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Motivated by the increasing use of and rapid changes in array technolo-
gies, we consider the prediction problem of fitting a linear regression relating
a continuous outcome Y to a large number of covariates X, for example, mea-
surements from current, state-of-the-art technology. For most of the samples,
only the outcome Y and surrogate covariates, W, are available. These sur-
rogates may be data from prior studies using older technologies. Owing to
the dimension of the problem and the large fraction of missing information,
a critical issue is appropriate shrinkage of model parameters for an optimal
bias-variance trade-off. We discuss a variety of fully Bayesian and Empirical
Bayes algorithms which account for uncertainty in the missing data and adap-
tively shrink parameter estimates for superior prediction. These methods are
evaluated via a comprehensive simulation study. In addition, we apply our
methods to a lung cancer data set, predicting survival time (Y) using qRT-
PCR (X) and microarray (W) measurements.

1. Introduction. The ongoing development of array technologies for assay-
ing genomic information has resulted in an abundance of data sets with many pre-
dictors and presents both statistical opportunities and challenges. As an example,
Chen et al. (2011) analyzed a gene-expression microarray data set of 439 lung
adenocarcinomas from four cancer centers in the United States, with the goal of
using gene expression to improve predictions of survival time relative to using clin-
ical covariates alone. Expression was measured using Affymetrix oligonucleotide
microarray technology. After pre-screening the probes for consistency between
centers, the authors initially evaluated 13,306 probes for construction of their pre-
dictor.

A clinical challenge to a candidate model which uses Affymetrix data is its ap-
plication for predictions in new patients. The underlying complexity of Affymetrix
data, including necessary preprocessing, requires specialized laboratory facilities,
which will be locally unavailable at smaller hospitals. On the other hand, quan-
titative real-time polymerase chain reaction (QRT-PCR) offers a faster and more
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efficient assay of the same underlying genomic information, making a gqRT-PCR-
based prediction model clinically applicable. The trade-off comes from the limited
number of genes which may be assayed on a single qRT-PCR card. Thus, from
the Affymetrix data, 91 promising genes were first identified. These 91 genes were
then re-assayed with qRT-PCR. Because of tissue availability issues owing to the
multi-center-nature of the study, only 47 out of 439 tumors were re-assayed by
gRT-PCR, creating a significant missing data problem.

Motivated by this problem, in this paper we consider the analysis of a data set
with many predictors in which a large block of covariates are missing, a situa-
tion for which there is limited previous literature. To maintain relevance to the
application which drives our methodology, we assume the data have two distinc-
tive features. First, the number of covariates, that is, genes, is of moderate size,
approximately the same order as the number of observations. This precludes both
a more traditional regression situation as well as an “ultra-high-dimensional” re-
gression and reflects that an initial screening has identified a subset of potentially
informative genes. Second, there are two versions of the genomic data: measure-
ments from a prior technology, which are complete for all observations, and mea-
surements from a newer, more efficient technology, which are observed only on
a small subset of the observations. Owing to the inherent variability in parameter
estimates induced by both the missing data and the dimensionality of the problem,
we consider Bayesian approaches, which allow for the application of shrinkage
methods, in turn offering better prediction.

Translating this into statistical terminology, we consider predicting an out-
come Y given length-p covariates X. Assuming Y is continuous and fully ob-
served, we use the linear model

(1) Y=B+X"B+oe.

All observations contain Y and W, which is an error-prone length- p surrogate for
the true covariate X. On a small number of observations of size na, subsample A,
we also observe X, which is missing for the remaining subjects, constituting sub-
sample B, of size ng. Complete observations, then, contain an outcome Y, covari-
ates X and surrogates W. Subsample A is written as {ya, Xa, Wa } and subsample B
as {ys, wgp}. The true covariates from subsample B, xg, are unmeasured. The data
are schematically presented in Figure S1 of the supplemental article [Boonstra,
Mukherjee and Taylor (2013)].

Our goal is a predictive model for Y|X as in equation (1), but because W is cor-
related with X, subsample B contains information about . Moreover, shrinkage
of regression coefficients may alleviate problems associated with multicollinearity
of covariates. Boonstra, Taylor and Mukherjee (2013) proposed a class of targeted
ridge (TR) estimators of B8, shrinking estimates toward a target constructed using
subsample B, making a bias-variance trade-off. The amount of shrinkage can be
data-adaptive with a tuning parameter, say, A. In a simulation study of data sets
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with many predictors, they showed that two biased methods, a modified regression
calibration algorithm and a “hybrid” estimator, which is a linear combination of
multiple TR estimators with data-adaptive weights, uniformly out-perform stan-
dard regression calibration, an unbiased method, in terms of mean-squared predic-
tion error (MSPE):

MSPE(fo, B)
(2) = E[(Ynew - BO - X;I);W[;)Z]
= 62 + (E[ﬁo - ,éo + Xr—ll—ewl9 - Xr—l—ew A])Z + Var[/é() + Xr—lrewB]’

where the expectation is over Ypew, Xnew, YA, YB|XA, WA, WB.

However, there are reasons to consider alternative strategies. The authors
showed the TR estimator can be viewed as a missing data technique: make an
imputation Xg of the missing xg and calculate /§ treating the data as complete.
When the shrinkage is data-adaptive through the tuning parameter A, there is an
intermediate stage: choose A given Xg. Uncertainty in X or A is not propagated in
the TR estimators, thus, it can be viewed as improper imputation [Little and Ru-
bin (2002)]. Moreover, to choose A, a generalized cross-validation (GCV) criterion
was applied to subsample A. Although GCV asymptotically chooses the optimal
value of A [Craven and Wahba (1979)], it can overfit in finite sample sizes, and
an approach for estimating A which also uses information in subsample B is pre-
ferred. Finally, constructing prediction intervals corresponding to the point-wise
predictions generated by the class of TR estimators requires use of the bootstrap.
This resampling process is computationally intensive and provides coverage that
may not be nominal.

