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CENTRAL LIMIT THEOREM FOR A STRATONOVICH INTEGRAL
WITH MALLIAVIN CALCULUS

BY DANIEL HARNETT AND DAVID NUALART!
University of Kansas

The purpose of this paper is to establish the convergence in law of the
sequence of “midpoint” Riemann sums for a stochastic process of the form
f/(W), where W is a Gaussian process whose covariance function satisfies
some technical conditions. As a consequence we derive a change-of-variable
formula in law with a second order correction term which is an Itd integral of
" (W) with respect to a Gaussian martingale independent of W. The proof of
the convergence in law is based on the techniques of Malliavin calculus and
uses a central limit theorem for g-fold Skorohod integrals, which is a multi-
dimensional extension of a result proved by Nourdin and Nualart [J. Theoret.
Probab. 23 (2010) 39-64]. The results proved in this paper are generaliza-
tions of previous work by Swanson [Ann. Probab. 35 (2007) 2122-2159]
and Nourdin and Réveillac [Ann. Probab. 37 (2009) 2200-2230], who found
a similar formula for two particular types of bifractional Brownian motion.
We provide three examples of Gaussian processes W that meet the necessary
covariance bounds. The first one is the bifractional Brownian motion with
parameters H < 1/2, HK = 1/4. The others are Gaussian processes recently
studied by Swanson [Probab. Theory Related Fields 138 (2007) 269-304],
[Ann. Probab. 35 (2007) 2122-2159] in connection with the fluctuation of
empirical quantiles of independent Brownian motion. In the first example the
Gaussian martingale is a Brownian motion, and expressions are given for the
other examples.

1. Introduction. The aim of this paper is to obtain a change-of-variable for-
mula in distribution for a class of Gaussian stochastic processes W = {W;, t > 0}
under certain conditions on the covariance function. These conditions are in the
form of upper bounds on the covariance of process increments. For example, the
variance on the increment on an interval of length s is bounded by C./s, and
the covariance between the increments in the intervals [t — s, ¢], and [r — s, r] 1S
bounded by

sz|t —r| ™% —s)"P +s2|t — r|_3/2,
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For this process and a suitable function f, we study the behavior of the “mid-
point” Riemann sum

Lnz/2]

D, (1) := Z F'Waj=1y/n) Wajn — Wej—2)/m).
=1

The limit of this sum as 7 tends to infinity is the Stratonovich midpoint integral, de-
noted by fot f(Wy)° dW,. We show that the couple of processes {(W;, ®, (1)), >
0} converges in distribution in the Skorohod space (ID[0, 00))? to {(W;, ®(1)), 1 >
0}, where

1 t
(0= F W) — fWo) - 5 /0 £"(W,)dBy,

and B = {B;,t > 0} is a Gaussian martingale independent of W with variance
n(t), depending on the covariance properties of W. This limit theorem can be
reformulated by saying that the following It6 formula in distribution holds:

t 1 rt
(1) FOW) £ Fowp) + / £ Wy)° dWs + ~ / F"(Wy) dB.
0 2 Jo

The above mentioned convergence is proven by showing the stable convergence
of a d-dimensional vector (®,(¢1), ..., ®,(¢;7)) and a tightness argument. To show
the convergence in law of the finite-dimensional distributions, we show first, using
the techniques of Malliavin calculus, that ®,,(¢) is asymptotically equivalent to a
sequence of iterated Skorohod integrals involving f”'(W;). We then apply our d-
dimensional version of the central limit theorem for multiple Skorohod integrals
proved by Nourdin and Nualart in [5].

Recent papers by Swanson [10], Nourdin and Réveillac [6] and Burdzy and
Swanson [2] presented results comparable to (1) for a specific stochastic process.
In [10], a change-of-variable form was found for a process equivalent to the bifrac-
tional Brownian motion with parameters H = K = 1/2, arising as the solution to
the one-dimensional stochastic heat equation with an additive space—time white
noise. This result was proven mostly by martingale methods. In [2] and [6], the re-
spective authors considered fractional Brownian motion with Hurst parameter 1/4.
In [2], the authors covered integrands of the form f (¢, W;), which can be applied to
fBm on [¢, 00). The authors of [6] proved a change-of-variable formula that holds
on [0, c0) in the sense of marginal distributions. The proof in [6] uses Malliavin
calculus; several similar methods were used in the present paper. More recently,
Nourdin, Réveillac and Swanson [7] studied the case of fractional Brownian mo-
tion with H = 1/6. In that paper, weak convergence was proven in the Skorohod
space, and the Riemann sums are based on the trapezoidal approximation.

