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Abstract. Consider biased random walks on two Galton–Watson trees without leaves having progeny distributions P1 and P2
(GW(P1) and GW(P2)) where P1 and P2 are supported on positive integers and P1 dominates P2 stochastically. We prove that
the speed of the walk on GW(P1) is bigger than the same on GW(P2) when the bias is larger than a threshold depending on P1
and P2. This partially answers a question raised by Ben Arous, Fribergh and Sidoravicius (Comm. Pure Appl. Math. 67 (2014)
519–530).

Résumé. Nous considérons des marches aléatoires biaisées sur deux arbres de Galton–Watson sans feuilles GW(P1) et GW(P2)

ayant des lois de reproduction respectivement P1 et P2, deux lois supportées par les entiers positifs telles que P1 domine stochasti-
quement P2. Nous prouvons que la vitesse de la marche sur GW(P1) est supérieure ou égale à celle sur GW(P2) si le biais est plus
grand qu’un seuil dépendant de P1 et P2. Ceci répond partiellement à une question posée par Ben Arous, Fribergh et Sidoravicius
(Comm. Pure Appl. Math. 67 (2014) 519–530).
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1. Introduction and main results

1.1. Introduction

Consider a supercritical Galton–Watson tree, i.e., a random rooted tree, where the offspring size of all individuals are
i.i.d. copies of an integer random variable Z, which satisfies P(Z = k) = pk , k = 0,1, . . . and

∑
k≥1 kpk > 1. The

tree has no leaves if p0 = 0. We shall use |x| to denote the distance of a vertex x from the root. Moreover x∗ will
denote the ancestor of x for any vertex x different from the root and xi will denote the ith child of x. Given a tree T

and β > 0, we define β-biased random walk (Xn)n≥0 on T as follows. Transitions to each of the children of the root
are equally likely. If the vertex x has k children and x is not the root then the transition probabilities are given by

P(Xn+1 = x∗|Xn = x) = 1

1 + βk
,

P (Xn+1 = xi |Xn = x) = β

1 + βk
, i = 1,2, . . . , k.
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We start the walk from the root of the tree and denote by P ω the law of (Xn)n≥0 on a tree ω. We define the averaged law
as the semi-direct product P= P ×P ω where P is the Galton–Watson measure (associated with offspring distribution
P ) on the space of rooted trees conditioned on non-extinction.

Lyons [6] proved that if β > 1
E[Z] , then the random walk is transient, i.e., limn→∞ |Xn| = ∞. Lyons, Pemantle and

Peres [7] showed that P almost surely, the speed

v(β,P ) := lim
n→∞

|Xn|
n

(1.1)

exists and is a non-random constant. A lot of work has been done on the behavior of the speed as a function of β .
It was conjectured in [7] that v(β,P ) increases in β on ( 1

E[Z] ,∞) when the tree has no leaves, i.e., P {0} = 0. The
conjecture has been open for a long time until proven recently in [3] for large values of β .

Theorem ([3]). The speed v(β,P ) of a β-biased random walk on a Galton–Watson tree without leaves is increasing
for β > βc for some βc > 0 very large when P {0} = 0.

Very recently, Aïdékon obtained an expression for the speed v.

Theorem ([1]).

v(β,P ) = E[(βZ − 1)Y0/(1 − β + β
∑Z

i=0 Yi)]
E[(βZ + 1)Y0/(1 − β + β

∑Z
i=0 Yi)]

, (1.2)

where Yi are i.i.d. copies distributed as Px(τx∗ = ∞) and τy is the first hitting time of y.

Using his own formula, Aïdékon (private communications) can prove the monotonicity for β ≥ 2 when P {0} = 0.
However, the original conjecture is still open in the sense that it is not known if the monotonicity holds for every
β > 1/E[Z].

In this paper we shall investigate how the speed changes when one changes the progeny distribution keeping the
bias fixed.

The paper is organized as the following. In Section 1.2, we shall introduce our main results. In Section 2, we
shall describe in details our coupling method. Finally, in Section 3, we shall provide the proofs of all the results in
Section 1.2.

1.2. Main results

In [3], the authors raised the following interesting question, if P1 stochastically dominates P2, does it imply that
v(β,P1) ≥ v(β,P2)? We show that this is indeed the case at least when the bias is large.

Throughout this paper, when we say P1 dominates P2 stochastically, we also mean that P1 �= P2. We also recall
that if P1 dominates P2 stochastically then there is a coupling of the random variables Z1 and Z2 having distributions
P1 and P2 respectively such that Z2 ≤ Z1.

We have the following result.

Theorem 1. Assume that P1 and P2 are two probability measures on positive integers such that P1 dominates P2
stochastically. Consider β-biased random walks on GW(P1) and GW(P2). Then for every δ > 0, there exists a β0 :=
β0(P1,P2, δ) > 0 such that for any β > β0, we have v(β,P1) > v(β,P2). The constant β0 equals max{β1,

23
4 + δ}

where

β1 := cδ · min

{
E[(1/Z1 − 1/Z2)1Z1<Z2]

E[1/Z′
2 − 1/Z′

1]
,
E[Z′

2(1/Z′
2 − 1/Z′

1)]
E[1/Z′

2 − 1/Z′
1]

+ 1

}
, (1.3)

and cδ is a universal constant depending only on δ. Here, Z1, Z2 are independent and are distributed according to P1
and P2 respectively, Z′

1 and Z′
2 are jointly distributed so that Z′

1 ≥ Z′
2 almost surely and their marginal distributions

are P1 and P2.
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Remark 2. There is a universal cut-off β1 = β1(M) which works for all P2 supported on {1,2, . . . ,M} since we have

E

[
Z′

2

(
1

Z′
2

− 1

Z′
1

)]
≤ M · E

[
1

Z′
2

− 1

Z′
1

]
.

