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CHARACTERIZATION OF STATIONARY DISTRIBUTIONS OF
REFLECTED DIFFUSIONS

BY WEINING KANG1 AND KAVITA RAMANAN2

University of Maryland and Brown University

Given a domain G, a reflection vector field d(·) on ∂G, the boundary
of G, and drift and dispersion coefficients b(·) and σ(·), let L be the usual
second-order elliptic operator associated with b(·) and σ(·). Under mild as-
sumptions on the coefficients and reflection vector field, it is shown that when
the associated submartingale problem is well posed, a probability measure π

on Ḡ with π(∂G) = 0 is a stationary distribution for the corresponding re-
flected diffusion if and only if∫

Ḡ
Lf (x)π(dx) ≤ 0

for every f in a certain class of test functions. The assumptions are verified
for a large class of obliquely reflected diffusions in piecewise smooth do-
mains, including those that are not semimartingales. In addition, it is shown
that any nonnegative solution to a certain adjoint partial differential equation
with boundary conditions is an invariant density for the reflected diffusion.
As a corollary, for bounded smooth domains and a class of polyhedral do-
mains that satisfy a skew-symmetry condition, it is shown that if a certain
skew-transform of the drift is conservative and of class C1, and the covari-
ance matrix is nondegenerate, then the corresponding reflected diffusion has
an invariant density p of Gibbs form, that is, p(x) = eH(x) for some C2 func-
tion H . Finally, under a nondegeneracy condition on the diffusion coefficient,
a boundary property is established that implies that the condition π(∂G) = 0
is necessary for π to be a stationary distribution. This boundary property is
of independent interest.

1. Introduction.

1.1. Description of main results. This work establishes a simple characteriza-
tion of stationary distributions of a broad class of reflected diffusions in piecewise
smooth domains with oblique reflection, including those that are not necessarily
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semimartingales, and uses it to identify classes of reflected diffusions with state-
dependent drift for which the stationary density takes an explicit form. Reflected
diffusions arise in a variety of applications, ranging from queueing theory and op-
erations research to finance and mathematical physics, and their stationary distri-
butions often serve to characterize or approximate important quantities of interest.
Consider a domain G ⊂ RJ , equipped with a vector field d(·) on the boundary ∂G,
and drift and dispersion coefficients b : Ḡ �→ RJ and σ : Ḡ �→ RJ ×RN , where Ḡ

is the closure of G. A reflected diffusion associated with (G,d(·)), b(·) and σ(·) is,
roughly speaking, a continuous Markov process that behaves locally, near x ∈ G,
like a diffusion with state-dependent drift b(x) and dispersion σ(x), and is con-
strained to stay inside Ḡ by a pushing term that is only allowed to act when the
process is on the boundary, and then only along the directions specified by the vec-
tor field d(·) at that point on the boundary. One approach to making this heuristic
description precise is a generalization of the martingale problem referred to as the
submartingale problem, which was introduced by Stroock and Varadhan [44] to
characterize the law of reflected diffusions in smooth domains. Other approaches
to constructing reflected diffusions include Dirichlet forms [8, 20], controlled mar-
tingale problems [31] and stochastic differential equations with reflection (SDER)
defined via the Skorokhod problem [16, 26, 36]. However, Dirichlet forms are
more naturally suited to analyzing normally reflected diffusions (which are sym-
metric Markov processes), and the controlled martingale problem and Skorokhod
problem approaches can be used only to construct semimartingale reflected dif-
fusions. While extensions of these approaches have been considered in particular
cases [15, 26, 36], the submartingale problem seems most suitable for providing a
common framework for the characterization of the distributions of semimartingale
and nonsemimartingale reflected diffusions with oblique reflection in piecewise
smooth domains.

We provide a precise formulation of the submartingale problem in piecewise
smooth domains in Definition 2.1. Prior to this work, although the submartingale
problem framework had been used to study specific examples such as reflected
Brownian motion (RBM) in two-dimensional cusps and wedges, conical domains
and skew-symmetric RBMs in polyhedral domains (which almost surely do not
visit the nonsmooth parts of the domain) [12, 13, 32, 47, 50], there was no clear
definition for the submartingale problem in general piecewise smooth domains.
Indeed, the development of a theory of reflected diffusions that could fail to be
semimartingales in dimensions greater than two has long been posed as a chal-
lenging open problem; see (iii) in Section 4 of [51]. One of the contributions of
this work is the identification of a suitable formulation of the submartingale prob-
lem that allows for the unique characterization of both the reflected process and its
stationary distribution in some generality; see Remark 2.4 for a discussion of some
of the subtleties involved. Further justification for the definition of the submartin-
gale problem that we introduce is provided in [28], where it is shown that well-
posedness of the submartingale problem is equivalent to existence and uniqueness
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in law of a weak solution to the corresponding SDER, thus generalizing a classical
result for (unconstrained) diffusions obtained by Stroock and Varadhan; cf. Corol-
lary 3.1 of [43]. If the submartingale problem has a unique solution, it is said to be
well-posed.

For a reflected diffusion in a bounded domain, the family of time-averaged oc-
cupation measures is automatically tight, and existence of a stationary distribution
can be deduced as a simple consequence. On the other hand, for reflected diffu-
sions in unbounded domains, suitable conditions on the drift and reflection vector
field need to be imposed to guarantee positive recurrence, and have been identi-
fied in various cases; see, for example, [1, 24]. In either case, when the diffusion
coefficient is uniformly elliptic, uniqueness of the stationary distribution follows
from standard results in ergodic theory. Explicit expressions for the stationary dis-
tribution have been obtained mostly for reflected Brownian motions (RBMs) with
constant drift in polyhedral domains, either in two dimensions [14, 49] or when
a special skew-symmetry condition is satisfied [23, 50]. The focus of the present
paper is on characterization of the stationary distribution for a general class of re-
flected diffusions and the identification of general classes of reflected diffusions
with state-dependent drift whose stationary densities are of Gibbs form or, equiv-
alently, strictly positive.

Given continuous drift and dispersion coefficients b :G �→ RJ and σ :G �→
RJ×N , let a :G �→ RJ×J be the associated diffusion coefficient given by a(·) =
σ(·)σ T (·), where σT (x) denotes the transpose of the matrix σ(x), and let L be the
associated second-order differential operator given by

Lf (x)
.=

J∑
i=1

bi(x)
∂f

∂xi

(x) + 1

2

J∑
i,j=1

aij (x)
∂2f

∂xi ∂xj

(x), f ∈ C2
b(Ḡ),(1)

where C2
b(Ḡ) is the space of twice continuously differentiable functions on Ḡ that,

along with their first and second partial derivatives, are bounded. The first main
result of this paper, Theorem 1, shows that under some analytical conditions (see
Assumption 1), a probability measure π on Ḡ is a stationary distribution for a
reflected diffusion defined by a well-posed submartingale problem if and only if π

satisfies π(∂G) = 0 and ∫
Ḡ
Lf (x) dπ(x) ≤ 0(2)

for all f belonging to H, a certain class of test functions defined in (3). A subtlety
in this result lies in the correct choice of test functions in (2). See Remarks 2.4
and 5.2 for further discussion of this issue. The second result, Theorem 2, shows
that the conditions of Theorem 1 are satisfied by a large class of reflected diffu-
sions in piecewise smooth domains described in Definition 3.3 that satisfy a mild
condition (Assumption 2). In particular, this condition is satisfied whenever the so-
called generalized completely-S condition holds, which corresponds to the case
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when the set U defined in (6) coincides with the boundary ∂G. Illustrative exam-
ples of reflected diffusions that arise in applications and satisfy the assumptions of
Theorems 1 and 2 are presented in Section 4.

The third result (Theorem 3) shows that any nonnegative C2 solution to a certain
adjoint partial differential equation (PDE) with oblique derivative boundary con-
ditions, is an invariant density for the corresponding reflected diffusion. In Corol-
lary 1, this PDE is used to identify a broad class of RBMs with state-dependent
drift that have an invariant density of Gibbs form, that is, p(x) = eH(x) for some C2

function or “potential” H . In particular, for bounded smooth domains and a class of
polyhedral domains that satisfy a skew-symmetry condition, it is shown in Corol-
lary 2 that given a nondegenerate covariance matrix A, if a certain skew-transform
of the drift is conservative (i.e., of gradient form) and C1, then the reflected diffu-
sion has an invariant density p of Gibbs form, that is, p(x) = eH(x) for a suitable
“potential” function H . In addition, it is also shown that, under the same skew-
symmetry condition, any RBM with such a drift b and covariance matrix A is dual
[with respect to the invariant density p(x)dx] to an RBM with covariance A, drift
−b + AH and certain adjoint directions of reflection. This generalizes both the
well-known property that an (unconstrained) diffusion with constant covariance
and drift of gradient form has an invariant density of Gibbs form, as well as results
in [23] for reflected Brownian motions with constant drift. We emphasize that in
the case of reflected diffusions, the gradient condition is on the so-called skew-
transform (see Definition 3.5) of the drift, and not on the drift itself. Furthermore,
several examples are provided when the potential H of the stationary density takes
an explicit form, including the case of reflected Ornstein–Uhlenbeck processes,
which are of interest in applications [39].

Finally, under a nondegeneracy condition on the diffusion coefficient, the last
result of this paper (Proposition 6.1) establishes a certain boundary property which
shows that the reflected diffusion spends almost surely zero Lebesgue time on the
boundary. This boundary property, which is of independent interest, implies that
π(∂G) = 0 is a necessary condition for π to be a stationary distribution. It is also
used in [28] to establish the equivalence between well-posedness of submartingale
problems and well-posedness of weak solutions to corresponding SDERs.

1.2. Relation to prior work. A criterion for invariant measures analogous
to (2) was first obtained by Echeverria for (unconstrained) diffusions on a locally
compact separable metric space E [19]. It follows from Echeverria’s work that,
given drift and dispersion coefficients b(·) and σ(·) that are associated with a well-
posed martingale problem, a probability measure π is a stationary distribution for
the corresponding diffusion if and only if (2) holds with inequality replaced by
equality and for test functions f ∈ C2

c (E), the space of twice continuously differ-
entiable functions with compact support on E. Extensions of Echeverria’s criterion
were obtained by Bhatt and Karandikar [5], who relaxed the local compactness
condition on E, and by Stockbridge [42] and Bhatt and Borkar [4], who extended
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it to controlled processes. An extension of Echeverria’s criterion to reflected diffu-
sions in smooth domains defined by well-posed submartingale problems was first
obtained by Weiss in his Ph.D. thesis [48]. However, the results of [48] do not
apply to reflected diffusions in nonsmooth domains in RJ . Kurtz and Stockbridge
[30, 31] further extended Weiss’s result to obtain abstract sufficient conditions
for existence of stationary solutions to more general Markov processes defined in
terms of controlled and singular martingale problems. However, the framework of
controlled martingale problems in [30, 31] cannot be used to uniquely characterize
nonsemimartingale reflected diffusions, and hence, is not suitable for the analysis
of more general processes of interest under study here, which can be character-
ized via the submartingale problem. Nevertheless, we use a result from [31] in our
proof of Theorem 1, and also clarify the connection between the stationary solu-
tions in [31] and stationary solutions to well-posed submartingale problems, which
have been used more widely in the literature to characterize reflected diffusions in
curved domains.

For a class of semimartingale RBMs in the nonnegative orthant associated with
so-called M-reflection matrices, a certain basic adjoint relation (BAR), which is
related to the adjoint PDE established in Theorem 3, was established in the seminal
work of Harrison and Williams in [24]; see also [10] for an extension. However,
there are many RBMs of interest that fall outside the domain of the results of [10,
24] such as, for example, RBMs in polygons in R2, considered in the work of Har-
rison, Landau and Shepp [22], which could fail to be semimartingales for some
parameter values. In particular, Theorem 3 of the present paper rigorously estab-
lishes that the solution to the PDE in two-dimensional polygonal domains obtained
in [22] is indeed the stationary density of the associated RBM; see Example 4.3.
Indeed, the result of Weiss [48], which was cited in [22] to relate their analytical
result to the stationary distribution of the RBM, does not cover the case of nons-
mooth polygonal domains studied in [22]. As mentioned above, the identification
of a large class of reflected diffusions with stationary density of Gibbs form gener-
alizes some of the results obtained for RBMs with constant drift by Harrison and
Williams in [23, 50].

Finally, the boundary property established in Proposition 6.1 can be viewed as
a generalization of results in [11, 24] (see also [50]) for semimartingale reflecting
Brownian motions in the orthant or in more general convex polyhedral domains,
to more general reflected diffusions in possibly curved domains.

1.3. Outline of the paper. Section 2 contains a precise definition of the sub-
martingale problem and of a class of reflected diffusions in piecewise domains. In
Section 3.1 the first main results of the paper, Theorems 1 and 2, are stated. The
proofs of Theorems 1 and 2 are given in Sections 5 and 7, respectively, and Sec-
tion 4 contains illustrative examples of reflected diffusions for which the assump-
tions of the two theorems are valid. In Section 3.2, several consequences of Theo-
rems 1 and 2 are established, including the adjoint PDE (Theorem 3), identification
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of strictly positive solutions under suitable assumptions (Corollaries 1 and 2) and
illustrative examples. Finally, the boundary property is stated and proved in Sec-
tion 6. The proofs of some technical lemmas are relegated to the Appendix. In the
next section, we summarize some common notation used in the paper.

1.4. Notation and terminology. The following notation is used throughout the
paper. Z is the set of integers, N is the set of positive integers, R is the set of real
numbers, Z+ is the set of nonnegative integers and R+ the set of nonnegative real
numbers. For each J ∈ N, RJ is the J -dimensional Euclidean space and | · | and
〈·, ·〉, respectively, denote the Euclidean norm and the inner product on RJ . Vectors
will be represented as column vectors, and for each vector v ∈ RJ and matrix
σ ∈ RJ × RN , vT and σT denote the transpose of v and σ , respectively. Given
a square matrix M ∈ RJ×J , diag(M) represents the column vector containing the
diagonal elements of M and tr(M) denotes the trace of M , equal to

∑J
i=1 Mii .

For each set A ⊂ RJ , A◦, ∂A, Ā and Ac denote the interior, boundary, closure
and complement of A, respectively. For each x ∈ RJ and A ⊂ RJ , dist(x,A) is
the distance from x to A [i.e., dist(x,A) = inf{y ∈ A : |y − x|}]. For each A ⊂
RJ and r > 0, Br(A) = {y ∈ RJ : dist(y,A) ≤ r}, and given ε > 0 let Aε .= {y ∈
RJ : dist(y,A) < ε} denote the (open) ε-fattening of A. If A = {x}, we simply
denote Br(A) by Br(x). We will use S1(0) to denote the unit sphere in RJ . We
also let IA denote the indicator function of the set A [i.e., IA(x) = 1 if x ∈ A and
IA(x) = 0 otherwise].

