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Abstract. We present two data-driven procedures to estimate the transition density of an homogeneous Markov chain. The first
yields a piecewise constant estimator on a suitable random partition. By using an Hellinger-type loss, we establish non-asymptotic
risk bounds for our estimator when the square root of the transition density belongs to possibly inhomogeneous Besov spaces with
possibly small regularity index. Some simulations are also provided. The second procedure is of theoretical interest and leads to
a general model selection theorem from which we derive rates of convergence over a very wide range of possibly inhomogeneous
and anisotropic Besov spaces. We also investigate the rates that can be achieved under structural assumptions on the transition
density.

Résumé. Nous présentons deux procédures pour estimer la densité de transition d’une chaîne de Markov homogène. Dans la pre-
mière procédure, nous construisons un estimateur constant par morceaux sur une partition aléatoire bien choisie. Nous établissons
des bornes de risque non-asymptotiques pour une perte de type Hellinger lorsque la racine carrée de la densité de transition appar-
tient à un espace de Besov inhomogène dont l’indice de régularité peut être petit. Nous illustrons ces résultats par des simulations
numériques. La deuxième procédure est d’intérêt théorique. Elle permet d’obtenir un théorème de sélection de modèle à partir
duquel nous déduisons des vitesses de convergence sur des espaces de Besov inhomogènes anisotropes. Nous étudions finalement
les vitesses qui peuvent être atteintes sous des hypothèses structurelles sur la densité de transition.
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1. Introduction

Consider a time-homogeneous Markov chain (Xi)i∈N defined on an abstract probability space (Ω, E ,P) with values in
the measured space (X, F ,μ). We assume that for each x ∈ X, the conditional law L(Xi+1 | Xi = x) admits a density
s(x, ·) with respect to μ. Our aim is to estimate the transition density (x, y) �→ s(x, y) on a subset A = A1 × A2 of
X

2 from the observations X0, . . . ,Xn.
Many papers are devoted to this statistical setting. A popular method to build an estimator of s is to divide an

estimator of the joint density of (Xi,Xi+1) by an estimator of the density of Xi . The resulting estimator is called a
quotient estimator. Roussas [33], Athreya and Atuncar [4] considered Kernel estimators for the densities of Xi and
(Xi,Xi+1). They proved consistence and asymptotic normality of the quotient estimator. Other properties of this
estimator were established: Roussas [34], Dorea [22] showed strong consistency, Basu and Sahoo [8] proved a Berry–
Essen type theorem and Doukhan and Ghindès [24] bounded from above the integrated quadratic risk under Sobolev
constraints. Clémencon [18] investigated the minimax rates when A = [0,1]2, X

2 = R
2. Given two smoothness classes

F1 and F2 of real valued functions on [0,1]2 and [0,1] respectively (balls of Besov spaces), he established the lower
bounds over the class

F =
{
ϕ,∀x, y ∈ [0,1], ϕ(x, y) = ϕ1(x, y)

ϕ2(x)
, (ϕ1, ϕ2) ∈ F1 × F2

}
.

http://www.imstat.org/aihp
http://www.imstat.org/aihp
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He developed a method based on wavelet thresholding to estimate the densities of Xi and (Xi,Xi+1) and showed that
the quotient estimator of s is quasi-optimal in the sense that the minimax rates are achieved up to possible logarithmic
factors. Lacour [28,29] used model selection via penalization to construct estimates of the densities. The resulting
quotient estimator reaches the minimax rates over F when F1 and F2 are balls of homogeneous (but possibly
anisotropic) Besov spaces on [0,1]2 and [0,1] respectively.

The previous rates of convergence depend on the smoothness properties of the densities of Xi and (Xi,Xi+1). In
the favourable case where X0, . . . ,Xn are drawn from a stationary Markov chain (with stationary density f ), the rates
depend on the smoothness properties of f or more precisely on the restriction of f to A1. This function may however
be less regular than the target function s. We refer for instance to Section 5.4.1 of Clémencon [18] for an example of
a Doeblin recurrent Markov chain where the stationary density f is discontinuous on [0,1] although s is constant on
[0,1]2. Therefore, these estimators may converge slowly even if s is smooth, which is problematic.

This issue was overcome in several papers. Clémencon [18] proposed a second procedure, based on wavelets and
an analogy with the regression setting. He computed the lower bounds of minimax rates when the restriction of s on
[0,1]2 belongs to balls of some (possibly inhomogenous) Besov spaces and proved that its estimator achieves these
rates up to a possible logarithmic factor. Lacour [27] established lower bound over balls of some (homogenous but
possibly anisotropic) Besov spaces. By minimizing a penalized contrast inspired from the least-squares, she obtained
a model selection theorem from which she deduced that her estimator reaches the minimax rates when A = [0,1]2,
X

2 = R
2. With a similar procedure, Akakpo and Lacour [3] obtained the usual rates of convergence over balls of

possibly anisotropic and inhomogeneous Besov spaces (when X
2 = A = [0,1]2d ). Very recently, Birgé [15] proposed

a procedure based on robust testing to establish a general oracle inequality. The expected rates of convergence can be
deduced from this inequality when

√
s belongs to balls of possibly anisotropic and inhomogeneous Besov spaces.

These authors have used different losses in order to evaluate the performance of their estimators. In each of these
papers, the risk of an estimator ŝ is of the form E[δ2(s1A, ŝ)] where 1A denotes the indicator function of the subset A

and δ a suitable distance. Lacour [27], Akakpo and Lacour [3] considered the space L
2(X2,M) of square integrable

functions on X
2 equipped with the random product measure M = λn ⊗ μ where λn = n−1∑n−1

i=0 δXi
and used the

distance defined for f,f ′ ∈ L
2(X2,M) by

δ2(f,f ′)= 1

n

n−1∑
i=0

∫
X

(
f (Xi, y) − f ′(Xi, y)

)2 dμ(y).

Birgé [15] considered the cone L
1+(X2,μ ⊗ μ) of non-negative integrable functions and used the deterministic

Hellinger-type distance defined for f,f ′ ∈ L
1+(X2,μ ⊗ μ) by

δ2(f,f ′)= 1

2

∫
X2

(√
f (x, y) −√f ′(x, y)

)2 dμ(x)dμ(y).

These approaches, which often rely on the loss that is used, require the knowledge (or at least a suitable estimation)
of various quantities depending on the unknown s, such as the supremum norm of s, or on a positive lower bound,
either on the stationary density, or on k−1∑k

j=1 s(l+j) for some k ≥ 1, l ≥ 0 where s(l+j)(x, ·) is the density of the
conditional law L(Xl+j | X0 = x). Unfortunately, these quantities not only influence the way the estimators are built
but also their performances since they are involved in the risk bounds. In the present paper, we shall rather consider the
distance H (corresponding to an analogue of the random L

2 loss above) defined on the cone L
1+(X2,M) of integrable

and non-negative functions by

H 2(f,f ′)= 1

2n

n−1∑
i=0

∫
X

(√
f (Xi, y) −√f ′(Xi, y)

)2 dμ(y) for all f,f ′ ∈ L
1+
(
X

2,M
)
.

For such a loss, we shall show that our estimators satisfy an oracle-type inequality under very weak assumptions
on the Markov chain. A connection with the usual deterministic Hellinger-type loss will be done under a posteriori
assumptions on the chain, and hence, independently of the construction of the estimator.

Our estimation strategy can be viewed as a mix between an approach based on the minimization of a contrast and
an approach based on robust tests. Estimation procedures based on tests started in the seventies with Lucien Lecam
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and Lucien Birgé (Le Cam [30,31], Birgé [9–11]). More recently, Birgé [12] presented a powerful device to establish
general oracle inequalities from robust tests. It was used in our statistical setting in Birgé [15] and in many others in
Birgé [13,14] and Sart [35]. We make two contributions to this area. Firstly, we provide a new test for our statistical
setting. This test is based on a variational formula inspired from Baraud [5] and differs from the one of Birgé [15].
Secondly, we shall study procedures that are quite far from the original one of Birgé [12]. Let us explain why.

The procedure of Birgé [12] depends on a suitable net, the construction of which is usually abstract, making thus the
estimator impossible to build in practice. In the favourable cases where the net can be made explicit, the procedure is
anyway too complex to be implemented (see for instance Section 3.4.2 of Birgé [13]). This procedure was afterwards
adapted to estimators selection in Baraud and Birgé [6] (for histogram type estimators) and in Baraud [5] (for more
general estimators). The complexity of their algorithms is of order the square of the cardinality of the family and
are thus implementable when this family is not too large. In particular, given a family of histogram type estimators
{ŝm,m ∈ M}, these two procedures are interesting in practice when M is a collection of regular partitions (namely
when all its elements have same Lebesgue measure) but become unfortunately numerically intractable for richer
collections. In this work, we tackle this issue by proposing a new way of selecting among a family of piecewise
constant estimators when the collection M ensues from the adaptive approximation algorithm of DeVore and Yu [21].

We present this procedure in the first part of the paper. It yields a piecewise constant estimator on a data-driven
partition that satisfies an oracle-type inequality from which we shall deduce uniform rates of convergence over balls of
(possibly) inhomogeneous Besov spaces with small regularity indices. These rates coincide, up to a possible logarith-
mic factor to the usual ones over such classes. Finally, we carry out numerical simulations to compare our estimator
with the one of Akakpo and Lacour [3].

In the second part of this paper, we are interested in obtaining stronger theoretical results for our statistical problem.
We put aside the practical considerations to focus on the construction of an estimator that satisfies a general model
selection theorem. Such an estimator should be considered as a benchmark for what theoretically feasible. We deduce
rates of convergence over a large range of anisotropic and inhomogeneous Besov spaces on [0,1]2d . We shall also
consider other kinds of assumptions on the transition density. We shall assume that s belongs to classes of functions
satisfying structural assumptions and for which faster rates of convergence can be achieved. This approach was de-
veloped by Juditsky, Lepski and Tsybakov [26] (in the Gaussian white noise model) and by Baraud and Birgé [7] (in
more statistical settings) to avoid the curse of dimensionality. More precisely, Baraud and Birgé [7] showed that these
rates can be deduced from a general model selection theorem, which strengthen its theoretical interest. This strategy
was used in Sart [35] to establish risk bounds over many classes of functions for Poisson processes with covariates.
In the present paper, we shall use these assumptions to obtain faster rates of convergence for autoregressive Markov
chains (whose conditional variance may not be constant).

This paper is organized as follows. The first procedure, which selects among piecewise constant estimators is
presented and theoretically studied in Section 2. In Section 3, we carry out a simulation study and compare our
estimator with the one of Akakpo and Lacour [3]. The practical implementation of this procedure is quite technical
and will therefore be delayed in Appendix A. In Section 4, we establish theoretical results by using our second
procedure. The proofs are postponed to Appendix B.

Let us introduce some notations that will be used all along the paper. The number x ∨ y (respectively x ∧ y) stands
for max(x, y) (respectively min(x, y)) and x+ stands for x ∨ 0. We set N

� = N \ {0}. For (E,d) a metric space, x ∈ E

and A ⊂ E, the distance between x and A is denoted by d(x,A) = infa∈A d(x, a). The indicator function of a subset
A is denoted by 1A and the restriction of a function f to A by f A. For all real valued function f on E, ‖f ‖∞ stands
for supx∈E |f (x)|. The cardinality of a finite set A is denoted by |A|. The notations C,C′,C′′, . . . are for the constants.
The constants C,C′,C′′, . . . may change from line to line.

2. Selecting among piecewise constant estimators

Throughout this section, we assume that X = R
d , A = [0,1]2d , μ([0,1]d) = 1 and n > 3.
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2.1. Preliminary estimators

Given a (finite) partition m of [0,1]2d , a simple way to estimate s on [0,1]2d is to consider the piecewise constant
estimator on the elements of m defined by

ŝm =
∑
K∈m

∑n−1
i=0 1K(Xi,Xi+1)∑n−1

i=0

∫
[0,1]d 1K(Xi, x)dμ(x)

1K. (2.1)

In the above definition, the denominator
∑n−1

i=0

∫
X

1K(Xi, x)dμ(x) may be equal to 0 for some sets K , in which case

the numerator
∑n−1

i=0 1K(Xi,Xi+1) = 0 as well, and we shall use the convention 0/0 = 0.
We now bound from above the risk of this estimator. We set

Vm =
{∑

K∈m

aK1K,∀K ∈ m,aK ∈ [0,+∞)

}

and prove the following.

Proposition 2.1. For all finite partition m of [0,1]2d ,

CE
[
H 2(s1A, ŝm)

]≤ E
[
H 2(s1A,Vm)

]+ 1 + logn

n
|m|,

where C = 1/(4 + log 2).

Up to a constant, the risk of ŝm is bounded by a sum of two terms. The first one corresponds to the approximation
term whereas the second one corresponds to the estimation term.

An analogue upper bound on the empirical quadratic risk of this estimator may be found in Chapter 4 of Akakpo [1].
Her bound requires several assumptions on the partition m and the Markov chain although the present one requires
none. However, unlike hers, we lose a logarithmic term.

2.2. Definition of the partitions

In this section, we shall deal with special choice of partitions m. More precisely, we consider the family of partitions
defined by using the recursive algorithm developed in DeVore and Yu [21]. For j ∈ N, we consider the set

Lj = {l = (l1, . . . , l2d) ∈ N
2d,1 ≤ li ≤ 2j for 1 ≤ i ≤ 2d

}
and define for all l = (l1, . . . , l2d) ∈ Lj ,

∀i ∈ {1, . . . ,2d}, Ij (li) =
{[

li−1
2j ,

li
2j

)
if li < 2j ,[

li−1
2j ,1

]
if li = 2j .

We then introduce the cube Kj,l =∏2d
i=1 Ij (li) and set Kj = {Kj,l, l ∈ Lj }.

The algorithm starts with [0,1]2d . At each step, it gets a partition of [0,1]2d into a finite family of disjoint cubes of
the form Kj,l. For any such cube, one decides to divide it into the 4d elements of Kj+1 which are contained in it, or not.
The set of all such partitions that can be constructed in less than � steps is denoted by M�. We set M∞ =⋃�≥1 M�.
Two examples of partitions are illustrated in Fig. 1 (for d = 1).

2.3. The selection rule

Given � ∈ N
� ∪ {∞}, the aim of this section is to select an estimator among the family {ŝm,m ∈ M�}.
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Fig. 1. Left: example of a partition of M2. Right: example of a partition of M3.

For any K ∈⋃m∈M�
m and any partition m′ ∈ M�, let m′ ∨ K be the partition of K defined by

m′ ∨ K = {K ′ ∩ K,K ′ ∈ m′,K ∩ K ′ �= ∅
}
.

Let L be a positive number and pen be the non-negative map defined by

pen
(
m′ ∨ K

)= L
|m′ ∨ K| logn

n
for all m′ ∈ M� and K ∈

⋃
m∈M�

m.

This definition implies in particular that

pen(m) = L
|m| logn

n
for all partition m ∈ M�.

Let us set α = (1 − 1/
√

2)/2 and for all f,f ′ ∈ L
1+(X2,M),

T
(
f,f ′) = 1

2n
√

2

n−1∑
i=0

∫
X

√
f (Xi, y) + f ′(Xi, y)

(√
f ′(Xi, y) −√f (Xi, y)

)
dμ(y)

+ 1

n
√

2

n−1∑
i=0

√
f ′(Xi,Xi+1) −√f (Xi,Xi+1)√
f (Xi,Xi+1) + f ′(Xi,Xi+1)

+ 1

2n

n−1∑
i=0

∫
X

(
f (Xi, y) − f ′(Xi, y)

)
dμ(y).

