x can
additionally provide some insurance against an omission when identifying the key
covariates for revised pairing. Sensitivity analysis after covariance adjustment of
matched pairs is illustrated in Rosenbaum (2007).
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Baiocchi (2011) proposed re-pairing any initial pair-matched sample by, first,
using the unused, unmatched controls to estimate Hansen’s (2008) prognostic
score, and, second, revising the initial pairing to be close on the estimated prognos-
tic score, so that, after revision, pairs have similar predicted responses under con-
trol. Baiocchi’s revised match retains whatever balancing properties for x that the
initial match may have had, because it uses the same treated and control groups,
yet the new pairs are now close in terms of a prognostic score whose estimated
weights came from data independent of the paired data that will be the basis for
the study’s conclusion. A limited version of Baiocchi’s method would simply use
the unused, unmatched controls to identify the most important covariates for pre-
dicting the outcome and then re-pair using those covariates directly. Baiocchi’s
method concerns the second step, the revision of a balanced match, and it is a
natural complement to cardinality matching that concerns the first step, namely,
finding the largest balanced matched sample ignoring who is matched to whom.
The key variables for revised pairing are known a priori in some contexts, but when
this is not the case, Baiocchi’s method is a clever and useful strategy for revising
the pairing of a balanced matched sample.

Reducing the dispersion or heterogeneity of pair differences Y reduces sensitiv-
ity to unmeasured biases, but increasing the sample size does not. Is matching each
treated subject to L > 1 controls analogous to reducing heterogeneity or to increas-
ing the sample size? Matching with more than one control often reduces sensitivity
to unmeasured biases [Rosenbaum (2013)]. Stated informally, this occurs when an
unmeasured covariate u cannot both closely predict the pattern of outcomes among
L + 1 individuals in an L-to-1 matched set and also closely predict which one of
L + 1 individuals will receive the treatment. When possible, cardinality matching
will automatically construct L-to-1 matched sets with the largest L if this is con-
sistent with balancing x, and otherwise it will find the largest 1-to-1 pair matching
that balances x.

For recent surveys of multivariate matching, see Stuart (2010) and Lu et al.
(2011).

1.3. Outline and key ideas. The remainder of the paper discusses and illus-
trates the following three topics.

A new method: The visible heterogeneity of responses within matched pairs af-
fects the sensitivity of conclusions to unmeasured biases [Rosenbaum (2005)].
A new matching algorithm, cardinality matching, balances many covariates but
pairs for just a few covariates that reduce the heterogeneity of matched pair dif-
ferences in outcomes, thereby reducing sensitivity to unmeasured biases. Car-
dinality matching finds the largest match that meets the user’s specifications
for covariate balance, also addressing the possibility of covariate distributions
exhibiting limited overlap.
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Recent developments: A poor choice of test statistic can lead to a mistaken view
that an observational study is sensitive to small biases when it is not. We il-
lustrate an adaptive choice of test statistic in sensitivity analysis [Rosenbaum
(2012a)].

A case study: The case study of for-profit schools in Chile illustrates cardinality
matching and the switch from a conventional match and analysis to an alter-
native guided by statistical theory produces a substantial reduction in reported
sensitivity to unmeasured biases.

Section 2 describes the new matching algorithm and Section 3 is a review of
recent developments in sensitivity analysis. Technical details may be avoided by
focusing on the case study in Sections 2.2, 2.3, 2.6 and 4.

1.4. Aspects of the Chilean data. 'We compare test scores of students in San-
tiago who moved from a public primary school in 2004 to either a private for-
profit or a private non-for-profit secondary school in 2006. The data are from the
Education Quality Measurement System (SIMCE) which contains results from a
standardized test given by the Ministry of Education to all the students in Chile
in a given year. Unlike standardized educational tests in the US, the SIMCE tests
every student in Chile and in this sense resembles a census rather than a sample
or an administrative data set. After applying basic data exclusion criteria [namely,
excluding from the analysis those students (i) who were not in Santiago, (ii) who
did not move from a public primary school in 2004 to either a private for-profit
or a non-for-profit secondary school in 2006, (iii) whose reported gender changed
between years, or (iv) who had missing values in one of the baseline or outcome
test scores], before matching we obtained data from students in 483 public primary
schools in 2004. After matching, our matching algorithm selected students from
446 of these 483 public primary schools. The sample of matched students had stu-
dents from 453 private secondary schools in 2006 (170 for-profit and 283 non-for-
profit). Before matching there were 573 private secondary schools, 170 for-profit
and 403 non-for-profit.

2. Cardinality matching followed by minimum distance pairing.

2.1. Cardinality matching: The largest matched sample that balances covari-
ates. Cardinality matching finds the largest match that balances observed covari-
ates. Balancing observed covariates is expressed abstractly by K linear inequalities
in functions of the observed covariates. Just as it is convenient to describe linear
regression abstractly, and then later observe that the abstract definition permits in-
teractions, polynomials, some types of splines, nominal predictors, etc., so too it is
convenient to describe covariate balance abstractly, and then observe that various
ways of making the abstract statement tangible may be used to achieve a variety of
desirable effects. For instance, the K linear inequalities can balance proportions,
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means, variances, covariances, and a grid of quantiles of a marginal distribution,
among many other effects.

There are initially treated units 7 = {p1, ..., pr} and controls C = {«1, ..., kc}.
Treated unit p, has observed covariate X,;, t = 1,..., T, and control «. has ob-
served covariate X,.,c =1, ..., C. Let a;,c = 1 if p; is initially matched to k., with

a;c = 0 otherwise. Each matched treated unit is to have the same number, L > 1,
of matched controls, where the algorithm will make L as large as possible subject
to the requirement that the covariates be balanced in treated and control groups.
More precisely, it will either find the largest match using all 7" treated units each
matched to L distinct controls or it will find the 1-to-1 matching that uses the
maximum number of treated units. A covariate balance constraint By is a linear
inequality constraint

T C T C T C
(D Bk:_bkzzatc Ezzatcvktc SkaZaZCa

t=1c=1 t=1c=1 t=1c=1
where v, is the kth of K functions of observed covariates and by > 0 is a given
constant. Specifically, B; says the mean (Zthl chzl atcvktc)/(Z,T:1 chzl dre)
of vgse over matched units (a;. = 1) is in the interval [—by, bx], and taking by =0
says the mean of vgs. over matched units (a;c = 1) is zero.