Given a domain E in RJ , let C(E) = C0(E) be the space of continuous real-
valued functions on E and, for any m ∈ Z+ ∪ {∞}, let Cm(E) be the subspace of
functions in C(E) that are m times continuously differentiable on E with continu-
ous partial derivatives of order up to and including m. When E is the closure of a
domain, Cm(E) is to be interpreted as the collection of functions in

⋂
ε>0 Cm(Eε),

where Eε is an open ε-neighborhood of E, restricted to E. Also, let Cm
b (E) be

the subspace of Cm(E) consisting of bounded functions whose partial derivatives
of order up to and including m are also bounded, let Cm

c (E) be the subspace of
Cm(E) consisting of functions that vanish outside compact sets. In addition, let
Cm

c (E) ⊕ R be the direct sum of Cm
c (E) and the space of constant functions, that

is, the space of functions that are sums of functions in Cm
c (E) and constants in

R. For definitions of the space of functions or vector fields on E that are of class
Cm for some nonintegral m, we refer the reader to a standard book on partial dif-
ferential equations [21]. If m = 0, we denote Cm(E), Cm

b (E), Cm
c (E), Cm

c (E) ⊕R

simply by C(E), Cb(E), Cc(E), Cc(E)⊕R, respectively. The support of a function
f is denoted by supp(f ), its gradient of f is denoted by ∇f and the Laplacian of
f is denoted by �f . We say a set-valued function f (·) defined on a domain E in
RJ is continuous at x ∈ E if for every ε > 0, there exists a neighborhood Ox ⊂ E

of x such that f (y) ⊆ Bε(f (x)) for each y ∈ Ox , and we say f (·) is continuous
on E if it is continuous at each x ∈ E.
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The space of continuous functions on [0,∞) that take values in RJ is denoted
by C[0,∞), the Borel σ -algebra of C[0,∞) is denoted by M and the natural
filtration on C[0,∞) is denoted by {Mt }. The Borel σ -algebra of Ḡ is denoted by
B(Ḡ).

2. A class of reflected diffusions. In this section we introduce the class of
reflected diffusions that we consider. Let G be a nonempty connected domain
in RJ , and let d(·) be a set-valued mapping defined on Ḡ, such that each d(x),
x ∈ ∂G, is a nonempty closed convex cone in RJ with vertex at the origin 0,
d(x) = {0} for each x in G◦, and the graph of d(·) is closed, that is, the set
{(x, v) :x ∈ Ḡ, v ∈ d(x)} is a closed subset of R2J . Let V be a subset of ∂G.
As shown in Section 4, V will typically be a (possibly empty) subset of the non-
smooth parts of the boundary of the domain G where d(·) is not sufficiently well
behaved. For each function f defined on RJ , we say f is constant in a neighbor-
hood of V if for each x ∈ V , f is constant in some open neighborhood of x. Given
measurable drift and dispersion coefficients b :RJ �→RJ and σ :RJ �→RJ ×RN ,
and a = σσT :RJ �→ RJ × RJ , let L be the associated differential operator de-
fined in (1). One way of characterizing a reflected diffusion is through the so-
called submartingale problem. The submartingale problem is a generalization of
the martingale problem that was first introduced in [44] to characterize the law
of reflected diffusions in smooth domains. Extensions of the submartingale prob-
lem to characterize RBMs in two-dimensional piecewise smooth domains were
considered in various works [12, 13, 47] and multi-dimensional RBMs that sat-
isfy a special skew-symmetry condition were considered in [50]. Definition 2.1
generalizes these formulations further to accommodate a more general class of
multi-dimensional reflected diffusions. As mentioned earlier, a suitable formula-
tion of the submartingale problem for multi-dimensional reflected diffusions that
need not be semimartingales has long been a challenging problem [51]. Remark 2.4
provides further discussion of this formulation, and in particular, of the role of the
set V . In what follows, recall that C2

c (Ḡ)⊕R is the space of functions that are sums
of functions in C2

c (Ḡ) and constants in R, and that ∇f denotes the gradient of a
function f on a domain in RJ . Given a subset V ⊂ ∂G, let H = HV be the set of
functions

H .=
{

f ∈ C2
c (Ḡ) ⊕R : f is constant in a neighborhood of V,〈

d,∇f (y)
〉≥ 0 for d ∈ d(y) and y ∈ ∂G

}
.(3)

When V is the empty set, the condition that f be constant in a neighborhood of
V is understood to be void. When V is a disjoint union of connected subsets, the
condition that f be constant in a neighborhood of V means that f is constant in a
neighborhood of each connected subset.

DEFINITION 2.1 (Submartingale problem). A family {Qz, z ∈ Ḡ} of proba-
bility measures on (C[0,∞),M) is a solution to the submartingale problem as-
sociated with (G,d(·)), V , drift b(·) and dispersion σ(·) if for each A ∈ M, the
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mapping z �→Qz(A) is B(Ḡ)-measurable and for each z ∈ Ḡ, Qz satisfies the fol-
lowing three properties:

(1) Qz(ω(0) = z) = 1;
(2) for every f ∈ HV ∩ C2

c (RJ ), the process

f
(
ω(t)

)− ∫ t

0
Lf
(
ω(u)

)
du, t ≥ 0,(4)

is a Qz-submartingale on (C[0,∞),M, {Mt});
(3) for every z ∈ Ḡ,

EQz

[∫ ∞
0

IV
(
ω(s)

)
ds

]
= 0.

In this case, Qz is said to be a solution to the submartingale problem starting
from z. Moreover, given a probability distribution π on Ḡ, the probability mea-
sure Qπ , defined by

Qπ(A) =
∫
Ḡ
Qz(A)π(dz) for every A ∈ M,(5)

is said to be a solution to the submartingale problem with initial distribution π .

The first condition in Definition 2.1 simply states that the family of measures
is parameterized by the initial condition. The second condition in Definition 2.1
captures the notion of diffusive behavior in the interior, and reflection along the
appropriate directions on the boundary. Since the “test functions” in property 2 are
constant in a neighborhood of V , this condition does not provide information on the
behavior of the diffusion in a neighborhood of V . The third condition is imposed to
ensure instantaneous reflection (precluding the possibility of absorption or partial
reflection) on the boundary. A canonical choice for the set V is given below in (7).

DEFINITION 2.2. The submartingale problem associated with (G,d(·)), V ,
drift b(·) and dispersion σ(·) is said to be well posed if there exists exactly one
solution to the submartingale problem.

We will only consider submartingale problems that are well posed. In addition,
we will also assume throughout, without explicit mention, that the drift and dif-
fusion coefficients are continuous. Under this assumption, for every f ∈ C2

c (RJ ),
the mapping x �→ Lf (x) is continuous, and so the integral in (4) is clearly well
defined.

We next consider reflected diffusions associated to the submartingale problem.

DEFINITION 2.3. A stochastic process Z defined on a probability space
(�,F,P) is said to be a reflected diffusion associated with (G,d(·)), V , drift b(·)
and dispersion σ(·) if its family of distribution laws {Qz, z ∈ Ḡ} is the unique
solution to the submartingale problem, where for z ∈ Ḡ, Qz is the conditional dis-
tribution of Z under P, conditioned on Z(0) = z.
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REMARK 2.4. When the domain G is smooth, the class of test functions used
in the definition of the submartingale problem are the functions in H with V = ∅,
so that property 3 of Definition 2.1 is essentially absent [44]. The analysis of re-
flected diffusions in nonsmooth domains via the submartingale problem has, to a
large extent, concentrated on the case when the set of nonsmooth points is a sin-
gleton or a collection of isolated points [12, 13, 23, 32, 47] (an exception is [50],
where the RBM can be shown not to hit the nonsmooth parts of the domain). In
each of these cases, the submartingale problem has been defined with V equal to
the nonsmooth part of the boundary ∂G.

One natural extension of the submartingale problem to higher dimensions would
be to continue to set V in Definition 2.1 to be the subset of nonsmooth points of
the boundary ∂G. However, the corresponding set of test functions H = HV would
then fail to satisfy separability properties (see Assumption 1) that are typically
required for natural approaches to the characterization of stationary distributions
to succeed.

We take a slightly different approach. In the analysis of reflected diffusions in
nonsmooth domains, a special role is played by the following set on the boundary:

U .= {x ∈ ∂G :∃n ∈ n(x) such that 〈n,d〉 > 0,∀d ∈ d(x) \ {0}}.(6)

Here, n(x) is the set of interior normal vectors to the domain G at x ∈ ∂G. The
condition ∂G = U can be viewed as a generalization of what is known in the litera-
ture as the completely-S condition [36, 40, 46]. The boundary property in Proposi-
tion 6.1 shows that (for a large class of domains) any solution to the submartingale
problem with V ⊇ ∂G\U spends zero Lebesgue time on the boundary of ∂G. This
suggests that a canonical choice of V in Definition 2.1 is to set

V = ∂G \ U .(7)

Further justification for this choice arises from the fact that then the resulting sub-
martingale problem is well posed for a large class of multidimensional semimartin-
gale and nonsemimartingale RBMs in both polyhedral and curved domains that
arise in a variety of applications. Indeed, this well-posedness follows from a gen-
eral result proved in [28], which shows that under fairly general conditions, the
submartingale problem with V = ∂G \ U is well posed if and only if there exists
a weak solution to the corresponding SDER that is unique in law, together with
results that establish the latter property in quite some generality [25, 26, 36, 46];
also, see Examples 4.4 and 4.5.

3. Statement of results. The primary goal of this work is to provide a useful
characterization of the stationary distributions of a broad class of reflected diffu-
sions that includes several families of reflected diffusions that arise in applications.
In Section 3.1 we state our assumptions and the main results, and in Section 3.2
we derive some important consequences of the main result.
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3.1. Main results. We start with a basic definition.

DEFINITION 3.1. A probability measure π on Ḡ is a stationary distribution
for the unique solution {Qz, z ∈ Ḡ} to a well-posed submartingale problem if π

satisfies the property that the law of ω(t) under Qπ is π for each t ≥ 0. In this case,
π is also said to be a stationary distribution of any reflected diffusion associated
with the well-posed submartingale problem.

The main result of this paper is a necessary and sufficient condition for a prob-
ability measure π to be a stationary distribution for the well-posed submartingale
problem. Recall the definition of H in (3). It is easy to see that if the unique solu-
tion {Qz, z ∈ Ḡ} to a well-posed submartingale problem associated with (G,d(·)),
and V admits a stationary distribution π , then π must satisfy inequality (2) for all
f ∈ H, where L is the operator defined in (1). Indeed, it follows from the second
property in Definition 2.1 that for each f ∈H,

EQπ

[
f
(
ω(t)

)− ∫ t

0
Lf
(
ω(u)

)
du

]
≥ EQπ

[
f
(
ω(0)

)]
.

Since EQπ [f (ω(t))] = EQπ [f (ω(0))] due to the stationarity of π , this establishes
inequality in (2) for all functions f ∈ H. We will show that, under the assumption
stated below, the later condition is also sufficient for any probability measure π

with π(∂G) = 0 to be a stationary distribution of {Qz, z ∈ Ḡ}.
ASSUMPTION 1. The set H has the following two properties:

(1) H separates points in the sense that for any two different points x, y ∈ Ḡ,
there exists a function f ∈ H such that f (x) �= f (y).

(2) For every r, s > 0, there exists a function fr,s ∈ H∩C2
c (Ḡ) such that for ev-

ery x ∈ ∂G with |x| ≤ r and dist(x,V) ≥ s and d ∈ d(x) ∩ S1(0), 〈d,∇fr,s(x)〉 ≥
1.

REMARK 3.2. If d(·)∩S1(0) is continuous as a set-valued function on ∂G\V
(see Section 1.4 for the definition), then property 2 of Assumption 1 is equiva-
lent to the seemingly weaker condition that for each x ∈ ∂G \ V , there exists a
function f ∈ H such that 〈d,∇f (x)〉 > 0 for each d ∈ d(x) ∩ S1(0). By replac-
ing f by f − lim|x|→∞ f (x), we can assume that for any x ∈ ∂G the function
f lies in H ∩ C2

c (Ḡ). Moreover, by the continuity of ∇f and the continuity of
d(·) ∩ S1(0), for any x ∈ ∂G \ V , there exists an open neighborhood Ox of x

such that 〈d,∇f (y)〉 > 0 for d ∈ d(y) ∩ S1(0) and y ∈ Ox ∩ ∂G. Then, since
H ∩ C2

c (Ḡ) is closed under addition, given any compact set K ⊂ ∂G \ V , a stan-
dard finite subcovering argument can be used to construct f ∈ H∩C2

c (Ḡ) such that
infd∈d(y)∩S1(0),y∈K〈d,∇f (y)〉 > 0. Since f ∈ H implies af ∈ H for any a > 0,
one can ensure that the last infimum is greater than 1 (or any given specified
value C < ∞). In particular, the above argument can be applied to the compact
set K = {x ∈ ∂G : |x| ≤ r,dist(x,V) ≥ s} for any r, s > 0.
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We now state the first main result of this paper. Its proof is given in Section 5.
Recall that we assume throughout that the drift and diffusion coefficients are con-
tinuous.

THEOREM 1. Suppose we are given (G,d(·)), b(·), σ(·) and a finite set V such
that the associated submartingale problem is well posed, and Assumption 1 holds.
Let π be a probability measure on (Ḡ,B(Ḡ)) with π(∂G) = 0. Then π satisfies
inequality (2) for all f ∈ H if and only if π is a stationary distribution for the
unique solution to the associated submartingale problem.

We now introduce a broad class of data (G,d(·)) and V for which the stationary
distribution characterization obtained in Theorem 1 applies.

DEFINITION 3.3. For 0 ≤ k and 	 ≤ k, the pair (G,d(·)) is said to be piece-
wise Ck with C	 reflection if G and d(·) satisfy the following properties:

(1) The domain G is a nonempty domain with representation G = ⋂i∈I Gi ,
where I is a finite index set and for each i ∈ I , Gi is a nonempty domain with Ck

boundary; that is, there exists a Ck function φi on RJ such that ∇φi(x) �= 0 for all
x ∈ ∂G,

Gi = {x :φi(x) > 0
}

and ∂Gi = {x :φi(x) = 0
}
.

Let ni(x) = ∇φi(x)/|φi(x)| denote the unit inward normal vector to ∂Gi at x ∈
∂Gi , and define

I(x)
.= {i ∈ I :x ∈ ∂Gi},(8)

and note that for each x ∈ ∂G, the set of inward normals to G at the point x is
given by

n(x) =
{ ∑

i∈I(x)

sin
i(x), si ≥ 0, i ∈ I(x)

}
.(9)

(2) The direction vector field d(·) is given by

d(x)
.=
{ ∑

i∈I(x)

siγ
i(x), si ≥ 0, i ∈ I(x)

}
, x ∈ ∂G,(10)

where for each i ∈ I , γ i(·) is a vector field defined on ∂Gi such that〈
ni(x), γ i(x)

〉= 1 for each x ∈ ∂Gi,(11)

and γ i(·)/|γ i(·)| is of class C	.

Note that in property 2 above, the condition 〈ni(x), γ i(x)〉 = 1 for each x ∈ ∂Gi

is equivalent to the seemingly weaker condition that 〈ni(x), γ i(x)〉 > 0 because
the vector field γ i(x) can always be renormalized without changing the definition
of d(·).
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ASSUMPTION 2. V is a finite set such that V ⊇ ∂G \ U , and if V contains at
least two elements, then for each x ∈ V , there exist a unit vector vx and a constant
ρx > 0 such that 〈vx, γ

i(y)〉 ≥ 0 for each i ∈ I(y) and y ∈ Bρx (x).

REMARK 3.4. Note that the finiteness assumption is reasonable given the
canonical choice of V in (7). Also, note that Assumption 2 is trivially satisfied
when ∂G = U , and V = ∅. In the context of certain polyhedral domains with
piecewise constant reflection fields, the condition V = ∅ has been shown to be
necessary and sufficient for the associated reflected diffusion to be a semimartin-
gale [36, 40, 46]. However, in this work we also allow for cases when ∂G �= U , thus
providing a characterization of the stationary distribution for reflected diffusions
that are not necessarily semimartingales [6, 13, 26, 36].

We now state the second main result of this paper, whose proof is given in
Section 7. Recall that the diffusion coefficient a(·) is said to be uniformly elliptic
if there exists α > 0 such that

uT a(x)u ≥ α|u|2 for all u ∈ RJ , x ∈ Ḡ.(12)

We will assume this condition for simplicity when stating the second part of the
result, although only partial uniform ellipticity in a certain direction at each x ∈
∂G \ V is actually required, as shown in (66).