These reasons, that is, characterizing prediction uncertainty and unifying
shrinkage, imputation of missing data and an adaptive choice of A, motivate a fully
Bayesian approach toward the same goal of improving predictions using auxil-
iary data. Consider the generic hierarchical model presented in Figure 1. Known
(unknown, resp.) quantities are bounded by square (circular) nodes. Instead of
splitting the data into subsamples (cf. Figure S1), we classify it more broadly into
observed (U°P%) and missing (U™*) components. Let ¢ denote parameters of in-
terest and nuisance parameters in the underlying joint likelihood of {U°PS, U™is},

Uobs

—

FIG. 1. A hierarchical model with missing data U™S and observed data U°S. The shrinkage
penalty parameters W are the hyperparameters of ¢, the quantity(ies) of primary interest.
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Regularization of ¢ is achieved through the shrinkage parameter 5, equivalently
interpreted in Figure 1 as the hyperparameters which index a prior distribution
on ¢. One can impose another level of hierarchy through a hyperprior distribution
on 7. Using [-] and [-|-] to denote marginal and conditional distributions, draws
from [U™S, ¢, |U°P%], the distribution of unknown random quantities conditional
on the observed data, constitute proper imputation and incorporate all of the infor-
mation in the data. Summary values, like posterior means, as well as measurements
of uncertainty, like highest posterior density credible intervals and prediction in-
tervals, can easily be calculated based on posterior draws.

Placing the shrinkage parameter » in a hierarchical framework allows the flex-
ibility to determine both which components of ¢ to shrink and to what extent. As
an example of the former, Boonstra, Taylor and Mukherjee (2013) shrink estimates
of the regression coefficients 8, tuned by the parameter A. However, for improved
prediction of the outcome Y, it may be beneficial to shrink the parameters gener-
ating the missing data xg. For example, in a nonmissing-data context, the SCOUT
method [Witten and Tibshirani (2009)] shrinks the estimate of Var(X) for better
prediction. As for the extent of shrinkage, the hyperparameter-equivalence of the
tuning parameters allows for the use of Empirical Bayes algorithms to estimate 7.
This has been used in the Bayesian Lasso [Park and Casella (2008), Yi and Xu
(2008)].

This paper makes two primary contributions. First, in Section 2 we discuss
variants of the Gibbs sampler [Geman and Geman (1984)], a key algorithm for
fitting hierarchical models with missing data. Here, we keep the context broad,
assuming a generic hierarchical model indexed by ¢ with missing data U™ and
unspecified hyperparameters #, as in Figure 1. One variant, Data Augmentation
[Tanner and Wong (1987)], is a standard Bayesian approach to missing data, and
all unknown quantities have prior distributions. Two others are Empirical Bayes
methods: the Monte Carlo expectation—-maximization algorithm [Wei and Tanner
(1990)] and the Empirical Bayes Gibbs sampler [Casella (2001)]. Although pro-
posed for seemingly different problems, we argue that the sampling strategies in
each are special cases of that in Figure 1: variants of the same general algorithm,
which we call EM-within-Gibbs. This previously-unrecognized link is important,
given the increasing role Empirical Bayes methods play in modern applications.
The second primary contribution builds on this proposed framework (Section 3),
namely, a comparison of several fully Bayesian and Empirical Bayes options and
their application to our motivating genomic analysis. Of note in the data are two
crucial features: first, ¢, comprised of By, S, o2 plus parameters for modeling
the distribution of X, is of a significant dimension, so that fitting a model with
no missing data would still be somewhat challenging, and, second, the number of
partial observations where X is missing is larger than the number of complete ob-
servations. Meaningful analysis then requires the regularization, or shrinkage, of
¢ via an appropriate specification of the hierarchy and choice of . We propose
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to shrink several different components of ¢, making use of the simultaneous in-
terpretation of » as a shrinkage penalty and a hyperparameter on ¢. We evaluate
these methods via a comprehensive simulation study (Section 4), also considering
robustness of these methods under model misspecification. Finally, we analyze the
Chen et al. data set (Section 5). We include ridge regression [Hoerl and Kennard
(1970)] as a reference, because the additional modeling assumptions of the other
likelihood-based methods offer efficiency gains only when they are satisfied.

2. Gibbs sampler variants. In this section we discuss four existing variants
of the Gibbs sampler relevant to our analysis. As we will argue, two of these are
special cases of a more general variant, which we call “Empirical Bayes Within
Gibbs” (EWiG), an equivalence that has not been established previously, leav-
ing three distinct variants. We define a “variant” here as the characterization of
a posterior distribution plus an algorithm for fitting the model. All variants are
summarized in Table 1.

Data augmentation (DA+, DA) [Tanner and Wong (1987)].

Posterior: [¢, U™, 7| U°] oc [U°S, Umi5|¢] x [@|n] x [n]
Algorithm: at iteration i,
Umis(i) ~ [Umisonbs ¢(i—1)]
¢(l) ~ [¢|U0bs, UmiS(i), n(i—l)]
2D ~ [11¢®].
These two variants are natural Bayesian treatments of missing data: U™ and ¢
are both unobserved random variables. In DA+, which is given above, the hyper-

parameters 7 are also unknown [Gelfand and Smith (1990)]. In DA, a value for
n is chosen. In either case, draws of ¢ and U™" are sequentially made from their

TABLE 1
A comparison of the general form of the Gibbs sampler variants from Section 2 as they were
originally proposed. Differences between posteriors depend on the presence of missing data ymis
and whether the hyperparameters n are fully known. Differences in algorithms depend on how the
lowest level of the hierarchy, which is unknown, is treated. In particular, MCEM differs from DA
because it returns only an estimate of the posterior mode