We define γ for m ∈ M� by

γ (m) =
{∑

K∈m

sup
m′∈M�

[
αH 2(ŝm1K, ŝm′1K) + T (ŝm1K, ŝm′1K) − pen

(
m′ ∨ K

)]}+ 2 pen(m).

Finally, we select m̂ among M� as any partition satisfying

γ (m̂) ≤ inf
m∈M�

γ (m) + 1

n
(2.2)

and consider the resulting estimator ŝ = ŝm̂.

Remarks
The estimator ŝ = ŝ(L, �) depends on the choices of two quantities L > 0, � ∈ N

� ∪ {∞}. We shall see in the next
section that L can be chosen as an universal numerical constant. As to �, from a theoretical point of view, it can be
chosen as � = ∞. In practice, we recommend to take it as large as possible. Nevertheless, the larger �, the longer it
takes to compute the estimator. A practical algorithm in view of computing m̂ will be detailed in Appendix A.
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The selection procedure we use may look somewhat unusual. It can be seen as a mix between a procedure based
on a contrast function (which is usually easy to implement) and a procedure based on a robust test (the functional
T (f,f ′) = −T (f ′, f ), which can be seen as a robust test between f,f ′, will allow us to obtain risk bounds with
respect to a Hellinger-type distance). This functional is inspired from the variational formula for the Hellinger affinity
described in Section 2 of Baraud [5].

In the literature, procedures based on a robust test are usually based on the minimization of a functional D known
as plausibility index. In our context, D would be

D(m) = sup
{
H 2(ŝm, ŝm′),m′ ∈ M�, T (ŝm, ŝm′) ≥ pen

(
m′)− pen(m)

}
for all partition m ∈ M�,

and the estimator would be defined by ŝm̃ where m̃ minimizes D(m) over m ∈ M�. The computation of D(m) is
unfortunately numerically intractable, which implies that m̃ is purely theoretical. The computation of the supremum
is a constraint optimization problem and the Lagrange multipliers suggest to replace D(m) by

γ1(m) = sup
m′∈M�

[
αH 2(ŝm, ŝm′) + T (ŝm, ŝm′) − pen

(
m′)]+ pen(m).

The contrast γ can be interpreted as being a modification of γ1 whose minimum can be found in practice. The
minimums of γ, γ1 and D may not be equal, but it can be shown that they possess similar statistical properties.

2.4. An oracle inequality

The main result of this section is the following.

Theorem 2.1. There exists an universal constant L0 > 0 such that, for all L ≥ L0, � ∈ N
� ∪ {∞}, the estimator

ŝ = ŝ(L, �) satisfies

CE
[
H 2(s1A, ŝ)

]≤ inf
m∈M�

{
E
[
H 2(s1A,Vm)

]+ pen(m)
}
, (2.3)

where C is an universal positive constant.

In the literature, oracle inequalities with a random quadratic loss for piecewise constant estimators have been
obtained in Lacour [27] and Akakpo and Lacour [3]. Their procedures require a priori assumptions on the transition
density and the Markov chain although ours requires none (except homogeneity). However, unlike theirs, our risk
bound involves an extra logarithmic term. We do not know whether this term is necessary or not.

In the proof, we obtain an upper bound for L0 which is unfortunately very rough and useless in practice. It seems
difficult to obtain a sharp bound on L0 from the theory and we have rather carried out a simulation study in order to
tune L0 (see Section 3).

2.5. Risk bounds with respect to a deterministic loss

Although the distance H is natural, we are interested in controlling the risk associated to a deterministic distance. To
do so, we shall make a posteriori assumptions on the Markov chain.

Assumption 2.1. The sequence (Xi)i≥0 is stationary and admits a stationary density ϕ with respect to the Lebesgue
measure μ on R

d . There exists κ0 > 0 such that ϕ(x) ≥ κ0 for all x ∈ [0,1]d .

We introduce L
1+([0,1]2d , (ϕ · μ) ⊗ μ) the cone of integrable and non-negative functions on [0,1]2d with respect

to the product measure (ϕ · μ) ⊗ μ. We endow L
1+([0,1]2d , (ϕ · μ) ⊗ μ) with the distance h defined by

∀f,f ′ ∈ L
1+
([0,1]2d , (ϕ · μ) ⊗ μ

)
, h2(f,f ′)= 1

2

∫
[0,1]2d

(√
f (x, y) −√f ′(x, y)

)2
ϕ(x)dx dy.
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In our results, we shall need the β-mixing properties of the Markov chain. We set for all q ∈ N
�

βq =
∫

R2d

∣∣s(q)(x, y) − ϕ(y)
∣∣ϕ(x)dx dy,

where s(q)(x, ·) is the density of the conditional law L(Xq | X0 = x) with respect to the Lebesgue measure. We refer
to Doukhan [23] and Bradley [17] for more details on the β-mixing coefficients.

Theorem 2.2. Under Assumption 2.1, the estimator ŝ built in Section 2.3 with � ∈ N
� and L ≥ L0, satisfies

CE
[
h2(s1A, ŝ)

]≤ inf
m∈M�

{
h2(s1A,Vm) + pen(m)

}+ Rn(�)

n
,

where

Rn(�) = n23�d inf
1≤q≤n

{
exp

(
− κ0

10

n

q2�d

)
+ nβq/q

}
(2.4)

and where C is an universal positive constant.

This result is interesting when the remainder term Rn(�)/n is small enough, that is when 2�d is small compared
to n and when the sequence (βq)q≥1 goes to 0 fast enough. More precisely, Rn(�) can be bounded independently of
n, � whenever �, d , n and the βq coefficients satisfy the following.

• If the chain is geometrically β-mixing, that is if there exists b1 > 0 such that βq ≤ e−b1q , then

Rn(�) ≤ n223�d+1
[

exp(−b1n) + exp

(
− κ0

10

n

2�d

)
+ exp

(
−
√

κ0b1

40

n

2�d

)]
.

In particular, if �, d,n are such that 2�d ≤ n/ log3 n, Rn(�) is upper bounded by a constant depending only on κ0, b1.
• If the chain is arithmetically β-mixing, that is if there exists b2 > 0 such that βq ≤ q−b2 , then

Rn(�) ≤ C′(b2)

κ
b2+1
0

2(4+b2)�d logb2+1(1 + κ0n/2�d)

nb2−1
,

where C′(b2) depends only on b2. Consequently, if 2�d ≤ n1−ζ / logn and b2 ≥ 5/ζ − 4 for ζ ∈ (0,1), Rn(�) is
upper bounded by a constant depending only on κ0, b2.

2.6. Rates of convergence

The aim of this section is to obtain uniform risk bounds over classes of smooth transition densities for our estimator.

2.6.1. Hölder spaces
Given σ ∈ (0,1], we say that a function f belongs to the Hölder space Hσ ([0,1]2d) if there exists |f |σ ∈ R+ such
that for all (x1, . . . , x2d) ∈ [0,1]2d and all 1 ≤ j ≤ 2d , the functions fj (·) = f (x1, . . . , xj−1, ·, xj+1, . . . , x2d) satisfy∣∣fj (x) − fj (y)

∣∣≤ |f |σ |x − y|σ for all x, y ∈ [0,1].
When the restriction of

√
s to A = [0,1]2d is Hölderian, we deduce from (2.3) the following.

Corollary 2.1. For all σ ∈ (0,1] and
√

s A ∈ Hσ ([0,1]2d), the estimator ŝ = ŝ(L0,∞) satisfies

CE
[
H 2(s1A, ŝ)

]≤ (d|√s A|σ
)2d/(d+σ)

(
logn

n

)σ/(σ+d)

+ logn

n
,

where C is an universal positive constant.
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2.6.2. Besov spaces
A thinner way to measure the smoothness of the transition density is to assume that

√
s A belongs to a Besov space. We

refer to Section 3 of DeVore and Yu [21] for a definition of this space. We say that the Besov space Bσ
q (Lp([0,1]2d))

is homogeneous when p ≥ 2 and inhomogeneous otherwise. We set for all p ∈ (1,+∞) and σ ∈ (0,1),

Bσ
(
L

p
([0,1]2d

))=
{

Bσ
p

(
L

p
([0,1]2d

))
if p ∈ (1,2),

Bσ∞
(
L

p
([0,1]2d

))
if p ∈ [2,+∞),

and denote by | · |p,σ the semi norm of Bσ (Lp([0,1]2d)). We make the following assumption to deduce from (2.3)
risk bounds over these spaces.

Assumption 2.2. There exists κ > 0 such that for all i ∈ {0, . . . , n − 1}, Xi admits a density ϕi with respect to the
Lebesgue measure μ such that ϕi(x) ≤ κ for all x ∈ [0,1]d .

Note that we do not require that the chain be either stationary or mixing.
Let (L2([0,1]2d ,μ ⊗ μ),d2), be the metric space of square integrable functions on [0,1]2d with respect to the

Lebesgue measure. Under the above assumption, we deduce from (2.3) that

CE
[
H 2(s1A, ŝm̂)

]≤ inf
m∈M�

{
κd2

2 (
√

s A,Vm) + L0
|m| logn

n

}
.

When
√

s A belongs to a Besov space, the right-hand side of this inequality can be upper bounded thanks to the
approximation theorems of DeVore and Yu [21].

Corollary 2.2. Suppose that Assumption 2.2 holds. For all p ∈ (2d/(d + 1),+∞), σ ∈ (2d(1/p − 1/2)+,1) and√
s A ∈ Bσ (Lp([0,1]2d)), the estimator ŝ = ŝ(L0,∞) satisfies

C′
E
[
H 2(s1A, ŝ)

]≤ |√s A|2d/(d+σ)
p,σ

(
logn

n

)σ/(σ+d)

+ logn

n
, (2.5)

where C′ > 0 depends only on κ,σ, d,p.

More precisely, it is shown in the proof that the estimators ŝ = ŝ(L0, �) satisfy (2.5) when � is large enough (when
� ≥ d−1(log 2)−1 logn).

Rates of convergence for the deterministic loss h can be established by using Theorem 2.2 instead of Theo-
rem 2.1. For instance, if the chain is geometrically β-mixing, we may choose � the smallest integer larger than
d−1(log 2)−1 log(n/ log3 n), in which case the estimator ŝ = ŝ(L0, �) achieves the rate (logn/n)σ/(σ+d) over the
Besov spaces Bσ (Lp([0,1]2d)), p ∈ (2d/(d + 1),+∞), σ ∈ (σ1(p, d),1) where

σ1(p, d) = d

4

(−1 + 4(1/p − 1/2)+ +
√

1 + 24(1/p − 1/2)+ + 16(1/p − 1/2)2+
)
.

If the chain is arithmetically β-mixing with bq ≤ q−6, choosing � the smallest integer larger than d−1(2 log 2)−1 ×
log(n/ logn) allows us to recover the same rate of convergence when σ ∈ (σ2(p, d),1) where

σ2(p, d) = d
(
(1/p − 1/2)+ +

√
2(1/p − 1/2)+ + (1/p − 1/2)2+

)
.

We refer the reader to Section B.6 for a proof of these two results.
In the literature, Lacour [27] obtained a rate of order n−σ/(σ+1) over Bσ (L2([0,1]2)), which is slightly faster but

her approach prevents her to deal with inhomogeneous Besov spaces and requires the prior knowledge of a suitable
upper bound on the supremum norm of s. As far as we know, the rates that have been established in the other papers
hold only when σ > 1.
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3. Simulations

In this section, we present a simulation study to evaluate the performance of our estimator in practice. We shall
simulate several Markov chains and estimate their transition densities by using our procedure.

3.1. Examples of Markov chains

We consider Markov chains of the form

Xk+1 = F(Xk,Uk),

where F is some known function and where Uk is a random variable independent of (X0, . . . ,Xk).
For the sake of comparison, we begin to deal with examples that have already been considered in the simulation

study of Akakpo and Lacour [3]. In each of these examples, Uk is a standard Gaussian random variable.

Example 3.1. Xk+1 = 0.5Xk + (1 + Uk)/4.

Example 3.2. Xk+1 = 12−1(6 + sin(12Xk − 6) + (cos(Xk − 6) + 3)Uk).

Example 3.3.

Xk+1 = 1

3
(Xk + 1) +

(
1

9
− 1

23

(
1

2
β(5Xi/3,4,4) + 1

20
β
(
(5Xi − 2)/3,400,400

)))
Uk,

where β(·, a, b) is the density of the β distribution with parameters a and b.

Example 3.4.

Xk+1 = 1

4

(
g(Xk) + 1

)+ 1

8
Uk,

where g is defined by

g(x) = 9
√

2

4
√

π
exp
(−18(x − 1/2)2)+ 9

√
2

4
√

π
exp
(−162(x − 3/4)2) for all x ∈ R.

At first sight, Examples 3.1 and 3.2 may seem to be different than those of Akakpo and Lacour [3]. Actually, we
just have rescaled the data in order to estimate on [0,1]2. The statistical problem is the same. According to Akakpo
and Lacour [3], we set p large (p = 104) and we estimate the transition densities of Examples 3.1, 3.2, 3.3 and 3.4
from (Xp, . . . ,Xn+p) so that the chain is approximatively stationary.

We also propose to consider the following examples. In Example 3.5, Uk is a centred Gaussian random variable
with variance 1/2, in Example 3.6, Uk admits the density

f (x) = 5
√

2

2
√

π

[
exp
(−50(x − 1)2)+ exp

(−50x2)]
with respect to the Lebesgue measure, and in Example 3.7, Uk is an exponential random variable with parameter 1.

Example 3.5. Xk+1 = 0.5Xk + (1 + Uk)/4.

Example 3.6. Xk+1 = 0.5(Xk + Uk).

Example 3.7. Xk+1 = Xk/(50Xk + 1) + XkUk.

We set X0 = 1/2 and estimate s from (X0, . . . ,Xn). These last three Markov chains are not stationary. Their
transition densities are rather isotropic and inhomogeneous. The transition density of Example 3.7 is unbounded.

In what follows, our selection rule will always be applied with L = 0.03 (whatever, �, n and the Markov chain).
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3.2. Choice of �

We discuss the choice of � by simulating the preceding examples with n = 103 and by applying our selection rule for
each value of � ∈ {1, . . . ,10}. The results are summarized in Table 1. When � grows up, the risk of our estimator tends
to decrease and then stabilize. The best choice of � is obviously unknown in practice but this array shows that a good
way for choosing � is to take it as large as possible. This is theoretically justified by Theorem 2.1 since the right-hand
side of inequality (2.3) is a non-increasing function of �.

3.3. An illustration

We apply our procedure for Examples 3.1 and 3.6 with n = 104, � = 7. We get two estimators and draw them with the
corresponding transition density in Figure 2.

This shows that the selected partition is thinner (respectively wider) to the points where the transition density is
changing rapidly (respectively slower), and is thus rather well adapted to the target function s.

3.4. Comparison with other procedures

In this section, we compare our selection rule with the oracle estimator and with the piecewise constant estimator of
Akakpo and Lacour [3].