THEOREM 2. Suppose that (G,d(·)) is piecewise C1 with continuous reflec-
tion. If V satisfies Assumption 2, then Assumption 1 holds. Moreover, if (G,d(·)) is
piecewise C2 with continuous reflection, the diffusion coefficient a(·) is uniformly
elliptic, and the submartingale problem associated with (G,d(·)), b(·), σ(·) and
V is well posed, then a probability measure π on Ḡ is a stationary distribution
for the associated reflected diffusion if and only if π(∂G) = 0 and the inequality
condition (2) is satisfied.

As an immediate consequence we see that Theorem 1 can be used to character-
ize the stationary distributions of reflected diffusions that satisfy the conditions of
Theorem 2 and are associated with well-posed submartingale problems. As shown
in Section 4, this includes many classes of reflected diffusions that arise in applica-
tions. The proof of Theorem 2 relies on a boundary property, which states that for
any well-posed submartingale problem satisfying the conditions o Theorem 2, for
each x ∈ Ḡ, Qx-almost surely, ω(·) spends zero Lebesgue time on the boundary
∂G. This boundary property, stated as Proposition 6.1 and proved in Section 6, is
of independent interest.
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3.2. Some consequences of the main results. We now describe some ramifica-
tions of the main results. First, let L∗ be the adjoint operator to L: for p ∈ C2(Ḡ),

L∗p(x) = 1

2

J∑
i,j=1

∂2

∂xi ∂xj

(
aij (x)p(x)

)− J∑
i=1

∂

∂xi

(
bi(x)p(x)

)
.

We start by showing that nonnegative and integrable solutions of a certain adjoint
partial differential equation (with boundary conditions), are indeed stationary dis-
tributions for the submartingale problem. In what follows, let S denote the smooth
parts of the boundary ∂G.

THEOREM 3. Suppose that the pair (G,d(·)) is piecewise C1 with C1 re-
flection, (11) is satisfied, V ⊂ ∂G satisfies Assumption 2, bi(·) ∈ C1(Ḡ), aij (·) ∈
C2(Ḡ) for i, j = 1, . . . , J , and the submartingale problem associated with
(G,d(·)) and V is well posed. Furthermore, suppose there exists a nonnegative
function p ∈ C2(Ḡ \ V) with

∫
Ḡ p(x) dx < ∞ that solves the adjoint PDE defined

by the following three relations:

(1) L∗p(x) = 0 for x ∈ G;
(2) for each i ∈ I and x ∈ ∂Gi ∩ S ,

−2p(x)
〈
ni(x), b(x)

〉+ (ni(x)
)T

a(x)∇p(x)
(13)

− ∇ · (p(x)qi(x)
)+ p(x)Ki(x) = 0,

where for i ∈ I ,

qi(x)
.= (ni(x)

)T
a(x)ni(x)γ i(x) − a(x)ni(x)(14)

and

Ki(x)
.= 〈ni(x),∇ · a(x)

〉= J∑
k=1

ni
k(x)

J∑
j=1

∂akj

∂xj

(x);

(3) for each i, j ∈ I , i �= j , and x ∈ ∂Gi ∩ ∂Gj ∩ ∂G \ V ,

p(x)
(〈
qi(x), nj (x)

〉+ 〈qj (x), ni(x)
〉)= 0.(15)

Then the probability measure on Ḡ defined by

π(A)
.=
∫
A p(x)dx∫
Ḡ p(x) dx

, A ∈ B(Ḡ),(16)

is a stationary distribution for the well-posed submartingale problem.

Note that when a(·) is constant and equal to I , the J × J identity matrix, qi

in (14) represents the component of the reflection vector field γ i that is tangential
to ∂G.
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PROOF OF THEOREM 3. By Theorems 1 and 2, it suffices to show that the
probability measure π defined in terms of p via (16) satisfies inequality (2) for all
functions f ∈ H ∩ C2

c (Ḡ). For any such function f , straightforward calculations
show that for each x ∈ Ḡ,

p(x)Lf (x) − f (x)L∗p(x) = 1
2∇ · r(x),(17)

where r(·) = rf (·) is the vector field whose ith component is given by

ri(x) =
J∑

j=1

(
p(x)aij (x)

∂f (x)

∂xj

− f (x)aij (x)
∂p(x)

∂xj

− f (x)p(x)
∂aij (x)

∂xj

)

+ 2bi(x)f (x)p(x).

Since, by assumption, L∗p(x) = 0 for x ∈ G, and f has compact support and
vanishes in a neighborhood of V , the divergence theorem implies that∫

Ḡ
p(x)Lf (x) dx = 1

2

∫
Ḡ

∇ · r(x)μ(dx)

= 1

2

∫
∂G

〈
n(x), r(x)

〉
μ(dx)(18)

= −1

2

∑
i∈I

∫
∂Gi∩∂G

〈
ni(x), r(x)

〉
dμi(x),

where n(·) is the outward pointing unit normal field on ∂G, μ(dx) is the surface
measure on ∂G and μi(dx) is the surface measure on ∂G ∩ ∂Gi for each i ∈ I .
Now, for each i ∈ I and x ∈ ∂G ∩ ∂Gi , we have〈

ni(x), r(x)
〉= p(x)

(
ni(x)

)T
a(x)∇f (x) − f (x)

(
ni(x)

)T
a(x)∇p(x)

− f (x)p(x)Ki(x) + 2f (x)p(x)
〈
ni(x), b(x)

〉
,

where Ki is the quantity defined after (14). Since f ∈ H, g∇f , f ∇g and fg

vanish in a neighborhood of V . Thus, combining the above display, (18) and rela-
tion (13) of the adjoint PDE, we obtain∫

Ḡ
Lf (x)p(x) dx = −1

2

∑
i∈I

∫
∂Gi∩∂G

p(x)
(
ni(x)

)T
a(x)∇f (x) dμi(x)

+ 1

2

∑
i∈I

∫
∂Gi∩∂G

f (x)∇ · (p(x)qi(x)
)
dμi(x).

For each i ∈ I and x ∈ ∂Gi ∩ ∂G, substituting for qi from (14), we have

∇ · (f (x)p(x)qi(x)
)

= f (x)∇ · (p(x)qi(x)
)+ 〈γ i(x),∇f (x)

〉
p(x)

(
ni(x)

)T
a(x)ni(x)

− p(x)
(∇f (x)

)T
a(x)ni(x).
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In turn, the last two equalities imply that
∫
ḠLf (x)p(x) dx is equal to

1

2

∑
i∈I

∫
∂Gi∩∂G

∇ · (f (x)p(x)qi(x)
)
dμi(x)

− 1

2

∑
i∈I

∫
∂Gi∩∂G

〈
γ i(x),∇f (x)

〉
p(x)

(
ni(x)

)T
a(x)ni(x) dμi(x).

The second term above is nonpositive since f ∈ H, p ≥ 0, and a is positive
semidefinite. So, we shall focus on the first term. For each x ∈ ∂Gi ∩ ∂G,
〈ni(x), qi(x)〉 = 0 because of the assumed normalization 〈ni(x), γ i(x)〉 = 1.
Therefore, the vector qi(x) is parallel to ∂Gi at x, and the divergence in the first
term of the last display is equal to the divergence taken in the (J − 1)-dimensional
manifold ∂Gi ∩ ∂G. Another application of the divergence theorem then yields∑

i∈I

∫
∂Gi∩∂G

∇ · (f (x)p(x)qi(x)
)
dμi(x)

= − ∑
i,j∈I,i �=j

∫
Fij \V

f (x)p(x)qi(x)
〈
nij (x), qi(x)

〉
dμij (x),

where Fij
.= ∂Gi ∩ ∂Gj ∩ ∂G, nij (x) denotes the unit vector that is normal to both

Fij and ni(x) at x and points into ∂Gi ∩ S from Fij , and μij (dx) is the surface
measure on the (J −2)-dimensional manifold Fij . To prove the theorem, it suffices
to show that the last equality in the above display is zero. To do this, it suffices to
show that for each i, j ∈ I with i �= j and x ∈ Fij \ V ,

p(x)
(〈
nij (x), qi(x)

〉+ 〈nji(x), qj (x)
〉)= 0.(19)

Since nij (x) is normal to ∂Gi ∩ ∂Gj at x ∈ ∂Gi ∩ ∂Gj , it must lie in the two-
dimensional space spanned by ni(x) and nj (x). In addition, nij (x) is a unit vector
normal to ni(x) and points into ∂Gi from ∂Gi ∩ ∂Gj . Therefore, we have

nij (x) = (nj (x) − 〈ni(x), nj (x)
〉
ni(x)

)
/
(
1 − 〈ni(x), nj (x)

〉2)1/2
,

with the analogous expression for nji(x). Since 〈nk(x), qk(x)〉 = 0 for all k ∈ I ,
this shows that (19) is equivalent to the third relation (15) of the adjoint PDE. This
yields the desired result. �

Solutions to the adjoint PDE have been identified for several classes of two-
dimensional RBMs with constant drift (see [14, 22, 35, 41, 49] and also Ex-
amples 4.2 and 4.3), and for a class of multi-dimensional RBMs with constant
drift satisfying a so-called skew-symmetry condition on the domain and covari-
ance in [23]. Here, we consider the case of RBMs with state-dependent drifts, and
investigate the analytical question of when the corresponding adjoint PDE has a
strictly positive solution p, thus providing a generalization of some of the results
in [23].
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COROLLARY 1. Given a pair (G,d(·)) that is piecewise C1 with C1 reflec-
tion, a constant covariance matrix a(·) = A ∈ RJ×J and a drift vector field
b(·) : Ḡ �→ RJ , there exists a strictly positive solution p(·) ∈ C2(Ḡ) to the cor-
responding adjoint PDE if the relation〈

ni(x), qj (x)
〉+ 〈nj (x), qi(x)

〉= 0 for x ∈ ∂Gi ∩ ∂Gj ∩ ∂G \ V(20)

holds for every i, j ∈ I, i �= j , and there exists a C2 function H : Ḡ �→ R that
satisfies the following two properties:

(1) for each x ∈ G,
1
2∇ · (A∇H(x)

)+ 1
2

〈∇H(x),A∇H(x)
〉− ∇ · b(x) − 〈∇H(x), b(x)

〉= 0;(21)

(2) for each i ∈ I and x ∈ ∂Gi ∩ S ,

−2
〈
ni(x), b(x)

〉+ 〈Ani(x) − qi(x),∇H(x)
〉− ∇ · (qi(x)

)= 0.(22)

In this case, p(x) = eH(x), x ∈ Ḡ, is a positive solution of the adjoint PDE.

PROOF. First, note that for smooth domains, |I| = 1, and so (20) is trivially
satisfied, whereas for nonsmooth domains, relation (15) shows that (20) is neces-
sary for the existence of a strictly positive solution p of the adjoint PDE. Elemen-
tary calculation shows that a strictly positive C2 function p satisfies L∗p(x) = 0 for
x ∈ G if and only if the C2 function H = lnp satisfies equation (21). Next, since
A is constant this implies Ki(·) = 0, i ∈ I and hence, p satisfies relation (13) of
the adjoint PDE if and only if H = lnp satisfies

−2
〈
ni(x), b(x)

〉+ 〈ni(x),A∇H(x)
〉− 〈qi(x),∇H(x)

〉− ∇ · (qi(x)
)= 0.(23)

But, since A is symmetric, this is equivalent to equation (22). �

We now specialize to two classes of domains that were considered in [23]. For
simplicity, throughout, we assume that we are given a constant nondegenerate co-
variance matrix (i.e., positive definite, symmetric matrix) a(·) = σ(·)σT (·), which
we denote by A. The first class consists of (possibly unbounded) polyhedral do-
mains (G,d(·)), where, for i ∈ I , ni(·) and γ i(·), are both constant vector fields,
which we denote simply by ni and γ i , respectively. Let qi be defined as in (14),
and let N and Q denote the |I| × J matrices whose ith rows are (ni)T and (qi)T ,
respectively. We assume that, for some c ∈ RJ , Ḡ = {x ∈ RJ :Nx ≥ c} is the min-
imal half-space representation of the (closure of the) polyhedral domain, and that
G has nonempty interior. Finally, we also assume |I| ≥ J and that N contains an
invertible submatrix N̄ , and we let Q̄ denote the corresponding submatrix obtained
of Q. We further assume that the following global skew-symmetry condition holds:

QT = −N̄−1Q̄NT .(24)

Since N̄ and Q̄ are corresponding submatrices of N and Q, (24) immediately
implies that N̄−1Q̄T is skew-symmetric, and then by (4.7) of [23], N̄Q̄T is also
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skew-symmetric. Furthermore, (24) also shows that N̄−1Q̄ is independent of the
choice of the invertible submatrix N̄ .

The second class we will consider consists of smooth, bounded domains
(G,d(·)) that are C2+ε with C1+ε reflection. In this case, |I| = 1 in Definition 3.3,
we let q(x) = q1(x) be defined as in (14), and we omit the superscript 1 from the
vector fields n(·), γ (·) and q(·). Choose a set of J points x̄1, . . . , x̄J , on ∂G such
that the normal vectors n(x̄1), . . . , n(x̄J ), are linearly independent (such a set ex-
ists because G is bounded), and let N̄ (resp., Q̄) denote the J × J matrix whose
ith row is the vector (n(x̄i))

T [resp., (q(x̄i))
T ]. We now consider the sub-class of

domains for which N̄−1Q̄ is skew-symmetric. Since q is C1+ε , it follows from
Lemma 3.2 of [23] that this skew-symmetry is equivalent to the condition that
(24) is satisfied for any pair of corresponding L × J matrices N and Q formed
in an analogous fashion from any set of L other points x1, . . . , xL ∈ ∂G, which
in turn is equivalent to the condition that 〈n(x), q(x̃)〉 + 〈n(x̃), q(x)〉 = 0 for any
x, x̃ ∈ G. In order to present both classes of domains in a common framework, we
phrase the global skew-symmetry condition as in (24) in terms of the pair (N̄, Q̄),
noting that once again N̄−1Q̄ does not depend on the particular choice of points
x̄1, . . . , x̄J (as long as the normals are linearly independent). We refer the reader
to [23] for further discussion of these classes of domains. We will use b(·) and
the data (N̄, Q̄), (N,Q), A, instead of (G,d(·)), A to represent members of either
of the two classes above, and we always assume that the data satisfy all the stated
conditions. We introduce the notion of a skew-transform, which plays an important
role in the analysis.

DEFINITION 3.5 (Skew-transform). Given data (N̄, Q̄), (N,Q), A, the skew-
transform [with respect to (N̄, Q̄), A] of a vector field v(·) on Ḡ, is the vector field
u(·) defined by

u(x) = [A − N̄−1Q̄
]−1

v(x), x ∈ Ḡ.(25)

Note that the matrix A − N̄−1Q̄ is invertible and positive definite because A is
positive definite and N̄−1Q̄ is skew-symmetric. Hence, the skew-transform of the
vector field u(·) is well defined. Let D be the “reflection” matrix whose ith row is
given by γ i , and let D̄ be the corresponding submatrix of D corresponding to N̄

(and Q̄). From (14) it follows that

Q̄T = diag
(
N̄AN̄T )D̄T − AN̄T .(26)

REMARK 3.6. We claim that the matrix N̄D̄T is positive definite; then D̄ is
invertible since N̄ is invertible. Observe that (26) implies that

N̄D̄T = diag
(
N̄AN̄T )−1[

N̄Q̄T + N̄AN̄T ].
Since A is positive definite and N̄Q̄T is skew-symmetric, the claim follows.
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If u(·) is the skew-transform of v(·), using the skew-symmetry of N̄−1Q̄ and
invertibility of D̄, we have

u(·) = [A + Q̄T (N̄T )−1]−1
v(·) = N̄T (D̄T )−1 diag

(
N̄AN̄T )−1

v(·).(27)

When A = I , recalling that each n̄i is a unit vector, this reduces to the simple form

u(·) = N̄T (D̄T )−1
v(·).(28)

Thus in this case, the skew-transform maps directions of reflection into normal
directions.