Variant Posterior Prior on 7
DA [Tanner and Wong (1987)] [, UMIS|UCPS, ] o [UOPS, UMiS|h] x [h7] No
DA+ [Gelfand and Smith (1990)] [, U™, {U°S] oc [UPS, U™iS|g] x [@h[y] x [] Yes
MCEM [Wei and Tanner (1990)] [, UMis|Uobs 1 oc [UOPS, UMiS|] x [¢h]n] No
EBGS [Casella (2001)] [$]U°S, 7] o [U°DS[] x [$]n] No

EWiG [, UMIS|UDS, ] oc [U°PS, U™MiS| @] x [¢]p] No
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conditional posteriors. In DA+ only, » is also sampled from its conditional poste-
rior. Then, in either DA or DA+, the whole process is iterated. Tanner and Wong
prove that iterations will eventually yield a draw from the true posterior distribu-
tion of interest, [¢, U™S, 5|U°P] for DA+ or [¢, U™|U°P, 5] for DA. The full
conditional distribution [¢|U°", U™, 5] may be difficult to specify. Suppose in-
stead a set of partial conditional distributions is available, [¢ ;| ), yobs, ymis, 7],
where the set of J’s forms a partition of the vector ¢. Then under mild conditions,
repeated iterative sampling from these partial conditional distributions will also
yield draws from the true posterior [Geman and Geman (1984)].

Monte Carlo expectation—maximization (MCEM) [Wei and Tanner (1990)].

Posterior: [¢, U™is|yobs, n] [UObS, Umis|¢] x [@|n]
Algorithm: at iteration i,
fork=1,..., K,
Umis(i,k) ~ [Umis|Uobs ¢(i—1)]

K
¢ = argmax 1 Z In[¢p| U, UMBER 4],

s Ko
MCEM provides a point estimate of ¢ rather than an estimate of the posterior
distribution, as with DA/DA+. It is a modification of the original EM algorithm
[Dempster, Laird and Rubin (1977)], replacing an intractable expectation with a
Monte Carlo average of multiple imputations. K draws of U™ are sampled con-
ditional on the current value of ¢ : ¢ 1. The expected posterior is updated with
a Monte Carlo average and maximized with respect to ¢. When ¢ has a flat prior,
as in the originally proposed MCEM, {¢®} will converge to the maximum likeli-
hood estimate (MLE) of ¢. If an informative prior is specified through a particular
choice of 7, the sequence will converge to a penalized MLE [Green (1990)].

Empirical Bayes Gibbs sampling (EBGS) [Casella (2001)].

Posterior: [¢|U°bs, n] [UObS|¢] x [¢In]
Algorithm: at iteration i,
fork=1,..., K,
¢(i,k) ~ [¢|U0bs’ ”(i—l)]

K
7' = arg max 1 Z In[¢F|n].
K=
EBGS allows the data to determine a value for the hyperparameter 5. In the context
of Casella, there are no missing data U™, However, ¢ is considered missing for
purposes of determining 5: choose § which maximizes its marginal log-likelihood,
In[U°"|y]. As in MCEM, an EM-type algorithm can maximize this intractable
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log-likelihood. K draws of ¢ are made from the current estimate of its posterior,
and 7 is updated by maximizing a Monte Carlo estimate of E[In[¢)|]], where the
expectation is over the distribution [¢|U°, y@]. This expected complete-data log-
likelihood relates to the desired marginal log-likelihood as follows. First observe
that

[0 |5 ][@1U™, 5] = [$ln][U|¢, 1]
= [p|n][U°|g].

Let C = E[In[U°|@]], which is constant with respect to . Then,
In[U°*|] = E[In[¢|n]] — E[In[¢|U°, 5]] + C.

Because E[In[¢|U, 5]] < E[In[¢[U°, 1] for any 5, we have the result that
maximizing E[In[¢|5]] (or a Monte Carlo approximation thereof) over 5 will in-
crease ln[UObsm] and converge to a local maximum.

EM-within-Gibbs (EWiG).

Posterior: [¢, Umis[yobs, ] o [UObS, Umis|¢] x [¢In]
Algorithm: at iteration i,
fork=1,..., K,
sk o [Umisonbs’ ¢(i,k—1)]
$0 ~ [¢|U0bs, sk, n(i—l)]

. 1 K .
7' = argmax — Z In[¢P |5].
K k=1

Importantly, both MCEM and EBGS allow the lowest level of the hierarchy to
be adaptively determined by the data rather than chosen a priori. In MCEM, this
lowest level is ¢, and in EBGS, it is 5. However, MCEM can be expanded in
the presence of an unknown n by putting both U™ and ¢ into the imputation
step, so ¢ is sampled rather than optimized. The maximization step determines 3.
This returns to the original goal of DA+/DA, which is determining the posterior
distribution of ¢. Equivalently, we can take the perspective of expanding EBGS:
add an imputation step for sampling U™, keeping the maximization step the same.
As aresult of this equivalence, expanding either MCEM or EBGS yields the same
result, what we call EWIG, given above. Because # is unknown, the hierarchical
model here is the same as that given in Figure 1.

In summary, we have asserted that MCEM and EBGS are special cases of
EWIG, so there are three distinct variants which we apply to our problem in the
following section: DA, DA+, and EWIiG.
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3. Specification of likelihood and priors. The discussion so far has been
deliberately generic. We now specify a likelihood for our problem of inter-
est, which in turn gives ¢, and apply these Gibbs variants to several com-
binations of (i) choices of priors [¢p|y] and (ii) values of the hyperparame-
ter 7. Translating the quantities in Figure 1 to our problem, we have U =
{ya,¥YB, XA, Wa, Wg} and U™Ms = xg. A commonly used factorization of the joint
likelihood is [Y, X, W] = [Y|X][W|X][X], which makes a conditional indepen-
dence assumption [Y|X, W] = [Y|X]. An alternative factorization is [Y | X][X|W],
which we do not consider, as it is inconsistent with the application-driven mea-
surement error structure of W and X. We make the following assumptions:

YIX=N{fo+X"B,0%},  WX=N,{v1,+vX,7°L,},

X = Np{ux, Ex).