The other expression inside the parentheses in the definition of β1 in Theorem 1 is more useful when “the distribution
of Z1 is much larger than that of Z2”, we shall illustrate this in Corollary 5.

Remark 3. Suppose P1 dominates P2 and are both supported on positive integers. Then v(β,P1) ≥ v(β,P2) follows
trivially in the following cases.

(i) It is easy to see (via a coupling argument) that if the maximum of the support of P2 is not larger than the minimum
of the support of P1, then for any β > 0, we have v(β,P1) ≥ v(β,P2).

(ii) We have v(1,P1) ≥ v(1,P2) just by considering the expression

v(1,P ) = EP

[
Z − 1

Z + 1

]
obtained in [7].

(iii) Note that v(1/EP2 [Z],P2) = 0, v(1/EP2[Z],P1) > 0, and v(β,Pj ) is continuous in β for j = 1,2. Thus, for
some small ε > 0 we have v(β,P1) ≥ v(β,P2) for 0 < β < ε + 1/EP2[Z].

Further (ii) and (iii) hold even when the offspring distributions are supported on non-negative integers as long as
we define the speed as in (1.1) conditional on non-extinction of the trees.

We can improve the threshold β0 of Theorem 1 by making stronger assumptions.

Theorem 4. Suppose P1 and P2 are two probability measures on positive integers such that for some � > 1,
there exists a coupling of Z

(1)
1 ,Z

(2)
1 , . . . ,Z

(�)
1 and Z

(1)
2 ,Z

(2)
2 , . . . ,Z

(�)
2 for which min{Z(1)

1 ,Z
(2)
1 , . . . ,Z

(�)
1 } ≥

max{Z(1)
2 ,Z

(2)
2 , . . . ,Z

(�)
2 } almost surely, where Z

(1)
j , . . . ,Z

(�)
j are i.i.d. distributed according to Pj for j = 1,2. Then

for any δ > 0, we have v(β,P1) ≥ v(β,P2) for any β > max{K · β1/�

1 , 23
4 + δ} where the constant K equals 27

4 · 35/3.

Corollary 5. Assume that P1 and P2 are two probability measures on positive integers such that P1 stochastically
dominates P2. Let mi := EPi

[Z] and Z
(n)
i be the number of children in the nth generation in GW(Pi), denote the law

of Z
(n)
i by P

(n)
i for i = 1,2. Assume that there exists some θ > 0 such that E[eθZ

(1)
1 ] < ∞. Let f be the generating

function for P1 and α := − logf ′(0)/ logf ′(1). Further assume that m1 > m
max{2/α,(1/α)+1}
2 (if P1{1} = 0, then

α = ∞ and this condition is automatically satisfied).
Then, for any β > 23/4, there exists some k = k(P1,P2, β) such that v(β,P

(k)
1 ) > v(β,P

(k)
2 ). (We emphasize that

v(β,P
(k)
i ) is the speed of a β-biased random walk on a Galton–Watson tree having P

(k)
i as its offspring distribution.)

The following corollary is the counterpart to Theorem 1.2 in [3].

Corollary 6. Assume all the assumptions in Theorem 1 and recall the definition of β0 from there. Moreover, assume
that the minimum degrees of both P1 and P2 are bigger than d (for some d ≥ 2), i.e., di := min{k ≥ 1,Pi(Z = k) >

0} ≥ d , for i ∈ {1,2}.
Then we have, v(β,P1) > v(β,P2) for any β > β0/d .

2. Constructing the walks

Let us describe precisely the coupling we use. Let U1 have uniform distribution on (1/(β + 1),1). Let (Ui)i≥2
be i.i.d. uniformly distributed random variables on [0,1] independent of U1. Let {(Z′

1,k,Z
′
2,k)}k≥1 be i.i.d. ran-

dom vectors such that for each k, Z′
1,k has the marginal distribution P1 and Z′

2,k has the marginal distribution
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P2 and with probability 1, we have Z′
2,k ≤ Z′

1,k . Finally let {Zi,k}k≥1 be i.i.d. Pi for i = 1,2. The sequences
{Ui}i≥1, {Z1,k}k≥1, {Z2,k}k≥1, {(Z′

1,k,Z
′
2,k)}k≥1 are independent of each other.

In our proof we shall work conditional on an event which ensures that the roots are only visited once, for this reason
we only need one copy of U1. Note that our definition of U1 is slightly different from the one in [3].

We construct two random walks X
(1)
n and X

(2)
n (on GW(P1) and GW(P2)) and another walk Yn on Z≥0 in the

following way. Define Y0 := 0 and for n ≥ 1,

Yn :=
n∑

i=1

{1Ui>1/(β+1) − 1Ui≤1/(β+1)}, n ∈N.

We start X(1) and X(2) at the roots and grow the trees GW(P1) and GW(P2) dynamically. For simplicity we drop
the time parameter n and denote the position of X

(i)
n by x(i).

Now, if at time n ≥ 0, X
(1)
n and X

(2)
n are at two sites x(1) and x(2), neither of them visited before by the correspond-

ing walks, then we assign Z′
1,n+1 and Z′

2,n+1 many children to x(1) and x(2) respectively (recall that Z′
1,n+1 ≥ Z′

2,n+1).

If at time n, one of the walks, say X(1) is at a site x(1) previously visited by the walk while the other walk X(2) is
at a new site x(2) then we assign Z2,n+1 many children to x(2).

Let us now explain the rules for transition. Denote the number of offsprings of x(i) by Zi and let x
(i)
k be the kth

child of x(i) (i = 1,2).
Define

η1 := β

(β + 1)Z1
, η2 :=

(
β

β + 1

)(
1

Z2
− 1

Z1

)
, η3 :=

(
1

β + 1
− 1

Z2β + 1

)
1

Z2
,

η4 :=
(

1

β + 1
− 1

Z1β + 1

)
1

Z1
, η5 := |η3 − η4|.