In what follows, recall that a vector field u(·) on Ḡ is said to be conservative if
there exists a C1 function H on Ḡ such that u(·) = ∇H . In this case, H is said to
be the potential of u(·).

COROLLARY 2. Given data (N̄, Q̄), (N,Q) and A, the following properties
hold:

(1) If b(·) is a C1(Ḡ) vector field whose skew-transform is conservative with
potential H/2, the function p = eH ∈ C2(Ḡ) is a strictly positive solution to the
corresponding adjoint PDE.

(2) Given b(·), H and p as in (1) above, define the following dual quantities:

b∗(x)
.= −b(x) + A∇H(x), x ∈ Ḡ,

(29)
Q̄∗ .= −Q̄ and Q∗ = −N̄−1Q̄∗NT ,

and define γ i∗ in terms of qi∗ = QT∗ ei and ni via (14). Then p is also a solution to
the adjoint PDE associated with (N̄, Q̄∗), (N,Q∗), A and b∗(·).

PROOF. Given the data, the global skew-symmetric condition (24) implies that
(i) the pointwise skew symmetric condition (20) holds, (ii) ∇ · qi = 0 (this is triv-
ially true for the polyhedral case and follows from Lemma 3.1 of [23] in the smooth
case) and (iii) H and b(·) satisfy equation (22) if −2N̄b(x)+[N̄A− Q̄]∇H(x) =
0 for x ∈ ∂G. [Note that, while this last matrix equation implies that equation (23)
is satisfied, it is not equivalent to that equation because b and ∇H are not con-
stant.] When H/2 is the potential of the skew-transform of b(·), using the identities
∇ · (C∇F) = 0 and 〈∇F,C∇F 〉 = 0 for any C2 function F and skew-symmetric
matrix C, it is easily verified that (22) and (21) are satisfied.

On the other hand, note that for x ∈ G,

b∗(x) = −1
2

[
A − N̄−1Q̄

]∇H(x) + A∇H(x) = 1
2

[
A − N̄−1Q̄∗

]∇H(x).

Since Q̄∗ = −Q̄, it follows that N̄−1Q̄∗ is also skew-symmetric. Thus, H/2 is
also the potential of the skew-transform of b∗ [with respect to (N̄, Q̄∗), A], and
the argument used in (1) shows that b∗ and H also satisfy the corresponding equa-
tions (22) and (21). The result then follows from Corollary 1. �
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REMARK 3.7. We now discuss well-posedness of the submartingale prob-
lem (equivalently, existence of a well defined RBM) associated with the specified
data. In smooth bounded domains, the normalization (11) implies infx∈∂G〈n(x),

γ (x)〉 > 0, and thus well-posedness follows from the discussion in Example 4.1.
For polyhedral domains we claim that the submartingale problem is well posed un-
der the skew-symmetry condition (24). Indeed, by Lemma 3.1.3 of [9], the positive
definiteness of N̄D̄T established in Remark 3.6 implies that there exists v > 0 such
that N̄D̄T v > 0. This shows that the so-called completely-S condition is satisfied,
and it follows from [46] and [11] that there exists a weak solution that is unique in
law for a large class of polyhedral domains including, in particular, simple poly-
hedra. When combined with the results of [28], it follows that the submartingale
problem is well posed. For a domain in this class, by Theorem 3 the solution p

to the adjoint PDE identified in Corollary 2 is in fact an invariant density for the
associated reflected diffusion and, when C = ∫Ḡ p(x) dx is finite (which is always
true when G is smooth and bounded), C−1p(x)dx is in fact the stationary distri-
bution. Given data associated with smooth and bounded domains that satisfy the
conditions of Corollary 2, let X be the associated reflected diffusion, and let X∗ be
the reflected diffusion associated with the dual data. Since Corollary 2 shows that
the (common) stationary distribution C−1p(x)dx, is strictly positive, it follows
from [33, 34] that X and X∗ are dual to each other with respect to the stationary
distribution. When the data is associated with a simple polyhedron and C < ∞,
the duality property in the case of constant drifts was established in Corollary 1.1
of [50]. Similar arguments can be used to extend to the case of state-dependent
drift, but we do not provide the details here.

We conclude this section with illustrative examples of domains and drifts
when H (and therefore p) takes an explicitly computable form. Here, we will
repeatedly use the well-known property that (since G is a simply connected do-
main) a necessary and sufficient condition for a C1 vector field to be conservative
is that its Jacobian is symmetric. We will assume throughout that the data satisfies
the global skew-symmetry condition (24), unless explicitly stated otherwise.

EXAMPLE 3.8. When Q̄ = 0 (i.e., normal reflection when A = I ), it follows
from Corollary 2 that if the vector field 2A−1b(·) is conservative with potential
H ∈ C2(Ḡ), then p = eH satisfies the adjoint PDE.

EXAMPLE 3.9. The simplest generalization of the constant drift vector fields
considered in [23] is the case when the drift points along a constant direction, but
has varying magnitude. In other words, b(x) = F(x)v for some v ∈ RJ \ {0} and
C1 function F : Ḡ �→ R. Let u be the skew-transform of v. By Corollary 2, for the
adjoint PDE to have a strictly positive solution p, it suffices for F(·)u to be conser-
vative, which holds if and only if the Jacobian of F(·)u is symmetric. The latter im-
plies that ∇F is parallel to u, and so there exists a C1 function r :R �→R such that
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F(x) = r(〈x,u〉); for example, one can fix x0 ∈ Ḡ and use a path integration argu-
ment to define r(t) = F(x0) + |u|(t − 〈x0, u〉) ∫ 1

0 |∇F(x0 + λ(t − 〈x0, u〉)u)|dλ.
If we define R(t) = ∫ t

0 r(s) ds, then clearly H(x) = R(〈x,u〉) is a potential for
F(x)u. Note that the case R(x) = x corresponds to the case of constant drift.
When combined with Corollary 2, this recovers the statements “(ii) implies (i)” in
Theorems 2.1 and 6.1 of [23].

EXAMPLE 3.10. We now study the case of a linear drift vector field, which
includes reflected Ornstein–Uhlenbeck processes. We establish two claims.

Claim 1: If b(x) = Cx for some C ∈ RJ×J such that C∗ = [A − N̄−1Q̄]−1C is
symmetric, then p = exT C∗x solves the corresponding adjoint PDE.

Proof of Claim 1: Suppose b(x) = Cx, for C ∈ RJ×J as in the claim. Then the
skew-transform of b(·) is the vector field u(x) = C∗x, whose Jacobian is C∗, and
hence symmetric. Thus, u(·) is conservative with potential H/2, where H(x) =
xT C∗x. The claim follows from Corollary 2. In particular, when A = N̄ = I , it
follows from (28) that any drift of the form b(x) = D̄T Bx for some symmetric
matrix B ∈RJ×J has an invariant density of Gibbs form.

We now prove a converse to claim 1. For simplicity, we consider the nonneg-
ative orthant (it also holds for any simple polyhedral domain by a change of co-
ordinates). In this setting N̄ = N = I and Q̄ = Q, but we continue to use the bar
notation for convenience. Here we do not assume a priori that the data satisfies the
skew-symmetry condition.

Claim 2: Given Q̄ ∈ RJ×J that has zero on the diagonal, and a nondegenerate
covariance matrix A ∈ RJ×J , suppose there exists an invertible symmetric matrix
C∗ such that the C2 function p(x) = exT C∗x solves the adjoint PDE associated with
(I, Q̄), A, and b(x) = [A − Q̄]C∗x. Then Q̄ must be skew-symmetric.

Proof of Claim 2: Indeed, suppose that such an invertible symmetric matrix C∗
exists. Then, by Corollary 1, equation (21) should be satisfied by H(x) = xT C∗x
and b(x) = [A − Q̄]C∗x. In other words, it follows that for each x ∈ G,

∇ · (AC∗x) + 〈C∗x,AC∗x〉 − ∇ · ([A − Q̄]C∗x
)− 〈C∗x, [A − Q̄]C∗x

〉= 0,

which, since ∇ · (Q̄C∗x) = tr(Q̄C∗), is equivalent to

tr(Q̄C∗) + 〈C∗x, Q̄C∗x〉 = 0.

Now, fix y ∈ G. Then for any x ∈ RJ , for all ε small enough, we have y + εx ∈ G.
Substituting y and y +εx into the above display and taking the difference, we have

ε〈C∗y, Q̄C∗x〉 + ε〈C∗x, Q̄C∗y〉 + ε2〈C∗x, Q̄C∗x〉 = 0.(30)

Dividing the above display by ε and taking the limit as ε → 0, we have

〈C∗y, Q̄C∗x〉 + 〈C∗x, Q̄C∗y〉 = 0.

Substituting this back into (30), we have shown that for every x ∈ RJ ,

〈C∗x, Q̄C∗x〉 = 0.

Since C∗ is invertible, this shows that Q̄ is skew symmetric.
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EXAMPLE 3.11. We note that solutions to equations (21) and (22) are pre-
served under linear combinations. More precisely, suppose for m ∈ N, each pair
(bi,Hi), i = 1, . . . ,m, satisfies the pair of equations (21) and (22). Then, for any
λi ∈ R, i = 1,2, . . . ,m, the pair (

∑m
i=1 λibi,

∑m
i=1 Hi) also satisfy the same pair

of equations. Thus, taken together, the above examples identify a general class
of drift vector fields whose adjoint has a solution of Gibbs form with poten-
tial being a quadratic form. For example, if (N̄, Q̄),A satisfies the global skew-
symmetric condition (24) and the Jacobian of the skew-transform of the drift
b(·) is a constant symmetric matrix, that is, [A − N̄−1Q̄]−1b(x) = C∗x + μ∗ for
some symmetric matrix C∗ and some constant vector μ∗. Then b(x) = Cx + μ,
where C = [A− N̄−1Q̄]C∗ and μ = [A− N̄−1Q̄]μ∗. By combining Examples 3.9
and 3.10, the adjoint PDE with drift b(x) = Cx + μ has a strictly positive solution
p(x) = eH(x), where H(x) = xT C∗x + 〈μ∗, x〉.

4. Examples. In this section, we provide several examples of reflected diffu-
sions in piecewise C1 domains with continuous reflection for which the submartin-
gale problem is well posed and Assumption 2 is satisfied, so that Theorems 1 and 2
provide a characterization of their stationary distributions. The examples serve to
illustrate the range of applicability of the results of the paper. The first and fourth
examples consider families of semimartingale reflected diffusions, whereas the re-
maining examples describe reflected diffusions that could fail to be semimartin-
gales. The last example involves a cusp-like domain that was specifically identified
in [48] as a two-dimensional example not covered by the methods therein. To the
best of our knowledge, prior to this work, there existed no characterization of the
stationary distribution of the processes described in Examples 4.3, 4.5, 4.6 and 4.7.

EXAMPLE 4.1 (Reflected diffusions in smooth domains). We start with the
simple case of reflected diffusions in smooth domains addressed in [48]. Let G be
a bounded open set in RJ such that G = {x ∈ RJ :φ(x) > 0}, where φ ∈ C2

b(RJ )

and |∇φ| ≥ 1 on ∂G. Then ∇φ(x) is an inward normal vector at x ∈ ∂G. Let γ (·)
be a bounded Lipschitz continuous vector field that satisfies 〈∇φ(x), γ (x)〉 > 0
on ∂G. By [44] (see Theorems 3.1 and 5.4 therein) the associated submartingale
problem with L as in (1) and V = ∅ is well posed. Now, (G,d(·)) is a C1 domain
with continuous reflection and, since U = ∂G, Assumption 2 is trivially satisfied
with V = ∅.

EXAMPLE 4.2 (RBM in a 2-dimensional wedge). Consider a wedge G ⊂ R2

given in polar coordinates by

G = {(r, θ) : 0 ≤ θ ≤ ζ, r ≥ 0
}
,

where ζ ∈ (0, π) is the angle of the wedge. Then G admits the representation
G = G1 ∩ G2, where G1 and G2 are the two half planes

G1 = {(r, θ) : 0 ≤ θ ≤ π, r ≥ 0
}
,

G2 = {(r, θ) : ζ − π ≤ θ ≤ ζ, r ≥ 0
}
,



1350 W. KANG AND K. RAMANAN

whose unit inward normals we denote by n1 and n2, respectively. Let the directions
of reflection on ∂G1 and ∂G2 be specified as constant vectors γ 1 and γ 2, normal-
ized such that for j = 1,2, 〈γ j , nj 〉 = 1. For j = 1,2, define the angle of reflection
θj to be the angle between nj and γ j , such that θj is positive if and only if γ j

points toward the origin. Note that −π/2 < θj < π/2. Define α = (θ1 + θ2)/ζ . It
was proved in Theorem 3.10 of [47] that the submartingale problem with L = 1

2�

and V = {0} is well posed if and only if α < 2. Since ∂G \ U ⊆ V and V contains
only one element, Assumption 2 holds. Note that when α ∈ [1,2), the RBM is not
a semimartingale.

EXAMPLE 4.3 (RBM in a 2-dimensional polygon). Consider a two-
dimensional polygon G ⊂ R2 with vertices a1, . . . , aK (in counterclockwise or-
der). For k = 1, . . . ,K − 1, define side k as the open line segment between ak

and ak+1. Similarly, side K is the line segment between aK and a1, excluding the
endpoints. Let ξk denote the interior angle made by the two sides meeting at vertex
ak . Also given are angles θ1, . . . , θK satisfying |θk| < π/2 which will determine
the directions of reflection on each side. For each k = 1, . . . ,K , θk is the angle
between the inward normal nk and the constant direction of reflection γ k asso-
ciated with side k, and θk is positive if and only if γ k points toward the vertex
ak+1. It was established in Theorem 3.7 of [22] that when θk−1 < θk + 2ξk for
all k = 1, . . . ,K , the submartingale problem with L = 1

2� and V = {a1, . . . , ak}
is well posed. Note that at each vertex ak , there exists a unit vector vak

such that
〈vak

, γ k−1〉 ≥ 0 and 〈vak
, γ k〉 ≥ 0. In addition, ∂G \ U ⊆ V . Thus Assumption 2

holds. Note that if there exists k such that (θk−1 − θk)/ξk ∈ [1,2), then the asso-
ciated RBM is not a semimartingale. A subclass of these RBMs, which arise as
diffusion approximations of closed networks, was also investigated in [41].

EXAMPLE 4.4 (SRBM in polyhedral domains). We now describe a class of
semimartingale RBMs (SRBMs for short) that arise as diffusion approximations
of queuing networks [51]. In this case, G = RJ+ is the nonnegative orthant in RJ ,
which admits the representation G =⋂J

i=1 Gi , where Gi
.= {x ∈ RJ :xi ≥ 0}, and

the direction vector field γ i on Gi is a constant vector field, pointing in a direction
di ∈ RJ . Moreover, the matrix D with ith column di is assumed to satisfy the
completely-S condition, which implies that U = ∂G. It was shown in [46] that
the reflected Brownian motion associated with G and d(·) admits a weak solution
that is unique in law. Therefore, by [28] it follows that the submartingale problem
with L = 1

2� and V = ∅ is well posed. By Remark 3.4, Assumption 2 is trivially
satisfied with V = ∅.