Many useful balance constraints have the form (1) with vi;e = f(Xpr) — f (Xiee)
for some function f(-). If f(-) is a binary indicator of whether x satisfies some
condition, then (1) with by = 0 forces the matched sample to have the same num-
ber of treated subjects satisfying this condition as controls satisfying this condi-
tion, without constraining who is matched to whom. The covariates gender, school
type, categories of household income, and categories of mother’s and father’s ed-
ucation were exactly balanced in this way, a constraint known as “fine balance”
[Zubizarreta et al. (2011)]. Fine balance for gender means that the proportion of
boys is the same in the matched treated and control groups, but boys may be paired
with girls. When several covariates are finely balanced, the mean of every linear
combination of these covariates is also exactly balanced. A binary indicator f(-)
with by = 0.01, say, will limit the imbalance to at most a count of 1%, a condition
known as “near fine balance” [Yang et al. (2012)]. The categories of “number of
books at home” were nearly balanced in this way. In parallel, f(-) with by =0
may be used to balance the joint distributions of two or more nominal covariates,
say, the gender of the student and the years of education of the mother. If f(-)
simply picks out one coordinate of x, then a pair of constraints of the form (1)
forces the matched sample to have means in the treated and control groups that
differ by at most by, say, that the mean test scores in natural science in 2004 are
close. The student’s own four test scores in 2004 and the four average test scores
in the student’s 2004 school were balanced on average in this way. If instead f(-)
calculates the square of one coordinate or the cross-product of two coordinates,
then a sequence of constraints of the form (1) can balance higher moments of the
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FI1G. 1. Total of language and mathematics scores at baseline in 2004, before and after cardinality
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covariates. A binary indicator f(-) may be used to ensure that the same number
or a similar number of treated subjects and controls have a value of one covari-
ate below a particular number, and a sequence of such binary indicators may be
used to force agreement between two empirical distribution functions at the grid
of values. In Figure 1, the entire distribution of the sum of math and language
scores in 2004 was balanced in this way. In an analogous way, constraints of the
form (1) may be used to ensure that an estimated propensity score has a simi-
lar distribution in treated and control matched samples. Also, rather than eliminate
subjects with missing covariates, one can force treated and control matched groups
to exhibit similar patterns of missing covariates, say, 5% of a particular covariate
being missing in both groups. For detailed discussion of the variety of statistical
properties that may be induced through balance constraints of different types, see
Zubizarreta (2012).

The user of cardinality matching specifies K constraints of the form (1). The
goal is to find the largest L-to-1 match that satisfies the K balance constraints,
the largest match that balances all of the observed covariates. The result may be,
say, a 3-to-1 match of all treated units, or it may be a 1-to-1 pair match discarding
the smallest possible fraction of the treated units. In any case, the algorithm finds
the largest L-to-1 match that exists subject to the K constraints that define covari-
ate balance. A cardinality matching is then the solution to the following several
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optimization problems. First, find a = (a1, a2, . .., arc) as the solution to

T C
max Z Z dse

t=1c=1

subject to a;. € {0, 1}, t=1,....,T,c=1,...,C,

T
() Y ae<1 forc=1,...,C,
=1

9
Yae<1 fort=1,...,T,
c=1

By, k=1,...,K.

In words, (2) is the largest pair-matched sample that meets the user’s K balance
constraints Bg, k =1, ..., K in (1). Specifically, Z,T:1 Zle a;c is the number of
subjects in the treated and control groups, Z;T:1 a;c < 1 says that control c is used
at most once, and chzl aze <1 says treated unit ¢ is used at most once.

Having solved (2), there are two cases to consider. In case 1, the solution
to (2) has T = Zszl chzl dasc, so that a pair match satisfying the balance con-
strains By, k =1, ..., K constraints has been found that uses all 7 treated units. In
this first case, the problem is solved again with the third constraint, ZE: 1are <1
fortr=1,...,T, replaced by chzlatc =L withL=2fort=1,...,T.If this
second solution has LT = 2T = Z,T:1 Zf=1 dyc, then a 2-to-1 match satisfying
the balance constrains By, k =1, ..., K constraints has been found, and the prob-
lem is solved again with L replaced by L + 1. For some L, L =2, 3,..., the
problem is infeasible, meaning that a match of L-to-1 cannot satisfy the bal-
ance constraints B, k =1, ..., K. In this first case, the optimal cardinality match
is the feasible solution with the largest L satisfying the balance constrains By,
k=1,..., K. In case 2, if the solution to (2) has T > Zszl ZCC:1 as., then even
a 1-to-1 pair match that uses all T treated units will violate the balance con-
strains Bg, k =1, ..., K constraints, and the algorithm has found the largest 1-to-1
pair matching that does satisfy the balance constraints. [In the abstract, one should
solve (2) and the adjusted match for every integer 2 < L < C/T, but in realistic
practice it is very unlikely that a feasible solution exists for L’ > L if there is no
feasible solution for L.]

Cardinality matching differs from optimal matching [Rosenbaum (1987)] in
that its objective function Z,T: 1 chzl a;c in (2) is simply the size of a matched
sample that satisfies balance constraints (1), whereas optimal matching has as its
objective Z,TZI Zf: | GreNie, Where ;. is a measure of the distance between X,
and x,, typically a Mahalanobis distance with a caliper on the propensity score
implemented using a penalty function [e.g., Rosenbaum (2010a), Section 8]. In
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cardinality matching, the balance constraints, Bg, k =1, ..., K, refer only to the
marginal distributions of x in matched samples, so the pairing of treated and con-
trol subjects is arbitrary, in the sense that none of the quantities that define the
optimization problem (2) are affected by who is paired with whom. The approach
we take here is to solve (2) using only constraints on distributions of x in treated
and control groups, thereby obtaining the largest balanced matched samples; then,
with the matched sample fixed, we re-pair units within the sample to minimize a
distance, Y_ Y a;cn;c, over the fixed matched sample. The advantage of the two-
step approach is that (2) will yield treated and control groups that look comparable
in terms of observed covariates X; then, pairing to minimize > a;.n; will fo-
cus on reducing heterogeneity in Y, where reducing heterogeneity in Y can reduce
sensitivity to unmeasured biases.

Traditionally, in experimental design, randomization balanced covariates and
prevented bias, while blocking or pairing for covariates increased efficiency; see,
for instance, Cox (1958). In a somewhat parallel way, cardinality matching bal-
ances observed covariates while pairing following cardinality matching reduces
heterogeneity. The key distinction is randomization addresses biases from unmea-
sured covariates where cardinality matching does not, and a reduction in hetero-
geneity affects sensitivity to biases from unmeasured covariates, these biases being
absent in a randomized experiment.

2.2. Step 1: Cardinality matching in Santiago using covariates in 2004. Solv-
ing (2) yielded a maximum of Y.'_; <  a,, = 1907, meaning 1907 pairs
of a treated and control subject satisfying the balance constraints. Because
S Y ae =1907 =T, all T = 1907 of the treated students were matched,
and the method in Section 2.1 then tried to construct a 2-to-1 match subject to
the same balance constraints. However, no 2-to-1 match satisfies the balance con-
straints, that is, the second step of the optimization problem is infeasible. The
largest L-to-1 match that balances the covariates is a 1-to-1 match that uses all the
treated students.