Then whenever Z1 ≥ Z2, we move according to the rule explained below.
When Un+1 ∈ (1/(β + 1),1) we have the following cases.

(1) Consider the random walk X(1).

• If Un+1 ∈ ( 1
β+1 + (i − 1)η1,

1
β+1 + iη1], then X

(1)
n+1 = x

(1)
Z1+1−i for i = 1,2, . . . ,Z1.

(2) Consider the random walk X(2).

• If Un+1 ∈ ( 1
β+1 + (i − 1)η2,

1
β+1 + iη2], then we have X

(2)
n+1 = x

(2)
Z2+1−i , where i = 1,2, . . . ,Z2.

• If Un+1 ∈ ( 1
β+1 +Z2η2 + (i −1)η1,

1
β+1 +Z2η2 + iη1], then we have X

(2)
n+1 = x

(2)
Z2+1−i , where i = 1,2, . . . ,Z2.

When Un+1 ∈ (0,1/(β + 1)) we have to consider two cases. If η3 ≥ η4, then we use the following coupling.
Figure 1 gives an illustration.

(1) Consider the random walk X(1).

• If Un+1 ∈ [0, 1
Z1β+1 ], then we have X

(1)
n+1 = x

(1)∗ .

• If Un+1 ∈ ( 1
Z1β+1 + (i − 1)η4,

1
Z1β+1 + iη4], then we have X

(1)
n+1 = x

(1)
Z1+1−i , where i = 1,2, . . . ,Z1.

(2) Consider the random walk X(2).

• If Un+1 ∈ [0, 1
Z2β+1 ], then we have X

(2)
n+1 = x

(2)∗ .

• If Un+1 ∈ ( 1
Z2β+1 + (i − 1)η5,

1
Z2β+1 + iη5], then we have X

(2)
n+1 = x

(2)
Z2+1−i , where i = 1,2, . . . ,Z2.

• If Un+1 ∈ ( 1
Z2β+1 + Z2η5 + (i − 1)η4,

1
Z2β+1 + Z2η5 + iη4], then we have X

(2)
n+1 = x

(2)
Z2+1−i , where i =

1,2, . . . ,Z2.

If η3 < η4, then we use the following coupling. Figure 2 is an illustration of the following coupling.

(1) Consider the random walk X(1).
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Fig. 1. The coupling for η3 ≥ η4. In the illustration, we use Z2;η4 etc. to denote Z2 many subintervals with each subinterval of length η4 etc.

Fig. 2. The coupling for η4 > η3.

• If Un+1 ∈ [0, 1
Z1β+1 ], then we have X

(1)
n+1 = x

(1)∗ .

• If Un+1 ∈ ( 1
Z1β+1 + (i − 1)η4,

1
Z1β+1 + iη4], then we have X

(1)
n+1 = x

(1)
Z1+1−i , where i = 1,2, . . . ,Z1 − Z2.

• If Un+1 ∈ ( 1
Z1β+1 + (Z1 − Z2)η4 + (i − 1)η5,

1
Z1β+1 + (Z1 − Z2)η4 + iη5], then X

(1)
n+1 = x

(1)
Z2+1−i , where

i = 1,2, . . . ,Z2.

• If Un+1 ∈ ( 1
Z2β+1 + (i − 1)η3,

1
Z2β+1 + iη3], then we have X

(1)
n+1 = x

(1)
Z2+1−i , where i = 1,2, . . . ,Z2.

(2) Consider the random walk X(2).

• If Un+1 ∈ [0, 1
Z2β+1 ], then we have X

(2)
n+1 = x

(2)∗ .

• If Un+1 ∈ ( 1
Z2β+1 + (i − 1)η3,

1
Z2β+1 + iη3], then we have X

(2)
n+1 = x

(2)
Z2+1−i , where i = 1,2, . . . ,Z2.

Finally if Z1 < Z2 we move according to the following rule.

(1) For i = 1,2:
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• If Un+1 ∈ [0, 1
Ziβ+1 ], then we have X

(i)
n+1 = x

(i)∗ .

• If Un+1 ∈ ( 1
Ziβ+1 + (j − 1)

β
Ziβ+1 , 1

Ziβ+1 + j
β

Ziβ+1 ], then we have X
(i)
n+1 = x

(i)
j , where j = 1,2, . . . ,Zi .

It is routine to check that X(i) is a β-biased random walk on GW(Pi) for i = 1,2.

3. Proofs

The main idea in our proof is to use a technique originally used in [3], to couple the walks on the Galton–Watson trees
with a random walk on Z. We shall use a super-regeneration time which is a regeneration time for all the three walks
Y , GW(P1) and GW(P2). Regeneration time is an often-used technique in the study of random walks in random
media. (See, e.g., [10].) Informally, a regeneration time is a maximum of a random walk which is also a minimum of
the future of the random walk. A time τ is a regeneration time for the β-biased random walk (Yn)n≥0 on Z if we have

Yτ > max
n<τ

Yn and Yτ < min
n>τ

Yn.

Consider the regeneration time for walks on GW(P1) and GW(P2) in the sense that is usually defined on trees
(see [8]). As in [3] if τ is a regeneration time for (Yn)n≥0, then it is also a regeneration time for GW(P1) and
GW(P2). In this respect, τ is called a super-regeneration time.

Let us consider the event that 0 is a regeneration time for (Yn)n≥0. Following the notation in [3], we denote this
event by {0 − SR}. Then, we have

p∞ := P(0 − SR) = β − 1

β
.

Let us define the probability measure P̃ as

P̃ (·) := P(·|0 − SR).