The procedure of Akakpo and Lacour [3] amounts to selecting an estimator among {ŝm,m ∈ M′} where ŝm is
defined by (2.1) and where M′ is a collection of irregular partitions on [0,1]2. Precisely, with their notations, we

Table 1
Hellinger risk H 2(s1[0,1]2 , ŝ)

� Ex. 3.1 Ex. 3.2 Ex. 3.3 Ex. 3.4 Ex. 3.5 Ex. 3.6 Ex. 3.7

1 0.031 0.046 0.299 0.181 0.089 0.291 0.358
2 0.011 0.015 0.087 0.107 0.024 0.170 0.241
3 0.011 0.014 0.026 0.058 0.013 0.067 0.156
4 0.011 0.018 0.026 0.035 0.015 0.046 0.113
5 0.011 0.018 0.022 0.038 0.015 0.048 0.098
6 0.011 0.018 0.022 0.038 0.015 0.048 0.065
7 0.011 0.018 0.024 0.038 0.015 0.048 0.044
8 0.011 0.018 0.024 0.038 0.015 0.048 0.040
9 0.011 0.018 0.024 0.038 0.015 0.048 0.040

10 0.011 0.018 0.024 0.038 0.015 0.048 0.040

Fig. 2. Estimator and transition density.
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apply it with J� = 5, pen(m) = 3‖s A‖∞|m|/n and with pen(m) = 3‖ŝm•‖∞|m|/n where m• is a partition suitably
chosen (following the recommendations of Akakpo and Lacour [3], that is J• = 3). These two estimators are denoted
by ŝ(1) and ŝ(2) respectively. Notice that these penalties, which are used in their simulation study, are not the ones
prescribed by their theory. Their theoretical penalties also depend on a positive lower bound on the stationary density.

We denote by ŝ(0) the oracle estimator, that is the estimator defined as being a minimizer of the map m �→
H 2(s1[0,1]2 , ŝm) for m ∈ M7. This estimator is the best estimator of the family {ŝm,m ∈ M7} and is known since
the data are simulated. We consider the random variables

Ri = H 2(s1[0,1]2 , ŝ)

H 2(s1[0,1]2 , ŝ(i))
for i = 1,2

and denote by q0(α) the α-quantile of R0. Results obtained are given in Table 2.

3.5. Comparison with a quadratic empirical risk

In Akakpo and Lacour [3], the risks of the estimators are evaluated with a empirical quadratic norm and we can also
compare the performances of our estimator to theirs by using this risk.

To do so, let us denote by ‖ · ‖n the empirical quadratic norm defined by

‖f ‖2
n = 1

n

n∑
i=1

∫
R

f 2(Xi, x)dx for all f ∈ L
2
(
R

2,M
)

and set for i ∈ {1,2},

R′
i = ‖s1[0,1]2 − ŝ‖2

n

‖s1[0,1]2 − ŝ(i)‖2
n

.

The results obtained are presented in Table 3. They are very similar to those of Table 2.

4. A general procedure

In Section 2, we used our selection rule to establish the oracle inequality (2.3), from which we deduced rates of
convergence over Besov spaces Bσ (Lp([0,1]2d)) with σ lower than 1. We now aim at obtaining rates for more
general spaces of functions. This includes Besov spaces with regularity index larger than 1 and spaces corresponding
to structural assumptions on s. We propose a second procedure to reach this goal.

The Markov chain takes its values into X and we estimate s on a subset A of the form A = A1 × A2. We always
assume that n > 3.

Table 2
Risks for simulated data with n = 1000 averaged over 250 samples

Ex. 3.1 Ex. 3.2 Ex. 3.3 Ex. 3.4 Ex. 3.5 Ex. 3.6 Ex. 3.7

E[H 2(s1[0,1]2 , ŝ)] 0.011 0.017 0.022 0.038 0.018 0.052 0.049

E[H 2(s1[0,1]2 , ŝ(0))] 0.007 0.011 0.015 0.028 0.012 0.037 0.041
q0(0.5) 1.473 1.513 1.443 1.369 1.422 1.420 1.200
q0(0.75) 1.698 1.627 1.557 1.440 1.575 1.481 1.244
q0(0.9) 1.921 1.834 1.683 1.509 1.749 1.543 1.290
q0(0.95) 2.113 1.965 1.770 1.558 1.839 1.590 1.317

E[H 2(s1[0,1]2 , ŝ(1))] 0.017 0.018 0.028 0.058 0.024 0.103 –
P(R1 ≤ 1) 0.964 0.740 0.908 1 0.984 1 –

E[H 2(s1[0,1]2 , ŝ(2))] 0.013 0.018 0.028 0.062 0.023 0.096 0.133
P(R2 ≤ 1) 0.832 0.748 0.928 1 0.948 1 1
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Table 3
Risks for simulated data with n = 1000 averaged over 250 samples

Ex. 3.1 Ex. 3.2 Ex. 3.3 Ex. 3.4 Ex. 3.5 Ex. 3.6 Ex. 3.7

E[‖s1[0,1]2 − ŝ‖2
n] 0.064 0.108 0.229 0.319 0.116 0.528 2.82

E[‖s1[0,1]2 − ŝ(1)‖2
n] 0.147 0.133 0.257 0.423 0.205 0.743 –

P(R′
1 ≤ 1) 0.980 0.820 0.788 0.984 0.992 1 –

E[‖s1[0,1]2 − ŝ(2)‖2
n] 0.091 0.129 0.262 0.418 0.159 0.739 6.08

P(R′
2 ≤ 1) 0.864 0.780 0.792 0.980 0.940 1 1

4.1. Procedure and preliminary result

Our second procedure is defined as follows. Let α = (1−1/
√

2)/2, L > 0, S be an at most countable set of L
1+(X2,M)

and ΔS ≥ 1 be a map on S.
We define the application ℘ on S by

℘(f ) = sup
f ′∈S

[
αH 2(f,f ′)+ T

(
f,f ′)− L

ΔS(f ′)
n

]
+ L

ΔS(f )

n
for all f ∈ S.

We select ŝ among S as any element of S satisfying

℘(ŝ) ≤ inf
f ∈S

℘ (f ) + 1

n
.

We prove the following.

Proposition 4.1. Suppose that f (x) = 0 for all f ∈ S and x ∈ X
2 \ A and that

∑
f ∈S e−ΔS(f ) ≤ 1. There exists an

universal constant L0 > 0 such that if L ≥ L0, the estimator ŝ satisfies

CE
[
H 2(s1A, ŝ)

]≤ E

[
inf
f ∈S

{
H 2(s1A,f ) + L

ΔS(f )

n

}]
, (4.1)

where C is an universal positive constant.

4.2. A general model selection theorem

We shall deduce from the above proposition a model selection theorem by choosing suitably S. To do so, we consider
the following assumption.

Assumption 4.1. For all i ∈ {1, . . . , n − 1}, Xi admits a density ϕi with respect to some known measure ν such that
ν(A1) = 1. Moreover, there exists κ such that ϕi(x) ≤ κ for all x ∈ A1 and i ∈ {1, . . . , n − 1}.

We define L
2(A, ν ⊗ μ) the space of square integrable functions on A with respect to the product measure ν ⊗ μ,

and we endow it with its natural distance

d2(f,f ′)= ∫
A

(
f (x, y) − f ′(x, y)

)2 dν(x)dμ(y) for all f,f ′ ∈ L
2(A, ν ⊗ μ).

Hereafter, a model V is a (non-trivial) finite dimensional linear space of L
2(A, ν ⊗ μ).
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Let us explain how to obtain a model selection theorem when Assumption 4.1 holds. Let V be a collection of
models V and let (Δ(V ))V ∈V be a family of non-negative numbers such that

∑
V ∈V

e−Δ(V ) ≤ 1. For each model
V ∈ V, we consider an orthonormal basis (f1, . . . , fdimV ) of V and set

TV =
{

dimV∑
i=1

αifi, αi ∈ 2√
ndimV

Z

}
.

We deduce from Lemma 5 of Birgé [12] that the cardinality of SV = {f 2+1A,f ∈ TV , d(f,0) ≤ 2} is upper bounded
by |SV | ≤ (30n)dimV/2. We then use the above procedure with S =⋃V ∈V

SV and

ΔS(f ) = inf
V ∈V

SV �f

{
Δ(V ) + (dimV ) log(30n)/2

}
for all f ∈ S.

This yields an estimator ŝ such that

C′
E
[
H 2(s1A, ŝ)

]≤ inf
V ∈V

{
κ
(

inf
f ∈TV

d(f,0)≤2

d2(
√

s A,f )
)

+ Δ(V ) + dim(V ) logn

n

}
,

where C′ is an universal positive constant. Since d(
√

s A,0) ≤ 1,

inf
f ∈TV

d(f,0)≤2

d2(
√

s A,f ) = d2(
√

s A,TV ).

For all f ′ ∈ V , there exists f ∈ TV such that d2(f,f ′) ≤ n−1 and thus

d2(
√

s A,TV ) ≤ 2d2(
√

s A,V ) + 2

n
.

Precisely, we have proved:

Theorem 4.1. Suppose that Assumption 4.1 holds. Let V be an at most countable collection of models. Let (Δ(V ))V ∈V

be a family of non-negative numbers such that∑
V ∈V

e−Δ(V ) ≤ 1.

There exists an estimator ŝ such that

CE
[
H 2(s1A, ŝ)

]≤ inf
V ∈V

{
d2(

√
s A,V ) + Δ(V ) + dim(V ) logn

n

}
,

where C > 0 depends only on κ .

The condition
∑

V∈V
e−Δ(V ) ≤ 1 can be interpreted as a (sub)probability on the collection V. The more complex

the family V, the larger the weights Δ(V ). When one can choose Δ(V ) of order dim(V ), which means that the
family V of models does not contains too many models per dimension, the estimator ŝ achieves the best trade-off (up
to a constant) between the approximation and the variance terms.

This theorem holds under an assumption that is very mild and weaker than those of Lacour [27], Akakpo and
Lacour [3] and Clémencon [18]. Birgé [15] proved a general oracle inequality when there exist integers k ≥ 1 and
l ≥ 0 and positive numbers ρ,� such that

� ≤ 1

k

k∑
j=1

s(l+j)(x, y) ≤ ρ for all x, y ∈ X,
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where the parameters k, l, � are known. Our assumption is then satisfied for the Markov chain (Xl+1, . . . ,Xn) with
ν = μ and κ = kρ.

We shall consider subsets F ⊂ L
2(A, ν ⊗μ) corresponding to smoothness or structural assumptions on

√
s A. For

such an F , we associate a collection V and deduce from Theorem 4.1 a risk bound for the estimator ŝ when
√

s A

belongs to F . This set is a generic notation and will change from section to section. In the remaining part of this
paper, we shall always choose X

2 = R
2d , A = [0,1]2d and μ the Lebesgue measure.

4.3. Smoothness assumptions

We have introduced in Section 2.6 the isotropic Besov spaces Bσ
q (Lp([0,1]2d)) where σ ∈ (0,1). In this section, we

consider the anisotropic Besov spaces Bσ
q (Lp([0,1]2d)) where σ = (σ1, . . . , σ2d) belongs to (0,+∞)2d .

Intuitively, a function f on [0,1]2d belongs to Bσ
q (Lp([0,1]2d)) if, for all integer j ∈ {1, . . . ,2d}, and all

x1, . . . , xj−1, xj+1, . . . , x2d ∈ [0,1] the function

xj �→ f (x1, . . . , xj−1, xj , xj+1, . . . , x2d)

belongs to B
σj
q (Lp([0,1])). In particular, for all σ ∈ (0,+∞),

Bσ
q

(
L

p
([0,1]2d

))= B(σ,...,σ )
q

(
L

p
([0,1]2d

))
.

A definition of the anisotropic Besov spaces may be found in Hochmuth [25] (for d = 1) and in Akakpo [1] (for larger
values of d). We also consider the space Hσ ([0,1]2d) of anisotropic Hölderian functions on [0,1]2d with regularity σ .
A precise definition of this space may be found in Section 3.1.1 of Baraud and Birgé [7] (among other references).

For all σ = (σ1, . . . , σ2d) ∈ (0,+∞)2d , we denote by σ̄ the harmonic mean of σ :

1

σ̄
= 1

2d

2d∑
i=1

1

σi

.

We set for all p ∈ (0,+∞],

Bσ
(
L

p
([0,1]2d

))=
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Bσ∞
(
L

p
([0,1]2d

))
if p ∈ (0,1],

Bσ
p

(
L

p
([0,1]2d

))
if p ∈ (1,2),

Bσ∞
(
L

p
([0,1]2d

))
if p ∈ [2,+∞),

Hσ
([0,1]2d

)
if p = ∞

and denote by | · |p,σ the semi norm associated to the space Bσ (Lp([0,1]2d)).
In this section, we are interesting in obtaining a bound risk when

√
s A belongs to the space

B
([0,1]2d

)= ⋃
p∈(0,+∞]

( ⋃
σ∈(0,+∞)d

σ̄>2d(1/p−1/2)+

Bσ
(
L

p
([0,1]2d

)))
.

Families of linear spaces possessing good approximation properties with respect to the elements of F = B([0,1]2d)

can be found in Theorem 1 of Akakpo [2]. We then deduce from Theorem 4.1,

Corollary 4.1. Suppose that Assumption 4.1 holds with X = R
d , A = [0,1]2d and with ν ⊗ μ the Lebesgue measure.

There exists an estimator ŝ such that for all
√

s A ∈ B([0,1]2d),

CE
[
H 2(s1A, ŝ)

]≤ |√s A|2d/(d+σ̄ )
p,σ

(
logn

n

)σ̄/(σ̄+d)

+ logn

n
,

where p ∈ (0,+∞], σ ∈ (0,+∞)2d , σ̄ > 2d(1/p − 1/2)+ are such that
√

s A ∈ Bσ (Lp([0,1]2d)) and where C > 0
depends only on κ, d,p,σ .
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To our knowledge, the only statistical procedures that can adapt both to possible inhomogeneity and anisotropy
of s are those of Akakpo and Lacour [3] and Birgé [15]. The losses are different, but the rates are the same as ours (up
to the logarithmic term). In view of our assumptions, we do not know if the logarithmic term can be avoided.

In the following sections, we consider classes F corresponding to structural assumptions on
√

s A. More precisely,
rates of convergence when the chain is autoregressive with constant conditional variance (respectively non-constant
conditional variance) are established in Section 4.4 (respectively Section 4.5).

4.4. AR model

In this section, we assume that Xn+1 = g(Xn)+εn where g is an unknown function and where the εn’s are unobserved
identically distributed random variables. Many papers are devoted to the estimation of the regression function g and
it is beyond the scope of this paper to make an historical review for this statistical problem.

For the sake of simplicity, one shall assume throughout this section that X = R, A = [0,1]2. The transition density
is of the form s(x, y) = ϕ(y − g(x)) where ϕ is the density of ε0. Since g and ϕ are both unknown, this suggests us
to consider the class

F =
⋃
σ>0

{
f,∃φ ∈ Hσ (R),∃g ∈ B

([0,1]),‖g‖∞ < ∞,∀x, y ∈ [0,1], f (x, y) = φ
(
y − g(x)

)}
.

A family V of linear spaces possessing good approximation properties with respect to the functions of F can be built
by using Section 6.2 of Baraud and Birgé [7]. Precisely, we prove the following.