The for-profit and not-for-profit matched groups had exactly the same number
of men (855 men in both groups) and women (1052 women in both groups), ex-
actly the same number of people from each of four zones of Santiago, exactly the
same number from each of seven categories of household income, exactly the same
number with each of five categories of mother’s education, and exactly the same
number with each of five categories of father’s eduction. For income, mother’s
and father’s education, one of the categories was “missing,” and “missing” was
balanced. Most of these covariates were “finely balanced” in the sense that the dis-
tributions were exactly the same in for-profit and not-for-profit groups, but the two
individuals in a pair may differ with respect to the covariate.

Other covariates were constrained to have distributions that were very similar
but not identical in means or proportions. For instance, the mean of the baseline
language + mathematics score was 509.05 in the for-profit group and 509.16 in
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the not-for-profit group. The baseline test scores in language, mathematics, natural
science and social science were similarly mean-balanced. The average test scores
in a student’s school give some indication of the student’s peers at school, and each
student has school averages in language (Spanish), mathematics, natural and social
science. These school average scores were similarly mean-balanced. The number
of books in a student’s home was represented by six categories, from none to more
than 200, and the proportions were closely balanced. For all of these covariates, the
for-profit-minus-not-for-profit difference in covariate means or proportions was at
most 6 one hundredths of the standard deviation of the variable before matching.
An online supplement describes the covariate balance in detail [Zubizarreta, Pare-
des and Rosenbaum (2014)].

Cardinality matching ended up using all 1907 treated students in 1907 matched
pairs, but in some other problem it might use a subset of treated students in its ef-
fort to satisfy the balance constraints B, k =1, ..., K. That is, if the treated group
and the potential controls have a limited region of overlap on observed covariates,
cardinality matching might produce a subset match confined to the region of over-
lap, thereby ensuring covariate balance. For other methods of subset matching, see
Crump et al. (2009), Traskin and Small (2011), Rosenbaum (2012b) and Hill and
Su (2013).

2.3. Step 2: Optimal pairing of a given match using covariates in 2004. To
illustrate the advantages of separating balancing of covariates and pairing of in-
dividual students, the one match in Section 2.2 is paired in two different ways to
form two sets of 1907 pairs. To emphasize, the same 2 x 1907 students are paired,
but who is paired with whom is different in the two pairings. Because the treated
and control groups do not change, covariate balance is identical in both pairings,
because covariate balance ignores who is paired with whom. The first pairing uses
a robust Mahalanobis distance [Rosenbaum (2010a), Section 8.3] based on all of
the covariates used in (2), so it views test scores, parents’ education, books at
home, etc., as equally important. The second pairing uses the robust Mahalanobis
distance but computed just from the four baseline test scores. In both matches,
the total of the 1907 covariate distances within pairs is minimized using the opti-
mal assignment algorithm, as might be done, for example, using the pairmatch
function of Hansen’s (2007) optmatch package in R. One pairing yields pairs
that are somewhat close on all covariates; the other pairing yields pairs that are
very close on test scores, being content to balance the other covariates. Although
one would not want to compare groups of students whose parents had very differ-
ent levels of education or very different numbers of books at home, it is generally
the case that test scores best predict related test scores.

Figure 2 depicts the pair differences in the four test scores in 2004, when all
1907 x 2 = 3814 were attending government run primary/middle schools. On the
left in Figure 2, the pairing used all covariates, whereas on the right the pairing
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FI1G. 2. Comparison of two ways of pairing the same students. Treated-minus-control pair dif-
ferences in test scores for 1907 pairs at pretreatment baseline in 2004 in four subject areas,
L = language, M = mathematics, S = social science, N = natural science. The same 1907 treated
students and 1907 control students are in both pairings, but the pairing on the right emphasized
pairing for baseline test scores, whereas the pairing on the left gave equal emphasis to all baseline
covariates.

focused on test scores. On both the left and the right, the distribution of treated-
minus-control differences is centered at zero, because the matching in Section 2.2
balanced the distributions of test scores. As expected, when the pairing focused
on test scores, the baseline difference in test scores was closer to zero, that is, on
the right in Figure 2, the boxplots are more compact about zero. Of course, other
covariates are further apart within pairs when pairing emphasizes test scores, but
the distributions of these other covariates are equally balanced for both pairings in
Figure 2.

2.4. Comparison with cem: Coarsened exact matching. Coarsened exact
matching (or cem in R) is a popular, recent proposal for matching that finds pairs
close on x; see lacus, King and Porro (2009). At the suggestion of a referee,
we compare cardinality pair matching to pair matching using cem. Essentially, it
rounds or coarsens each coordinate of x, makes strata that are homogeneous in all
of the coarsened coordinates, and eliminates all strata that do not contain at least
one treated subject and one control. To the extent that cem balances covariates,
it does this by making the pairs individually close on each coordinate of x. One
expects the performance of cem to vary with the dimensionality of X, among other
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considerations, and the dimensionality of x strongly affected the performance of
cem in the current example.

Using the default settings in R and matching for all of the categorical and contin-
uous covariates balanced by cardinality matching, cem produced 3 matched pairs,
as opposed to 1907 pairs by cardinality matching. That is, there were only 3 treated
students who fell in the same coarsened exact stratum as a control. The default for
cem is 12 categories for a continuous covariate, however, if this is reduced to 4
categories, then cem produced 21 matched pairs.

When coarsened exact matching is used with fewer covariates it produces fewer,
denser strata and many more pairs. We estimated a propensity score using all of the
covariates to predict treatment assignment in a logit model. When used with just
two covariates, the total of the four baseline test scores and the estimated propen-
sity score, cem produced 1856 of a possible 1907 pairs. In theory, matching for
a well-estimated propensity score should balance all the observed covariates in
the score in a stochastic sense, much as coin flips tend to balance covariates in
randomized experiments. Matching for the propensity score did a tolerable job of
stochastically balancing many covariates, but, unlike the perfect balance obtained
by cardinality matching, there were some nominal covariates that differed signifi-
cantly, as is expected with many covariates even in a randomized experiment, for
instance, mother’s education differed significantly in for-profit and not-for-profit
groups.

How did cardinality matching compare with the two-covariate cem match? Pre-
sumably, either could be used in practice. However, the cardinality match produced
better covariate balance and more matched pairs.