Under P̃ , 0 is a regeneration time and let τi be ith non-zero regeneration time.
Then, (|Xτi+1 −Xτi

|, τi+1 − τi)i≥1 is a sequence of i.i.d. random vectors having the same distribution as (|Xτ1 |, τ1)

under P̃ and as in [3], we have, for any β > 1,

v(β,P1) = Ẽ[|X(1)
τ1 |]

Ẽ[τ1]
and v(β,P2) = Ẽ[|X(2)

τ1 |]
Ẽ[τ1]

.

Hence, v(β,P1) > v(β,P2) is equivalent to Ẽ[|X(1)
τ1 |] > Ẽ[|X(2)

τ1 |].
Let us denote by B the set of times before τ1 when the random walk on Z≥0 takes a step back, i.e., B = {j ≤

τ1|Uj ≤ 1/(β + 1)}.
We quote the following lemma from [3].

Lemma 7 (Lemma 4.1, [3]). If {|B| = k}, then {τ1 ≤ 3k + 2}.

Proof of Theorem 1. Consider |B| = k, i.e., B = {i1 < · · · < ik}, where k ≥ 1 and τ1 = n. Let us make two simple
observations.

(i) |X(1)
τ1 | − |X(2)

τ1 | = 2 or 0 when k = 1.

(ii) |X(1)
τ1 | − |X(2)

τ1 | ≥ −2(k − 1) when k ≥ 2.

We have

Ẽ
[∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣]
= Ẽ

[∣∣X(1)
τ1

∣∣ − ∣∣X(2)
τ1

∣∣; |B| = 1
] +

∑
∗

Ẽ
[∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣;B = {i1 < · · · < ik}, τ1 = n
]
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≥ Ẽ
[∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣; |B| = 1
]

−
∑

∗
2(k − 1)P̃

(∣∣X(1)
τ1

∣∣ − ∣∣X(2)
τ1

∣∣ < 0;B = {i1 < · · · < ik}, τ1 = n
)
,

where
∑

∗ stands for summation over all n ≥ 2, k ≥ 2 and {i1, . . . , ik} ⊆ {1, . . . , n} for which the walk Yk does not
come back to the origin.

For the first term, we have

Ẽ
[∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣; |B| = 1
] ≥ 2

(
β

β + 1

)4

E

[
1

Z2β + 1
− 1

Z1β + 1

]
. (3.1)

Let us explain the inequality in (3.1). Let εi = I(Ui ≥ 1/(β +1))−I(Ui < 1/(β +1)). When |B| = 1, |X(1)
τ1 |−|X(2)

τ1 | =
2 or 0, hence we have

Ẽ
[∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣; |B| = 1
] = 2

p∞
P

(∣∣X(1)
τ1

∣∣ − ∣∣X(2)
τ1

∣∣ = 2; |B| = 1;0 − SR
)

and thus we get the lower bound in (3.1) by considering the event

A = {
ε1 = ε2 = 1, ε3 = −1 and

∣∣X(1)
3

∣∣ − ∣∣X(2)
3

∣∣ = 2, ε4 = ε5 = 1, τ1 = 5
}
.

For the second term, we have

P̃
(∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣ < 0;B = {i1 < · · · < ik}, τ1 = n
)

≤ 1

p∞
P

(∣∣X(1)
τ1

∣∣ − ∣∣X(2)
τ1

∣∣ < 0;B = {i1 < · · · < ik}, τ1 = n
)
.

On {|X(1)
τ1 | − |X(2)

τ1 | < 0}, let σ be the first time when the walk on GW(P1) goes up but the walk on GW(P2) goes

down, necessarily σ ∈ B. (When {|X(1)
τ1 | − |X(2)

τ1 | ≥ 0}, define σ = ∞.) We introduce some notation here. Given a
sequence θ = {θn}n≥1 where θn = ±1 we denote by τ(θ), the first non-zero regeneration time for the walk Zn =∑n

i=1 θi ; e.g., the first non-zero regeneration time for Yn, τ1 equals τ(ε) where ε = {εn}n≥1 and εn = I(Un ≥ 1/(β +
1)) − I(Un < 1/(β + 1)). Define

τ
(j)

1 = τ
(
ε(j)

)
where ε(j) := {ε1, . . . , εj−1,−1, εj+1, . . .}.

Let B(j) := {i ≤ τ
(j)

1 : ε
(j)
i = −1}. Also define

τ1(j)
= τ(ε(j)) where ε(j) := {ε1, . . . , εj−1,+1, εj+1, . . .}.

Let B(j) := {i ≤ τ1(j)
: ε(j)i

= −1}. Note that, for fixed j , ε(j) and ε(j) are functions of {Ui : i �= j}, and are hence
independent of Uj .

Also note that if |X(1)
τ1 | − |X(2)

τ1 | < 0 then the event

E =
⋃

i,j≤τ1

{
Z1,i < Z′

2,j

} ⋃
i,j≤τ1

{
Z′

1,i < Z2,j

} ⋃
i,j≤τ1

{Z1,i < Z2,j }
⋃
i �=j

i,j≤τ1

{
Z′

1,i < Z′
2,j

}

is true. For every n ≥ 2, let En
i�

:= ⋃4
j=1 En

j,i�
where

En
1,i�

:=
⋃

i,j≤n

[{
Z1,i < Z′

2,j

} ∩
{
Uil ∈

(
1

Z′
2,j β + 1

,
1

Z1,iβ + 1

)}]
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and En
2,i�

,En
3,i�

,En
4,i�

are defined similarly (i.e., use the random variables Z′
1,i ,Z2,j in the definition of En

2,i�
etc.).