EXAMPLE 4.5 (Nonsemimartingale reflected diffusions in polyhedral do-
mains). Here, we first consider a class of RBMs that were shown in [16–18,
37, 38] to arise as reflected diffusion approximations of multiclass queuing net-
works using the so-called generalized processor scheduling policy that is used in
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high-speed networks for efficient sharing of resources amongst traffic of different
classes. The state space G associated with the GPS ESP has the representation

G =
J+1⋂
i=1

{
x ∈ RJ :

〈
x,ni 〉> 0

}
,

where ni = ei for i = 1, . . . , J (here {ei, i = 1, . . . , J } is the standard orthonor-
mal basis in RJ ) and nJ+1 =∑J

i=1 ei/
√

J . The reflection vector field is piece-
wise constant on each face, governed by the vectors {γ i, i = 1, . . . , J + 1} that
are defined as follows: γ J+1 =∑J

i=1 ei/
√

J and {γ i, i = 1, . . . , J } are defined in
terms of a “weight” vector ᾱ ∈ RJ+ that satisfies ᾱi > 0 for each i = 1, . . . , J and∑J

i=1 ᾱi = 1: for i, j = 1, . . . , J ,

γ i
j =
⎧⎨
⎩− ᾱj

1 − ᾱi

, for j �= i,

1 for j = i.

The fact that the associated stochastic differential equation with reflection has
a pathwise unique solution follows from Corollary 4.4 of [36]. Hence, well-
posedness of the submartingale problem with L as in (1) and V = {0} follows
from [28]. Moreover, Lemma 3.4 of [36] shows that ∂G \ U = V = {0}, and V
only contains one element. Hence, Assumption 2 holds. It was shown in [26] that
this process is not a semimartingale. The two-dimensional case corresponds to the
case α = 1 and ζ = π/2 in Example 4.2.

EXAMPLE 4.6 (Nonsemimartingale RBMs in curved domains). We now con-
sider a class of reflected diffusions in curved domains introduced by Burdzy and
Toby in [7]. Suppose that L and R are twice continuously differentiable real func-
tions defined on R and such that L(0) = R(0) = 0 and L(y) < R(y) for all y > 0.
The domain has the form G = G1 ∩ G2 ∩ G3, where

G1 = {(x, y) :x > L(y)
}
, G2 = {(x, y) :x < R(y)

}
,

G3 = {(x, y) :y > 0, x ∈R
}
.

For j = 1,2,3 and z ∈ ∂Gj , let nj (z) denote the unit inward normal vector to
∂Gj at z. Let γ 1(·) = (1,0)′, γ 2(·) = (−1,0)′ and γ 3(·) = (0,1)′. In [7] the RBM
in such a domain was characterized as the pathwise unique strong solution to the
associated stochastic differential equations with reflection. By [28] it can be shown
that the associated submartingale problem with L = 1

2� and V = {0} is well posed,
and Proposition 4.13 of [6] shows that the process is not a semimartingale. Since
U = ∂G \ V , and V is a singleton, Assumption 2 is trivially satisfied.
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EXAMPLE 4.7 (RBMs in Cusp-like domains). Consider a two-dimensional
domain G with representation

G = {(x, y) :x ≥ 0,−xβ < y < xβ}, β > 1.

The domain G has a cusp at the origin and G = G1 ∩ G2, where

G1 = {(x, y) :y < xβ when x ≥ 0 and y < 0 when x < 0
}
,

G2 = {(x, y) :y > −xβ when x ≥ 0 and y > 0 when x < 0
}
.

For each j = 1,2, and z ∈ ∂Gj , let nj (z) be the inward unit normal vector to ∂Gj ,
and let γ j (z) make a constant angle θj ∈ (−π/2, π/2) with nj (z). We take θj > 0
if and only if the first component of γ j (z) is negative; that is, γ j (z) points toward
the origin for z in a small neighborhood of the origin. Since θj �= ±π/2, we can
without loss of generality assume the normalization 〈γ j (z), nj (z)〉 = 1 holds. It
was proved in [12] that the submartingale problem with V = {0} is well posed
when θ1 + θ2 ≤ 0. It is easy to check that ∂G \ U ⊆ V and V contains only one
element, and thus Assumption 2 holds.

5. Sufficiency of the inequality condition. Throughout this section, assume
(G,d(·)), b(·), σ(·) and a finite set V ⊂ ∂G are associated with a well-posed
submartingale problem. Let π be a probability measure on (Ḡ,B(Ḡ)) such that
π(∂G) = 0. In this section we show that if π also satisfies (2) for every f ∈ H,
then π is a stationary distribution for the well-posed submartingale problem. The
proof consists of three main steps. First, in Section 5.1 (see Proposition 5.1) we
show that inequality (2) is equivalent to a certain generalized basic adjoint relation
(BAR). Next, in Section 5.2, we use the generalized BAR to deduce the existence
of a stationary process X that has marginals equal to π and satisfies some addi-
tional properties. We complete the proof in Section 5.3 by showing that the law
of X is equal to Qπ , the solution to the well-posed submartingale problem with
initial distribution π .

5.1. A generalized basic adjoint relation. In what follows, let

K1
.= {(x, u) ∈ R2J :x ∈ ∂G \ V, u ∈ d(x), |u| = 1

}
.(31)

PROPOSITION 5.1. Let (G,d(·)), b(·), σ (·) and a finite set V be associated
with a well-posed submartingale problem, and suppose that the associated set H
defined in (3) satisfies Assumption 1. Given any probability measure π on Ḡ that
satisfies π(∂G) = 0, π satisfies inequality (2) if and only if there exists a σ -finite
(nonnegative) Borel measure μ on K1 such that∫

Ḡ
Lf (x)π(dx) +

∫
K1

〈
u,∇f (x)

〉
μ(dx, du) = 0 for each f ∈ H.(32)
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PROOF. The fact that (32) implies (2) is immediate because μ is a nonnegative
measure, and f ∈ H implies 〈u,∇f (x)〉 ≥ 0 for (x, u) ∈ K1.

We now prove the converse. Suppose π satisfies (2), and let K = K1 ∪ K2,
where K1 is defined in (31) and

K2
.= {(x, u) ∈ R2J :x ∈ G, |u| = 1

}
.

For each f ∈ H, let hf :K �→ R be the function given by hf (x,u) = 〈u,∇f (x)〉
for each (x, u) ∈ K. Clearly, hf ∈ C1

c (K) for each f ∈ H. Let T0 be the linear
subspace of Cc(K) given by

T0
.=
{
g ∈ C1

c (K) :g =
n∑

i=1

aihfi
, n ∈N, fi ∈ H, ai ∈ R, i = 1, . . . , n

}
,

and for each g ∈ T0 that has a representation of the form g =∑n
i=1 aihfi

, define

�(g)
.= −
∫
Ḡ
L
(

n∑
i=1

aifi

)
(x)π(dx).(33)

We now show that the value of �(g) does not depend on the chosen representation
for g. Suppose we are given two representations of g ∈ T0 with g =∑n

i=1 aihfi
=∑m

j=1 ãj hf̃j
. Then, by the definition of hf ,〈

u,∇
(

n∑
i=1

aifi

)
(x)

〉
=
〈
u,∇

(
m∑

j=1

ãj f̃j

)
(x)

〉
, x ∈ G, |u| = 1.

This implies that ∇(
∑n

i=1 aifi)(x) = ∇(
∑m

j=1 ãj f̃j )(x) for any x ∈ G, and hence
L(
∑n

i=1 aifi)(x) = L(
∑m

j=1 ãj f̃j )(x) for any x ∈ G. Since π(∂G) = 0, the right-
hand sides of (33) for the two representations coincide. Thus � is well defined.

We show below that � is in fact a positive linear functional on T0 with respect
to a suitable partial order. Linearity of � trivially follows from the definition. Let

P = {g ∈ Cc(K) : 0 ≤ g(x,u) ≤ hf (x,u), (x, u) ∈ K1 for some f ∈ H
}
.

Since the mapping from f to hf is linear by the definition of hf , and H is closed
under addition and multiplication by positive scalars, it is easy to verify that (1)
g, g̃ ∈ P implies g + g̃ ∈ P ; and (2) g ∈ P and a > 0 implies ag ∈ P . Thus, P
is a positive cone in Cc(K). On Cc(K), we consider the partial order ≤ defined
by h ≤ g if g − h ∈ P . To show that � is positive on T0, let g ∈ T0 ∩ P . Since
g ∈ T0, it admits a representation of the form g =∑n

i=1 aihfi
for some ai ∈ R,

fi ∈ H. Since each fi ∈ H, clearly
∑n

i=1 aifi ∈ C2
c (Ḡ) ⊕ R. Moreover, g ∈ P

implies g ≥ 0, which in turn implies 〈u,
∑n

i=1 ai∇fi(x)〉 ≥ 0 for each x ∈ ∂G \ V
and u ∈ d(x) with |u| = 1. As a consequence,

∑n
i=1 aifi ∈ H. By (2) and (33), this

implies that �(g) ≥ 0 which shows that � is positive.
We now verify an additional condition that will allow us to apply a version of

the Hahn–Banach theorem.
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Claim 1. For each h ∈ Cc(K), there exists g ∈ T0 such that g − h ∈ P .
Proof of Claim 1. Fix h ∈ Cc(K). Then there exists a compact set K ⊂ K1 and

a constant 0 < C < ∞ such that |h(x,u)| ≤ CIK(x,u) for each (x, u) ∈ K1. We
can assume without loss of generality that there exist r, s > 0 such that{

x ∈ RJ : (x, u) ∈ K
}⊆ {x ∈ ∂G : |x| ≤ r, d(x,V) ≥ s

}
.(34)

Let f = Cfr,s , where fr,s ∈ H ∩ C2
c (Ḡ) is the function from property 2 of As-

sumption 1. Then clearly |h(x,u)| ≤ CIK(x,u) ≤ hf (x,u) = 〈u,∇f (x)〉 for each
(x, u) ∈ K1. Choose g = hf . Then g ∈ T0, 0 ≤ g − h ≤ 2hf = h2f on K1, and
2f ∈ H. Thus g − h ∈ P . This establishes the claim.

By the claim and an application of the positive cone version of the Hahn–Banach
theorem (cf. Theorem 2.1 of [3]), � can be extended to a positive linear functional
on Cc(K), which we denote again by �. An application of the Riesz representation
theorem then shows that there exists a unique regular Borel measure μ on K such
that

�(g) =
∫
K

g(x,u)μ(dx, du) for each g ∈ Cc(K).(35)

Now, for each g ∈ Cc(K2), both g and −g are identically zero on K1 and hence lie
in P . Therefore, �(g) = 0 for every g ∈ Cc(K2), which in turn implies μ(K2) = 0.
Now, for f ∈ H, substituting g = hf ∈ T0 into both the definition (33) and the
representation (35) of �, and using the fact that μ(K2) = 0, we obtain (32).

To see that μ is a σ -finite measure, fix any constant, say C = 1, and a compact
subset K ⊂ K1. Let r, s > 0 be such that (34) holds, and let f = fr,s ∈ H be
the function from Assumption 1(2). Then hf ∈ T0, and substituting f in (32), we
obtain

μ(K) <

∫
K1

hf (x,u)μ(dx, du) = −
∫
Ḡ
Lf (x)π(dx) < ∞,

where finiteness of the last integral holds because Lf is continuous and has com-
pact support in Ḡ. �

REMARK 5.2. When V �= ∅ the condition in (32), which we will refer to as
the generalized BAR, is somewhat more subtle than the usual BAR that has been
established for semimartingale RBMs in the orthant [23]. In the latter setting, the
measure μ in the BAR is a finite measure that is absolutely continuous with respect
to the local time measure dL associated with the RBM Z on the boundary ∂G, and
takes the form

μ(A) = Eπ

[∫ 1

0
I{Z(u)∈A} dL(u)

]
, A ∈ B

(
Rd).

However, when V �= ∅, the local time is typically not of bounded variation [26,
36], and so the local time does not define a finite measure on the boundary. How-
ever, since increments of the local time when the process is away from the set V
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can be shown to be of bounded variation (cf. Theorem 2.9 of [36]), one can still as-
sociate a σ -finite measure μ which is, roughly speaking, associated with the local
time of excursions of the reflected diffusion away from the set V . Since functions
in H are constant in a neighborhood of V , condition (32) is satisfied. This empha-
sizes the subtlety in the correct choice of test functions for characterization of the
stationary distribution.

5.2. Existence of a stationary process. We now establish a corollary of the
generalized BAR, the proof of which relies on the following approximation lemma.
For f ∈H, the limit lim|x|→∞ f (x) clearly exists, and in what follows, we denote
it by f (∞).

LEMMA 5.3. The set H has a countable subset H0 with the property that for
each f ∈ H and each N ∈ N such that BN(0) contains both an open neighbor-
hood of V and an open neighborhood of supp(f − f (∞)), there exists a sequence
{gk :k ∈ N} ⊂ H0 such that

lim
k→∞ sup

x∈Ḡ∩BN(0)

J
max
i,j=1

∣∣f (x) − gk(x)
∣∣ ∨ ∣∣∣∣∂f (x)

∂xi

− ∂gk(x)

∂xi

∣∣∣∣
(36)

∨
∣∣∣∣∂

2f (x)

∂xi ∂xj

− ∂2gk(x)

∂xi ∂xj

∣∣∣∣= 0.

Moreover, the above property also holds with the set D .= {f ∈ H : f ≥ 0} in place
of H and a countable subset D0 in place of H0.

The proof of Lemma 5.3 relies on the denseness of polynomials in C2(RJ ) and
standard mollification arguments, and hence is deferred to Appendix A.

COROLLARY 3. Let the conditions of Proposition 5.1 be satisfied. Then there
exists a stationary process X whose law Q̃π on (C[0,∞),M), satisfies the follow-
ing properties:

(1) the law of ω(0) under Q̃π is π ;
(2) for every f ∈ H, the process

f
(
ω(t)

)− ∫ t

0
Lf
(
ω(u)

)
du, t ≥ 0,

is a Q̃π -submartingale on (C[0,∞),M, {Mt});
(3)

EQ̃π

[∫ ∞
0

IV
(
ω(s)

)
ds

]
= 0.

PROOF. Let μ be the nonnegative σ -finite measure specified in Proposi-
tion 5.1, and extend μ from K to a σ -finite measure on Ḡ × S1(0) by defining
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μ(Ḡ × S1(0) \K) = 0. In the rest of the proof, we use μ to denote this extension.
Since μ is σ -finite, it follows that there exists a continuous function φ defined on
Ḡ × S1(0) that satisfies φ(x,u) ∈ (0,1) for each x ∈ Ḡ \ V and u ∈ S1(0) and∫
Ḡ×S1(0) φ(x,u)μ(dx, du) < ∞.

We will establish the corollary by verifying the assumptions of Theorem 1.7
of [31]. We first show that the five clauses of Condition 1.2 of [31] are satisfied with
D = {f ∈H :f ≥ 0}, E = Ḡ, U = S1(0), and operators A and B from D ⊂ Cb(Ḡ)

to C(Ḡ × S1(0)), that are defined as follows:

Af (x,u) = Lf (x) and Bf (x,u) = 1

φ(x,u)

〈
u,∇f (x)

〉
.

Clearly, 1 ∈ D and A1 = B1 = 0. Thus (i) of Condition 1.2 of [31] holds. Let
ψA = ψB ≡ 1. Note that for each function f ∈ D, ∇f is zero outside a compact
set Kf ⊂ Ḡ \ V and f , ∇f and (due to the continuity of the drift and dispersion
coefficients) Lf , are all uniformly bounded on Ḡ, say by a constant af < ∞.
Hence, |Af (x,u)| ≤ af = af ψA(x,u) and |Bf (x,u)| ≤ bf = bf ψB(x,u) for ev-
ery (x, u) ∈ Ḡ × S1(0), where

bf
.= sup

x∈Ḡ,u∈S1(0)

|∇f (x)|
|φ(x,u)| ≤

(
af

infx∈Kf ,u∈S1(0) |φ(x,u)|
)
,

which is finite because 0 < φ < 1 by construction, and the infimization can be
replaced by a minimization since φ is continuous, and Kf × S1(0) is compact. It
follows from the second part of Lemma 5.3 that the set {(f,Af,Bf ) :f ∈ D} is
separable in the sense that there exists a countable subset D0 ⊂ D such that the set
{(f,Af,Bf ) :f ∈ D} is contained in the bounded, pointwise closure of the linear
span of {(f,Af,Bf ) :f ∈ D0}. This verifies (iii) of Condition 1.2 of [31]. From the
definitions of A and B , it clear that (iv) of Condition 1.2 of [31] is also satisfied;
see, for instance, Example 1.4 of [31]. Finally, it is clear that D is closed under
multiplication. Also, by 1 of Assumption 1, H separates points, and since for any
f ∈ H and c ≥ 0, f − minz∈RJ f (z) + c ∈ D, D also separates points. Thus, the
last property of Condition 1.2 of [31] follows.