2.5. An enhancement of cardinality matching: The closest largest balanced
match. In principle, the method in Section 2.1 may be improved at the price
of some additional computation. In the Chilean schools example, the computa-
tional effort increased without benefit, but, in a formal sense, the enhanced match
is as large as the match in Section 2.2 and satisfies the same K balance con-
straints (1), but might possibly be closer in the second step in Section 2.3. In
principle, there may be more than one, perhaps many, L-to-1 balanced matched
samples of maximum cardinality, that is, many solutions a to (2) that satisfy the
balance constraints B, k =1, ..., K with the same L and Z,T:1 ZCC=1 ase. These
several matches, when they exist, will have selected the same number of controls
but different individual controls, while satisfying the same balance constraints.
When this is true, it seems natural to prefer from among these solutions a one
that minimizes the distance > _ > a;.1;. used to control heterogeneity. This may be
done in a straightforward way using a relatively standard device. First, one solves
the problem in Section 2.1, thereby determining the size, n = Zthl ZCC:1 a;e and
L =max(1,n/T), of the largest L-to-1 match that satisfies the balance constraints
By, k=1,..., K in the sense of Section 2.1. Then, this match is discarded—it
serves simply to determine the size of the largest match that satisfies the balance
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constraint By, k =1, ..., K. One then solves the optimization problem that min-
imizes Y. > a;cn:c subject to the balance constraints By, k =1, ..., K together
with the constraint that it be an L-to-1 size n = Z,T: 1 Zle asc match. This prob-
lem is known to be feasible because the method in Section 2.1 has already found
one feasible solution. The solution to the second problem is not only the largest
L-to-1 matched sample that satisfies the balance constraints but also, among all
such matched samples, it is the closest, minimizing Y > a;.1;. We tried this
method in the example. Of course, it again produced n = 1907 pairs satisfying By,
k=1,..., K, thereby producing virtually the same covariate balance; moreover, it
reduced ) > as.n;c very slightly with virtually the same substantive conclusions.
We did not report this alternative match because it did not permit the comparison
of two matches of the same individuals in Figure 3.

A practical disadvantage of the enhanced approach is that it requires the dis-
tances 1y that are used to reduce heterogeneity to be determined before the final
controls are selected because the enhanced approach uses those distances both in
selecting and pairing controls. In particular, this precludes using Baiocchi’s (2011)
promising method, described in Section 1.2, in which the unmatched controls are
used to estimate Hansen’s (2008) prognostic score which then is used to define n;..

Pair Differences in Outcomes in 2006

0
o
8
o — 4 tests in 2004
--- All covariates
< Sample mean
o
8 -
o
™
=]
8 -
2 o
[2]
C
8 «
=]
8 -
[=)
—
o
8
[
o
S
8 -
(=)

T T T T I
-400 -200 0 200 400

Treated—Control Pair Difference in Math+Language

FIG. 3. Density estimate of 1907 matched pair differences in 2006 outcomes pairing either for the
Sfour 2004 baseline test scores or for all covariates. Because the same 2 x 1907 = 3814 students
appear in both paired comparisons, the mean difference is the same, 17.5 points. The dispersion of
the pair differences is smaller when pairing for the four 2004 test scores: standard deviation of 90.9
versus 105.5, MAD of 60.2 versus 72.6.
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2.6. Preliminary examination of results in 2006. In 2006, there are language
and mathematics scores for students in a not-for-profit (treated) or a for-profit (con-
trol) high school, where these students were in a government-run primary school
in 2004. Figure 3 depicts the treated-minus-control pair differences Y in total test
scores in 2006, the sum of language and mathematics. Specifically, Figure 3 is a
density estimate of the Y’s from the two pairings (obtained using density in R
with default settings). The mean pair difference in 2006 test scores is, of course,
the same for the two pairings, namely, 17.5 points, because the mean difference
equals the difference of the means, and the two pairings have the same students
paired differently. In contrast, the second pairing that emphasized pretreatment
2004 test scores has yielded less dispersion in 2006 difference in posttreatment
test scores Y. This is visible in Figure 3 in the density estimates of Y in the two
pairings. Also, in the first pairing, the standard deviation and median absolute de-
viation from the median (MAD) of Y were 105.5 and 72.6 points, respectively,
whereas in the second pairing that emphasized pairing for 2004 test scores, the
standard deviation and MAD of Y were 90.9 and 60.2. In terms of the appear-
ance of the density estimate in Figure 3, in terms of the standard deviation and in
terms of the MAD, the treated-minus-control difference Y in outcomes is more
stable, less dispersed, when the pairing emphasizes the pretreatment 2004 test
scores. A reduction in dispersion of Y is expected to translate into reduced sen-
sitivity to unmeasured biases [Rosenbaum (2005)], a topic examined in detail in
Section 3.

The pattern in Figure 3 is not surprising. Before pairing, ignoring treatment,
among the 3814 students in the cardinality match, the Spearman correlation be-
tween income and total test score (mathematics 4 language) in 2006 was 0.195,
whereas the correlations with pretreatment 2004 test scores in social science and
natural science were 0.632 and 0.604, respectively, while the correlation with total
test score (mathematics + language) in 2004 was 0.727.

Is a difference of 17.5 points a consequential difference? It is 0.16 times the
population standard deviation of the total of math and language scores. An obser-
vational study by Bellei (2009) of lengthening the school day in Chile from half a
day to a full day estimated an effect on language scores of 0.06 times the standard
deviation. Various studies in the US of the effectiveness of urban charter schools
versus public schools have produced estimates around 0.20 times the standard de-
viation; see Angrist, Pathak and Walters (2013), page 1.

In short, the not-for-profit schools have higher test performance for students
who appeared similar in 2004 in terms of observed covariates x. The mean differ-
ence in outcomes Y is 17.5 points in both pairings, but the Y’s are less heteroge-
neous, less dispersed, more stable in the pairing that focused on pretreatment test
scores. Did reduced heterogeneity in Y have any effect on sensitivity to unmea-
sured biases?
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3. Review of sensitivity analysis.

3.1. Notation for randomized experiments. There are I matched pairs, i =
I,..., I, with two subjects in each pair, j = 1,2, one treated with Z;; = 1, the
other control with Z;; = 0. In Section 1.1, there are I = 1907 pairs of two students,
one who moved to a not-for-profit private school, Z;; = 1, the other who moved to
a for-profit private school, Z;; = 0. Matched treated and control grouped balanced
observed covariates x;; but may differ systematically in terms of an unobserved
covariate u;;. Let Z be the set of possible values of Z = (Zyy, ..., Zmn)T,s0zeZ
if and only if z;; =0 or z;; = 1 with z;1 +z;2 = 1 for all i. Conditioningon Z € Z
is abbreviated as conditioning on Z. Write |S| for the number of elements in a
finite set, so | Z| =2/.