P
(∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣ < 0;B = {i1 < · · · < ik}, τ1 = n
)

≤
k∑

�=1

P
(
B = {i1 < · · · < ik}, τ1 = n,σ = i�

)

=
k∑

�=1

P
(
B(i�) = {i1 < · · · < ik}, τ (i�)

1 = n,σ = i�
)

≤
k∑

�=1

P
({
B(i�) = {i1 < · · · < ik}, τ (i�)

1 = n
};En

i�

)

≤
k∑

�=1

4n2P
(
B(i�) = {i1 < · · · < ik}, τ (i�)

1 = n
)
E

[
1

Z1β + 1
− 1

Z2β + 1
;1Z1<Z2

]
,

where we used independence of ε(i�) and Ui� . Then, by Lemma 7,

P
(∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣ < 0;B = {i1 < · · · < ik}, τ1 = n
)

≤ 4(3k + 2)2
k∑

�=1

P

(
B(i�) = {i1 < · · · < ik}, τ (i�)

1 = n,Ui� ≤ 1

β + 1

)

· (β + 1) · E
[

1

Z1β + 1
− 1

Z2β + 1
;1Z1<Z2

]

= 4(β + 1)(3k + 2)2E

[
1

Z1β + 1
− 1

Z2β + 1
;1Z1<Z2

] k∑
�=1

P
(
B = {i1 < · · · < ik}, τ1 = n

)
≤ 8βk(3k + 2)2E

[
(Z2 − Z1)β

(Z1β + 1)(Z2β + 1)
1Z1<Z2

]
P

(
B = {i1 < · · · < ik}, τ1 = n

)
≤ 8k(3k + 2)2E

[(
1

Z1
− 1

Z2

)
1Z1<Z2

]
P

(
B = {i1 < · · · < ik}, τ1 = n

)
.

Therefore, by using the simple upper bound P(|B| = k) ≤ c( 27
4(1+β)

)k (Lemma 6.1 in [3]) for a universal constant
c and the fact that p∞ = (β − 1)/β , we get

Ẽ
[∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣]
≥ 2

(
β

β + 1

)4

E

[
1

Z2β + 1
− 1

Z1β + 1

]
−

∞∑
k=2

16

p∞
k(k − 1)(3k + 2)2E

[(
1

Z1
− 1

Z2

)
1Z1<Z2

]
P

(|B| = k
)

≥ 2

(
β

β + 1

)4

E

[
(Z′

1 − Z′
2)β

(Z′
2β + 1)(Z′

1β + 1)

]

− c

p∞
E

[(
1

Z1
− 1

Z2

)
1Z1<Z2

] ∞∑
k=2

16k(k − 1)(3k + 2)2
(

27

4(1 + β)

)k

≥ 2

(
β

β + 1

)4

E

[
(Z′

1 − Z′
2)β

4Z′
2Z

′
1β

2

]
− cβ

(β − 1)
E

[(
1

Z1
− 1

Z2

)
1Z1<Z2

] ∞∑
k=2

16k(k − 1)(3k + 2)2
(

27

4(1 + β)

)k
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≥ 2

(
β

β + 1

)4

E

[
(Z′

1 − Z′
2)

4Z′
2Z

′
1β

]
− c · 272β

42(β − 1)(β + 1)2
E

[(
1

Z1
− 1

Z2

)
1Z1<Z2

]

·
∞∑

k=2

16k(k − 1)(3k + 2)2
(

27

4(1 + β)

)k−2

, (3.2)

where we used the fact that Z′
1 ≥ Z′

2 ≥ 1 and β > 1. Hence we conclude that for any δ > 0, Ẽ[|X(1)
τ1 | − |X(2)

τ1 |] > 0 if
we have

β > max

{
cδ · E[((1/Z1) − (1/Z2))1Z1<Z2]

E[(1/Z′
2) − (1/Z′

1)]
,

23

4
+ δ

}
, (3.3)

for some universal constant cδ > 0 that depends only on δ.
Now we derive the other lower bound in (1.3). On {|X(1)

τ1 | − |X(2)
τ1 | < 0}, let us define the events E and F as

E := {
for some σ1 ≤ τ1,

∣∣X(1)
σ1+1

∣∣ �= ∣∣X(2)
σ1+1

∣∣ and X
(1)
j = X

(2)
j for any j ≤ σ1

}
,

F := {
for some σ2 ≤ τ1,X

(1)
j = X

(2)
j for any j ≤ σ2, and X

(1)
σ2+1 �= X

(2)
σ2+1,but

∣∣X(1)
σ2+1

∣∣ = ∣∣X(2)
σ2+1

∣∣}.
In other words, E is the event that the first time the walks on GW(P1) and GW(P2) decouple, the walk on GW(P2)

goes up and the walk on GW(P1) goes down. Clearly this happens at time σ1 ∈ B. F is the event that the first time the
walks on GW(P1) and GW(P2) decouple, they both go downwards but to different offsprings. This happens at time
σ2 which may or may not be in B.

Next,

P
(∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣ < 0;B = {i1, . . . , ik}, τ1 = n
)

= P
(∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣ < 0;B = {i1, . . . , ik}, τ1 = n;E)
+ P

(∣∣X(1)
τ1

∣∣ − ∣∣X(2)
τ1

∣∣ < 0;B = {i1, . . . , ik}, τ1 = n;F )
. (3.4)

Let us get an upper bound for the second term in (3.4).