The likelihood has an outcome model relating Y to X, a measurement error model
relating the error-prone W to X, and a multivariate distribution for X. Thus, ¢ =
{Bo, B, 0, ¥, v, T, ux, Xx}, and 7 is described below. Of interest is prediction of a
new value Ypew given Xpew, for example, Yoew = By + X:l;w B*, where B; and B*
are posterior summaries of By and . Uncertainty is quantified using the empirical

distribution of ¥ty = B + X, B0 +620e®  where {8, O, 620} i the set

3)

of posterior draws and g® i N{0, 1}. If xg = U™ were observed, the complete
log-likelihood would be

KC — ln[UObs, Umis|¢]
4) = In[yalxa, Bo. B, 0]+ In[walxa, ¥, v, 7] + In[xa|x, Tx]

+In[y|xs, fo. B. 0°] + In[wg|xp, ¥, v. 7] + In[xp|nx. Zx].
The log-likelihood gives the imputation step:

(5) xp U, ¢ = Ny {5 (U, §), T(9)],

where T'(¢) = [BB/o” + (v*/t)I, + 517" and X (U™, ¢) = [(ys —
,301,,]3)}9T/c72 + (V/‘L'z)(WB -yl 1;) + (lnBu;)Zgl]l‘((b). Note that the mean
is an ng X p matrix, each row representing the mean vector corresponding to a
length- p observation, but the covariance is shared. The imputation is defined only
by the likelihood and is common to all methods we consider; the differences lie in
the choice of prior [¢|n] and the hyperparameter 5. These crucially determine the
nature and extent of shrinkage induced on ¢. In what follows, we propose several
options, summarized in Table 2.

VANILLA. As a baseline approach, we apply DA to the problem. The choice of
prior is

_ - 2p—1 —
© [l (o) 2! expl - 2 Tr(ding(Vartna) 25 )
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TABLE 2
A summary of all Gibbs samplers and choices of priors we considered. A is constrained to the class
of diagonal matrices. VANILLA and EBSIGMAX require that p <np + np

Method [Bln] [Zxin]l o |25 2P~D/2x »  Variant
VANILLA 1 exp{— 22 Tr(diag(VarlxaDEH) 0} DA
HIERBETAS  (%5)P/2exp{—3 28T B} exp(— 221 Tr(diag(VarlxaDZg D) () DA+
EBBETAS  (2)P/2exp(—1 58T B} exp(— 22 Tr(diag(VarlxaDZ5 1)) (4} EWIG
EBSIGMAX 1 |APP/2 exp{—(1/2) Tr(ATK ")) (A} EWIG

EBBOTH  (2)P2exp(=35B878)  IAPP2exp(—(1/9TrAZK)) (1, A} EWIG

where diag(\//-a\r[xA]) is the diagonal part of the empirical covariance of xa. This
is a Jeffreys prior on each component of ¢ except Z;(l (see Remark 1 below),
and 75 is known. The product of expressions (4) and (6) yields the full conditional
distributions of each component of ¢. For brevity, we present only the Gibbs steps
for B and *5! the complete set of full conditional distributions are given in the
supplemental article [Boonstra, Mukherjee and Taylor (2013)]:

B~ Npf(xaxa + XEXB)_1 (xAlya — Boln, 1+ Xg [¥B — Bolug]),
o2 (xAxa +x5xB) "'},
(1) T~ W{3p+na+ns,
(@2p — 1) diag(Varlxal) + (xa — Lny #%) | (%a — L )
+ (x8 = Lighg) ' (x8 — Lug i)' .

The Wishart distribution with d degrees of freedom, W{d, S}, has mean dS. As
made clear in the matrix inversion in (7), VANILLA may only be implemented
when p <np 4+ ng.

REMARK 1. A Jeffreys prior on Z_l, )3;(1 ~ W{0,0I,}, may result in an
improper joint posterior if ng 3> na and p is large, that is, when the fraction of
missing data is large. From our numerical studies and monitoring of trace plots,
even a minimally proper prior on E;(l, that is, using p + 1 degrees of free-
dom, does not ensure a proper posterior. We assume a priori 2;(1 ~W{3p,(2p—
H-! [diag(\/lgr[xA])]_1 }, a data-driven choice, the density of which is given in (6).
The prior mean of )3;(1 18 ﬁ—fl[diag(@[xA])]_l, and the prior mean of Xx
is diag(\//-a\r[xA]). Heuristic numeric evidence shows that 3p degrees of freedom
works well, but we have not demonstrated a theoretical optimality for this. Other
values that ensure convergence are equally defensible.
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We call the Gibbs sampler which uses this mildly informative prior specifica-
tion VANILLA. All the other methods we propose will have modified Gibbs steps
for two components of ¢: 8 and )3;(1. Shrinking B is a clear choice: from (3),

B is closely tied to prediction of Y |X. As for <!, this determines in part the
posterior variance of xg (5); as this variance increases, the posterior variance of
B decreases (7), thereby shrinking draws . Other factors in the variance of xg,
like 72, are additional candidates for shrinkage, but we do not pursue this here.

3.1. Adaptive prior on . Since we are interested in regularizing predictions
of the outcome Y, a natural candidate for shrinkage via an informative prior is the
parameter vector 8, which yields the conditional mean of Y|X. Ridge regression
offers favorable predictive capabilities [Frank and Friedman (1993)], and the ¢»
penalty on the norm of B is conjugate to the Normal log-likelihood. For these
reasons, we replace the Jeffreys prior on f in (6) with

N e ]

This normal prior on § is analogous to Bayesian ridge regression. A is a hyperpa-
rameter, that is, » = {A}. Conditional upon A, the Gibbs step for § is

B~ Np{(xAXa +X§XB +AL,) " (XAYA + X5 YB).
o2 (xAxA + Xgxp + AL,) ')

Thus, the posterior mean of B8 is shrunk toward zero and with smaller posterior
variance. As we have outlined in Section 2, there are several options for the treat-
ment of A.