As in Neyman (1923) and Rubin (1974), each subject has two potential re-
sponses, rr;;j if treated with Z;; = 1, r¢;; if control with Z;; = 0, so response
Rij = Zjjrrij + (1 — Z;j)rci;j is observed from ij and the effect of the treatment
on ij, namely, r7;; — rc;j, is not observed. In Section 2, r7;; is the total 2006
test score student i j would exhibit in a not-for-profit school, r¢;; is the total 2006
test score this same student ij would exhibit in a for-profit school, r7;; — rci;
is the effect of not-for-profit-versus-for-profit on this one student, and R;; is the
observed 2006 test score of student ij in the type of school Z;; that ij actually
attended. Write F ={(r7;j, rcij, Xij. u;ij),i =1,...,1, j = 1,2}. Fisher’s (1935)
sharp null hypothesis Hp of no treatment effect asserts Ho:rr;;j = rcij, Vi, j.
Write R = (Ryy, ..., R[Q)T andrc = (rcit, .- -, rc[z)T, so R =r¢ if Hy is true.

In a randomized paired experiment, treatments are assigned independently by
the flip of a fair coin, so Pr(Z =z|F, Z) =2"! foreachze Z.If T =t(Z,R) is a
test statistic, then its distribution in a randomized paired experiment under the null
hypothesis of no effect is its permutation distribution, that is, Pr(T > ¢|F, Z) =
Pr(t(Z,R) > t|F, Z) =Pr(t(Z,rc) > t|F, Z) equals|{z € Z:t(Z,rc) > t}|/| 2|,
because, under Hp, R = r¢ is fixed by conditioning on F, and Z is uniform
on Z.

The treated-minus-control pair difference in observed responses in pair i is

Yi=(Zi1 — Zin)(Ri1 — Rip) = Zi1 (rri1 — rciz) + Zio(rriz — rcit)s

which equals (Z;1 — Z;j2)(rci1 —rciz) = £(rci1 — rciz) if Hy is true. Figure 3 de-
picts the pair differences in 2006 test scores, Y;. In general, Y; = Z; 1 (rri1 —rci2) +
Zi2(rri2 — rci1), which equals Y; =t + &; with &; = (Z;1 — Z;2)(rci1 — reiz)
if the treatment effect is a constant shift, rr;; — rcij =7, Vi, j. Let ¢; > 0
be a function of |Yy|,...,|Y| such that g; = 0 if |Y;| = 0. Let sgn(y) = 1 if
y > 0 and sgn(y) =0 if y < 0. A general signed rank statistic is of the form
T = Zl-lzl sgn(Y;)g;. In a paired, randomized experiment under Hp, the null dis-
tribution Pr(7 > ¢|F, Z) of T is the distribution of the sum of / independent
random variables taking the values g; or 0 each with probability 1/2 if |¥;| > 0
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and the value 0 with probability 1 if |Y;| = 0. For instance, if g; is the rank of |Y;],
this yields the usual null distribution of Wilcoxon’s signed-rank statistic.

For certain rank statistics, such as Wilcoxon’s statistic, the expectation u of the
test statistic under the null hypothesis Hy, namely, u = E{t(Z, r¢c)|F, Z}, does
not depend upon rc¢, and in these cases Hodges and Lehmann (1963) proposed
estimating a constant shift effect 7 by 7 that solves t(Z, R — Z7) = u.

3.2. Sensitivity analysis. A simple model for sensitivity analysis in paired ob-
servational studies [Rosenbaum (1987)] has a sensitivity parameter I' > 1 and as-
serts that Pr(Z = z|F, Z) = ]_[{zlnl-zi(l —7;)!7% for z € Z where 1/(1+T) <
;i <T'/(14T) for each i but 7; is otherwise unknown. When I' = 1, the distribu-
tion of treatment assignments is the randomization distribution, Pr(Z = z|F, Z) =
2!, but when I' > 1 the distribution of treatment assignments Pr(Z = z|F, Z)
is unknown to a degree bounded by I'. Therefore, when I' = 1 conventional ran-
domization inferences are obtained, for instance, randomization tests, confidence
intervals formed by inverting randomization tests [e.g., Maritz (1979)] and Hodges
and Lehmann (1963) point estimates. For ' > 1, one obtains instead an inter-
val of P-values, an interval of point estimates or an interval of endpoints for a
confidence interval, the interval becoming longer as I' increases. One asks: how
large must I be, how far must the observational study deviate from a random-
ized experiment, before the range of inferences becomes uninformative? For in-
stance, how large must I" be before the interval of P-values includes values above
and below «, conventionally o = 0.05? This model may be expressed explicitly
in terms of the unobserved covariate u;;, derived from more basic assumptions
similar to those in Cornfield et al. (1959), and easily extended to matching with
multiple controls, full matching, unmatched comparisons, covariance adjustment
of matched pairs, etc.; see Rosenbaum (2002), Section 4; (2007). Although the
sensitivity analysis permits the unobserved covariate u;; to vary from student to
student, there is nothing to prevent u;; from being constant for children from
the same family or the same social clique, so u;; can represent some unmeasured
form of clustering. For other models for sensitivity analysis in observational stud-
ies, see Gastwirth (1992), Hosman, Hansen and Holland (2010), Marcus (1997),
Rosenbaum and Rubin (1983), Small (2007), Yanagawa (1984) and Yu and Gast-
wirth (2005). B

For a specific I' > 1, define T as the sum of / independent random variables
taking the value ¢; with probability I'/(1 4+ I') and the value O with probability
1/(14T), and define T similarly but with I'/(1 +T") and 1/(1 4+ I') interchanged.
In the presence of a bias of magnitude I', the null distribution of T under Hy is
unknown, but it is easily shown to be bounded by two-known distributions,

(3)  Pu(T >t|F,2)<Pr(T >t|F,2)<PuT >1|F,2) forallt;
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see Rosenbaum (1987; 2002, Section 4). For reasonable scores, g;, the bounds
in (3) may be approximated as / — oo using the central limit theorem:

Pr(T > tro|F, 2) ~a

@ f = §: +o7 11 d }I: 2
Irg=—— — — =,
orfre =172 4 '(1—a) 11T) iz}%

where ®(-) is the standard Normal cumulative distribution, so that, if 7 > tr 4,
then the approximation to the maximum one-sided P-value is at most @ when
the sensitivity analysis allows for an unmeasured bias of at most I'. For instance,
if T > t1.25,0.05, then the entire interval of possible one-sided P-values obtained
from a bias of I' = 1.25 is below « = 0.05, and a bias of magnitude I' = 1.25 is
too small to explain the observed value of the test statistic 7.

For statistics such as Wilcoxon’s statistic, the sum Z —19i in (4) does not de-
pend upon rc, and the expectation of T under Hj is bounded by the expectations
of T and T, namely, i = (1 + ) 7' Y/ ¢; and p = {T/(1 + D)} Y1 gi. In
these cases, the interval of possible Hodges—Lehmann point estimates of a constant
shift effect T is obtained by solving #(Z, R — Z7) = and t (Z, R — Z7) = Ti;
see Rosenbaum (1993; 2002, Section 4). This is done in Table 2 below. A simi-
lar approach may be used with Huber’s M -estimates including the mean of the /
paired differences; see Rosenbaum (2007, 2013) and Section 4.2.