P
(∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣ < 0;B = {i1, . . . , ik}, τ1 = n;F )
=

n∑
�=1

P
(∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣ < 0;B = {i1, . . . , ik}, τ1 = n,σ2 = �;F )
≤

n∑
�=1

P
(
B = {i1, . . . , ik}, τ1 = n,σ2 = �;F )

. (3.5)

If � /∈ {i1, . . . , ik}, then we have

P
(
B = {i1, . . . , ik}, τ1 = n,σ2 = �;F )
≤ P

(
B = {i1, . . . , ik}, τ1 = n;U� ∈

n⋃
m=1

(
1

β + 1
,
(Z′

1,m − Z′
2,m)β

(β + 1)Z′
1,m

+ 1

β + 1

))

= P

(
B(�) = {i1, . . . , ik}, τ1(�) = n,U� ∈

n⋃
m=1

(
1

β + 1
,
(Z′

1,m − Z′
2,m)β

(β + 1)Z′
1,m

+ 1

β + 1

))

= P
(
B(�) = {i1, . . . , ik}, τ1(�) = n

)
P

(
U� ∈

n⋃
m=1

(
1

β + 1
,
(Z′

1,m − Z′
2,m)β

(β + 1)Z′
1,m

+ 1

β + 1

))
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≤ n
(β + 1)

β
P

(
B(�) = {i1, . . . , ik}, τ1(�) = n,U� ≥ 1

β + 1

)
· E

[
1 − Z′

2

Z′
1

]

≤ 2nP
(
B = {i1, . . . , ik}, τ1 = n

) · E
[

1 − Z′
2

Z′
1

]
. (3.6)

If � ∈ {i1, . . . , ik}, which happens only when η3 ≥ η4, we define

Gm := Z′
2,m[η3 − η4]+

= Z′
2,m

[(
1

β + 1
− 1

Z′
2,mβ + 1

)
1

Z′
2,m

−
(

1

β + 1
− 1

Z′
1,mβ + 1

)
1

Z′
1,m

]
+
.

Then, we get

P
(
B = {i1, . . . , ik}, τ1 = n,σ2 = �;F )
≤ P

(
B = {i1, . . . , ik}, τ1 = n;U� ∈

n⋃
m=1

(
1

βZ′
2,m + 1

,
1

βZ′
2,m + 1

+ Gm

))

≤ P
(
B(�) = {i1, . . . , ik}, τ (�)

1 = n
) · n · E[Gm]

= (β + 1)P

(
B(�) = {i1, . . . , ik}, τ (�)

1 = n,U� ≤ 1

β + 1

)
· n · E[Gm]

= (β + 1)P
(
B = {i1, . . . , ik}, τ1 = n

) · n · E[Gm].

For a coupled (Z′
1,Z

′
2), we have (after a little computation)(

1

β + 1
− 1

Z′
2β + 1

)
−

(
1

β + 1
− 1

Z′
1β + 1

)
Z′

2

Z′
1

=
(

1

β + 1

)[
1 − (Z′

1 − 1)β

Z′
1β + 1

− β + 1

Z′
2β + 1

+
(

(Z′
1 − 1)β

Z′
1β + 1

)(
1 − Z′

2

Z′
1

)]
.

It is easy to check that

1 − (Z′
1 − 1)β

Z′
1β + 1

− β + 1

Z′
2β + 1

= (Z′
2 − Z′

1)β + (Z′
2 − Z′

1)β
2

(Z′
1β + 1)(Z′

2β + 1)
≤ 0,

and

0 ≤ (Z′
1 − 1)β

Z′
1β + 1

(
1 − Z′

2

Z′
1

)
≤ 1 − Z′

2

Z′
1
.

Hence E[Gm] ≤ ( 1
β+1 )E[(1 − Z′

2
Z′

1
)] and therefore

(β + 1)P
(
B = {i1, . . . , ik}, τ1 = n

) · n · E[Gm]

≤ (β + 1)P
(
B = {i1, . . . , ik}, τ1 = n

) · n · 1

β + 1
E

[
1 − Z′

2

Z′
1

]

= nP
(
B = {i1, . . . , ik}, τ1 = n

)
E

[
1 − Z′

2

Z′
1

]
. (3.7)
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So plugging (3.6) and (3.7) back into (3.5), we get

P
(∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣ < 0;B = {i1, . . . , ik}, τ1 = n;F )
≤ 2n2P

(
B = {i1, . . . , ik}, τ1 = n

)
E

[
1 − Z′

2

Z′
1

]

≤ 2(3k + 2)2P
(
B = {i1, . . . , ik}, τ1 = n

)
E

[
1 − Z′

2

Z′
1

]
.

This takes care of the second term in (3.4). Finally, let us give an upper bound for the first term in (3.4). We omit some
of the steps since they are similar. In the following computations, remember that σ1 ∈ B.

P
(∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣ < 0;B = {i1, . . . , ik}, τ1 = n;E)
≤

k∑
m=1

P
(
B = {i1, . . . , ik}, τ1 = n;σ1 = im;E)

≤ knP
(
B = {i1, . . . , ik}, τ1 = n

) · (β + 1) · E
[

1

Z′
2β + 1

− 1

Z′
1β + 1

]

≤ k(3k + 2)P
(
B = {i1, . . . , ik}, τ1 = n

) · (β + 1) · E
[
β(Z′

1 − Z′
2)

Z′
1Z

′
2β

2

]
≤ 2k(3k + 2)P

(
B = {i1, . . . , ik}, τ1 = n

) · E
[

1

Z′
2

− 1

Z′
1

]
.