Corollary 4.2. Suppose that Assumption 4.1 holds with X = R, A = [0,1]2 and with ν ⊗ μ the Lebesgue measure
on R

2. Assume that
√

s A belongs to F . Let σ > 0, p ∈ (0,+∞], β > (1/p −1/2)+ be any numbers and φ ∈ Hσ (R),
g ∈ Bβ(Lp([0,1])), ‖g‖∞ < ∞ be any functions such that√

s(x, y) = φ
(
y − g(x)

)
for all x, y ∈ [0,1].

There exists two estimators φ̂ ≥ 0 and ĝ such that the estimator ŝ defined by

ŝ(x, y) = (φ̂(y − ĝ(x)
))21[0,1]2(x, y) for all x, y ∈ R

satisfies

CE
[
H 2(s1A, ŝ)

]≤ C′
1

(
log2 n

n

)2β(σ∧1)/(2β(σ∧1)+1)

+ C′
2

(
logn

n

)2σ/(2σ+1)

,

where C > 0 depends only on κ,p,σ,β , where C′
1 depends only on p,β,σ, |g|p,β,‖g‖∞, |φ|∞,σ∧1 and where

C′
2 depends only on σ,‖g‖∞, |φ|∞,σ . Moreover, the construction of the estimators ĝ, φ̂ depends only on the data

X0, . . . ,Xn.

In particular, if φ is very smooth (says σ ≥ β ∨ 1), the rate of convergence corresponds to the rate of convergence
for estimating g only (up to a logarithmic term).

It is interesting to compare the preceding rate to the one we would obtain under the pure smoothness assumption
on

√
s A but ignoring that

√
s A belongs to F . To do so, we need to specify the regularity of

√
s A, knowing that of

φ and g. This is the purpose of the following lemma.

Lemma 4.1. Let σ,β > 0, and let us define

θ(β,σ ) =
{

βσ if β,σ ≤ 1,

β ∧ σ otherwise.

Let φ ∈ Hσ (R), g ∈ Hβ([0,1]). The function f defined by

f (x, y) = φ
(
y − g(x)

)
for all x, y ∈ [0,1],
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belongs to H(θ(β,σ ),σ )([0,1]2).
Moreover, for all σ,β > 0, there exist φ ∈ Hσ (R), g ∈ Hβ([0,1]) such that the function f defined by

f (x, y) = φ
(
y − g(x)

)
for all x, y ∈ [0,1],

belongs to H(a,b)([0,1]2) if and only if a ≤ θ(β,σ ) and b ≤ σ .

This result says that if
√

s(x, y) = φ(y − g(x)), with φ ∈ Hσ (R), g ∈ Hβ([0,1]), then
√

s is Hölderian with reg-
ularity (θ(β,σ ), σ ) on [0,1]2, and this regularity cannot be improved in general except in some particular situations.
Under such a smoothness assumption, the rate of estimation we would get is (logn/n)2σθ(β,σ )/(2σθ(β,σ )+θ(β,σ )+σ).
This rate is always slower than the rate obtained under the structural assumption.

4.5. ARCH model

Throughout this section, we assume that Xn+1 = g1(Xn) + g2(Xn)εn where g1, g2 are unknown functions and where
the εn’s are unobserved identically distributed random variables. The previous model corresponded to g2 = 1. The
problem of the estimation of the mean and variance functions g1 and g2 was considered in several papers and we refer
to Section 1.2 of Comte and Rozenholc [19] for bibliographical references.

For the sake of simplicity, one assumes that X = R and A = [0,1]2. If ϕ denotes the density of ε0, the transition
density s is of the form

s(x, y) = ∣∣g2(x)
∣∣−1

ϕ
[
g−1

2 (x)
(
y − g1(x)

)]
for all x, y ∈ R. (4.2)

We consider thus the class

F =
⋃
σ>0

{
f,∃φ ∈ Hσ (R),∃v1, v2 ∈ B

([0,1]),‖v1‖∞ < ∞,‖v2‖∞ < ∞,

∀x, y ∈ [0,1], f (x, y) =
√∣∣v2(x)

∣∣φ(v2(x)
(
y − v1(x)

))}
and apply Theorem 4.1 with a suitable collection V to obtain:

Corollary 4.3. Suppose that Assumption 4.1 holds with X = R, A = [0,1]2 and with ν ⊗ μ the Lebesgue measure
on R

2. Assume that
√

s A belongs to F . Let σ > 0, φ ∈ Bσ (R) and for all i ∈ {1,2}, let pi ∈ (0,+∞], βi >

(1/pi − 1/2)+, vi ∈ Bβi (Lpi ([0,1])), with ‖vi‖∞ < ∞ such that

√
s(x, y) =

√∣∣v2(x)
∣∣φ(v2(x)

(
y − v1(x)

))
for all x, y ∈ [0,1].

Let p3 ∈ (0,+∞] and β3 > (1/p3 − 1/2)+ be any numbers such that v3 = √|v2| ∈ Bβ3(Lp3([0,1])). There exists an
estimator ŝ such that

CE
[
H 2(s, ŝ)

]≤ C′
1

(
log2 n

n

)2β(σ∧1)/(2β(σ∧1)+1)

+ C′
2

(
logn

n

)2σ/(2σ+1)

,

where β = max(β1, β2, β3). The constant C > 0 depends only on κ,σ,p1,p2,p3, β1, β2, β3,C
′
1 depends only on

σ,‖v1‖∞,‖v2‖∞,‖ϕ‖∞, |v1|p1,β1 , |v2|p2,β2 , |v3|p3,β3 , |ϕ|∞,σ∧1 and C′
2 depends only on σ,‖v2‖∞, |ϕ|∞,σ . More-

over, the construction of the estimator ŝ depends only on the data X0, . . . ,Xn.

If s is of the form (4.2) with ϕ, g1, g2 smooth, in the sense that φ = √
ϕ ∈ Hσ (R), v1 = g1 ∈ Bβ1(Lp1([0,1])),

‖v1‖∞ < ∞, v2 = g−1
2 ∈ Bβ2(Lp2([0,1])), ‖v2‖∞ < ∞ and v3 = |g2|−1/2 ∈ Bβ3(Lp3([0,1])), then

√
s A belongs

to F . If φ is sufficiently smooth (σ ≥ β1 ∨ β2 ∨ β3 ∨ 1), the rate becomes

C′′
E
[
H 2(s, ŝ)

]≤ max

((
log2 n

n

)2β1/(2β1+1)

,

(
log2 n

n

)2β2/(2β2+1)

,

(
log2 n

n

)2β3/(2β3+1))
.
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Up to a logarithmic term, the first term corresponds to the bound we would get if we could estimate g1 only. The two
other terms correspond to the rate of estimation of g−1

2 and |g2|−1/2 respectively (up to a logarithmic term).
Note that if β2 ∈ (0,1), one can always choose p3 = 2p2 (with p3 = ∞ if p2 = ∞), β3 = β2/2, in which case the

rate becomes

C′′
E
[
H 2(s, ŝ)

]≤ max

((
log2 n

n

)2β1/(2β1+1)

,

(
log2 n

n

)β2/(β2+1))
.

In some situations however, β3 can be taken larger than β2.
As in the preceding section, we may use the lemma below to compare this rate with the one we would obtain under

smoothness assumptions on
√

s A.

Lemma 4.2. Let for all σ,β1, β2 > 0,

θ(β1, β2, σ ) =
{(

2−1(β2 ∧ 1)
)∧ σβ1 ∧ σβ2 if σ ≤ 1 and β1 ∧ β2 ≤ 1,(

2−1(β2 ∧ 1)
)∧ σ ∧ β1 otherwise.

Let φ ∈ Hσ (R), v1 ∈ Hβ1([0,1]), v2 ∈ Hβ2([0,1]). The function f defined by

f (x, y) =
√∣∣v2(x)

∣∣φ(v2(x)
(
y − v1(x)

))
for all x, y ∈ [0,1],

belongs to H(θ(β1,β2,σ ),σ )([0,1]2).
Moreover, there exist φ ∈ Hσ (R), v1 ∈ Hβ1([0,1]), v2 ∈ Hβ2([0,1]) such that the function f defined by

f (x, y) =
√∣∣v2(x)

∣∣φ(v2(x)
(
y − v1(x)

))
for all x, y ∈ [0,1],

belongs to H(a,b)([0,1]2) if and only if a ≤ θ(β1, β2, σ ) and b ≤ σ .

This proposition says that if
√

s(x, y) = √|v2(x)|φ(v2(x)(y − v1(x))), with φ ∈ Hσ (R), v1 ∈ Hβ1([0,1]), v2 ∈
Hβ2([0,1]), √

s A belongs to H(θ(β1,β2,σ ),σ )([0,1]2) and the regularity index of this space cannot be increased in
general. By Corollary 4.1, we would get a rate of order (logn/n)2θ(β1,β2,σ )σ/(2θ(β1,β2,σ )σ+θ(β1,β2,σ )+σ), which is
slower than the one given by Corollary 4.3.

Appendix A: Implementation of the first procedure

In this section, we explain how to construct in practice the estimator of the first procedure. This will lead to the
proposition below.

Proposition A.1. For all L > 0, � ∈ N
�, the estimator ŝ = ŝ(L, �) of Section 2.3 can be built in less than C(n�d +

�4(�+1)d ) operations where C is an universal constant.

We set for all K ∈⋃m∈M�
m,

ŝK =
∑n−1

i=0 1K(Xi,Xi+1)∑n−1
i=0

∫
X

1K(Xi, x)dμ(x)
1K

for all K ′ ∈⋃m∈M�
m,

FK

(
K ′)= αH 2(ŝK1K ′ , ŝK ′1K) + T (ŝK1K ′ , ŝK ′1K)
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and for all m′ ∈ M�,

γK

(
m′)= ( ∑

K ′∈m′
FK

(
K ′))− pen

(
m′ ∨ K

)
.

We shall find for each cube K ∈⋃m∈M�
m, a partition m′

K ∈ M� such that

γK

(
m′

K

)= sup
m′∈M�

γK

(
m′). (A.1)

We shall compute then

min
m∈M�

γ (m) = min
m∈M�

{(∑
K∈m

γK

(
m′

K

))+ 2 pen(m)

}
. (A.2)

We shall find m′
K by using a slight adaptation of the procedure of Blanchard, Schäfer and Rozenholc [16]. Computing

(A.2) is similar. The algorithm we propose is based on the one-to-one correspondence between M� and the set T� of
4d -ary trees with depth smaller than �.

Lemma A.1. There exists ψ� a one-to-one map between M� and T� such that for all m ∈ M�, ψ�(m) is a tree whose
leaves correspond to the elements of the partition m.

The construction of this map may for instance be deduced from Section 3.2.4 of Baraud and Birgé [6].
We need to introduce some notations. For each tree T ∈ T� and bin K ′′ of T , we denote by T (K ′′) the subtree of

T rooted in K ′′. The set of leaves of T (K ′′) is denoted by L(T (K ′′)). We set R(K ′′) the tree reduced to its root K ′′
(i.e, L(R(K ′′)) = {K ′′}). For all cube K ∈⋃m∈M�

m, we set

L
(
T
(
K ′′))∨ K = {K ′ ∩ K,K ′ ∈ L

(
T
(
K ′′)),K ′ ∩ K �= ∅

}
and we define the function E by

E
(
T
(
K ′′))= −∣∣L

(
T
(
K ′′))∨ K

∣∣+ ∑
K ′∈L(T (K ′′))

FK

(
K ′).

The key point is that computing (A.1) amounts to finding T � such that

E
(
T �
([0,1]2d

))= sup
T ∈T�

E
(
T
([0,1]2d

))

since m′
K = ψ−1

� (T �).

We now take advantage of the additivity of the function E : if T (K ′′) is not reduced to its root, and if K ′′
1 , . . . ,K ′′

4d

are the cubes of
⋃

m∈M�
m such that K ′′ =⋃4d

i=1 K ′′
i , then,

E
(
T
(
K ′′))= 4d∑

i=1

E
(
T
(
K ′′

i

))
. (A.3)

For all cube K ′′ ∈⋃m∈M�
m, let T �(K ′′) be a tree (rooted in K ′′) such that

E
(
T �
(
K ′′))= sup

T ∈T�,T �K ′′
E
(
T
(
K ′′)).
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Remark that if K ′′ ∩ K = ∅, this supremum is equal to 0, in which case T �(K ′′) will always stand for R(K ′′). In
general, we deduce from (A.3) that

E
(
T �
(
K ′′))= max

(
E
(
R
(
K ′′)), 4d∑

i=1

E
(
T �
(
K ′′

i

)))
. (A.4)

Calculating (A.1) can thus be completed in that way: we start with the sets K ′′ ∈⋃m∈M�\M�−1
m with K ′′ ∩ K �=

∅ for which the optimal local trees are reduced to their roots. By using relation (A.4) we find the optimal local
trees T �(K ′′) when K ′′ ∈⋃M�−1\M�

m, K ′′ ∩ K �= ∅. Proceeding recursively like this yields the optimal tree T � =
T �([0,1]2d).

Appendix B: Proofs

B.1. Proof of Proposition 2.1

Let us introduce the piecewise constant function

s̄m =
∑
K∈m

∑n−1
i=0 E[1K(Xi,Xi+1) | Xi]∑n−1
i=0

∫
X

1K(Xi, x)dμ(x)
1K. (B.1)

By using the triangular inequality we can decompose the risk of ŝm as follows:

E
[
H 2(s1A, ŝm)

]≤ (1 + 2 + log 2

2

)
E
[
H 2(s1A, s̄m)

]+(1 + 2

2 + log 2

)
E
[
H 2(s̄m, ŝm)

]
.

The first term can be bounded from above by (4 + log 2)E[H 2(s1A,Vm)] thanks to Lemma 2 of Baraud and Birgé [6].
For the second term, we begin to define for K ∈ m the random variable

BK =
(√√√√n−1∑

i=0

1K(Xi,Xi+1) −
√√√√n−1∑

i=0

E
[
1K(Xi,Xi+1) | Xi

])2

.

Since 2nH 2(ŝm, s̄m) =∑K∈m BK , we shall bound from above the terms E[BK ]. For this purpose, we introduce the
stopping time

T = inf

{
i ≥ 0,E

[
1K(Xi,Xi+1) | Xi

]≥ 1

2n

}
∧ (n − 1)

with respect to the filtration Fn = σ(X0, . . . ,Xn) generated by the random variables X0, . . . ,Xn. We set ε = 1 +
log 2 + 2 logn and use the algebraic inequality

(
√

a + b − √
c + d)2 ≤ (1 + ε)(

√
a − √

c)2 + (1 + ε−1)(√b − √
d)2

to decompose E[BK ]:

E[BK ] ≤ (1 + ε)E

[(√√√√T −1∑
i=0

1K(Xi,Xi+1) −
√√√√T −1∑

i=0

E
[
1K(Xi,Xi+1) | Xi

])2]

+ (1 + ε−1)
E

[(√√√√n−1∑
i=T

1K(Xi,Xi+1) −
√√√√n−1∑

i=T

E
[
1K(Xi,Xi+1) | Xi

])2]
.
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By using (
√

a − √
b)2 ≤ (a − b)2/b,

E[BK ] ≤ 2(1 + ε)E

[
T −1∑
i=0

E
[
1K(Xi,Xi+1) | Xi

]]

+ (1 + ε−1)
E

[
(
∑n−1

i=T (1K(Xi,Xi+1) − E[1K(Xi,Xi+1) | Xi]))2∑n−1
i=T E[1K(Xi,Xi+1) | Xi]

]
. (B.2)

Yet,

E

[
T −1∑
i=0

E
[
1K(Xi,Xi+1) | Xi

]]≤ 1/2,

and we control the second term of the right-hand side of inequality (B.2), thanks to the claims below.