We next define two measures on Ḡ × S1(0). Let η0 be the unique rotationally
invariant probability measure on S1(0), and let μ0 be the probability measure on
Ḡ × S1(0) given by

μ0(dx, du) = η0(du)π(dx).

Then for each f ∈ D, we have∫
Ḡ×S1(0)

Af (x,u)μ0(dx, du) =
∫
Ḡ×S1(0)

Lf (x)μ0(dx, du) =
∫
Ḡ
Lf (x)π(dx).

Also, let μ1 be the finite measure on Ḡ × S1(0) given by

μ1(dx, du) = φ(x,u)μ(dx, du).
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It is clear that∫
Ḡ×S1(0)

ψA(x,u)μ0(dx, du) +
∫
Ḡ×S1(0)

ψB(x,u)μ1(dx, du) < ∞
and by (32), for each f ∈ D ⊂ H,∫

Ḡ×S1(0)
Af (x,u)μ0(dx, du) +

∫
Ḡ×S1(0)

Bf (x,u)μ1(dx, du)

=
∫
Ḡ
Lf (x)π(dx) +

∫
Ḡ×S1(0)

〈
u,∇f (x)

〉
μ(dx, du) = 0.

Let U = Ḡ × S1(0). Obviously, μi(U) = μi(Ḡ × S1(0)) for i = 0,1. We
have verified all the assumptions of Theorem 1.7 of [31], and so it follows
from that theorem that there exists a stationary process X such that X(0)

has distribution π and {f (X(t)) − ∫ t
0
∫
B1(0) Af (X(s), u)η0(du)ds, t ≥ 0} =

{f (X(t)) − ∫ t
0 Lf (X(s)) ds, t ≥ 0} is a submartingale for each f ∈ D. Since f −

minx∈RJ f (x) ∈ D for each f ∈ H, it follows that {f (X(t))−∫ t
0 Lf (X(s)) ds, t ≥

0} is a submartingale for each f ∈ H. To conclude the proof, we note that by the
stationarity of X, the assumption π(∂G) = 0 and the fact that X(0) has distribu-
tion π ,

E

[∫ ∞
0

IV
(
X(s)

)
ds

]
=
∫ ∞

0
E
[
IV
(
X(s)

)]
ds =

∫ ∞
0

π(V) ds = 0.

The above discussion shows that Q̃π , the law of X, satisfies the three properties
stated in the corollary. �

5.3. Proof of Theorem 1. The necessity of the condition (2) follows from the
discussion prior to the statement of Theorem 1. So, it only remains to prove suffi-
ciency. If (2) and the assumptions of the theorem hold, then by Corollary 3 there
exists a stationary process X whose law Q̃π satisfies the three properties stated
therein. To complete the proof of Theorem 1 it only remains to show that Q̃π is
equal to Qπ , the solution to the well-posed submartingale problem with initial
distribution π .

For each ω ∈ C[0,∞), let Q̃ω be a regular conditional probability distribution
of Q̃π given M0. Then for each ω ∈ C[0,∞),

Q̃ω

(
ω′ ∈ C[0,∞) :ω′(0) = ω(0)

)= 1.(37)

Moreover, disintegrating Q̃π and using property (1) of Q̃π from Corollary 3, we
obtain

Q̃π(·) =
∫
C[0,∞)

Q̃ω(·)Q̃π(dω) =
∫
C[0,∞)

Q̃ω(·)P̃π(dω),(38)

where P̃π is the probability measure on (C[0,∞),M0) obtained as the restriction
of Q̃π to M0 defined as follows: for A0 ∈ B(RJ ),

P̃π(A)
.= π(A0 ∩ Ḡ) if A = {ω ∈ C[0,∞) :ω(0) ∈ A0

}
.(39)
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It then follows from property (3) of Q̃π from Corollary 3 that

0 = EQ̃π

[∫ ∞
0

IV
(
ω(s)

)
ds

]
=
∫
C[0,∞)

EQ̃ω

[∫ ∞
0

IV
(
ω′(s)

)
ds

]
P̃π(dω).(40)

For each N ∈N, consider the stopping time

χN(ω) = inf
{
t ≥ 0 :ω(t) /∈ (BN(0)

)◦}
, ω ∈ C[0,∞),(41)

where we adopt the convention that the infimum over an empty set is infinity. Let
H0 be the countable subset of H described in Lemma 5.3. By property 2 of Q̃π and

the optional stopping theorem, {f (ω(t ∧χN(ω)))−∫ t∧χN(ω)
0 Lf (ω(u)) du, t ≥ 0}

is a Q̃π -submartingale for each f ∈ H0. By (38) and the fact that H0 is count-
able, there exists FN

0 ∈ M0 with P̃π(FN
0 ) = 0 such that for every ω /∈ FN

0

and each f ∈ H0, {f (ω′(t ∧ χN(ω′))) − ∫ t∧χN(ω′)
0 Lf (ω′(u)) du, t ≥ 0} is a

Q̃ω-submartingale. Since functions in H are bounded and, by Lemma 5.3, can
be approximated by functions in H0, it follows that for every ω /∈ FN

0 and

each f ∈ H, {f (ω′(t ∧ χN(ω′))) − ∫ t∧χN(ω′)
0 Lf (ω′(u)) du, t ≥ 0} is a Q̃ω-

submartingale. Let F0
.=⋃N FN

0 ∪ {ω :χN(ω) �→ ∞}. Then P̃π(F0) = 0 and for
each ω /∈ F0 and f ∈ H, by passing to the limit as N → ∞, we conclude that
{f (ω′(t)) − ∫ t

0 Lf (ω′(u)) du, t ≥ 0} is a Q̃ω-submartingale. In addition, by (40),
without loss of generality by enlarging F0 to another P̃π -null set, we may assume
that for each ω /∈ F0,

EQ̃ω

[∫ ∞
0

IV
(
ω′(s)

)
ds

]
= 0.

Thus, for each ω /∈ F0, we see that Q̃ω satisfies all three properties of Definition 2.1
with z = ω(0). By the well-posedness of the submartingale problem, this implies
that

Q̃ω =Qω(0)

and then by (38) and (39),

Q̃π(·) =
∫
C[0,∞)

Qω(0)(·)P̃π(dω) =
∫
Ḡ
Qz(·)π(dz) = Qπ(·).

This shows that Q̃π = Qπ and completes the proof of Theorem 1. �

6. A boundary property. The main result of this section shows that for a
large class of domains and reflection fields (G,d(·)) and subsets V ⊂ ∂G associ-
ated with a well-posed submartingale problem, the solution to the submartingale
problem spends zero Lebesgue time on the boundary of the domain. In this sec-
tion, for simplicity, we assume that the uniform ellipticity condition (12) holds.
The boundary property is first stated precisely in Section 6.1 (see Proposition 6.1),
and its proof, which is given in Section 6.3, is preceded by some supporting results
that are established in Section 6.2.
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6.1. Statement of the boundary property. We state the boundary property and
show that it is equivalent to the property stated in (47) below.

PROPOSITION 6.1. Suppose that (G,d(·)) is a piecewise C2 domain with
continuous reflection, V ⊂ ∂G satisfies ∂G \ U ⊆ V , the diffusion coefficient
a(·) = σσT (·) is uniformly elliptic, and the submartingale problem associated
with (G,d(·)), V , b(·) and σ(·) is well posed. If {Qx, x ∈ Ḡ} is the solution to
the associated submartingale problem, then for each x ∈ Ḡ,

EQx

[∫ ∞
0

I∂G

(
ω(s)

)
ds

]
= 0.(42)

Due to property 3 of the submartingale problem and the assumption that ∂G \
U ⊆ V , to show (42) it suffices to show that for each x ∈ Ḡ,

EQx

[∫ ∞
0

IU
(
ω(s)

)
ds

]
= 0.(43)

Without loss of generality, we may assume in this section that ∂G \V = U . Recall
the definition of I given in (8) and for each δ > 0, let

Uδ
.=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈ U :

I(y) ⊆ I(x) for all y ∈ (Bδ(x)
)◦ ∩ ∂G and ∃n ∈ n(x)

such that n = ∑
i∈I(x)

θin
i(x), where θi ≥ 0, i ∈ I(x),

∑
i∈I(x)

θi = 1, and 〈n,d〉 ≥ δ|d| for all d ∈ d(x)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

(44)
and for each J ⊆ I , J �=∅, let

UJ
δ

.= {x ∈ Uδ :I(x) = J
}
.(45)

It is immediate from the definition that any two elements in {UJ
δ ,J ⊆ I,J �= ∅}

are disjoint, and

Uδ = ⋃
J⊆I,J �=∅

UJ
δ , U = ⋃

δ>0

Uδ.(46)

In light of (46), to prove (43) and hence Proposition 6.1, it is clearly sufficient
to show that for every x ∈ Ḡ, δ > 0 and J ⊆ I , J �= ∅, such that UJ

δ �= ∅,

EQx

[∫ ∞
0

IUJ
δ

(
ω(s)

)
ds

]
= 0.(47)

Indeed, taking first the sum in (47) over J ⊆ I , J �= ∅, next the limit as δ → 0
in (47) and then applying Fatou’s lemma, we obtain (43).

6.2. Supporting results. We now state some preliminary results that will be
used in the proof of Proposition 6.1. Throughout, we assume (G,d(·)) is a piece-
wise C2 domain with continuous reflection. We start with an elementary observa-
tion, whose proof we include for completeness.
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LEMMA 6.2. For each δ > 0 and J ⊆ I , J �= ∅, UJ
δ is closed.

PROOF. Fix δ > 0 and J ⊆ I , J �= ∅, such that UJ
δ �= ∅, and let a point

x ∈ RJ and the sequence {xk}k∈N ⊆ UJ
δ be such that xk → x as k → ∞. Clearly,

x ∈ ∂G because {xk}k∈N ⊆ ∂G and ∂G is closed. Let N1 < ∞ be such that for
all k ≥ N1, x ∈ (Bδ(x))◦ ∩ ∂G. Then for k ≥ N1, it follows from (44) and (45)
that I(x) ⊆ I(xk) = J . When combined with the upper-semicontinuity of the set-
function I(·) (cf. Lemma 2.1 of [29]), this implies that I(x) = J . Moreover, given
any y ∈ (Bδ(x))◦ ∩ ∂G, since (Bδ(x))◦ is open and xk → x as k → ∞, there exists
N2 > N1 such that y ∈ (Bδ(x))◦ ∩ ∂G for all k ≥ N2. Since xk ∈ UJ

δ , this implies
that I(y) ⊆ I(xk) = J = I(x). Finally, xk ∈ UJ

δ also implies that there exists
nk ∈ n(xk) such that 〈nk, d〉 ≥ δ|d| for all d ∈ d(xk). Since ni(·) and γ i(·), i ∈ J ,
are continuous, and xk → x as k → ∞, and I(x) = I(xk) = J , it follows from the
definitions of n(x) in (9) and d(x) in (10) and the continuity of the vector fields
γ i, i ∈ I(x), that there exists n ∈ n(x) such that 〈n,d〉 ≥ δ|d| for every d ∈ d(x).
Thus, we have shown that x ∈ UJ

δ , and hence, that UJ
δ is closed. �

In the next lemma, we construct a family of test functions that lie in the set H.
The proof of the lemma is purely analytic and hence is relegated to Appendix B.
Some properties of the test functions are stated in terms of another class of func-
tions, which we now define. Recall that φi , i ∈ I , are the functions that character-
ize the domains Gi , as defined in Definition 3.3. For x ∈ U , let θi(x) > 0, i ∈ I(x),
be constants such that for each j ∈ I(x),〈 ∑

i∈I(x)

θi(x)
∇φi(x)

|∇φi(x)| , γ
j (x)

〉
> 0.(48)

Such constants exist by the definition (6) of U . Then, for x ∈ U , define

gx(y)
.= ∑

i∈I(x)

θi(x)

|∇φi(x)|φ
i(y), y ∈ RJ .(49)

LEMMA 6.3. Suppose the diffusion coefficient a(·) is uniformly elliptic. Then
there exists a function κ : (0,1) �→ (0,1/2) with κ(ε) < ε/2 for every ε ∈ (0,1)

such that for each x ∈ U , there exist constants 0 < r ′
x < rx < dist(x,V), 0 < cx <

∞, βx > 0, and a family of functions {qε,x ∈ H : ε ∈ (0,1)} that has the following
properties:

(1) supp[qε,x] ∩ Ḡ ⊂ Ḡ ∩ Brx (x);
(2) −ε2 − ε3/2 ≤ qε,x ≤ 0;
(3) |∇qε,x | ≤ cxε;
(4) for every y ∈ Ḡ ∩ Br ′

x
(x),

J∑
i,j=1

aij (y)
∂2qε,x

∂xi ∂xj

(y) ≥
{

2αβx − cxε, if 0 ≤ gx(y) ≤ ε/2,

−cxε, if ε/2 < gx(y) < ε − κ(ε),
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and ∣∣∣∣∣
J∑

i,j=1

aij (y)
∂2qε,x

∂xi ∂xj

(y)

∣∣∣∣∣≤ cx

√
ε if gx(y) ≥ ε − κ(ε).

For each δ > 0 and x ∈ Uδ , let r ′
x be the constant from Lemma 6.3. The neigh-

borhoods {Br ′
x
(x) :x ∈ Uδ} form an open cover of the closed set Uδ . The next

lemma shows that we can choose a countable open sub-cover that has certain prop-
erties. For each nonempty subset J of I , recall the definition of UJ

δ given in (45).

LEMMA 6.4. For each δ > 0 and J ⊆ I , J �= ∅, there exists a countable set
of points SJ

δ ⊂ UJ
δ such that

UJ
δ ⊆ ⋃

x∈SJ
δ

Br ′
x
(x),

and there exists a measurable mapping κJ
δ from UJ

δ onto SJ
δ such that x ∈

Br ′
κ
J
δ

(x)

(κJ
δ (x)) and I(x) = I(κJ

δ (x)) for each x ∈ UJ
δ .