HIERBETAS. Following Gelfand and Smith (1990), we can treat the hyperpa-
rameter A as random (DA+) with prior distribution [A] A1, Then, we have the
following additional posterior step: A ~ G{p/2, 8 TB/(262)}. This Bayesian ridge
regression with posterior sampling of X is denoted by HIERBETAS.

EBBETAS. Alternatively, we may apply EWIG to estimate A. That is, integrate
log[B|o?, 1] with respect to the density [¢|U°P, 1], differentiate with respect to
A, and solve for A. The resulting EWiG update is A < p[(1/K) Z,le pLTRE
2®71-1 This is a Monte Carlo estimate of p{E[(,BT,B)/(az)]}_l, the maximum
of the marginal likelihood of A. The update occurs at every K'th iteration of the
algorithm using the previous K draws of B and o2; larger values of K yield a
more precise estimate. This Bayesian ridge with an Empirical Bayes update of A
is denoted by EBBETAS.

3.2. Adaptive prior on E;(l (EBSIGMAX, EBBOTH). We noted previously
that an informative prior on Xy Uis necessary to ensure a proper joint poste-
rior: ' ~ W{3p, 2p — 1)~ ![diag(Var[xa])]~'}, which has inverse scale matrix
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Cp—-1 diag(\/fa\r[XA]). As we have noted, shrinkage of ):;(1 is closely related to
that of B. This was exploited by Witten and Tibshirani (2009) in the SCOUT proce-
dure, suggesting that prediction can be improved through adaptive regularization
of X ;(1. Leaving the inverse scale matrix unspecified, the prior is

9) [Z5"1A] oc [APP2|3 PP D expl—(1/2) Tr(AZE )}

A is the unknown positive-definite matrix of hyperparameters. The full conditional
distribution of ):;(1 becomes

'~ W{3p+na+ns,
(10) (A+ (xa = Luypx) " (%a = Loy iy
+ (XB - lnBﬂ;(r)T(XB - lnB/L;(—))_l}'

A may be random or it can be updated with an EWiG step. Given the poten-
tial difficulty in precisely estimating an unconstrained matrix which maximizes
the marginal likelihood, we constrain A to be diagonal. Under this constraint, the

EWiG update for the ith diagonal of A is Ay < 3p((1/K) Yh Zx o)~

where Z;(] i) indicates the ith diagonal element of 2;(1. Then, A = diag{A1,

..., App}. This is a Monte Carlo approximation of 3p diag{E[E;(l]ll, e,
E[Z;(l]pp}*l, the minimizer of E[log[E;(1 |A]] with respect to A, subject to the
diagonal constraint, with [):;{1 |A] as in (9). This approach is denoted as EBSIG-
MAX. Like VANILLA, EBSIGMAX may only be implemented when p < na + ng.
Finally, let EBBOTH be the approach which uses both priors in (8) and (9) with
EWiG updates for A and A. These alternatives are all summarized in Table 2.

REMARK 2. Adaptively estimating the diagonal inverse scale matrix param-
eter A modifies the variance components of X. Alternatively, one might apply an
EWiG update to the degrees of freedom parameter, say, d, which modifies the par-
tial correlations of X. For example, when d = p + 1, the induced prior on each
partial correlation is uniform on [—1, 1] [Gelman and Hill (2006)]. Larger values
of d place more prior mass closer to zero. Allowing the data to specify d is a
reasonable alternative; however, we encountered numerical difficulties in imple-
menting this approach. The EWiG update cannot be expressed in closed form and
must be estimated numerically. Additionally, the “complete-data log-likelihood”
in the M-step is often flat, and a wide range of values for d will return nearly
equivalent log-likelihoods.

3.3. Estimation under predictive loss. A fitted model may be summarized by
measures of uncertainty, for example, a posterior predictive interval (YRE yRHY,

as well as point predictions, Yyew = 5 + X;—ewﬁ* using summary values B
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and B*. These are calculated with draws from the posterior distribution {¢®}.
Predictive intervals are given by empirical quantiles of {Ynew} where erezv =
,B(t) + XTI BY + 620e® and £ "X tid- N{0, 1}. For point predictions, a sum-
mary value of Sy is given by ,80 =(/T)Y, ,Bot). For B, we minimize posterior
predictive loss of Yoew- Speciﬁcally, we define the posterior predictive mean by
BPP™ = argminp Eg X, [Ussc (B — D) " Xnew Xy, (B — b). This is in contrast to the

posterior mean: BP™ = arg miny, Egjy,,. (B — b) " (B —b). Estimates of these quan-
tities are given by

t t

=1/T))_ B".

pm

(12) B

To summarize, different posterior summaries of § come from minimizing different
loss functions; we have two estimates of 8 for each method and, as a consequence,
two choices of point predictions for Yyew. In contrast, we have only one posterior

predictive interval, that derived from the empirical quantiles of {Yn(éz,v .

4. Simulation study. We conducted a simulation study based upon the moti-
vating data to evaluate these methods. The assumed model of the data satisfied the
generating model, as given in (3); violations to these modeling assumptions are
considered later. We fixed np = 50 and ng = 400. The diagonal and off-diagonal
elements of Xx were 1 and 0.15, respectively. The regresswn coefficients were
B = {100}J :‘39 (a diffuse signal) or 8 = {{O.I}kzl, 1} (a signal concentrated

in a limited number of coefficients). Values of R? were elther 0.1 or 0.4. Given
B, Tx and R?, o2 was determined by solving BTZXﬂ/(ﬂTZXﬂ +02)=R? By
was set to zero. This yielded four unique simulation settings: two choices each for
B and R?. The covariates x5 and xg were sampled from N{0,, Xx}, and ya[xa
and yg|xg were drawn for each combination of  and 2. We set Y=0andv=1
and repeated each of the four settings for t € (0, 2), drawing wa |xa and wg|xp,
the auxiliary data, based on the measurement error model in (3).