Claim B.1. For all K ∈ m, j ∈ {0, . . . , n}, and A′ ∈ Fj = σ(X0, . . . ,Xj ),

E

[
(
∑n−1

i=j (1K(Xi,Xi+1) − E[1K(Xi,Xi+1) | Xi]))2∑n−1
i=j E[1K(Xi,Xi+1) | Xi]

1A′
]

≤
n−1∑
k=j

E

[
E[1K(Xk,Xk+1) | Xk]∑k
i=j E[1K(Xi,Xi+1) | Xi]

1A′
]
.

Proof. Let us define the random variables

Yn−1(K) =
n−1∑
i=j

(
1K(Xi,Xi+1) − E

[
1K(Xi,Xi+1) | Xi

])
and Zn(K) = Y 2

n−1(K)∑n−1
i=j E[1K(Xi,Xi+1) | Xi]

.

We have

E
[
Zn+1(K) | Fn

] = E([Yn−1(K) + (1K(Xn,Xn+1) − E[1K(Xn,Xn+1) | Xn])]2 | Fn)∑n
i=j E[1K(Xi,Xi+1) | Xi]

= Y 2
n−1(K) + var(1K(Xn,Xn+1) | Xn)∑n

i=j E[1K(Xi,Xi+1) | Xi] .

Hence,

E
[
Zn+1(K) | Fn

]≤ Zn(K) + E[1K(Xn,Xn+1) | Xn]∑n
i=j E[1K(Xi,Xi+1) | Xi]

and, since A′ is also Fn-measurable,

E
[
Zn+1(K)1A′

]≤ E
[
Zn(K)1A′

]+ E

[
E[1K(Xn,Xn+1) | Xn]∑n
i=j E[1K(Xi,Xi+1) | Xi]1A′

]
.

The result ensues from induction. �

Claim B.2. For all sequence (un)n≥0 in [0,1], and j ≥ 0 such that uj �= 0,

n−1∑
k=j

uk∑k
i=j ui

≤ 1 + logn − loguj .



1048 M. Sart

Proof. Let f be any non-negative continuous function such that uk = ∫ k+1
k

f (t)dt whatever k ∈ N. Let F be the
primitive of f such that F(j) = 0. Then,

n−1∑
k=j

uk∑k
i=j ui

≤ 1 +
n−1∑

k=j+1

∫ k+1

k

f (t)

F (k + 1)
dt

≤ 1 +
n−1∑

k=j+1

∫ k+1

k

f (t)

F (t)
dt

≤ 1 + logF(n) − logF(j + 1)

≤ 1 + log

(
n−1∑
k=j

uk

)
− loguj .

�

By using Claim B.1 with A′ = [T = j ],

E

[
(
∑n−1

i=T (1K(Xi,Xi+1) − E[1K(Xi,Xi+1) | Xi]))2∑n−1
i=T E[1K(Xi,Xi+1) | Xi]

]

≤
n−2∑
j=0

E

(
n−1∑
k=j

E[1K(Xk,Xk+1) | Xk]∑k
i=j E[1K(Xi,Xi+1) | Xi]

1T =j

)

+ E

[
(1K(Xn−1,Xn) − E[1K(Xn−1,Xn) | Xn−1])2

E[1K(Xn−1,Xn) | Xn−1] 1T =n−1

]
.

Now,

E

[
(1K(Xn−1,Xn) − E[1K(Xn−1,Xn) | Xn−1])2

E[1K(Xn−1,Xn) | Xn−1] 1T =n−1

]
= E

[
var(1K(Xn−1,Xn) | Xn−1)

E[1K(Xn−1,Xn) | Xn−1] 1T =n−1

]
≤ P(T = n − 1).

We then use Claim B.2 with uk = E[1K(Xk,Xk+1) | Xk] to derive

n−2∑
j=0

E

(
n−1∑
k=j

E[1K(Xk,Xk+1) | Xk]∑k
i=j E[1K(Xi,Xi+1) | Xi]

1T =j

)
≤

n−2∑
j=0

E
[
(1 + log 2 + 2 logn)1T =j

]
≤ (1 + log 2 + 2 logn)P(T �= n − 1).

Finally, E[BK ] ≤ 4 + 2 log 2 + 4 logn and hence

E
[
H 2(s̄m, ŝm)

]≤ 2 + log 2 + 2 logn

n
|m|,

which concludes the proof.

B.2. Proof of Theorem 2.1

When � ≤ n, the result ensues from the following theorem whose proof is delayed to Section B.3. In the theorem
below, the constant L0 = 90 can easily be improved but it seems to be difficult to obtain the value L0 = 0.03 used in
practice.
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Theorem B.1. For all L ≥ 90 and 1 ≤ � ≤ n, the estimator ŝ = ŝ(L, �) satisfies

∀ξ > 0, P

[
CH 2(s1A, ŝ) ≥ inf

m∈M�

(
H 2(s1A, ŝm) + pen(m)

)+ ξ
]

≤ 3e−nξ

where C is an universal positive constant.

By integrating the inequality above, there exists C′ > 0 such that

C′
E
[
H 2(s1A, ŝ)

]≤ inf
m∈M�

{
E
[
H 2(s1A, ŝm)

]+ pen(m)
}

and the conclusion follows from Proposition 2.1.
When � is larger than n, we use the lemma below whose proof is postponed to Section B.3.3.

Lemma B.1. For all L ≥ 15 and � ≥ n + 1, ŝ(L, �) = ŝ(L,n) and ŝ(L,∞) = ŝ(L,n).

For L ≥ 90, if � ≥ n + 1 or � = ∞, we have thus

C′
E
[
H 2(s1A, ŝ)

]≤ inf
m∈Mn

{
E
[
H 2(s1A,Vm)

]+ pen(m)
}
.

Let m� ∈ M� such that

2 inf
m∈M�

{
E
[
H 2(s1A,Vm)

]+ pen(m)
}≥ E

[
H 2(s1A,Vm�)

]+ pen
(
m�
)
.

Since E[H 2(s1A,Vm)] ≤ E[H 2(s1A,0)] ≤ 1/2 and {[0,1]2d} ∈ M�,

inf
m∈M�

{
E
[
H 2(s1A,Vm)

]+ pen(m)
}≤ 1

2
+ L

logn

n
.

Consequently, L|m�| log(n)/n ≤ 1 + 2L log(n)/n and thus |m�| ≤ 2 + n/(L logn) ≤ n. Remark now that the cardi-
nality of a partition m ∈ M� \ Mn can be lower bounded by

|m| ≥ 4d + (4d − 1
)
n ≥ n + 1.

Consequently, m� ∈ Mn and hence,

inf
m∈Mn

{
E
[
H 2(s1A,Vm)

]+ pen(m)
}≤ 2 inf

m∈M�

{
E
[
H 2(s1A,Vm)

]+ pen(m)
}

which completes the proof.

B.3. Proof of Theorem B.1

The proof of this theorem requires the two following lemmas whose proofs are postponed to Sections B.3.1 and B.3.2.

Lemma B.2. For all partition m ∈ M�,

γ1(m) = sup
m′∈M�

{
αH 2(ŝm, ŝm′) + T (ŝm, ŝm′) − pen

(
m′)}+ pen(m)

satisfies γ1(m) ≤ γ (m).
For all m ∈ M�, there exists a deterministic set Sm such that ŝm ∈ Sm and such that

γ2(m) = sup
m′∈M�

f ′∈Sm′

{
αH 2(ŝm, f ′)+ T

(
ŝm, f ′)− pen

(
m′)}+ 2 pen(m)

satisfies γ (m) ≤ γ2(m).
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Lemma B.3. Set ε = (2 + 3
√

2)/8. Under assumptions of Theorem B.1, for all ξ > 0, there exists an event Ωξ such
that P(Ωξ ) ≥ 1 − 3e−nξ and on which,

for all partition m ∈ M�,

sup
m′∈M�

f ′∈Sm′

{
(1 − ε)H 2(s1A,f ′)+ T

(
ŝm, f ′)− pen

(
m′)}≤ (1 + ε)H 2(s1A, ŝm) + pen(m) + 22ξ, (B.3)

where Sm′ is defined in Lemma B.2.

Proof of Theorem B.1. On Ωξ , for all m ∈ M�,

sup
m′∈M�

f ′∈Sm′

{
(1 − ε)H 2(s1A,f ′)+ T

(
ŝm, f ′)− pen

(
m′)}≤ (1 + ε)H 2(s1A, ŝm) + pen(m) + 22ξ.

If T (ŝm, ŝm̂) + pen(m) − pen(m̂) ≥ 0,

αH 2(s1A, ŝm̂) ≤ (1 − ε)H 2(s1A, ŝm̂) + T (ŝm, ŝm̂) − pen(m̂) + pen(m)

≤ (1 + ε)H 2(s1A, ŝm) + 2 pen(m) + 22ξ

since α ≤ 1 − ε and since ŝm̂ belongs to
⋃

m′∈M�
Sm′ .

If T (ŝm, ŝm̂) + pen(m) − pen(m̂) < 0,

αH 2(ŝm, ŝm̂) ≤ αH 2(ŝm̂, ŝm) + T (ŝm̂, ŝm) − pen(m) + pen(m̂)

since T (ŝm̂, ŝm) = −T (ŝm, ŝm̂). Hence,

αH 2(ŝm, ŝm̂) ≤ sup
m′∈M�

{
αH 2(ŝm̂, ŝm′) + T (ŝm̂, ŝm′) − pen

(
m′)}+ pen(m̂)

≤ γ1(m̂).

By using Lemma B.2,

γ1(m̂) ≤ γ (m) + 1

n
≤ γ2(m) + 1

n
,

and thus

αH 2(ŝm, ŝm̂) ≤ sup
m′∈M�

f ′∈Sm′

{
αH 2(ŝm, f ′)+ T

(
ŝm, f ′)− pen

(
m′)}+ 2 pen(m) + 1

n
.

With υ = (1 − ε)/α − 1 > 0,

αH 2(ŝm, ŝm̂) ≤ (1 + υ−1)H 2(ŝm, s1A)

+ sup
m′∈M�

f ′∈Sm′

{
(1 − ε)H 2(s1A,f ′)+ T

(
ŝm, f ′)− pen

(
m′)}+ 2 pen(m) + 1

n

≤ (1 + υ−1)H 2(ŝm, s1A) + [(1 + ε)H 2(s1A, ŝm) + pen(m) + 22ξ
]+ 2 pen(m) + 1

n

≤ (2 + ε + υ−1)H 2(ŝm, s1A) + 3 pen(m) + 22ξ + 1

n
.
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This leads to

αH 2(s1A, ŝm̂) ≤ 2αH 2(s1A, ŝm) + 2αH 2(ŝm, ŝm̂)

≤ 2
(
2 + α + ε + υ−1)H 2(ŝm, s1A) + 6 pen(m) + 44ξ + 2

n
.

Finally, we have proved that there exists C > 0, such that, with probability larger than 1 − 3e−nξ , for all m ∈ M�,

CH 2(s1A, ŝm̂) ≤ H 2(ŝm, s1A) + pen(m) + ξ.

This concludes the proof. �

B.3.1. Proof of Lemma B.2
For each partition m ∈ M�, we define the random set Ŝm of functions as follows. A function f̂ is said to belong to Ŝm

if for each cube K ∈ m, there exists a partition mK ∈ M� such that f̂ = ŝmK
on K . In other words,

Ŝm =
{∑

K∈m

ŝmK
1K,∀K ∈ m,mK ∈ M�

}
.

For all function f̂ ∈ Ŝm and K ∈ m, let mK(f̂ ) ∈ M� be any partition such that∣∣mK(f̂ ) ∨ K
∣∣= inf

{∣∣m′ ∨ K
∣∣,m′ ∈ M�, f̂ 1K = ŝm′1K

}
.

The function f̂ ∈ Ŝm is piecewise constant on the elements of the partition

m(f̂ ) =
⋃
K∈m

(
mK(f̂ ) ∨ K

)
.

The whole point is that

γ (m) =
{∑

K∈m

sup
m′

K∈M�

[
αH 2(ŝm1K, ŝm′

K
1K) + T (ŝm1K, ŝm′

K
1K) − pen

(
m′

K ∨ K
)]}+ 2 pen(m)

= sup
f̂ ∈Ŝm

{∑
K∈m

[
αH 2(ŝm1K, f̂ 1K) + T (ŝm1K, f̂ 1K) − pen

(
mK(f̂ ) ∨ K

)]}+ 2 pen(m).

Since |m(f̂ )| =∑K∈m |mK(f̂ ) ∨ K|,
γ (m) = sup

f̂ ∈Ŝm

{
αH 2(ŝm, f̂ ) + T (ŝm, f̂ ) − pen

(
m(f̂ )

)}+ 2 pen(m). (B.4)

We can now prove the first part of the lemma. For all partitions m,m′ ∈ M�, the estimator ŝm′ belongs to Ŝm.
Hence,

γ (m) ≥ sup
m′∈M�

{
αH 2(ŝm, ŝm′) + T (ŝm, ŝm′) − pen

(
m(ŝm′)

)}+ 2 pen(m).

Since |mK(ŝm′) ∨ K| ≤ |m′ ∨ K|, |m(ŝm′)| ≤∑K∈m |m′ ∨ K| and∑
K∈m

∣∣m′ ∨ K
∣∣= ∣∣{K ∩ K ′,

(
K,K ′) ∈ m × m′,K ∩ K ′ �= ∅

}∣∣.
Remark that either K ∩ K ′ = K or K ∩ K ′ = K ′ since K,K ′ are non-disjoint cubes (see Fig. 1). Hence, |m(ŝm′)| ≤
|m| + |m′|, and γ1(m) ≤ γ (m) as wished.

To prove the second part of the lemma, we must define the set Sm appearing in the definition of γ2.
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Definition B.1. Let, for all K ∈⋃m∈M�
m, K0, . . . ,Kl be the cubes of

⋃
m∈M�

m such that K ⊂ Ki for all i ∈
{0, . . . , l}. For all i ∈ {0, . . . , l}, let Ii and Ji be the subsets of [0,1]d such that Ki = Ii × Ji . Set

SK =
l⋃

i=0

{
a

bμ(Ji)
1K,a ∈ {0, . . . , n}, b ∈ {1, . . . , n}

}

with the convention a/0 = 0 whatever a ∈ {0, . . . , n}. We define Sm by

Sm =
{∑

K∈m

fK,fK ∈ SK

}
.

Let us now make the link between Sm and Ŝm. We shall show that a function f̂ ∈ Ŝm belongs to S
m(f̂ )

. For this

purpose, let K ′ ∈ m(f̂ ). By definition of m(f̂ ), there exist K ∈ m, K ′′ ∈ mK(f̂ ) such that K ′ = K ′′ ∩ K . We have
f̂ 1K = ŝ

mK(f̂ )
1K and

ŝ
mK(f̂ )

1K ′′ =
∑n−1

i=0 1K ′′(Xi,Xi+1)∑n−1
i=0

∫
[0,1]d 1K ′′(Xi, x)dμ(x)

1K ′′ .