PROOF. Fix δ > 0, x ∈ U . Let r ′
x > 0 be the constant from Lemma 6.3, and

pick J ⊆ I,I �= ∅, such that UJ
δ �= ∅. Then UJ

δ is a closed set by Lemma 6.2,
and so UJ

δ ∩ Bn(0) is compact for each n ∈ N. Since {(Br ′
x
(x))◦, x ∈ UJ

δ ∩ Bn(0)}
is a covering of the compact set UJ

δ ∩ Bn(0), there exists a finite subset SJ
n,δ

of UJ
δ ∩ Bn(0) such that {(Br ′

x
(x))◦, x ∈ SJ

n,δ} covers UJ
δ ∩ Bn(0). It is clear

that the countable set SJ
δ = ⋃n∈N SJ

n,δ satisfies the stated property. We can fur-

ther choose the set SJ
δ to be minimal in the sense that for each strict subset

C of SJ
δ ,
⋃

x∈C(Br ′
x
(x))◦ does not cover UJ

δ . Denote SJ
δ = {xk, k ∈ N}. Let

Dk = (Br ′
xk

(xk))
◦ \ (

⋃k−1
i=0 (Br ′

xi
(xi))

◦) ∩ UJ
δ for each k ∈ N. Then {Dk, k ∈ N}

is a partition of UJ
δ , and so for each x ∈ UJ

δ there is a unique index k(x) such
that x ∈ Dk(x). Define κJ (x) = xk(x). Then κJ is a measurable mapping from UJ

δ

onto SJ
δ that satisfies the stated property. �

6.3. Proof of Proposition 6.1. We first introduce a sequence of stopping times.
Fix δ > 0 and J ⊆ I,J �= ∅, such that UJ

δ �= ∅. Let SJ
δ , {Br ′

x
(x) :x ∈ SJ

δ } and

the measurable mapping κJ
δ be as in Lemma 6.4. Now, set σ0

.= 0 and for n ∈ N,
recursively define

τn
.= inf

{
t ≥ σn−1 :ω(t) ∈ UJ

δ

}
,(50)

σn
.= inf

{
t ≥ τn :ω(t) /∈ Br ′

κ
J
δ

(ω(τn))

(
κJ
δ

(
ω(τn)

))}
.(51)
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Since UJ
δ is a closed set by Lemma 6.2 and Br ′

κ
J
δ

(ω(τn))

(κJ
δ (ω(τn))) is an Fτn -

measurable open ball, {τn, n ∈ N} and {σn,n ∈ N ∪ {0}} are two nested sequences
of stopping times.

Now, fix x ∈ Ḡ, and let Qx be the solution to the well-posed submartingale
problem associated with (G,d(·)),V , b(·) and σ(·). From the discussion in Sec-
tion 6.1, it suffices to establish (47), for which we will use a proof by induction.
Note that for n = 1, σn−1 = 0 and so we trivially have

EQx

[∫ σn−1

0
IUJ

δ

(
ω(s)

)
ds

]
= 0.(52)

Now, suppose that (52) holds for some n ∈ N. We will show that then (52) also
holds with n replaced by n + 1. Since under Qx , ω(t) /∈ UJ

δ for t ∈ [σn−1, τn), it
is clear that

EQx

[∫ τn

σn−1

IUJ
δ

(
ω(s)

)
ds

]
= 0.(53)

Next, for each y ∈ U , let the constant cy ∈ (0,∞) and the family of test functions
qε,y , ε ∈ (0,1), be as specified in Lemma 6.3. Since qε,y ∈ H, qε,y is constant
in a neighborhood of V and 〈d,∇qε,y(z)〉 ≥ 0 for all d ∈ d(z) and z ∈ ∂G, by
property 3 of Definition 2.1 and the optional stopping theorem, for each y ∈ U and
ε ∈ (0,1),

qε,y

(
ω(t ∧ σn)

)− ∫ t∧σn

0
Lqε,y

(
ω(u)

)
du

is a Qx-submartingale. In fact, the above submartingale is integrable because
qε,y ∈ H implies qε,y is uniformly bounded. Now, let {εk, k ∈ N} be a sequence
of real numbers in (0,1) such that εk → 0 as k → ∞. The same argument that is
used in the proof of Theorem 1.2.10 of [45] can be applied to show that for the
regular conditional probability distribution {Qω,ω ∈ C[0,∞)} of Qx given Mτn ,
there exists a Qx-null set F ∈ Mτn such that for each ω /∈ F , y ∈ SJ

δ and εk ,
k ∈ N, {

qεk,y

(
ω′(t ∧ σn

(
ω′)))− qεk,y

(
ω′(t ∧ τn

(
ω′)))

(54)

−
∫ t∧σn(ω′)

t∧τn(ω′)
Lqεk,y

(
ω′(u)

)
du, t ≥ 0

}
is a Qω-submartingale and

Qw

(
ω′ ∈ C[0,∞) : τn

(
ω′)= τn(ω) and ω′(t) = ω(t),0 ≤ t ≤ τn(ω)

)= 1.(55)

Due to (52) and (53), it follows that

EQx

[∫ σn

0
IUJ

δ

(
ω(s)

)
ds

]
(56)

= EQx

[
I{τn(ω)<∞}EQω

[∫ σn(ω′)

τn(ω)
IUJ

δ

(
ω′(s)

)
ds

]]
.
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Consider ω /∈ F such that τn(ω) < ∞. Note that ω(τn(ω)) ∈ UJ
δ . Let x̄ ∈ SJ

δ be
such that x̄

.= κJ
δ (ω(τn(ω))), and recall that I(ω(τn(ω))) = I(x̄) = J . Fix t >

τn(ω) and note from (55) that for Qω almost surely every ω′, t > τn(ω
′) = τn(ω).

Since, under Qω, ω′(s) ∈ Ḡ∩Br ′̄
x
(x̄) for every s ∈ [τn(ω), σn(ω

′)), it follows from
the submartingale property of (54) and property (2) of qεk,x̄ in Lemma 6.3 that

EQω

[∫ t∧σn(ω′)

τn(ω)
Lqεk,x̄

(
ω′(u)

)
du

]

≤ EQω
[
qεk,x̄

(
ω′(t ∧ σn

(
ω′)))− qεk,x̄

(
ω′(τn(ω)

))]
≤ 2ε2

k + 2ε
3/2
k .

On the other hand, note that

EQω

[∫ t∧σn(ω′)

τn(ω)
Lqεk,x̄

(
ω′(u)

)
du

]

= EQω

[∫ t∧σn(ω′)

τn(ω)

1

2

J∑
i,j=1

aij

(
ω′(u)

)∂2qεk,x̄(ω
′(u))

∂xi ∂xj

du

]

+EQω

[∫ t∧σn(ω′)

τn(ω)

J∑
j=1

bj

(
ω′(u)

)∂qεk,x̄(ω
′(u))

∂xj

du

]
.

Combining the last two displays with property (3) of qεk,x̄ in Lemma 6.3, we have

EQω

[∫ t∧σn(ω′)

τn(ω)

J∑
i,j=1

aij

(
ω′(u)

)∂2qεk,x̄(ω
′(u))

∂xi ∂xj

du

]

≤ 4ε2
k + 4ε

3/2
k + 2cx̄ t sup

z∈Ḡ∩Br ′̄
x

∣∣b(z)
∣∣εk.

Together with property (4) of qεk,x̄ in Lemma 6.3, this implies that

(2αβx̄ − cx̄εk)E
Qω

[∫ t∧σn(ω′)

τn(ω)
I{0≤gx̄(ω′(u))≤εk/2} du

]

≤ cx̄ t
√

εk + cx̄ tεk + 4ε2
k + 4ε

3/2
k + 2cx̄ t sup

z∈Ḡ∩Br ′̄
x

∣∣b(z)
∣∣εk.

Letting first k → ∞ and then t → ∞, we obtain

EQω

[∫ σn(ω′)

τn(ω)
I{gx̄(ω′(u))=0} du

]
= 0.
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From the definition of σn and gx̄ given in (51) and (49), respectively, it follows
that

EQω

[∫ t∧σn(ω′)

τn(ω)
I⋂

j∈J ∂Gj

(
ω′(u)

)
du

]

= EQω

[∫ t∧σn(ω′)

τn(ω)
I⋂

j∈I(x̄) ∂Gj

(
ω′(u)

)
du

]

= EQω

[∫ t∧σn(ω′)

τn(ω)
I{gx̄(ω′(u))=0} du

]
.

Thus it follows that

EQω

[∫ σn(ω′)

τn(ω)
IUJ

δ

(
ω′(u)

)
du

]
≤ EQω

[∫ σn(ω′)

τn(ω)
I⋂

j∈J ∂Gj

(
ω′(u)

)
du

]
= 0.

When combined with (56), this shows that (52) holds with n replaced by n + 1.
Since σn(ω) → ∞ as n → ∞ for Qx almost every ω, the proposition follows by
induction.

7. Proof of Theorem 2. The proof of Theorem 2 relies on the construction of
certain local test functions, whose existence we first establish.

PROPOSITION 7.1. For each x ∈ Ḡ, there exist a constant rx > 0, increas-
ing continuous functions αx : (0, rx) �→ (0,∞) and κx : (0, rx) �→ (0,∞) such that
κx < αx , limr→0 αx(r) = 0, and a collection of nonnegative functions {gx,r ∈
C2

c (Ḡ), r ∈ (0, rx)} that satisfy the following properties:

(1) supp[gx,r ] ∩ Ḡ ⊂ Bαx(r)(x) ∩ Ḡ;
(2) −gx,r ∈ H;
(3) 0 ≤ gx,r (y) ≤ 1 for y ∈ RJ and gx,r (y) = 1 for each y ∈ Bκx(r)(x) ∩ Ḡ.

Moreover, if x ∈ ∂G \V , we can choose αx(r) = r and κx(r) = r/8 for r ∈ (0, rx).

PROOF. We split the proof into two cases, depending on whether x lies in the
interior or the boundary of G.

Case 1: x ∈ G. Let ξ be a bounded C∞ function on R such that ξ(z) = 1
when z ≤ 1/2, ξ(z) = 0 when z > 1 and ξ is strictly decreasing in the inter-
val (1/2,1). Note that then ‖ξ ′‖∞ < ∞ and ‖ξ ′′‖∞ < ∞. For each x ∈ G and
0 < r < (dist(x, ∂G))2, define gx,r (y)

.= ξ(|y − x|2/r) for y ∈ RJ . We now verify
that gx,r satisfies properties (1)–(3) of the proposition, with rx = dist(x, ∂G))2,
αx(r) = √

r and κx(r) = √
r/2. The first property holds because |x − y|2/r > 1

when y /∈ B√
r (x) and ξ(z) = 0 when z > 1. The third property is satisfied because

0 ≤ ξ(z) ≤ 1 for z ∈ R and y ∈ B√
r/2(x) implies (y − x)2/r ≤ 1/4, and ξ(z) = 1

for z ≤ 1/4. It is clear that gx,r ∈ C2
c (G) and supp[gx,r ] ⊂ G. Hence, −gx,r ∈ H.

This completes the proof of case 1.
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Case 2: x ∈ ∂G. Fix x ∈ ∂G. If x ∈ V , recall vx and ρx > 0 from Assumption 2.

If x /∈ V , recall (48), and let vx
.=∑i∈I(x) θi(x)

∇φi(x)

|∇φi(x)| . Without loss of generality,
we may assume that

∑
i∈I(x) θi(x) ∈ (0,1]. Thus we have |vx | ≤ 1 in both cases. In

addition, since V is a finite set, if x ∈ V , we may assume, without loss of generality,
that V ∩ Bρx (x) = {x}. In this case, we will show that Proposition 7.1 is satisfied
for some rx < r̄x , αx(r) = r and κx(r) = r/8, where

r̄x
.=
⎧⎪⎨
⎪⎩

dist
(
x,V ∪ ⋃

i /∈I(x)

(∂G ∩ Gi)

)
, if x /∈ V,

ρx, if x ∈ V.

It follows from Assumption 2, (48) and the continuity of γ j (·), j ∈ I , that there
exists rx < r̄x ∧ 8

14 such that 〈vx, d〉 ≥ 0 for each d ∈ d(y)∩S1(0) and y ∈ Brx (x).
For each r ∈ (0, rx), consider the following function fr defined on RJ by:

fr(y) =
⎧⎪⎨
⎪⎩

−〈vx, y − x〉 + 7r/8, if r/4 < |y − x| ≤ 7r/8,

1, if |y − x| ≤ r/4,

0, if |y − x| > 7r/8.

Since |vx | ≤ 1 and r < rx < 8/14, when r/4 < |y − x| ≤ 7r/8, we have

−〈vx, y − x〉 + 7r/8 ≤ |y − x| + 7r/8 ≤ 7r/8 + 7r/8 = 14r/8 < 1

and

−〈vx, y − x〉 + 7r/8 ≥ −|y − x| + 7r/8 ≥ 0.

Clearly, 0 ≤ fr ≤ 1. Let {φm ∈ C∞
c (RJ ),m ∈ N} be a sequence of nonnegative

functions, where each φm satisfies
∫
RJ φm(x) dx = 1 and has compact support in

Bcm(0), and {cm,m ∈ N} is a sequence such that cm → 0 as m → ∞. For each
r ∈ (0, rx), choose mr ∈ N such that cmr < r/8. Define

gx,r = fr ∗ φmr ,

where ∗ denotes the convolution operation. Then it is clear that gx,r ∈ C∞
c (RJ ),

0 ≤ gx,r ≤ 1, gx,r (y) = 1 for each y ∈ Br/8(x), and supp[gx,r ] ⊂ Br(x). This
shows that properties (1) and (3) hold. To show that −gx,r ∈ H, note that fr is
locally integrable and so has a distributional derivative ∇fr , which is given explic-
itly by

∇fr(y) =
{−vx, if r/4 < |y − x| < 7r/8,

0, otherwise.

Thus ∇gx,r = ∇fr ∗φmr and ∇gx,r (y) = vx for each y such that 3r/8 < |y −x| <
3r/4. It is clear that 〈d,∇fr(y)〉 ≤ 0 for each y ∈ ∂G and d ∈ d(y). This implies
that −gx,r ∈ H. �
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REMARK 7.2. From the proof note that for x ∈ G, the function gx,r con-
structed above is translation invariant in G in the sense that for z ∈ G − x,
gx,r (y) = gx+z,r (y + z) for each y ∈ B√

r (x) and r < min(rx, rx+z).

We now turn to the proof of Theorem 2.

PROOF OF THEOREM 2. Suppose that (G,d(·)) is piecewise C1 with continu-
ous reflection and Assumption 2 holds. We first show that H satisfies property 1 of
Assumption 1. Let x, y ∈ Ḡ with x �= y. Let rx and αx(·) be as in Proposition 7.1,
choose r < rx sufficiently small such that αx(r) < |x − y|, and let gx,r be the
function in Proposition 7.1. Then, gx,r takes the value 0 at y by property (1), and
it takes the value 1 at x by property (3). Thus, the function −gx,r ∈ H separates x

and y.
We now establish property 2 of Assumption 1. Since d(·)∩S1(0) in (10) is con-

tinuous for piecewise C1 domains with continuous reflection, by Remark 3.2 it suf-
fices to show that for every x ∈ ∂G\V there exists f ∈ H such that 〈d,∇f (x)〉 > 0
for every d ∈ d(x) ∩ S1(0). By (6), there exists n ∈ n(x) such that 〈d,n〉 > 0 for
every d ∈ d(x) \ {0}. Choose gx,r as in Proposition 7.1 for some r ∈ (0, rx) and
define

f (y) = gx,r (y)
(
C1 + 〈n,y〉), y ∈ Ḡ,

where C1 is selected so that C1 + 〈n,y〉 < 0 on supp[gx,r ]. Then for each y ∈ ∂G

and d ∈ d(y),〈
d,∇f (y)

〉= (C1 + 〈n,y〉)〈d,∇gx,r(y)
〉+ gx,r (y)〈d,n〉 ≥ 0.

Thus, f ∈ H. Moreover, by property (3) of gx,r in Proposition 7.1, we have that
gx,r (x) = 1 and ∇gx,r (x) = 0. This implies that

inf
d∈d(x)∩S1(0)

〈
d,∇f (x)

〉= inf
d∈d(x)∩S1(0)

〈d,n〉 > 0.