Similar to our arguments in (3.2), we get

Ẽ
[∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣]
≥ 2

(
β

β + 1

)4

E

[
1

Z′
2β + 1

− 1

Z′
1β + 1

]

− 1

p∞

∞∑
k=2

2(3k + 2)2P
(|B| = k

)
E

[
1 − Z′

2

Z′
1

]

− 1

p∞

∞∑
k=2

2k(3k + 2)P
(|B| = k

) · E
[

1

Z′
2

− 1

Z′
1

]

≥
(

1

2β

)(
β

β + 1

)4

E

[
1

Z′
2

− 1

Z′
1

]

− c

p∞
E

[
1 − Z′

2

Z′
1

] ∞∑
k=2

2(3k + 2)2
(

27

4(1 + β)

)k

− c

p∞
E

[
1

Z′
2

− 1

Z′
1

] ∞∑
k=2

2k(3k + 2)

(
27

4(1 + β)

)k

. (3.8)

As earlier, we conclude that for any δ > 0 there is a universal constant c′
δ such that

Ẽ
[∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣] > 0,
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whenever

β > max

{
c′
δ

(
E[Z′

2((1/Z′
2) − (1/Z′

1))]
E[(1/Z2) − (1/Z1)] + 1

)
,

23

4
+ δ

}
.

�

Proof of Corollary 5. We shall write Zi for Z
(1)
i , for i = 1,2 and pj for P1{j}. Let us first prove that E[mk

2/

Z
(k)
1 ] → 0 as k → ∞. Pick up some m3 satisfying m2 < m3 < m1. Then, we have

mk
2E

[
1

Z
(k)
1

]
= mk

2

∑
n≤mk

3

1

n
P

(
Z

(k)
1 = n

) + mk
2

∑
n>mk

3

1

n
P

(
Z

(k)
1 = n

)

≤ mk
2P

(
Z

(k)
1 ≤ mk

3

) + mk
2

mk
3

.

Therefore, it is sufficient to prove that mk
2P(Z

(k)
1 ≤ mk

3) → 0 as k → ∞.

If Wi denotes the almost sure limit of the martingale Z
(k)
i /mk

i , then under the assumption E[Zi log+ Zi] < ∞,
Wi is a positive random variable for i = 1,2 (see, e.g., [5] and [9]). Several other properties of Wi have been well
studied in the literature. Recall that f is the generating function of Z1, then 0 < α = − logf ′(0)/ logf ′(1). Let us
first consider the case p1 > 0. Note that α < ∞ when p1 > 0. From [4] and the references therein, if p1 > 0, then,
there exists a positive constant D such that P(W1 ≤ ε) ≤ Dεα as ε ↓ 0.

Moreover, [2] proved that if there exists some θ > 0 such that E[eθZ1] < ∞ and pj �= 1 for any j ≥ 1, then there
exist some constants C1,C2 such that

P

(∣∣∣∣Z(k)
1

mk
1

− W1

∣∣∣∣ ≥ ε

)
≤ C1e−C2ε

2/3m
k/3
1 .

Now, splitting P(Z
(k)
1 ≤ mk

3) into two terms, we get

P
(
Z

(k)
1 ≤ mk

3

) = P

(
Z

(k)
1 ≤ mk

3,

∣∣∣∣Z(k)
1

mk
1

− W1

∣∣∣∣ > ε(k)

)

+ P

(
Z

(k)
1 ≤ mk

3,

∣∣∣∣Z(k)
1

mk
1

− W1

∣∣∣∣ ≤ ε(k)

)

≤ P

(∣∣∣∣Z(k)
1

mk
1

− W1

∣∣∣∣ > ε(k)

)
+ P

(
W1 ≤ ε(k) + mk

3

mk
1

)
.

Let us choose ε(k) = m
−(k/α)−kδ

2 for some δ > 0.
Using the results stated before from [4],

mk
2P

(
W1 ≤ ε(k) + mk

3

mk
1

)
≤ Dmk

2

(
ε(k) + mk

3

mk
1

)α

= D

(
m−kδ

2 +
(

m
1/α

2 m3

m1

)k)α

→ 0,

as k → ∞ if we have m1 > m
1/α

2 m3. Since it is valid for any m2 < m3 < m1, the condition m1 > m
(1/α)+1
2 is enough.

Using the results stated before from [2],

mk
2P

(∣∣∣∣Z(k)
1

mk
1

− W1

∣∣∣∣ > ε(k)

)
≤ mk

2C1e−C2(ε
(k))2/3m

k/3
1 = mk

2C1e−C2m
−(2k/3α)−(2/3)kδ
2 m

k/3
1 → 0,
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as k → ∞ if m1 > m
(2/α)+2δ

2 . Since we can pick up any δ > 0, the condition m1 > m
2/α

2 is enough. This proves that

E[mk
2/Z

(k)
1 ] → 0 as k → ∞.

If p1 = 0, then κ := min{k > 0: pk > 0} ≥ 2 and from [4], we have logP(W1 ≤ ε) ≤ −Cε−β/(1−β), for some
positive constant C and β := logκ/ logm1. In other words, P(W1 ≤ ε) is exponentially small. Since m1 > m2, we can

pick up some α′ large enough such that m1 > m
max{2/α′,(1/α′)+1}
2 holds. Since P(W1 ≤ ε) is exponentially small, we

can find a positive constant D′ such that P(W1 ≤ ε) ≤ D′εα′
. Repeat the arguments as in the case p1 > 0 replacing α

by α′ and D by D′. This proves that E[mk
2/Z

(k)
1 ] → 0 as k → ∞.

Now, let us go back to the proof of the corollary. From (1.3), it suffices to show that

E[((1/Z
(k)
1 ) − (1/Z

(k)
2 ))1

Z
(k)
1 <Z

(k)
2

]
E[(1/Z

′(k)
2 ) − (1/Z

′(k)
1 )]

→ 0, as k → ∞. (3.9)

Since, E exp(θZ1) < ∞ (in particular E[Zi log+ Z1] < ∞), we have limZ
′(k)
i /mk

i > 0 a.s. and hence

Z
′(k)
2

Z
′(k)
1

= mk
2

mk
1

· Z
′(k)
2 /mk

2

Z
′(k)
1 /mk

1

→ 0,

as k → ∞, which implies that

lim inf
k→∞ E

[
mk

2

(
1

Z
′(k)
2

− 1

Z
′(k)
1

)]
= lim inf

k→∞ E

[
mk

2

Z
′(k)
2

(
1 − Z

′(k)
2

Z
′(k)
1

)]
≥ E

[
1

W2

]
> 0.