Consequently,

f̂ 1K ′ = (f̂ 1K)1K ′′

= (ŝ
mK(f̂ )

1K)1K ′′ = (ŝ
mK(f̂ )

1K ′′)1K

=
∑n−1

i=0 1K ′′(Xi,Xi+1)∑n−1
i=0

∫
[0,1]d 1K ′′(Xi, x)dμ(x)

1K ′ .

This implies that f̂ 1K ′ ∈ SK ′ and thus f̂ =∑
K ′∈m(f̂ )

f̂ 1K ′ belongs to S
m(f̂ )

.

The inequality γ2 ≥ γ ensues from (B.4), Ŝm ⊂⋃m′∈M�
Sm′ and

γ2(m) = sup
f ′∈⋃m′∈M�

Sm′

{
αH 2(ŝm, f ′)+ T

(
ŝm, f ′)− ( inf

m′′∈M�

Sm′′ �f ′

pen
(
m′′))}+ 2 pen(m).

B.3.2. Proof of Lemma B.3
We start with the claim below.

Claim B.3. Let ψ be the bounded function defined on [0,+∞)2 by

ψ(x, y) = 1√
2

√
y − √

x√
x + y

for all x, y ∈ [0,+∞)

with the convention 0/0 = 0.
Let, for all f,f ′ ∈ L

1+(X2,M), with support included in A, Z(f,f ′) be the random variable defined by

Z
(
f,f ′)= 1

n

n−1∑
i=0

(
ψ
(
f (Xi,Xi+1), f

′(Xi,Xi+1)
)− ∫

X

ψ
(
f (Xi, y), f ′(Xi, y)

)
(s1A)(Xi, y)dμ(y)

)
.

Then,(
1 − 1√

2

)
H 2(s1A,f ′)+ T

(
f,f ′)≤ (1 + 1√

2

)
H 2(s1A,f ) + Z

(
f,f ′) (B.5)
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and

1

n

n−1∑
i=0

∫
X

ψ2(f (Xi, y), f ′(Xi, y)
)
(s1A)(Xi, y)dμ(y) ≤ 3

(
H 2(s1A,f ) + H 2(s1A,f ′)). (B.6)

Proof. For all i ∈ {0, . . . , n − 1}, let

Ti

(
f,f ′)= 1

2
√

2

∫
X

√
f (Xi, y) + f ′(Xi, y)

(√
f ′(Xi, y) −√f (Xi, y)

)
dμ(y)

+ 1√
2

√
f ′(Xi,Xi+1) −√f (Xi,Xi+1)√
f (Xi,Xi+1) + f ′(Xi,Xi+1)

+ 1

2

∫
X

(
f (Xi, y) − f ′(Xi, y)

)
dμ(y),

Zi

(
f,f ′)= ψ

(
f (Xi,Xi+1), f

′(Xi,Xi+1)
)− E

[
ψ
(
f (Xi,Xi+1), f

′(Xi,Xi+1)
) | Xi

]
,

H 2
i

(
f,f ′)= 1

2

∫
X

(√
f ′(Xi, y) −√f (Xi, y)

)2 dμ(y),

ρi

(
f,f ′)= ∫

X

√
f ′(Xi, y)f (Xi, y)dμ(y).

Since

T
(
f,f ′)= 1

n

n−1∑
i=0

Ti

(
f,f ′), Z

(
f,f ′)= 1

n

n−1∑
i=0

Zi

(
f,f ′) and H 2(f,f ′)= 1

n

n−1∑
i=0

H 2
i

(
f,f ′)

it is sufficient to prove that for all i ∈ {0, . . . , n − 1},
(

1 − 1√
2

)
H 2

i

(
s1A,f ′)+ Ti

(
f,f ′)≤ (1 + 1√

2

)
H 2

i (s1A,f ) + Zi

(
f,f ′) (B.7)

and ∫
X

ψ2(f (Xi, y), f ′(Xi, y)
)
(s1A)(Xi, y)dμ(y) ≤ 3

(
H 2

i (s1A,f ) + H 2
i

(
s1A,f ′)). (B.8)

These inequalities are established by using similar arguments than those developed in the proofs of Propositions 2 and
3 of Baraud [5]. Let us make them explicit. We set

ρi

(
ζ, f,f ′)= 1

2

[
ρi

(
f ′, f + f ′

2

)
+
∫

X

√
2f ′(Xi, y)

f (Xi, y) + f ′(Xi, y)
dζ(y)

]
for all measure ζ ,

where the convention 0/0 is in use. Let ζi be the random measure defined by dζi/dμ = (s1A)(Xi, ·). Then,

E
[
Ti

(
f,f ′) | Xi

]= [ρi

(
ζi, f, f ′)− 1

2

∫
X

f ′(Xi, y)dμ(y)

]
−
[
ρi

(
ζi, f

′, f
)− 1

2

∫
X

f (Xi, y)dμ(y)

]
.

We deduce from relation (6) of Baraud [5],

0 ≤ ρi

(
ζi, f, f ′)− ρi

(
s1A,f ′)≤ 1√

2

[
H 2

i (s1A,f ) + H 2
i

(
s1A,f ′)],

0 ≤ ρi

(
ζi, f

′, f
)− ρi(s1A,f ) ≤ 1√

2

[
H 2

i (s1A,f ) + H 2
i

(
s1A,f ′)].
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Now,

H 2
i

(
f ′, s1A

)− H 2
i (f, s1A) =

[
ρi(s1A,f ) − 1

2

∫
X

f (Xi, y)dμ(y)

]

−
[
ρi

(
s1A,f ′)− 1

2

∫
X

f ′(Xi, y)dμ(y)

]

= −E
[
Ti

(
f,f ′) | Xi

]+ [ρi

(
ζi, f, f ′)− ρi

(
s1A,f ′)]

− [ρi

(
ζi, f

′, f
)− ρi(s1A,f )

]
≤ −E

[
Ti

(
f,f ′) | Xi

]+ 1√
2

[
H 2

i (s1A,f ) + H 2
i

(
s1A,f ′)].

Inequality (B.7) ensues from the relation Zi(f,f ′) = Ti(f,f ′) − E[Ti(f,f ′) | Xi]. Let us now prove (B.8).

2
∫

X

ψ2(f (Xi, y), f ′(Xi, y)
)
s1A(Xi, y)dμ(y)

=
∫

X

(√
f ′(Xi, y) −√f (Xi, y)

)2 s1A(Xi, y)

f (Xi, y) + f ′(Xi, y)
dμ(y)

=
∫

X

(√
f ′(Xi, y) −√f (Xi, y)

)2(√ s1A(Xi, y)

f (Xi, y) + f ′(Xi, y)
− 1√

2
+ 1√

2

)2

dμ(y)

≤ 2
∫

X

(√
f ′(Xi, y) −√f (Xi, y)

)2(√ s1A(Xi, y)

f (Xi, y) + f ′(Xi, y)
− 1√

2

)2

dμ(y)

+
∫

X

(√
f ′(Xi, y) −√f (Xi, y)

)2 dμ(y)

≤ 2
∫

X

(√
f ′(Xi, y) − √

f (Xi, y)√
f (Xi, y) + f ′(Xi, y)

)2(√
s1A(Xi, y) −

√
f (Xi, y) + f ′(Xi, y)

2

)2

dμ(y)

+ 2H 2
i

(
f,f ′).

The first term of the right-hand side of this inequality can be upper bounded by 4H 2
i (s1A,

f +f ′
2 ). Since the map

t �→ √
t is concave, 2H 2

i (s1A,
f +f ′

2 ) ≤ H 2
i (s1A,f ) + H 2

i (s1A,f ′). The second term is bounded from above by
H 2

i (f, f ′) ≤ 2(H 2
i (s1A,f ) + H 2

i (s1A,f ′)). Finally,

∫
X

ψ2(f (Xi, y), f ′(Xi, y)
)
s1A(Xi, y)dμ(y) ≤ 3

[
H 2

i (s1A,f ) + H 2
i

(
s1A,f ′)]

as wished. �

We shall prove (B.3) by applying the following concentration inequality to the random variable Z(f,f ′).

Claim B.4. For all i ≤ n − 1, let Fi be the σ -field generated by the random variables Xj for j ∈ {0, . . . , i}. Let
f0, . . . , fn−1 ∈ L

1(X2,M) such that there exists b ∈ R with supx∈X2 |fi(x)| ≤ b for all i ∈ {0, . . . , n − 1}. Set

Sn =
n−1∑
i=0

(
fi(Xi,Xi+1) − E

[
fi(Xi,Xi+1) | Fi

])



Estimation of the transition density of a Markov chain 1055

and

Vn =
n−1∑
i=0

E
[
f 2

i (Xi,Xi+1) | Fi

]
.

Then, for all β > b and x > 0

P

[
Sn ≥ Vn

2(β − b)
+ βx

]
≤ e−x.

Proof. By setting a−1 = 2(β − b),

logP[Sn ≥ aVn + βx] ≤ −x + log E
[
exp
(
β−1Sn − aβ−1Vn

)]
≤ −x + log E

[
exp
(
β−1Sn−1 − aβ−1Vn

)
E
[
exp
(
β−1(Sn − Sn−1)

) | Fn−1
]]

.

By using Bernstein inequality (equation (2.21) of Massart [32]),

E
[
exp
(
β−1(Sn − Sn−1)

) | Fn−1
]≤ exp

(
β−2(Vn − Vn−1)

2(1 − β−1b)

)

and thus

logP[Sn ≥ aVn + βx] ≤ −x + log E
[
exp
(
β−1Sn−1 − aβ−1Vn−1

)]
.

The result follows by induction. �

Proof of Lemma B.3. Set z = (1 − 1/
√

2)/4, β = (3/z + √
2)/2 and for all ξ > 0,

Ωξ =
{

sup
(f,f ′)∈Sm×Sm′

(m,m′)∈M2
�

Z(f,f ′)
z(H 2(f, s1A) + H 2(f ′, s1A)) + pen(m) + pen(m′) + βξ

< 1

}
.

On Ωξ , for all m,m′ ∈ M�, (f,f ′) ∈ Sm × Sm′ ,

Z
(
f,f ′)≤ z

(
H 2(f, s1A) + H 2(f ′, s1A

))+ pen(m) + pen
(
m′)+ βξ

and (B.3) derives from (B.5) (with ε = 1/
√

2 + z).
It remains to prove that P(Ωc

ξ ) ≤ 3e−nξ . We have

P
(
Ωc

ξ

)≤ ∑
(f,f ′)∈Sm×Sm′

(m,m′)∈M2
�

P
[
Z
(
f,f ′)≥ z

[
H 2(s1A,f ) + H 2(s1A,f ′)]+ pen(m) + pen

(
m′)+ βξ

]
.

We apply the concentration inequality given by Claim B.4 with fi = ψ(f,f ′), b = 1/
√

2, Sn = nZ(f,f ′) and by
using relation (B.6),

Vn =
n−1∑
i=0

∫
X

ψ2(f (Xi, y), f ′(Xi, y)
)
(s1A)(Xi, y)dμ(y) ≤ 3n

(
H 2(s1A,f ) + H 2(s1A,f ′)).

We obtain for all x > 0,

P

[
Z
(
f,f ′)≥ 3√

2(β
√

2 − 1)

[
H 2(s1A,f ) + H 2(s1A,f ′)]+ β

x

n

]
≤ e−x.
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Note that z = 3/(
√

2(β
√

2 − 1)). By using the above inequality with

β
x

n
= pen(m) + pen

(
m′)+ βξ

we deduce that

P
(
Ωc

ξ

)≤ ∑
(f,f ′)∈Sm×Sm′

(m,m′)∈M2
�

e−n(β−1 pen(m)+β−1 pen(m′)+ξ).

Now, the set SK defined in Definition B.1, page 1052, satisfies |SK | ≤ (� + 1)n(n + 1) which implies that |Sm| ≤
|m|(�+1)n(n+1) . By using � ≤ n, log |Sm| ≤ 3|m| log(n + 1). Since L is large enough (L ≥ 90), β−1 pen(m) ≥ (|m| +
log |Sm|)/n for all m ∈ M�. Consequently,

P
(
Ωc

ξ

) ≤
∑

(f,f ′)∈Sm×Sm′
(m,m′)∈M2

�

e−(|m|+log |Sm|+|m′|+log |Sm′ |+nξ)

≤
( ∑

m∈M�

e−|m|
)2

e−nξ .

The conclusion follows from the inequality
∑

m∈M�
e−|m| ≤ √

3 (see Section 3.2.4 of Baraud and Birgé [6]). �

B.3.3. Proof of Lemma B.1
The proof of this lemma is based on the two following remarks.

1. The Hellinger distance H 2(f,f ′) and the test T (f,f ′) are respectively upper bounded by 1 and 2 when f,f ′ are
such that

1

n

n−1∑
i=0

∫
Rd

f (Xi, y)dμ(y) ≤ 1 and
1

n

n−1∑
i=0

∫
Rd

f ′(Xi, y)dμ(y) ≤ 1.

2. The cardinality of a partition m ∈ M� \ Mn is lower bounded by |m| ≥ n + 1 when � ≥ n + 1.

More precisely, the proof follows from the two claims below.

Claim B.5. Let for each m1,m2 ∈ M∞ and K ∈ m1,

γK(m1,m2) = αH 2(ŝm11K, ŝm21K) + T (ŝm11K, ŝm21K) − pen(m2 ∨ K).

Then, for all � ∈ N
�, � ≥ n + 1, m1 ∈ M∞, K ∈ m1,

sup
m2∈M�

γK(m1,m2) = sup
m2∈Mn

γK(m1,m2)

and thus

sup
m2∈M∞

γK(m1,m2) = sup
m2∈Mn

γK(m1,m2).

Proof. Let m�
2 ∈ M� such that γK(m1,m

�
2) = supm2∈M�

γK(m1,m2). In Section 2, we have defined the collection
M� of partitions of [0,1]2d . Likewise, by using the algorithm of DeVore and Yu [21], we define the collection M�(K)
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of partitions of K . Note that m�
2 ∨K belongs to M�(K). Since H 2(ŝm1K, ŝm′1K) ≤ 1 and |T (ŝm1K, ŝm′1K)| ≤ 2, we

have

γK

(
m1,m

�
2

)≤ 3 − L
|m�

2 ∨ K| logn

n
.

Remark that

γK

(
m1,m

�
2

)≥ γK

(
m1,

{[0,1]2d
})≥ −2 − L

logn

n

which leads to

∣∣m�
2 ∨ K

∣∣≤ 1 + 5n

L logn
≤ n.

This implies that m�
2 ∨ K belongs to Mn(K). There exists m•

2 ∈ Mn such that m•
2 ∨ K = m�

2 ∨ K and hence
γK(m1,m

•
2) = γK(m1,m

�
2) which concludes the proof. �

Claim B.6. Set for all m ∈ M∞ and K ∈ m,

γK(m) = sup
m2∈M�

γK(m,m2).

Then, γ (m) = 2 pen(m) +∑K∈m γK(m) and for all � ∈ N
�, � ≥ n + 1,

inf
m∈M�

γ (m) = inf
m∈Mn

γ (m)

and thus

inf
m∈M∞

γ (m) = inf
m∈Mn

γ (m).