3.3. Power of a sensitivity analysis and design sensitivity; testing one hypothesis
twice. 1If there was no bias from an unmeasured covariate u;; and if the treatment
had an effect so H is false, then we could not be certain of this from the observed
data, and the best we could hope to say is that the conclusions are insensitive to a
moderately large bias I', for instance, that T > 1, for a moderately large I". The
power of a one-sided, «-level sensitivity analysis at a specific I is the probability
that we will be able to say this, that is, the power is the probability that T > tr 4
when there actually is no bias, Pr(Z = z|.F, Z) = 2~! and the Y; are generated
by some model with a treatment effect, such as Y; ~jiq. N (7, 1); see Rosenbaum
(2004; 20104, Part IIT). When I = 1, the power of a sensitivity analysis is the same
as the power of a randomization test.

Under mild conditions, for a given model such as Y; ~jjq4. N(t, 1) and a given
statistic 7' such as Wilcoxon’s statistic, there is a value I" called the design sensi-
tivity such that, as the sample size increases, I — oo, the power of the sensitivity
analysis tends to 1 when the analysis is performed with I" < T" and the power tends
to 0 with I > I". In words, in this sampling situation with this statistic, the study
will eventually be insensitive to all biases smaller than I* but not to some biases
larger than I'. Just as the power of a randomization test is affected by the choice of
test statistic, so too is the power of a sensitivity analysis and the design sensitivity
affected by the choice of test statistic. For instance, if ¥; ~iq4. N (7, 1), then with
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T = 1/2, the design sensitivity is I' = 3.2 for Wilcoxon’s signed-rank statistic and
I' = 3.6 for Brown’s (1981) combined quantile average, so at I' = 3.4, the power of
Wilcoxon’s statistic is tending to 0 as I — oo while the power of Brown’s statistic
is tending to 1; see Rosenbaum (2010b).

Better design sensitivities are possible with other statistics. In Rosenbaum
(2011), a U-statistic named (m,m,m) with 1 <m <m <m < I is defined by
looking at all subsets of m of the Y;, sorting these m observations into increasing
order by |Y;|, counting the number of positive ¥; among those in positions m, m +
1,...,m in this order, and averaging over the ( ,i ) subsets of size m; it is a signed-

rank statistic with ¢; = ()~ ZZ_m (%=1 (L“), where q; is the rank of |Y;| and
(g) is defined to equal O for B < 0. In particular, (m,m,m) = (1,1, 1) is the
sign test statistic, (m, m, m) = (2, 2, 2) is the U -statistic that closely approximates
Wilcoxon’s signed-rank statistic [Lehmann (1975)], and (m, m,m) = (m, m, m) is
Stephenson’s (1981) statistic. If ¥; =t 4+ &; with T =1/2 and ¢; ~iiq. N(O, 1),
then Wilcoxon’s test (m, m,m) = (2,2,2) has [ =3.2 as before, while =55
for (m, m,m) = (20, 16, 20), I = 6.9 for (m, m,m) = (20, 18, 20), and ' = 10.1
for (m,m,m) = (20, 20,20). If ¥; =t + & with T =1 and the ¢; are indepen-
dently distributed with a ¢-distribution on 4 degrees of freedom, then Wilcoxon’s
test(m m,m) = (2,2, 2)hasl" 6.8, while T' = 9.4 for (m, m, m) = (20, 16, 20),

' = 8.9 for (m, m,m) = (20, 18, 20), and ' = 7.3 for (m, m, ) = (20, 20, 20).
Notably, Wilcoxon’s statistic has relatively poor performance in all these situa-
tions, while the best test statistic depends upon the tails of the distribution of ¢;.

Figure 4 shows g; / max ¢g; against Wilcoxon’s ranks a; / max a; for Wilcoxon’s
statistic (m,m,m) = (2,2,2) and for (m,m,m) = (20, 16, 20), (20, 18,20) and
(20, 20, 20). Unlike Wilcoxon’s statistic, the other three statistics largely ignore
Y; with small |Y;|, but do this in varying degrees. As discussed in Rosenbaum
(2010b), reduced attention to Y; with small |Y;| tends to increase design sensitivity,
T, and this explains, for example, the superior design sensitivity of Brown’s (1981)
statistic when compared to Wilcoxon’s statistic.

In Rosenbaum (2012b), several tests are performed of the same null hypothesis
Hj using different test statistics, and the smallest upper bound on the P-value from
these several tests is corrected for multiple testing, an appropriate correction being
quite small because of the strong dependence between several tests of the same null
hypothesis using the same data. The correction approximates the joint distribution
of the upper bound statistics by a multivariate Normal distribution. This combined
procedure achieves the best design sensitivity of the several component tests; for
example, using (m, m,m) = (20, 16, 20), (20, 18, 20) and (20, 20, 20) jointly, the
combination would have ' = 10.1 for the Normal distribution above and I = 9.4
for the ¢-distribution above, having selected the best test for each distribution. This
procedure is used in Section 4.3 for the study in Section 1.1.
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FIG. 4. Four ways of scaling the ranks of absolute difference |Y;| in post-treatment test scores.

3.4. Reducing heterogeneity reduces sensitivity to unmeasured biases. As
mentioned in Section 1.2, reducing heterogeneity tends to reduce sensitivity to un-
measured biases. For instance, if ¥; =t + ¢; with T = 1/2 and ¢; ~ 4. N (0, 02),
then Wilcoxon’s signed-rank statistic has design sensitivity ' = 3.2 as before if
o = 1, but it has design sensitivity I' = 11.7 if the standard deviation is cut in
half, o = 1/2. Similarly, in this sampling situation, the U -statistic (m,m,m) =
(20, 18, 20) has design sensitivity ' = 6.9 as before if o = 1, but it has design
sensitivity ' = 91.6 if the standard deviation is cut in half, o = 1/2. This phe-
nomenon is not tied to Normal distributions or to particular test statistics, and it is
discussed in detail in Rosenbaum (2005). As discussed there, reducing heterogene-
ity o confers benefits for sensitivity analyses that cannot be produced by increasing
the sample size, I, because these benefits occur even in the limit as / — o0o. The
hope in Section 2.3 is that the reduction in dispersion of Y; seen in Figure 3 may
yield reduced sensitivity to unmeasured biases. As just seen, reducing the scale o
by half has a large effect on design sensitivity, [, but the reduction in Figure 3
is closer to 15% than to 50%. Again, Section 2 achieved a reduction in hetero-
geneity of the Y; without altering their mean, /= 3" ¥;, by balancing covariates x
first using (2), then pairing students for pretreatment 2004 test scores that predict
posttreatment 2006 test scores.