Finally, notice that

mk
2E

[(
1

Z
(k)
1

− 1

Z
(k)
2

)
1
Z

(k)
1 <Z

(k)
2

]
= E

[
mk

2

Z
(k)
1

(
1 − Z

(k)
1

Z
(k)
2

)
1
Z

(k)
1 <Z

(k)
2

]
≤ E

[
mk

2

Z
(k)
1

]
.

Therefore, we proved (3.9). Given any β > 23/4 we can choose δ > 0 such that 23/4 + δ < β and then choose
k = k(P1,P2) large enough so that the maximum in (3.3) equals 23/4 + δ. �

We now sketch a proof of Theorem 4.

Proof of Theorem 4. We begin with the independent sequences {Ui}i≥1, {Z1,k}k≥1, {Z2,k}k≥1 and {(Z̃′
1,k, Z̃′

2,k)}k≥1

where the first three have the same meaning as in Section 2 and {(Z̃′
1,k, Z̃′

2,k)}k≥1 are i.i.d. copies of ((Z
(1)
1 , . . . ,Z

(�)
1 ),

(Z
(1)
2 , . . . ,Z

(�)
2 )), the latter having the same meaning as in the statement of Theorem 4. We shall write Z̃′

i,k =
(Z

(1)
i,k , . . . ,Z

(�)
i,k ) for i = 1,2.

We start both walks at the roots and when X(i) visits the j th distinct site at level k for the first time, we assign
Z

(j)

i,k+1 many children to that site for i = 1,2 and j ≤ l. If one of the walks, say X(1) is visiting the j th distinct site
at level k for the first time where j > �, then we assign Z1,i many children to that site for some i for which Z1,i has
not been used before. At time n, we make the transition using the two rules explained in Section 2 according as the
number of children of X

(1)
n is larger or smaller than the number of children of X

(2)
n .

If |B| = k, we have

(i) 0 ≤ |X(1)
τ1 | − |X(2)

τ1 | ≤ 2� when k ≤ �.

(ii) |X(1)
τ1 | − |X(2)

τ1 | ≥ −2(k − �) when k ≥ � + 1.

This can be argued as follows. Assume that B = {i1, . . . , ik} where k ≥ �. If |X(1)
j | < |X(2)

j | for some j ≤ i�, define

j∗ := min{i: |X(1)
i | < |X(2)

i |}. Then |X(1)
j∗−1| = |X(2)

j∗−1|. Since j∗ − 1 < i�, none of the walks has visited any of the

levels more than � times up till time j∗ − 1. We also have min{Z(1)
1,k, . . . ,Z

(�)
1,k} ≥ max{Z(1)

2,k, . . . ,Z
(�)
2,k} and hence the
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number of offsprings of X
(1)
j∗−1 is not smaller than the number of offsprings of X

(2)
j∗−1. But then |X(1)

j∗ | ≥ |X(2)
j∗ |, a

contradiction. Hence |X(1)
j | ≥ |X(2)

j | whenever j ≤ i�, this implies the claims in (i) and (ii) stated above. A similar
argument can be given for the case |B| < �.

So if we carry out an analysis similar to the one given in the proof of Theorem 1, then instead of (3.2), we shall get

Ẽ
[∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣]
≥ 2

(
β

β + 1

)4

E

[
(Z′

1 − Z′
2)

4Z′
2Z

′
1β

]
− c · 27�+1�2β

4�+1(β − 1)(β + 1)�+1
E

[(
1

Z1
− 1

Z2

)
1Z1<Z2

]

·
∞∑

k=�+1

16k(k − �)(3k + 2)2
(

27

4(1 + β)

)k−�−1

,

and (3.8) can be modified similarly. �

Proof of Corollay 6. The proof is an extension and almost the same as the proof of Theorem 1. One needs to couple
the two random walks on GW(P1) and GW(P2), with a dβ-random walk on Z≥0. Formally we re-define the walk Yn

as Y0 := 0 and for n ≥ 1,

Yn :=
n∑

i=1

{1Ui>1/(dβ+1) − 1Ui≤1/(dβ+1)}, n ∈ N.

The walk on GW(P1) and GW(P2) should also be changed accordingly. Similar arguments, as in the proof of
Theorem 1, give the counterparts to (3.2) and (3.8). Let us only present the latter, which is

Ẽ
[∣∣X(1)

τ1

∣∣ − ∣∣X(2)
τ1

∣∣]
≥

(
1

2β

)(
d · β

d · β + 1

)4

E

[
1

Z′
2

− 1

Z′
1

]

− c

p∞
E

[
1 − Z′

2

Z′
1

] ∞∑
k=2

2(3k + 2)2
(

27

4(1 + d · β)

)k

− c · d
p∞

E

[
1

Z′
2

− 1

Z′
1

] ∞∑
k=2

2k(3k + 2)

(
27

4(1 + d · β)

)k

≥
(

1

2β

)(
d · β

d · β + 1

)4

E

[
1

Z′
2

− 1

Z′
1

]

− c · d
p∞

E

[
1 − Z′

2

Z′
1

] ∞∑
k=2

2(3k + 2)2
(

27

4(1 + d · β)

)k

− c · d
p∞

E

[
1

Z′
2

− 1

Z′
1

] ∞∑
k=2

2k(3k + 2)

(
27

4(1 + d · β)

)k

.

Now, note that this gives the same constant as in (3.8). Therefore, as long as d ·β > β0 we have Ẽ[|X(1)
τ1 |− |X(2)

τ1 |] > 0
which completes the proof. �
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