Proof. Let m� ∈ M� such that infm∈M�
γ (m) = γ (m�). By Lemma B.2,

γ
(
m�
) ≥ sup

m′∈M�

{
αH 2(ŝm�, ŝm′) + T (ŝm�, ŝm′) − pen

(
m′)}+ L

|m�| logn

n

≥
(

−2 − L
logn

n

)
+ L

|m�| logn

n

≥ −2 + L
(|m�| − 1) logn

n
.

Now,

γ
(
m�
)≤ γ

({[0,1]2d
})≤ 3 + 2L

logn

n

which implies that

∣∣m�
∣∣≤ 3 + 5n

L logn
≤ n

and thus m� ∈ Mn. �
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B.4. Proof of Theorem 2.2

Consider the regular partition mref of [0,1]2d into cubes with side length 2−�, that is

mref = {K�,l, l = (k, . . . , k), k ∈ {1, . . . ,2�
}}

,

where K�,l is defined in Section 2.2. For all partition m ∈ M�, Vm ⊂ Vmref . Set

Ωeq = [∀g1, g2 ∈ Vmref, h
2(g1, g2) ≤ 11H 2(g1, g2)

]
and define s̄m an element of Vm such that h2(s1A, s̄m) = h2(s1A,Vm).

For all m ∈ M�,

E
[
h2(s1A, ŝm̂)

] ≤ E
[
h2(s1A, ŝm̂)1Ωeq

]+ E
[
h2(s1A, ŝm̂)1Ωc

eq

]
≤ 2E

[
h2(s1A, s̄m)1Ωeq

]+ 2E
[
h2(s̄m, ŝm̂)1Ωeq

]+ E
[
h2(s1A, ŝm̂)1Ωc

eq

]
≤ 2E

[
h2(s1A, s̄m)1Ωeq

]+ 22E
[
H 2(s̄m, ŝm̂)1Ωeq

]+ E
[
h2(s1A, ŝm̂)1Ωc

eq

]
≤ 2E

[
h2(s1A, s̄m)1Ωeq

]+ 44E
[
H 2(s1A, s̄m)1Ωeq

]+ 44E
[
H 2(ŝm̂, s1A)1Ωeq

]
+ E

[
h2(s1A, ŝm̂)1Ωc

eq

]
.

Now, h2(s1A, s̄m) = E[H 2(s1A, s̄m)] = h2(s1A,Vm) and

E
[
h2(s1A, ŝm̂)1Ωc

eq

] ≤ 2E
[(

h2(s,0) + h2(ŝm̂,0)
)
1Ωc

eq

]
≤ E

[(
1 + 2 sup

m∈M�

h2(ŝm,0)
)
1Ωc

eq

]
.

Let for all K ∈ m, IK and JK be the subsets of [0,1]d such that K = IK × JK . Then,

2h2(ŝm,0) =
∑
K∈m

∑n−1
i=0 1IK

(Xi)1JK
(Xi+1)∑n−1

i=0 1IK
(Xi)

∫
IK

ϕ(x)dx ≤ |m|.

Since m ⊂ mref, |m| ≤ |mref| = 4�d and thus

E
[
h2(s1A, ŝm̂)1Ωc

eq

]≤ (1 + 4�d
)
P
(
Ωc

eq

)≤ 2 × 4�d
P
(
Ωc

eq

)
.

We have proved that there exists an universal constant C′ > 0 such that

C′
E
[
h2(s1A, ŝm̂)

]≤ inf
m∈M�

{
h2(s1A,Vm) + pen(m)

}+ 4�d
P
(
Ωc

eq

)
.

We now bound from above the term P(Ωc
eq). We denote by Iref the regular partition of [0,1]d into cubes with side

length 2−�. Remark that

P
(
Ωc

eq

) ≤ P

[
∃I ∈ Iref,P(X1 ∈ I ) ≥ 11

n

n−1∑
i=0

1I (Xi)

]

≤ 2�d sup
I∈Iref

P

[
1

n

n−1∑
i=0

(
1I (Xi) − P(Xi ∈ I )

)≤ −10

11
P(X1 ∈ I )

]
.

We use the following Bennett-type inequality for β-mixing random variables (with f = −1I , v = P(X1 ∈ I ), c = 0,
ξ = 10/11P(X1 ∈ I )).
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Proposition B.1. Let (Xi)i≥0 be a stationary Markov chain with values in R
d , and let f be a real-valued function

on R
d upper bounded by c ≥ 0 such that v = E[f (X1)

2] < ∞.
Then, for all q ∈ {1, . . . , n} and ξ > 0,

P

(
1

n

n−1∑
i=0

(
f (Xi) − E

[
f (Xi)

])
> ξ

)
≤ 2 exp

(
− nξ2

8q(v + cξ/6)

)
+ 3nβq/q.

We then have for all I ∈ Iref,

P

[
1

n

n−1∑
i=0

(
1I (Xi) − P(Xi ∈ I )

)≤ −10

11
P(X1 ∈ I )

]
≤ 3 inf

1≤q≤n

{
exp

(
−25nP(X1 ∈ I )

242q

)
+ nβq/q

}

≤ 3 inf
1≤q≤n

{
exp

(
− nκ0

10q2�d

)
+ nβq/q

}

which concludes the proof.

Proof of Proposition B.1. Let l be the smallest integer larger than n/(2q). We derive from Berbee’s lemma and more
precisely from Viennet [36] (page 484) that there exist X�

0, . . . ,X
�
2lq−1 such that

• For j = 1, . . . , l, the random vectors

Xj,1 = (X2(j−1)q , . . . ,X2(j−1)q+q−1) and X�
j,1 = (X�

2(j−1)q , . . . ,X�
2(j−1)q+q−1

)
have the same distribution, and so have the random vectors

Xj,2 = (X2(j−1)q+q, . . . ,X2jq−1) and X�
j,2 = (X�

2(j−1)q+q, . . . ,X�
2jq−1

)
.

• The random vectors X�
1,1, . . . ,X�

l,1 are independent. The random vectors X�
1,2, . . . ,X�

l,2 are also independent.
• The event

Ω� =
⋂

1≤j≤l

([
Xj,1 �= X�

j,1

]∩ [Xj,2 �= X�
j,2

])

satisfies P[(Ω�)c] ≤ 2lβq .

We set gi(x) = f (x) if i ≤ n − 1 and gi(x) = 0 otherwise. For j ∈ {1, . . . , l}, we set

g′
j,1(x0, . . . , xq−1) =

q−1∑
i=0

g2(j−1)q+i (xi) and g′
j,2(x0, . . . , xq−1) =

q−1∑
i=0

g2(j−1)q+q+i (xi).

Then,

P

[(
1

n

n−1∑
i=0

(
gi(Xi) − E

[
gi(Xi)

])
> ξ

)
∩ Ω�

]
≤ P

(
l∑

j=1

(
g′

j,1

(
X�

j,1

)− E
[
g′

j,1

(
X�

j,1

)])
> nξ/2

)

+ P

(
l∑

j=1

(
g′

j,2

(
X�

j,2

)− E
[
g′

j,2

(
X�

j,2

)])
> nξ/2

)

≤ 2 exp

(
− n2ξ2

8q(nv + cnξ/6)

)

by using Proposition 2.8 and inequality (2.16) of Massart [32] (in the paper of Massart [32], the Bennett inequality
holds for b = 0 when (2.15) is replaced by (2.16)). �
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B.5. Proof of Corollary 2.2

The corollary ensues from the claim below and Theorem 2 of Baraud and Birgé [6].

Claim B.7. Under Assumption 2.2, for all � ∈ N
� such that 2�d ≥ n,

inf
m∈M�

{
d2

2 (
√

s A,Vm) + |m| logn

n

}
≤ 4 inf

m∈M∞

{
d2

2 (
√

s A,Vm) + |m| logn

n

}
.

Proof. For all partition m ∈ M∞ and cube K ∈ m, we denote by IK and JK the cubes of [0,1]d such that K =
IK × JK and set

s̄m =
∑
K∈m

∫
K

s(x, y)dx dy

μ ⊗ μ(K)
1K.

In this paper, d2 stands for the standard euclidean distance of L
2([0,1]2d ,μ ⊗ μ). In this proof, we make a slight

abuse of notations by denoting by d2 the standard euclidean distance of L
2(R2d ,μ ⊗ μ).

Let m� be a partition of M∞ such that

2 inf
m∈M∞

{
d2

2 (
√

s1A,Vm) + |m| logn

n

}
≥ d2

2 (
√

s1A,Vm�) + |m�| logn

n
.

Let C be the collection C = {K ∈ m�,μ(IK) ≥ 2−�d} and let m• be a partition of M� containing C such that∣∣m•∣∣= inf
{|m|,m ∈ M� such that m � C

}
.

Let A• be the set defined by A• =⋃K∈C K and V •
m• = {f 1A• , f ∈ Vm• }.

We have,

d2
2 (

√
s1A,Vm•) ≤ d2

2

(√
s1A• ,V •

m•
)+ d2

2 (
√

s1A∩(A•)c ,0)

and

d2
2

(√
s1A•,V •

m•
)≤ d2

2 (
√

s1A• ,
√

s̄m•1A•) ≤ d2
2 (

√
s1A,

√
s̄m�).

By using Lemma 2 of Baraud and Birgé [6], d2
2 (

√
s1A,

√
s̄m�) ≤ 2d2

2 (
√

s1A,Vm�) which shows that

d2
2 (

√
s1A,Vm•) ≤ 2d2

2 (
√

s1A,Vm�) + d2
2 (

√
s1A∩(A•)c ,0).

Now,

d2
2 (

√
s1A∩(A•)c ,0) ≤

∑
K∈m�\C

∫
IK

(∫
Rd

s(x, y)dy

)
dx

≤
∑

K∈m�\C
μ(IK) ≤ 2−�d |m�|.

Since |m•| ≤ |m�| and 2−�d ≤ n−1, we have

d2
2 (

√
s1A,Vm•) + |m•| logn

n
≤ 2d2

2 (
√

s1A,Vm�) + (1 + logn)|m�|
n

which proves the claim. �
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B.6. Rates of convergences for h

We prove the result only for geometrically β-mixing chains (the proof for arithmetically β-mixing chains being
similar). We use the claim below whose proof is the same than the one of Claim B.7.

Claim B.8. Under Assumption 2.2, for all � ∈ N
� such that 2�d ≥ n/ log3 n,

inf
m∈M�

{
h2(s1A,Vm) + |m| logn

n

}
≤ 4 inf

m∈M∞

{
h2(s1A,Vm) + |m| log3 n

n

}
.

By using this claim and Theorem 1 of Akakpo [2],

CE
[
h2(s1A, ŝm̂)

]≤ |√s A|2d/(d+σ)
p,σ

(
log3 n

n

)σ/(σ+d)

+ log3 n

n
+ Rn(�)

n
(B.9)

and by using Theorem 2 of Akakpo [2],

CE
[
h2(s1A, ŝm̂)

]≤ |√s A|2d/(d+σ)
p,σ

(
logn

n
+ 2−2�dθ

)σ/(σ+d)

+ logn

n
+ Rn(�)

n
,

where C > 0 depends only on κ,σ, d,p and where

θ = d + σ

σ

(
σ

d
− 2

(
1

p
− 1

2

)
+

)
.

If σ > σ1(p, d) then θ > 1/2. There exits thus n0 (depending only on θ ), such that if n ≥ n0, 2−2�θd ≤ logn/n, and
hence

C′
E
[
h2(s1A, ŝm̂)

]≤ |√s A|2d/(d+σ)
p,σ

(
logn

n

)σ/(σ+d)

+ logn

n
+ Rn(�)

n
.

If n ≤ n0, we deduce from (B.9),

CE
[
h2(s1A, ŝm̂)

] ≤ |√s A|2d/(d+σ)
p,σ

(
log3 n0

n

)σ/(σ+d)

+ log3 n0

n
+ Rn(�)

n

≤ C′′
[
|√s A|2d/(d+σ)

p,σ

(
logn

n

)σ/(σ+d)

+ logn

n
+ Rn(�)

n

]
,

where C′′ depends only on σ,d,p. The conclusion ensues from the fact that Rn(�) is upper bounded by a constant
depending only on κ0, b1.

B.7. Proof of Proposition 4.1

We shall use the following lemma whose proof is similar to the one of Lemma B.3.

Lemma B.4. Set ε = (2 + 3
√

2)/8. Under assumptions of Proposition 4.1, there exists an universal constant L0 > 0
such that for all L ≥ L0 and ξ > 0,

∀f,f ′ ∈ S, (1 − ε)H 2(s1A,f ′)+ T
(
f,f ′)≤ (1 + ε)H 2(s1A,f ) + L

ΔS(f ) + ΔS(f ′)
n

+ 22ξ

with probability larger than 1 − e−nξ .
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Proof of Proposition 4.1. By using the above lemma, with probability larger than 1 − e−nξ , for all f ∈ S,

sup
f ′∈S

{
(1 − ε)H 2(s1A,f ′)+ T

(
f,f ′)− L

ΔS(f ′)
n

}
≤ (1 + ε)H 2(s1A,f ) + L

ΔS(f )

n
+ 22ξ.

Thus, if T (f, f̂ ) + L
ΔS(f )

n
− L

ΔS(f̂ )
n

≥ 0,

αH 2(s1A, f̂ ) ≤ (1 − ε)H 2(s1A, f̂ ) + T (f, f̂ ) − L
ΔS(f̂ )

n
+ L

ΔS(f )

n

≤ (1 + ε)H 2(s1A,f ) + 2L
ΔS(f )

n
+ 22ξ.

If T (f, f̂ ) + L
ΔS(f )

n
− L

ΔS(f̂ )
n

< 0,

αH 2(f, f̂ ) ≤ αH 2(f̂ , f ) + T (f̂ , f ) − L
ΔS(f )

n
+ L

ΔS(f̂ )

n

≤ sup
f ′∈S

{
αH 2(f̂ , f ′)+ T

(
f̂ , f ′)− L

ΔS(f ′)
n

}
+ L

ΔS(f̂ )

n

≤ ℘(f̂ )

≤ ℘(f ) + 1

n

≤ sup
f ′∈S

{
αH 2(f,f ′)+ T

(
f,f ′)− L

ΔS(f ′)
n

}
+ L

ΔS(f )

n
+ 1

n
.

With υ = (1 − ε)/α − 1 > 0,

αH 2(f, f̂ ) ≤ (1 + υ−1)H 2(f, s1A)

+ sup
f ′∈S

{
(1 − ε)H 2(s1A,f ′)+ T

(
f,f ′)− L

ΔS(f ′)
n

}
+ L

ΔS(f )

n
+ 1

n

≤ (1 + υ−1)H 2(f, s1A) +
[
(1 + ε)H 2(s1A,f ) + L

ΔS(f )

n
+ 22ξ

]
+ L

ΔS(f )

n
+ 1

n

≤ (2 + ε + υ−1)H 2(f, s1A) + 2L
ΔS(f )

n
+ 22ξ + 1

n
.

This leads to

αH 2(s1A, f̂ ) ≤ 2αH 2(s1A,f ) + 2αH 2(f, f̂ )

≤ 2
(
2 + α + ε + υ−1)H 2(f, s1A) + 4L

ΔS(f )

n
+ 44ξ + 2

n
.

Finally, we have proved that there exists C > 0, such that, with probability larger than 1 − e−nξ , for all f ∈ S,

CH 2(s1A, f̂ ) ≤ H 2(f, s1A) + L
ΔS(f )

n
+ ξ.