3.5. Amplification: 2-dimensional interpretation of a 1-dimensional sensitivity
analysis. For analysis and reporting, it is convenient to have a one-dimensional
sensitivity analysis defined in terms of a single parameter, I"'. At I' =1 the dis-
tribution of treatment assignments is randomized, but as I' — oo any treatment
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assignment probabilities r; become possible, so I" is a way of indexing the magni-
tude of departure from random assignment, not a device for giving that departure
a specific form. The parameter I' measures the impact of the unobserved covari-
ate u;; on the treatment assignment probabilities 7;, placing no restriction on the
relationship between u;; and the outcome Y;, so u;; — u;> may be strongly re-
lated to Y; under Hy. For interpretation, it is sometimes convenient to reexpress
this one analysis in terms of I" instead as an equivalent two-dimensional analysis
with a parameter A that controls the relationship between u;1 — u;2 and treatment
assignment Z;; — Zjp = +1 and another parameter A that controls the relation-
ship under Hy between u;; — u;2 and the sign of ¥;. Under Hyp, A =2 means that
an imbalance in u at most doubles the odds of treatment, Z;; — Z;» = 1, while
A =2 means that u# at most doubles the odds of a positive response difference,
Y; > 0, and the parameter A is defined in terms of Wolfe’s (1974) semiparamet-
ric family of deformations of a distribution symmetric about zero; see Rosenbaum
and Silber (2009) for technical specifics where I' = (AA 4+ 1)/(A + A). Such a
map of each value of one sensitivity parameter I" into an exactly equivalent curve
'=(AA+1)/(A + A) of a two-parameter (A, A) sensitivity analysis is called
an amplification. For instance, the curve corresponding with I' = 1.5 includes
(A, A)=2,4)as1.5=2x4+1)/(2+4), butit also includes (A, A) = (4,2)
and also (A, A) = (2.5,2.75). That is, under Hg, I' = 1.5 is equivalent to an un-
observed covariate u that doubles the odds of treatment, A = 2, and quadruples
the odds of a positive response difference ¥; > 0, A =4, and is also equivalent to
an analysis in which u quadruples the odds of treatment, A = 4, and doubles the
odds of a positive response difference, A = 2.

4. Sensitivity analysis in a cardinality match paired for heterogeneity.

4.1. Analyses using one rank statistic. Using the methods in Sections
3.2 and 3.3, Table 1 examines the sensitivity of the null hypothesis Hy of no
treatment effect in the two pairings in Section 2.3 of the same cardinality match
in Section 2.2. The table also uses two test statistics from Section 3.3, namely, the
Wilcoxon statistic with (m, m,m) = (2,2,2) and one version of the U -statistic
with (m, m,m) = (20, 18, 20). Table 1 records the upper bound on the one-sided
P-value testing Hp, so the comparison is insensitive to a bias of I" if this upper
bound is less than the conventional o = 0.05. Notably in Table 1, Wilcoxon’s
statistic with pairing based on all covariates becomes sensitive between I' = 1.3
and I' = 1.4, whereas the U-statistic with pairing based on four pretreatment
test scores becomes sensitive between I' = 1.6 and I" = 1.7. Looking at the row
[' = 1.4 in Table 1 suggests that in this one example, the choice of pairing and the
choice of test statistic are comparable in importance but separate effects.

Table 2 is similar in structure to Table 1, but it reports the minimum Hodges—
Lehmann point estimate 7 of an additive treatment effect t from Section 3.2. For
I =1, the interval is a single point, and in Table 1 is not far from the mean of the
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TABLE 1
Upper bounds on the one-sided P-value testing the null hypothesis Hgy
of no treatment effect, using either Wilcoxon’s statistic or one version of
the U -statistic, with pairing based either on all covariates or just the
four pretreatment test scores. The Y; are less heterogeneous when the
pairing controlled just the four pretreatment test scores

Covariates used in pairing

Wilcoxon statistic (2, 2, 2) U -statistic (20, 18, 20)
r All 4 test scores All 4 test scores
1 0.0000 0.0000 0.0000 0.0000
1.1 0.0000 0.0000 0.0000 0.0000
1.2 0.0001 0.0000 0.0005 0.0000
1.3 0.0131 0.0008 0.0062 0.0001
1.4 0.1986 0.0367 0.0378 0.0010
1.5 0.6681 0.3031 0.1341 0.0078
1.6 0.9488 0.7506 0.3149 0.0356
1.7 0.9971 0.9638 0.5418 0.1099

Y;, namely, 17.5 points on the total of mathematics and language tests, as depicted
in Figure 3. At ' = 1.7, the minimum estimate from Wilcoxon’s test applied to
pairs matched for all covariates is —6.9, so not-for-profit schools could be harmful,
but at I' = 1.7 the minimum estimate from the U -statistic applied to pairs matched
for the four pretreatment test scores is still positive 3.2.

TABLE 2
Minimum Hodges—Lehmann point estimate of an additive effect T of
attending a not-for-profit school rather than a for-profit school, using
either Wilcoxon’s statistic or one version of the U -statistic, with pairing
based either on all covariates or just the four pretreatment test scores

Covariates used in pairing

Wilcoxon statistic (2, 2, 2) U -statistic (20, 18, 20)
r All 4 test scores All 4 test scores
1 17.9 17.1 14.8 16.9
1.1 13.4 13.3 12.1 14.4
1.2 9.4 9.9 9.5 12.1
1.3 5.6 6.7 7.2 10.1
1.4 2.1 3.8 5.1 8.1
1.5 —1.1 1.1 3.1 6.4
1.6 —4.1 —-14 1.3 4.7

1.7 —6.9 3.8 -0.3 32
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In brief, in terms of significance levels testing no effect or point estimates 7
of the magnitude of effect, results are less sensitive to unmeasured biases using a
pairing that stabilizes Y; and a test statistic that largely ignores Y; with small |Y;]|.

4.2. Analyses using the mean or one M-statistic. 'The analyses in Section 4.1
used rank statistics, such as Wilcoxon’s signed-rank statistic, but an alternative
is to use the mean or one of Huber’s M-statistics. There is a parallel sensitiv-
ity analysis for the mean of the 1907 treated-minus-control pair differences or
for other M -statistics computed from these differences; see Rosenbaum (2007).
The permutational ¢-test [Welch (1937)] is essentially the same as a signed-rank
statistic with g; = |Y;| and Maritz’s (1979) permutational M -statistic essentially
uses a different definition of ¢;, so that the sensitivity analysis is similar to Sec-
tion 3.2; again, see Rosenbaum (2007) for some necessary but omitted details. For
both re-pairings, the sample mean difference is 17.5 points, as in Figure 3, and
it would be unbiased for the average treatment effect if ' = 1. In the absence of
bias, I' = 1, the permutational ¢-test rejects the null hypothesis of no effect with
one-sided P-value 4.3 x 10~!3 when pairing with all covariates and with P-value
1.1 x 107! when pairing for the four baseline test scores. At I' = 1.4, the up-
per bound on the P-value from the permutational ¢-test is 0.098 when pairing for
all covariates and is 0.005 when pairing for the four baseline test scores. When
pairing for the four test scores, the upper bound on the P-value from the permu-
tational #-test is 0.082 at I' = 1.5, but the smallest possible point estimate of the
mean effect of the treatment is still 3 points.