After a burn-in period of 2500, we stored 1000 posterior draws. We calcu-
lated By, B (11) and B*" (12). For VANILLA, HIERBETAS, EBBETAS, EBSIG-
I\E&EBBOTH we estimated the MSPE using Bppm on 1000 new observations:
MSPE(Bo, B = (1/1000) "1 (Yaew, j — Bo — X e iB™ )% {¥new,j Xnew,j}
are resampled from the same generatmg distribution for each simulation. As a com-
parison, we fit a ridge regression (RIDG) on subsample A only, choosing the tuning
parameter with the GCV function. Figure 2 plots l\m averaged over 250 simu-
lated data sets, over . Smaller values are better, and the smallest theoretical value
is o2, which is also plotted for reference. We also estimated MSPE using Bpm
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F1G. 2. MSPE(BPpm) plotted against t, the standard deviation of the ME model, for four simula-
tion settings. For each method, B was estimated from 250 independent training data sets, and MSPE
was estimated from 250 validation data sets of size 1000. The thick, solid bar ) corresponds to
predictions made using the true generating parameters. The three best-performing methods, HIER-
BETAS, EBBETAS and EBBOTH, are virtually indistinguishable.

Numerical values are given in Tables S1 and S2, which also contain results from
additional parameter configurations. Finally, we computed prediction intervals for
the new observations (Section 3.3). Although frequentist in nature, it is still desir-
able for a Bayesian prediction interval to achieve nominal coverage; the average
coverage rates of Ypew, j, nominally 95%, are given in Figure 3.

From Figure 2, HIERBETAS, EBBETAS and EBBOTH give about equally good
predictions and are consistently the best overall scenarios. EBSIGMAX, which cor-
responds to shrinkage on )3;(1 alone, predicts poorly, and VANILLA does only
slightly better. RIDG does not beat the better-performing Bayesian methods. Even
though the quality of the imputations for xg depends on the signal in the ME
model, the resulting prediction error of HIERBETAS, EBBETAS and EBBOTH varies
little over the values of T we evaluated.

Coverage properties. HIERBETAS, EBBETAS and EBBOTH maintain close-to-
nominal prediction coverage (Figure 3). In contrast, larger values of 7 drastically
decrease the coverage of VANILLA and EBSIGMAX. Prediction intervals for RIDG
are not automatic but may be calculated using the bootstrap. This is included in
our primary data analysis.

Mean squared error. The results discussed above and reported in Figure 2 use

ﬁppm, which minimizes predictive loss, and are evaluated by MSPE. If instead we

use MSE(Bppm) or MSE(fipm), HIERBETAS, EBBETAS and EBBOTH remain the
preferred methods (results not given).

Computation time. All Bayesian methods had approximately equal run-times,
each requiring about 110 seconds per data set under these simulation settings; run-
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FIG. 3.

Average coverage of prediction intervals plotted against T, the standard deviation of the ME
model, for four simulation settings. For each method, prediction intervals were created using draws
of B from the converged Gibbs sampler, and coverage was averaged over 250 validation data sets of
size 1000. Nominal coverage is 95. The lines for the three methods that are closest to maintaining
nominal coverage, HIERBETAS, EBBETAS and EBBOTH, are virtually indistinguishable.

times would increase with p, the dimension of 8. While RIDG required only 1-2
seconds for each data set, it does not give automatic prediction intervals, so a direct
comparison of run-times here would be improper. In the data analysis (Section 5),
we implement a bootstrap algorithm to construct prediction intervals, allowing
for a fair comparison of computational time. Full computational details are in the
supplemental article [Boonstra, Mukherjee and Taylor (2013)].

Violations to modeling assumptions. As we have noted, these likelihood-
based approaches depend on the assumed model approximately matching the
true generating model. We evaluated robustness by considering the following vi-
olations of the model assumptions: (i) the distribution of ¢ is skewed, shifted
to maintain a zero mean: ¢ + 1 ~ G{1, 1}, (ii) the measurement error model
is misspecified W|X ~ N,{y/1, + X2, rzlp}, where we use X2 to denote the
element-wise square, or (iii) X comes from a mixture of distributions: X|Z ~
Np{liz=2133 x 1,) — 11z=31(3 x 1)), Xx}, where 1 is the indicator function
and Z < Unif{1, 2, 3.

The results of these modeling violations are given in Tables S3—S8. When ¢ is
skewed (S3, S4), the rankings change little; the Bayesian ridge methods are equally
preferred. The case is similar for the misspecified measurement error model (S5,
S6). When X comes from a mixture of distributions, the results change depend-
ing on whether the signal in 8 is concentrated (S7) or diffuse (S8). In the for-
mer, EBBOTH is best by a large margin for larger values of 7, even over the other
Bayesian ridge methods, HIERBETAS and EBBETAS. In this case, then, what is
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required is the joint, adaptive shrinkage of ):;(1 and B. This difference in per-
formance is not observed when the signal is diffuse (S8), and the Bayesian ridge
methods are all equally good.

A general conclusion of this study is that the shrinkage induced by a Bayesian
ridge regression is adaptable to many scenarios and robust to modeling violations.
The Gibbs sampler allows for the use of the additional information in subsam-
ple B despite xg being missing, and the ridge prior on 8 is effective at controlling
variability, thereby increasing precision in predictions. Most important is that this
holds even when the signals in the outcome model and the ME model are both very
weak, a challenge commonly encountered in the analysis of genomic data.