The conclusion follows. �
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B.8. Proof of Corollary 4.2

Throughout this proof, the distance associated to the supremum norm ‖ · ‖∞ is denoted by d∞. As defined page 1035,
d2 is the usual distance of the space of square integrable functions on [0,1]2 with respect to the Lebesgue measure
μ ⊗ μ. We make a slight abuse of notation in this proof since d2 will also stand for the distance of the space of square
integrable functions on [0,1] with respect to the Lebesgue measure μ.

We shall use the following lemma (the first part may be deduced from the work of Akakpo [2] whereas the second
part may be deduced from results in Dahmen, DeVore, and Scherer [20]).

Lemma B.5. There exist a collection W of (finite dimensional) linear spaces and a non-negative map ΔW on W such
that

∑
W∈W

e−ΔW(W) ≤ 1 and such that for all p ∈ (0,+∞], β > (1/p − 1/2)+ and f ∈ Bβ(Lp([0,1])), L > 0,
τ > 0, σ > 0,

C inf
W∈W

{
L2d2σ

2 (f,W) + (dimW + ΔW(W)
)
τ
}≤ (L|f |σp,β

)2/(2σβ+1)
τ 2σβ/(2σβ+1) + τ,

where C > 0 depends only on p, β . Moreover, for all β > 0, f ∈ Hβ([0,1]), L > 0, τ > 0, σ > 0,

C ′ inf
W∈W

{
L2d2σ∞ (f,W) + (dimW + ΔW(W)

)
τ
}≤ (L|f |σ∞,β

)2/(2σβ+1)
τ 2σβ/(2σβ+1) + τ,

where C′ > 0 depends only on β .

Let us define

u(x, y) = y − g(x)

1 + ‖g‖∞
and Φ(x) = φ

((
1 + ‖g‖∞

)
x
)

for all x, y ∈ [0,1].

Let W be the family of linear spaces given by the above lemma. Let for all f ∈⋃W∈W
W , a ∈ R, ψa,f be the function

defined on [0,1]2 by ψa,f (x, y) = a(y − f (x)). Define, for all W ∈ W, the linear space

TW = {ψa,f , a ∈ R, f ∈ W }.
We deduce from the proof of Theorem 2 of Baraud and Birgé [7] (with F = W, l = 1, T1 = {TW ,W ∈ W}, γ (W) =
e−ΔW(W), λ1(TW ) = e−ΔW(W)) and from relation (4.5) of Baraud and Birgé [7], that there exist an at most countable
collection V of models and a non-negative map Δ on V such that

∑
V∈V

e−Δ(V ) ≤ 1 and

C inf
V ∈V

{
d2(

√
s A,V ) + Δ(V ) + dim(V ) logn

n

}

≤ inf
W∈W

{|Φ|2∞,σ∧1d
2(σ∧1)
2 (u,TW ) + (dimTW + ΔW(W)

)
τn

}

+ inf
W∈W

{
d2∞(Φ,W) + (dimW + ΔW(W)

) logn

n

}
,

where C > 0 depends only on σ and where

τn = (logn ∨ log
(|Φ|∞,σ∧1

)) logn

n
.

Besides, for all linear space V ∈ V, there exists a function ψ ∈⋃T ∈T1
T and a linear space W ∈ W such that V =

{f ◦ ψ,f ∈ W }.
We apply Theorem 4.1 to (V,Δ) to construct an estimator ŝ of the form√

ŝ(x, y) = φ̂
(
y − ĝ(x)

)
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such that

C′ inf
V ∈V

E
[
H 2(s1A, ŝ)

] ≤ inf
W∈W

{|Φ|2∞,σ∧1d
2(σ∧1)
2 (u,TW ) + (dimTW + ΔW(W)

)
τn

}

+ inf
W∈W

{
d2∞(Φ,W) + (dimW + ΔW(W)

) logn

n

}
,

where C′ > 0 depends only on σ , κ . We upper bound the two terms of the right-hand side of this inequality. We derive
from

|Φ|∞,σ∧1 ≤ (1 + ‖g‖∞
)σ∧1|φ|∞,σ∧1 and d

2(σ∧1)
2 (u,TW ) ≤ d

2(σ∧1)
2 (g,W)

(1 + ‖g‖∞)2(σ∧1)

that

inf
W∈W

{|Φ|2∞,σ∧1d
2(σ∧1)
2 (u,TW ) + (dimTW + ΔW(W)

)
τn

}
≤ inf

W∈W

{|φ|2∞,σ∧1d
2(σ∧1)
2 (g,W) + (dimW + ΔW(W) + 1

)
τn

}
.

By using the above lemma,

C′′ inf
W∈W

{|φ|2∞,σ∧1d
2(σ∧1)
2 (g,W) + (dimW + ΔW(W) + 1

)
τn

}

≤ (|φ|∞,σ∧1|g|σ∧1
p,β

)2/(2(σ∧1)β+1)
τ

2(σ∧1)β/(2(σ∧1)β+1)
n + τn ≤ C′′′

(
log2 n

n

)2(σ∧1)β/(2(σ∧1)β+1)

.

Similarly,

C′′′′ inf
W∈W

{
d2∞(Φ,W) + (dimW + ΔW(W)

) logn

n

}
≤ (|Φ|∞,σ

)2/(2σ+1)
(

logn

n

)2σ/(2σ+1)

+ logn

n

≤ C′′′′′
(

logn

n

)2σ/(2σ+1)

.

B.9. Proof of Lemma 4.1

The first part of the lemma may be deduced from Proposition 4 of Baraud and Birgé [7]. For the second part, we shall
build φ′ ∈ Hσ (R) such that φ′ [0,1] /∈⋃b>σ Hb([0,1]) and g′ ∈ Hβ([0,1]) such that g′(0) = 0 and

φ′ ◦ g′ ∈ Hθ(β,σ )
([0,1])∖ ⋃

b>θ(β,σ )

Hb
([0,1]).

By setting φ = φ′ and g = −g′, the function f defined by

f (x, y) = φ′(y − (−g′(x)
))

for all x, y ∈ [0,1],

is suitable since f (x,0) = φ′ ◦ g′(x) and f (0, y) = φ′(y).
If σ,β ≤ 1, we can choose φ′(x) = xσ on [0,1] and g′(x) = xβ . If β ≥ σ ∨ 1, then choose φ′ ∈ Hσ (R) such

that φ′ [0,1] /∈ ⋃b>σ Hb([0,1]) and g′(x) = x. If now, σ ≥ β ∨ 1, we choose φ′ ∈ Hσ (R) such that φ′ [0,1] /∈⋃
b>σ Hb([0,1]) and such that φ′(x) = x for all x ∈ [0,1/2]. We then consider ζ ∈ Hβ([0,1]) \⋃b>β Hb([0,1])

and g′(x) = (ζ(x) − ζ(0))/(2 supy∈[0,1] |ζ(y) − ζ(0)|).



Estimation of the transition density of a Markov chain 1065

B.10. Proof of Corollary 4.3

We shall use the distances d2 and d∞ that have been defined at the beginning of the proof of Corollary 4.2.
Let us define

∀x, y, z ∈ [0,1], u(x, y) = (u1(x, y), u2(x, y), u3(x, y)
)= ( y − v1(x)

1 + ‖v1‖∞
,

v2(x)

‖v2‖∞
,

v3(x)

‖v3‖∞

)
,

Φ(x, y, z) = ‖v3‖∞zϕ
((

1 + ‖v1‖∞
)‖v2‖∞xy

)
.

Let W be the family of linear spaces given by Lemma B.5. Let for all a ∈ R, f ∈⋃W∈W
W , ψa,f be the function

defined on [0,1]2 by ψa,f (x, y) = a(y − f (x)) and gf be the function defined on [0,1]3 by gf (x, y, z) = zf (xy).
For all W ∈ W, we consider the linear spaces

TW = {ψa,f , a ∈ R, f ∈ W } and FW = {gf ,f ∈ W }.
It ensues from the proof of Theorem 2 of Baraud and Birgé [7] (where l = 3, F = {FW,W ∈ W}, T1 = {TW ,W ∈ W},
T2 = T3 = W, γ (FW) = λ1(TW ) = λ2(W) = λ3(W) = e−ΔW(W)) that there exist an at most countable collection V

of models and a non-negative map Δ on V such that
∑

V∈V
e−Δ(V ) ≤ 1 and such that

C inf
V ∈V

{
d2(

√
s A,V ) + Δ(V ) + dim(V ) logn

n

}

≤ inf
W∈W

{‖v3‖2∞
(
1 + ‖v1‖∞

)2(σ∧1)‖v2‖2(σ∧1)∞ |ϕ|2∞,σ d
2(σ∧1)
2 (u1, TW ) + (dimTW + ΔW(W)

)
τ (1)
n

}
+ inf

W∈W

{‖v3‖2∞
(
1 + ‖v1‖∞

)2(σ∧1)‖v2‖2(σ∧1)∞ |ϕ|2∞,σ d
2(σ∧1)
2 (u2,W) + (dimW + ΔW(W)

)
τ (1)
n

}
+ inf

W∈W

{‖v3‖2∞‖ϕ‖2∞d2
2 (u3,W) + (dimW + ΔW(W)

)
τ (2)
n

}

+ inf
W∈W

{
d2∞(Φ,FW ) + (dimFW + ΔW(W)

) logn

n

}
,

where

τ (1)
n = (logn ∨ log

(‖v3‖2∞
(
1 + ‖v1‖∞

)2(σ∧1)|ϕ|2∞,σ ‖v2‖2(σ∧1)∞
)) logn

n
,

τ (2)
n = (logn ∨ log

(‖v3‖2∞‖ϕ‖2∞
)) logn

n
.

By applying Theorem 4.1 to (V,Δ), we build an estimator ŝ such that

C′
E
[
H 2(s, ŝ)

]≤ inf
V ∈V

{
d2(

√
s A,V ) + Δ(V ) + dim(V ) logn

n

}

and thus

C′′
E
[
H 2(s, ŝ)

] ≤ inf
W∈W

{‖v3‖2∞|ϕ|2∞,σ ‖v2‖2(σ∧1)∞ d
2(σ∧1)
2 (v1,W) + (dimW + ΔW(W)

)
τ (1)
n

}
+ inf

W∈W

{‖v3‖2∞
(
1 + ‖v1‖∞

)2(σ∧1)|ϕ|2∞,σ d
2(1∧σ)
2 (v2,W) + (dimW + ΔW(W)

)
τ (1)
n

}
+ inf

W∈W

{‖ϕ‖2∞d
2(1∧σ)
2 (v3,W) + (dimW + ΔW(W)

)
τ (2)
n

}

+ inf
W∈W

{
‖v3‖2∞d2∞(ϕ,W) + (dimW + ΔW(W)

) logn

n

}
.

We conclude by applying Lemma B.5 as in the end of the proof of Corollary 4.2.
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B.11. Proof of Lemma 4.2

The first part of the lemma can be deduced from Proposition 4 of Baraud and Birgé [7]. For the second part, remark
that, as in the proof of Lemma 4.1 the problem amounts to finding φ′ ∈ Hσ (R) with φ′ [0,1] /∈⋃a>σ Ha(R), v′

i ∈
Hβi ([0,1]) for i ∈ {1,2}, v′

1(0) = 0, v′
2(0) = 1 such that√

v′
2φ

′(v′
1v

′
2

) ∈ Hθ(β1,β2,σ )
([0,1])∖ ⋃

b>θ(β1,β2,σ )

Hb
([0,1]).

If θ(β1, β2, σ ) = 2−1(β2 ∧ 1), choose v′
2(x) = (1 − x)1∧β2 and take φ′ as being any function of Hσ (R) such

that φ′ [0,1] /∈⋃a>σ Ha(R) and such that φ′(0) = 1. If θ(β1, β2, σ ) = σ , choose v′
1(x) = 2(

√
1 + x − 1), v′

2(x) =
1/2(

√
1 + x +1) and take φ′ as being any function of Hσ (R) such that φ′ [0,1] /∈⋃a>σ Ha(R). If θ(β1, β2, σ ) = σβ1,

we may assume that σ ≤ 1 and β1 ≤ 1. We can then choose v′
1(x) = xβ1 , v′

2(x) = 1 and φ′(x) = xσ for x ∈ [0,1]. If
θ(β1, β2, σ ) = σβ2, we may assume that σ ≤ 1 and β2 ≤ 1 and choose v′

1(x) = 1 for x ∈ [1/2,1], v′
2(x) = 1 − (1 −

x)β2 for x ∈ [1/2,1] and φ′(x) = (1 − x)σ for x ∈ [0,1]. Finally, if θ(β1, β2, σ ) = β1, we may assume that β1 ≤ 1.
We can then choose v′

1(x) = xβ1 , v′
2(x) = (1 − x)1∧β2 and φ′ such that φ′(x) = x for x ∈ [0,1/2].

B.12. Proof of Proposition A.1

We proceed in 3 steps.

Step 1. We associate to each cube K ∈⋃m∈M�
m, a place in the computer’s memory. Then, for each i ∈ {1, . . . , n} we

determine the sets K ∈⋃m∈M�
m such that 1K(Xi,Xi+1) > 0. There are at most � such sets. This permits to store

all the
∑n−1

i=0 1K(Xi,Xi+1) in around O(n�d) operations. Let for all K ∈⋃m∈M�
m, IK and JK be the subsets

of [0,1]d such that K = IK × JK . We can store all the μ(JK) in O(4�d) operations and all the
∑n−1

i=0 1IK
(Xi) in

O(n�d) operations. This permits us to store quickly

n−1∑
i=0

1K(Xi,Xi+1) and
n−1∑
i=0

∫
[0,1]d

1K(Xi, x)dμ(x)

for all K ∈⋃m∈M�
m. These values have to be calculated to know the FK(K ′) and thus to use the algorithm

presented in Section A.
Step 2. For each K ∈⋃m∈M�

m, we use the algorithm of Section A to design m′
K . Let us denote by j ∈ {0, . . . , �}

the smallest integer such that K ∈ Kj where Kj is defined in Section 2.2.

• To find m′
K , we begin to compute E (T �(K ′′)) for all K ′′ ∈ ⋃m∈M�\M�−1

m such that K ′′ ∩ K �= ∅. The

complexity of this is around the number of such sets, i.e, 4(�−j)d .
• Next, thanks to relation (A.4) we compute E (T �(K ′′)) for all K ′′ ∈⋃m∈M�−1\M�−2

m such that K ′′ ∩ K �= ∅.

There are 4(�−j−1)d such sets. The complexity of this operation is thus 4d × 4(�−j−1)d .
• By recurrence, we compute E (T �(K ′′)) for all K ′′ ∈⋃m∈M�\Mj

m such that K ′′ ∩ K �= ∅ in at most

4(�−j)d + 4d ×
�−j−1∑
k=1

4kd ≤ 3 × 4(�−j)d

operations.
• We get then E (T �([0,1]d)) in 4dj additional operations.

We apply this algorithm for all K ∈⋃m∈M�
m. When K ∈ Kj , computing m′

K requires thus O(4(�−j)d + 4dj)

operations. Since |Kj | = 4jd , computing all the m′
K requires finally

�∑
j=0

4jd
(
4(�−j)d + 4dj

)= O
(
�4(�+1)d

)
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operations.
Step 3. Now, by slightly modifying the algorithm, we can compute (A.2) in O(4(�+1)d ) operations.
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