This establishes property 2 of Assumption 1. The second part of the theorem fol-
lows directly from the boundary property stated in Proposition 6.1 and the station-
arity of π . �

APPENDIX A: AN APPROXIMATION LEMMA

In this section, we prove the approximation result stated in Lemma 5.3. Let
Q be the set of rational numbers in R, and for s ∈ R, let Qs be the subset of
rational numbers less than s. Since V = {v1, . . . , vK} is at most finite, let QV =
{r ∈ QJ :V ⊂ Br(0)}. For each s ∈ Q, let B(V, s) denote the set

B(V, s) = {x ∈ RJ : dist(x,V) ≤ s
}
.
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Then there exists s0 > 0 such that for every r ∈ Qs0 , B(V, s) is a disjoint union
of {Bs(vl) : l = 1, . . . ,K}. For each r ∈ QV and rational number s < s0, it follows
from property 2 of Assumption 1 that there exists a function hr,s ∈ H∩C2

c (Ḡ) such
that 〈

d,∇hr,s(x)
〉
> 1

(57)
for all d ∈ d(x) ∩ S1(0) and x ∈ [∂G ∩ Br(0)

] \ B(V, s).

Recall that {φm ∈ C∞
c (RJ ),m ∈ N} is a sequence of nonnegative functions, where

each φm satisfies
∫
RJ φm(x) dx = 1 and has compact support in Bcm(0) and

{cm,m ∈ N} is a sequence such that cm → 0 as m → ∞. Also, let L be the
countable set of all polynomials with rational coefficients. Now, given any m ∈ N

and w = (r, s, {a	, 	 = 1, . . . ,K}) ∈ QV × Qs0 × QK , we define the mappings

Sw :L �→RRJ
and Sw,m :L �→ C∞(RJ ) as follows: given any polynomial q ∈ L,

(Swq)(x) =
⎧⎪⎨
⎪⎩

q(x), if x ∈ (Ḡ ∩ Br(0)
) \ B(V, s),

0, if x ∈ (Ḡ ∩ Br(0)
)c

,

al, if x ∈ Bs(vl), l = 1, . . . ,K

and

(Sw,mq) = Sw ∗ φm.

Then clearly, (Swq) is a function on RJ and (Sw,mq) ∈ C∞(RJ ). Fixing w =
(r, s, {a	, 	 = 1, . . . ,K}) as above, without loss of generality, by taking m large
enough so that cm < min{dist(Bs(v	),Bs(vj )), j, 	 ∈ {1, . . . ,K}, j �= 	}/2 we can
guarantee that for each 	 = 1, . . . ,K , Sw,mq(x) = a	 in an open neighborhood of
v	 and (∇Sw,mq)(x) = 0 for every x /∈ Ḡ ∩ Br+cm(0). Now define H0 by

H0
.=
⎧⎨
⎩

Sw,mq +
[

sup
x∈∂G∩Br+cm(0)

sup
d∈d(x)∩S1(0)

〈d,∇Sw,mq〉−
]
hr,s + b :

q ∈ L,w = (r, s, {a	}) ∈ QV ×Qs0 ×QK,m ∈ N, b ∈ Q

⎫⎬
⎭ .

It is easy to see that H0 is a countable subset of H.
We now show that H0 has the required property. Fix an f ∈ H. Without loss of

generality, we may assume that f ∈ C2
c (Ḡ). Fix BN(0) containing an open neigh-

borhood of V and an open neighborhood of supp(f ). For any function h ∈ C2(RJ ),
we define the norm

‖h‖C2(Ḡ∩BN(0)) = sup
x∈Ḡ∩BN(0)

max
{∣∣Dβf (x)

∣∣ : |β| ≤ 2
}
,

where Dβf (x) is the partial derivative corresponding to the multi-index β . Given
ε > 0, by Theorem 1 of [2], there exists a sequence of polynomials {q(k) :k ∈ N}
in L and k0 > 0 such that for any k ≥ k0,∥∥f − q(k)

∥∥
C2(Ḡ∩BN(0)) ≤ ε

4
.(58)
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For each 	 = 1, . . . ,K , choose a	 ∈ Q such that |f (v	) − a	| ≤ ε/4, choose s ∈
Qs0 , r ∈ Q, r < N such that Br(0) contains both an open neighborhood of V
and an open neighborhood of supp(f ) and set w = (r, s, {a	}). For k ∈ N, define
q̃

(k)
w = Swq(k) and q̃

(k)
w,m = Sw,mq(k). Then for each x ∈ RJ , for w = (r, s, {a	}),

q̃(k)
w (x) − f (x) =

⎧⎪⎨
⎪⎩

q(k)(x) − f (x), if x ∈ (Ḡ ∩ Br(0)
) \ B(V, s),

0, if x ∈ (Ḡ ∩ Br(0)
)c

,

al − f (x), if x ∈ Bs(vl), l = 1, . . . ,K.

Thus, for each k ≥ k0,

sup
x∈RJ

∣∣q̃(k)
w (x) − f (x)

∣∣≤ ε/4.

It follows that for each x ∈ Ḡ ∩ BN(0) and k ≥ k0,∣∣q̃(k)
w,m(x) − qk(x)

∣∣
≤ ∣∣(q̃(k)

w (x) − f
) ∗ φm(x)

∣∣+ ∣∣f ∗ φm(x) − f (x)
∣∣+ ∣∣f (x) − q(k)(x)

∣∣
≤ ε/2 + ∣∣(f ∗ φm)(x) − f (x)

∣∣.
Since the convolution operation commutes with differentiation, analogous argu-
ments can be used to show that the above holds with q̃

(k)
w,m, q(k), q̃

(k)
w and f re-

placed by Dβq̃
(k)
w,m, Dβq(k), Dβq̃

(k)
w and Dβf , respectively, for any multi-index

β = (β1, . . . , βJ ). So, in particular,∥∥q̃(k)
w,m − q(k)

∥∥
C2(Ḡ∩BN(0)) ≤ sup

x∈C2(Ḡ∩BN(0))

∥∥f (x) − f ∗ φ(x)
∥∥
C2(Ḡ∩BN(0)) + ε

2
.

On the other hand, since f is bounded and uniformly continuous, f ∗ φm → f

uniformly as m → ∞. Thus, for each k ≥ k0, we can choose mk large enough such
that r + cmk

< N and

∥∥q̃(k)
w,mk

− q(k)
∥∥
C2(Ḡ∩BN(0)) ≤ 3ε

4
.

Combining this with (58), we have that for each k ≥ k0,∥∥q̃(k)
w,mk

− f
∥∥
C2(Ḡ∩BN(0)) ≤ ε.(59)

In addition, from (59) for each x ∈ Ḡ∩BN(0) and d ∈ d(x)∩S1(0), 〈d,∇f (x)〉 ≥
0, we have 〈d,∇q̃

(k)
w,mk (x)〉− ≤ ε. For each k ≥ k0, let

gk
.= q̃(k)

w,mk
+ sup

y∈∂G∩Br+cmk
(0)

sup
d∈d(y),|d|=1

〈
d,∇q̃(k)

w,mk
(y)
〉−

hr,s .(60)

Then gk ∈ H0 for each k ≥ k0 and {gk :k ≥ k0} satisfies (36).
For the second part of the lemma, let D0

.= {f +supy∈RJ f −(y) :f ∈ H0}. Then
D0 is a countable subset of D. For each f ∈D, by the first part of the lemma, there
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exists a sequence {gk :k ∈N} ⊂ H0 such that (36) holds, where gk is given by (60).
For each k ∈ N, let pk = gk + supy∈RJ g−

k (y). Then the sequence {pk :k ∈ N} ⊂
D0. Since f ≥ 0, supy∈Ḡ∩BN(0) g

−
k (y) → 0 as k → ∞. For each x /∈ Ḡ ∩ BN(0)

and w = (r, s, {a	}), we have q̃k
w,mk

(x) = 0 and hence

g−
k (x) = sup

y∈∂G∩Br+cmk
(0)

sup
d∈d(y),|d|=1

〈
d,∇q̃k

w,mk
(y)
〉−

hr,s(x)−.

So it follows that

lim
k→∞ sup

x /∈Ḡ∩BN(0)

g−
k (x)

= lim
k→∞ sup

y∈∂G∩Br+cmk
(0)

sup
d∈d(y),|d|=1

〈
d,∇q̃k

w,mk
(y)
〉− sup

x /∈Ḡ∩BN(0)

hr,s(x)−

= 0.

Thus, {pk :k ≥ k0} satisfies (36) with D in place of H and D0 in place of H0. This
completes the proof of the second part of the lemma.

APPENDIX B: CONSTRUCTION OF TEST FUNCTIONS

In this section, we prove the existence of test functions with properties as stated
in Lemma 6.3. Fix x ∈ U ⊆ ∂G \ V and ε ∈ (0,1). The test function qε,x will be
defined in terms of the function dε on (−∞,∞) given by

dε(s) =
⎧⎪⎨
⎪⎩

s2, if 0 ≤ s ≤ ε,

ε2 + ε3/2 − √
ε(ε + √

ε − s)2, if ε < s ≤ ε + √
ε,

ε2 + ε3/2, if ε + √
ε < s,

and

dε(s) = dε(−s) if s < 0.

We first summarize the properties of dε that we will require. It is easy to verify that

0 ≤ dε(s) ≤ ε2 + ε3/2 for s ∈ (−∞,∞),

0 ≤ d ′
ε(s) ≤ 2ε for s ∈ [0,∞),(61)

d ′
ε(s) = 0 for s > ε + √

ε.

Also, note that dε ∈ C1(R) and d ′
ε is piecewise differentiable with the second

derivative

d ′′
ε (s) =

⎧⎪⎨
⎪⎩

2, if 0 ≤ s < ε,

−2
√

ε, if ε < s < ε + √
ε,

0, if ε + √
ε < s.
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We now use a standard mollification argument to construct a C2(R) function
with similar properties. Let {φn ∈ C∞

c (R), n ∈ N} be a sequence of nonnegative
functions with

∫
R φn(x) dx = 1 and compact supports that shrink to {0}. Define

dn
ε

.= φn ∗ dε,

where ∗ denotes the convolution operation. Then dn
ε − ε2 − ε3/2 ∈ C∞

c (R) and for
n sufficiently large, there exist κn(ε) > 0 with limn→∞ κn(ε) = 0 such that

0 ≤ dn
ε (s) ≤ ε2 + ε3/2 if s ∈ (−∞,∞),

dn
ε (s) = ε2 + ε3/2 if s ≥ 2(ε + √

ε),

0 ≤ (dn
ε

)′
(s) ≤ 2ε if s ∈ (−∞,∞),(

dn
ε

)′′
(s) = 2 if 0 ≤ s ≤ ε/2,(62) (

dn
ε

)′′
(s) ≥ 0 if 0 ≤ s ≤ ε − κn(ε),∣∣(dn

ε

)′′
(s)
∣∣ ≤ 2

√
ε if s ≥ ε − κn(ε),(

dn
ε

)′′
(s) = 0 if s ≥ 2(ε + √

ε).

Now, for the chosen x ∈ ∂G \ V , let rx and r ′
x = κx(rx) be the two constants in

Proposition 7.1, let gx,rx be the associated function and recall from Proposition 7.1
that we can assume the function αx satisfies αx(r) = r . Also, let gx be the function
defined in (49), with the associated θi(x), i ∈ I(x). Choose n sufficiently large so
that (62) holds and for each y ∈RJ , let

pε,x(y)
.= dn

ε

(
gx(y)

)
and qε,x(y)

.= (pε,x(y) − ε2 − ε3/2)gx,rx (y).

It follows from the properties of gx,rx and (62) that qε,x ∈ C2
c (Ḡ), Ḡ∩ supp[qε,x] ⊂

Ḡ ∩ Brx (x), −ε2 − ε3/2 ≤ qε,x ≤ 0, and

qε,x(y) = pε,x(y) − ε2 − ε3/2, y ∈ Ḡ ∩ Br ′
x
(x).(63)

Together with property 1 of (62), this shows that qε,x(·) satisfies properties (1)
and (2) of Lemma 6.3.

An elementary calculation shows that for y ∈ RJ ,

∇qε,x(y) = ∇pε,x(y)gx,rx (y) + (pε,x(y) − ε2 − ε3/2)∇gx,rx (y),(64)

where

∇pε,x(y) = (dn
ε

)′(
gx(y)

) ∑
i∈I(x)

θi(x)

|∇φi(x)|∇φi(y).(65)

Since (dn
ε )′ ≥ 0 by (62), θi(x) ≥ 0 and ∇φi is proportional to ni , it follows that

〈d,∇pε,x(y)〉 ≥ 0 for each d ∈ d(y) and y ∈ U . When combined with the facts
that the function gx,rx is nonnegative, the function pε,x − ε2 − ε3/2 is nonpositive
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due to (62), and −gx,rx lies in H by property (2) of Proposition 7.1, this implies
that 〈d,∇qε,x(y)〉 ≥ 0 for each d ∈ d(y) and y ∈ U . Thus, qε,x ∈ H.

Next, note that ∇φi is bounded on the support of gx,rx , 0 ≤ gx,rx ≤ 1 by property
(3) of Proposition 7.1 and d ′

ε(s) ∈ [0,2ε] by (61). Together with (65), this implies
that there exists c̃x < ∞ such that |∇pε,x(y)gx,rx (y)| ≤ c̃xε for all y ∈ RJ . On the
other hand, since gx,rx ∈ C2

c (Ḡ), ∇gx,rx is bounded (say by Mx), and it follows that
‖pε,x∇gx,rx‖∞ ≤ 2Mxε

3/2 ≤ 2Mxε if ε < 1. This implies that ‖∇qε,x‖∞ ≤ cxε

for some cx < ∞. Moreover, due to (63), for every y ∈ Ḡ ∩ Br ′
x
(x),

J∑
i,j=1

aij (y)
∂2qε,x

∂xi ∂xj

(y) =
J∑

i,j=1

aij (y)
∂2pε,x

∂xi ∂xj

(y)

= (dn
ε

)′′(
gx(y)

)〈∇gx(y), a(y)∇gx(y)
〉

+ (dn
ε

)′(
gx(y)

) J∑
i,j=1

aij (y)
∂2gx

∂xi ∂xj

(y).

By the fourth property in (62), the second property in (61), the uniform ellipticity
of a and the bound on the second derivatives of gx on Br ′

x
(x), by redefining cx to

be larger if necessary, we deduce that if 0 ≤ gx(y) ≤ ε/2, y ∈ Ḡ ∩ Br ′
x
(x), then

J∑
i,j=1

aij (y)
∂2qε,x(y)

∂xi ∂xj

≥ 2α
∣∣∇gx(y)

∣∣− 2ε

∣∣∣∣∣
J∑

i,j=1

aij (y)
∂2gx(y)

∂xi ∂xj

∣∣∣∣∣
(66)

≥ 2αβx − cxε,

where α is the positive constant in (12) and βx = infy∈Ḡ∩Br′x (x) |∇gx(y)| > 0.

Moreover, by the third and sixth properties in (62), it is clear that, by choosing
cx yet larger if necessary, for each y ∈ Ḡ ∩ Br ′

x
(x) with gx(y) ≥ ε − κn(ε),∣∣∣∣∣

J∑
i,j=1

aij (y)
∂2qε,x(y)

∂xi ∂xj

∣∣∣∣∣
≤ 2

√
ε
∣∣〈∇gx(y), a(y)∇gx(y)

〉∣∣+ 2ε

∣∣∣∣∣
J∑

i,j=1

aij (y)
∂2gx(y)

∂xi ∂xj

∣∣∣∣∣
≤ cx

√
ε.

The fifth property in (62) shows that when y ∈ Ḡ ∩ Br ′
x
(x) and ε/2 < gx(y) <

ε − κn(ε), then
J∑

i,j=1

aij (y)
∂2qε,x(y)

∂xi ∂xj

≥ −2ε

∣∣∣∣∣
J∑

i,j=1

aij (y)
∂2gx(y)

∂xi ∂xj

∣∣∣∣∣≥ −cxε.

This proves that qx,ε satisfies properties (4) and (5) of the lemma, and thus com-
pletes the proof.
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