5. Data analysis. We now consider the motivating problem of efficiently us-
ing the auxiliary information in the data from Chen et al. (2011), containing 91
genes representing a broad spectrum of relevant biological functions, to build a
predictive model for survival. Expression using Affymetrix is measured on 439
tumors, and qRT-PCR measurements are collected on a subset of 47 of these. Clin-
ical covariates, age, gender and stage of cancer [I-1II], are also available. Because
qRT-PCR is the clinically applicable measurement for future observations, the goal
is a qRT-PCR + clinical covariate model for predicting survival time after surgery.
An independent cohort of 101 tumors with qRT-PCR measurements and clinical
covariates is available for validation. After some necessary preprocessing of the
data, as described in the supplemental article [Boonstra, Mukherjee and Taylor
(2013)], the available data had np = 47, ng = 389, and the validation sample is
size 100.

Because our methodology was developed for continuous outcomes, censoring
necessitated some adjustments to the data in order to fit our models. We first im-
puted each censored log-survival time from a linear model of the clinical covari-
ates, conditional upon the censoring time. This model was fit to the training data,
but censored survival times in both the training and validation data were imputed.
Given completed log-survival times, we refit this same model and calculated resid-
uals from both the training and validation data. These residuals were considered
as outcomes, and the question is whether any additional variation in the residuals
is explained by gene expression. While there are other ways of dealing with coars-
ened data and additional covariates in the likelihood-based framework, processing
the data this way allows for RIDG to serve as a reference. To more realistically
model the data, we allow for a gene-specific ME model: w;; = v; +v;x;; + t&;;.
To incorporate this modification into our model, we put independent flat priors on
Yjandvj, j=1,..., p. The modified Gibbs steps are included in the supplemen-
tal article [Boonstra, Mukherjee and Taylor (2013)].

We applied each Bayesian approach, running each chain of the Gibbs sampler
for 4000 iterations and storing posterior draws from the subsequent 4000 itera-
tions. Table 3 presents numerical results: the estimated MSPE from predicting the
uncensored residuals in the validation data and the average prediction coverage of
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TABLE 3
Results from lung adenocarcinoma analysis. MSPE is the empirical prediction error in the
validation data, SIBS is the Scaled Integrated Brier Score, Avg. Coverage is average coverage of the
prediction intervals, Avg()?r?gv'vs - f’nzé\sy) gives the average prediction interval length for the
validation sample, and Computation gives the time, in seconds, to calculate coefficient estimates

and prediction intervals

RIDG VANILLA HIERBETAS EBBETAS EBSIGMAX EBBOTH

MSPE(Bo, 8™ 0620 1251 0.555 0.555 1.230 0.561
MSPE(Bo, B™) - 1.768 0.559 0.558 1.932 0.560
SIBS(B™™™) 0.544  0.629 0.394 0.393 0.632 0.396
SIBS(B™™) - 0.796 0.395 0.395 0.848 0.395
Avg. Coverage 0.92 0.88 0.96 0.97 0.87 0.96
Avg(YOls —VZ3) 337 3.98 3.11 3.11 3.93 3.09
Computation (sec) 298 268 269 268 269 269

these residuals. Additionally, Table 3 presents the Scaled Integrated Brier Score
[SIBS, Graf et al. (1999)], which is a scoring method for right-censored data, on
the original, unadjusted validation data.

To calculate the SIBS, which is a function of predicted survival probabilities,
we used the survival function from the Normal distribution, estimating the mean
log-survival time by adding the linear predictor of the genomic data to the linear
predictor of the clinical covariates. At each unique time of last follow-up (either
time of death or censoring), the squared difference in predicted survival probability
for each individual minus current dead/alive status was calculated and averaged
over all individuals and integrated over all time points, with censored individuals
only contributing to the calculation of the score until their censoring time. This
quantity was scaled by a reference score, that from plugging in 0.5 as a predicted
survival probability everywhere, to get the SIBS. Thus, any model that does better
than random guessing has a SIBS in the interval (0,1), and a smaller SIBS is better.

Based upon MSPE, HIERBETAS, EBBETAS and EBBOTH were about equally

good, with MSPEs of 0.555, 0.555 and 0.561, respectively, using B . These
MSPEs are smaller than those from RIDG (0.620) as well as VANILLA (1.251), and
EBSIGMAX (1.230). Using ﬁpm, the estimated posterior mean of 8, the three best
methods gave almost identical results, while VANILLA and EBSIGMAX had worse
prediction error. Similarly, HIERBETAS, EBBETAS and EBBOTH had the smallest
SIBS (resp., 0.394, 0.393 and 0.396), and the remaining methods had larger SIBS.

Considering coverage of the prediction intervals, HIERBETAS (0.96), EBBETAS
(0.97) and EBBOTH (0.96) all had rates close to their nominal values, and their
prediction intervals widths are smallest. This contrasts with VANILLA and EBSIG-
MAX, whose coverage rates are less than nominal (0.88, 0.87). We created predic-
tion intervals for RIDG using a bootstrap algorithm; the resulting coverage is 0.92.
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The required computational time is 298 seconds for RIDG, including the bootstrap
algorithm to calculate prediction intervals, and about 268—269 seconds for each
Bayesian method. Although p, na and ng were about the same as in the simu-
lation study, fitting the methods took longer (268 vs. 110 seconds) because the
number of total MCMC iterations increased (8000 vs. 3500).

To summarize the analysis thus far, a Bayesian ridge regression, which uses all
observations in the data, offers better overall predictive performance in our valida-
tion data and, compared to a ridge regression on the complete observations alone,
narrower prediction intervals that still achieve nominal coverage. This is a reflec-
tion of the extra information that is available in the incomplete observations. Be-
yond the question of zow to use the auxiliary genomic information in a prediction
model, which has been already been covered in detail, more fundamental to the ap-
plication is whether one of the Bayesian ridge regressions, for example, EBBETAS,
can do better than an analysis using clinical covariates alone, of which complete
information is available on all observations. The natural comparison would be an
accelerated failure time (AFT) regression, modeling censored log-survival time as
a linear function of the clinical covariates and gaussian noise. Predictions from this
AFT model could be directly compared to the outcome model in (1).