As in the case of rank statistics, reducing the weight attached to ¥; with small
|Y;| increases the design sensitivity of M -statistics; see Rosenbaum (2013). One
such M-test combines Huber’s outer trimming with some inner trimming: specif-
ically, (i) it gives zero weight to Y; with |Y;| less than half the median of the |Y;|,
(ii) it gives constant weight of 1 to Y; greater than three times the median of the
|Y;|, and (iii) it rises linearly from O to 1 between half the median of the |Y;| and
three times the median of the |Y;|. As anticipated from calculations of its design
sensitivity in Rosenbaum (2013), this statistic reports somewhat less sensitivity to
unmeasured bias than does the permutational z-test: at I' = 1.5, the upper bound
on the P-value is 0.032 when pairing for the four test scores.

In brief, the patterns seen in Section 4.1 for rank statistics also occur for the
mean and for M -statistics. For all of these statistics, reducing heterogeneity of Y;
by re-pairing for a few key covariates results in reduced sensitivity to unmeasured
biases.

4.3. Analyses that use several test statistics to test the same hypothesis. Ta-
ble 3 uses three test statistics to test the one null hypothesis Hy of no treatment
effect, correcting for multiple testing, as discussed in Section 3.3 and Rosenbaum
(2012b). Specifically, the test uses the U -statistics with (m, m, m) = (20, 16, 20),
(20, 18,20) and (20, 20,20). With short-tailed distributions like the Normal,
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TABLE 3
Sensitivity analysis for two ways of pairing the same 3814 students
into 1907 pairs. Upper bound on the one-sided P-value for several
values of T'. When pairing for all covariates, the bound is 0.0498 at
I' = 1.42. When pairing for the 4 baseline test scores, the bound is
0.0491 at T =1.77

Pairing of 3814 students

r For all covariates For 4 baseline scores
1 0.0000 0.0000
1.1 0.0000 0.0000
1.2 0.0001 0.0000
1.3 0.0034 0.0001
1.4 0.0364 0.0006
1.5 0.1011 0.0028
1.6 0.2004 0.0101
1.7 0.3333 0.0275
1.75 0.4074 0.0421

(20, 20, 20) is the best of these three in terms of design sensitivity I", but with
the slightly thicker tails of a ¢-distribution on 4 degrees of freedom, (20, 16, 20)
is best. Table 3 reports the smallest of the three upper bounds on P-values after
correcting for testing three times, the appropriate correction being small because
of the strong positive dependence between three tests of the same hypothesis based
on the same data.

As theory anticipates, Table 3 reports somewhat less sensitivity to unmeasured
bias than the fixed choices of test statistic in Table 1. As in Table 1, the less het-
erogeneous pairing based on four pretreatment test scores yields less sensitivity to
unmeasured bias than pairing for all covariates.

Figure 5 depicts the amplification of the sensitivity analysis in Table 3, so that,
as in Section 3.5, the single values of I' = 1.42 and I' = 1.77 are expressed as
the corresponding curves of (A, A) atI' = (AA + 1)/(A + A). In particular, the
curve for I' = 1.42 includes (A, A) = (3, 2.06), or an unobserved covariate u that
roughly a triples the odds of treatment and doubles the odds of a positive difference
in test scores. In contrast, the ' = 1.77 includes (A, A) = (3, 3.50), or roughly a
tripling of the odds of treatment and a 3.5-fold increase in the odds of a positive
difference in test scores. The reduction in heterogeneity in Figure 3 moves the
degree of sensitivity from I' = 1.42 to I' = 1.77, and for A = 3 this is a move
from A =2 to A =3.5. In view of this, a meaningful reduction in sensitivity to
unmeasured biases was produced by balancing all covariates first in Section 2.2
and closely pairing for the predictive covariates in Section 2.3.

5. Summary. In matching, covariate balance refers to the distributions of the
observed covariate x in treated and control groups. Cardinality matching constructs
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FI1G. 5. Amplification or re-expression of a sensitivity involving one parameter I' at I’ = 1.77
or I' = 1.42 into an equivalent sensitivity analysis involving two parameters. Here, A controls
the relationship between treatment assignment, namely Z;1 — Z;y, and the unobserved covari-
ate, u;j] — ujo, and A controls the relationship between a positive response difference under
Ho, namely Rj1 — Rjp = rci1 — rci2, and the unobserved covariate, u;1 — u;>. For instance,
(A, A) = (3.00,2.06) is equivalent to T' = 1.42 while (A, A) = (3.00,3.50) is equivalent to
I' = 1.77. The dotted lines are at the asymptote of 1.42 for I = 1.42.

the largest matched sample that satisfies specified constraints (1) on covariate bal-
ance X, ignoring who is paired with whom. With this first task accomplished, with
comparable groups in hand, the pairing can then emphasize a subset of covariates
expected to predict the outcome and hence to reduce heterogeneity of the treated-
minus-control pair differences Y. In the example, one pairing used all observed
covariates, the other used only pretreatment test scores, with precisely the same
students in both pairings, differing only in who was paired with whom. The same
size treatment effect with less heterogeneity or dispersion of Y tends to be less
sensitive to unmeasured biases, that is, reduced heterogeneity increases the de-
sign sensitivity ['; see Section 3.4. In the example, the mean pair difference in
Y of 17.5 test score points was meaningfully less sensitive to unmeasured biases
when a pairing based on all covariates was replaced by a pairing focused on a few
predictive covariates yielding a modest reduction in heterogeneity from a standard
deviation of Y of 105.5 to 90.9. As seen in the sequence of sensitivity analyses that
began with the conventional match and analysis in the first column of Table 1 and
ended with the proposed match and analysis in the last column of Table 3, better
matching algorithms that reduce heterogeneity together with better statistical tests
yielded a substantial reduction in the reported sensitivity to unmeasured biases.
Moreover, as discussed in Section 3, statistical theory suggests this reduction in
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reported sensitivity to bias is expected to occur when there is an actual treatment
effect under simple models for the generation of the data.

SUPPLEMENTARY MATERIAL

Supplement to “Matching for balance, pairing for heterogeneity in an
observational study of the effectiveness of for-profit and not-for-profit high
schools in Chile” (DOI: 10.1214/13-AOAS713SUPP; .pdf). In an online supple-
ment we provide additional summary tables for covariate balance.
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