The SIBS from fitting the AFT model is 0.394, nearly equal to that of EBBE-
TAS. Exploring this comparison further, Figure 4 gives risk-indexed Kaplan—Meier
plots of the validation data, comparing predictions using EBBETAS (calculated by
adding together the genomic linear predictors to the clinical covariate linear pre-
dictors described at the beginning of this section) to that of the AFT model. For
each model, patients in the validation sample were indexed based on the their pre-
dicted survival time: less than 30 months, between 30 and 60 months, or longer
than 60 months. From the figure, the clearest distinction is in the low-risk group,

1.0 4 r 1.0
0.8 - 0.8
0.6 - 0.6
0.4 — - 0.4
EBBETAS Clin. Only
0.2 - —— Pred. <30 months || = = Pred. < 30 months L o2
’ —— 30 < Pred. <60 - - 30<Pred. <60 ’
Pred. > 60 Pred. > 60
0.0 — — 0.0
I 1 1 1 1 1 1
0 10 20 30 40 50 60

FI1G. 4. Comparison of risk-indexed Kaplan—Meier plots. For both EBBETAS and an accelerated
failure time model using only the clinical covariates, the validation data was grouped based on
predicted survival time (less than 30 months, between 30 and 60 months, and longer than 60 months).
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those predicted to live longer than 60 months. In the low-risk, “>60 month” group
as defined by EBBETAS, 25 out of 31 patients, or about 80%, were alive at 60
months’ time. This contrasts with the AFT model: 56 patients were predicted to
live beyond 60 months, and 36, or about 64%, were alive at 60 months’ time.
Also distinctive is that the survival curves for the medium- and high-risk groups of
the AFT model cross several times and generally show less separation compared
to EBBETAS. The estimated median survival times for these two groups are 28.6
(high) and 47.5 (med.) months under the EBBETAS-based grouping versus 32.3
(high) and 31.1 (med.) under the AFT grouping. Thus, despite nearly equal values
of the SIBS, which are aggregate measures of predictive performance, EBBETAS
appears to have better individual predictions and discrimination between the three
groups.

6. Discussion. Driven by a need to incorporate genomic information into pre-
diction models, we have considered the problem of shrinkage in a model with
many covariates when a large proportion of the data are missing. Predictions for
future observations are of primary interest. We discuss the primary contributions
of this paper in two parts as follows.

6.1. Shrinkage via the Gibbs sampler. A likelihood-based approach confers
a number of advantages, these being the inclusion of shrinkage into the likeli-
hood and the proper accounting of uncertainty in predictions coming from the
unobserved data. A number of existing Bayesian approaches for the treatment of
missing data and/or implementation of shrinkage methods are easily adapted here.
We have shown how two such approaches, the Monte Carlo EM [Wei and Tanner
(1990)], a Gibbs sampler which multiply imputes missing data, and the Empirical
Bayes Gibbs Sampler [Casella (2001)], a Gibbs sampler which adaptively shrinks
parameter estimates, generalize to the same algorithm, which we call EM-within-
Gibbs.

We proposed specific choices of prior specification aimed at improving predic-
tion with shrinkage methods. The various flavors of the Bayesian ridge, denoted
as HIERBETAS, EBBETAS and EBBOTH, stand out as the methods of choice, in-
dicating that shrinkage of 8, which is the vector of regression coefficients in the
outcome model, is most crucial, over and above no shrinkage at all (VANILLA)
or shrinkage of )3;(1 alone (EBSIGMAX). Our simulation study and data analysis
showed the Bayesian ridge to be best under a number of scenarios using several
criteria, including MSPE and prediction coverage, and robust to several model-
ing violations. In addition, the Bayesian ridge does not require p < na + np, in
contrast to VANILLA or EBSIGMAX. As for the specific choice of which Bayesian
ridge regression is best, we found little evidence to recommend any one variant.

That shrinkage of ):;(1 alone, as we have implemented it, does not improve pre-
dictions (and sometimes actually worsens predictions) may be due to the specific
nature of the shrinkage we implemented. The mean of the conditional distribution
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of ):;(1 given in (10) is a convex combination of A/(3p), which is the inverse of
its prior mean, and the sample variance of xo and xg. In contrast, ridge regres-
sion may be viewed as simply adding AI,, to the sample variance of the covariates.
The Wishart prior cannot mimic this effect, and the construction of a different,
nonconjugate prior for 2‘;(1 may be required to induce ridge-type shrinkage.

6.2. Using genomic information in prediction models. Figure 5 plots coeffi-
cient estimates and 95% credible intervals for the 91 genes according to EBBETAS.
They are ordered by the ratio of their posterior mean to posterior standard devi-
ation, an estimate of statistical significance. The ten most significant genes are
annotated, according to the R package annotate [Gentleman (2012)]. Even the
most significant gene, ERBB3, is not significant at the 0.05 level. Although these
are preselected genes that were deliberately chosen to represent a wide spectrum
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FI1G. 5. Coefficient estimates (X) and 95% credible intervals (— —) of the 91 genes according to
EBBETAS, ordered from top to bottom by the magnitude of the ratio of posterior predictive mean to
posterior standard deviation. The top ten genes are highlighted and annotated.
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of biological functions, many of which have already been implicated in different
cancers, this lack of significance for individual genes is not unexpected. The ge-
nomic effect is likely to be at the pathway-level rather than individual expressions,
which a plot like Figure 5 is too coarse to detect. Despite this lack of individual
significance, the small genomic effects collectively yield an overall improvement,
albeit small, in predictive ability when the information is properly incorporated,
and the Bayesian ridge regression appears best-equipped to do so.

SUPPLEMENTARY MATERIAL

Supplemental article (DOI: 10.1214/13-AOAS668SUPP; .pdf). Here we give
the full derivation of the Gibbs steps, computational details and the results from
the simulation study. The data from Section 5 and the code for its analysis are
available at http://www-personal.umich.edu/~philb.
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