It happens that the conditions on the process W are satisfied by a bifractional
Brownian motion with parameters H < 1/2, HK = 1/4. In this case, n(t) = Ct
and the process B is a Brownian motion. This includes both cases studied in [6]
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and [10], and extends to a larger class of processes. For another example, we con-
sider a class of centered Gaussian processes with twice-differentiable covariance
function of the form

E[W, W,] = r¢(§), >,

where ¢ is a bounded function on [1, co0) such that

K _|_1ﬂ(X)
Vx—1 Jx

and v is bounded, differentiable and |y’ (x)| < C(x — 1)~!/2. This class of Gaus-
sian processes includes the process arising as the limit of the median of a system
of independent Brownian motions studied by Swanson in [9]. For this process,

1
P (x) ﬁarctan(m)

It is surprising to remark that in this case n(t) = Ct2. This is related to the fact
that the variance of the increments of W on the interval [z — s, t] behaves as C/s,
when s is small, although the variance of W(¢) behaves as Ct. Our third example
is another Gaussian process studied by Swanson in [11]. This process also arises
from the empirical quantiles of a system of independent Brownian motions. Let
B ={B(t),t > 0} be a Brownian motion, where B(0) is a random variable with
density f € C°°. Given certain growth conditions on f, Swanson proves there is a
Gaussian process F' = {F(¢), t > 0} with covariance given by

P(B(r) <q(r), B1t) <q(1) —a?
u(q(r),ryulq(t), )

where « € (0, 1) and g (¢) are defined by P(B(¢) < g(t)) = «. It is shown that this
family of processes satisfies the required conditions, where 71 (¢) is determined by
f and «.

The outline of this paper is as follows: In Section 2, we introduce the basic
environment and recall some aspects of Malliavin calculus that will be used. In
Section 3, a multi-dimensional version of a central limit theorem that appears in
[5] is given. In Section 4, the theorem is applied to prove convergence of &, (¢).
Section 5 discusses three examples of suitable process families. Finally, Section 6
contains proofs of three of the longer lemmas from Section 4. Most of the notation
in this paper follows that of [5].

¢'(x) =

E[F(r)F@®)]=p(r,t) =

9

2. Preliminaries and notation. Let W = {W (¢),t > 0} be a centered Gaus-
sian process defined on a probability space (€2, F, P) with continuous covariance
function

E[W (@)W (s)] = R(,s).
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We will always assume that F is the o -algebra generated by W. Let £ denote the
set of step functions on [0, 7] for T > 0; and let $) be the Hilbert space defined as
the closure of £ with respect to the scalar product

(10,11, Ljo,51) 9 = R(2,5).

The mapping 1j0,,j — W () can be extended to a linear isometry between §) and
the Gaussian space spanned by W. We denote this isometry by 4 — W (h). In this
way, {W(h), h € $} is an isonormal Gaussian process. For integers ¢ > 1, let §®¢
denote the gth tensor product of £. We use 9 to denote the symmetric tensor
product.

For integers g > 1, let H, be the gth Wiener chaos of W, that is, the closed
linear subspace of L2() generated by the random variables {H,(W(h)),h €
9, l|hlls = 1}, where H, (x) is the gth Hermite polynomial, defined as

— (—1)4e5 /2 _dq —x%/2
H,;(x)=(=1)%e i e .
For g > 1, it is known that the map

2 Iy (R®7) = Hy (W ()

provides an isometry between the symmetric product space $°9 (equipped with
the modified norm ﬁ | - llgeq) and H,. By convention, Ho = R and Iy(x) = x.

2.1. Elements of Malliavin calculus. Following is a brief description of some
identities that will be used in the paper. The reader may refer to [5] for a brief
survey, or to [8] for detailed coverage of this topic. Let S be the set of all smooth
and cylindrical random variables of the form F = g(W(¢1), ..., W(¢,)), where
n>1; g:R" — R is an infinitely differentiable function with compact support,
and ¢; € 9. The Malliavin derivative of F with respect to W is the element of
L%(2, $) defined as

"9
DF =3 "5 (W@g..... Wgn)or.
i=1

— Jw;

In particular, DW (h) = h. By iteration, for any integer ¢ > 1, we can define the
gth derivative DY F, which is an element of LZ(Q, $H®4). For example, if F =
g(W(t)), then D>F = g"(W (1)1

For any integer ¢ > 1 and real number p > 1, let D?-? denote the closure of S
with respect to the norm || - ||ps.r defined as

q
IF N0 =E[IFIP]+ D E[|D'F[ .
i=1
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We denote by § the Skorohod integral, which is defined as the adjoint of the
operator D. This operator is also referred to as the divergence operator in [8].
A random element u € LZ(Q, $) belongs to the domain of §, Dom 6, if and only if

[E[(DF, u)s]| < cuy E[F?]

for any F € D2, where ¢, is a constant which depends only on u. If u € Dom
then the random variable 8 (1) € L*(S2) is defined for all F € D!2 by the duality
relationship,

E[FSu)] =E[(DF,u)g].

This is sometimes called the Malliavin integration by parts formula. We iteratively
define the multiple Skorohod integral for ¢ > 1 as §(89 ! (u)), with 8°(u) = u. For
this definition we have

E[F67(w)] =E[(DYF, u)ge,].

where u € Domd? and F € D9-2. Moreover, if h € §°4, then we have §7 (h) =

I, (h).
For f, g € $®P, the following integral multiplication formula holds:

p

© @)=Y r (7)) e (s o 0.
r=0
where ®, is the contraction operator; see, for example, [5], Section 2.
We will use the Meyer inequality for the Skorohod integral; see, for example,
Proposition 1.5.7 of [8]. Let D*7($®) denote the corresponding Sobolev space
of H®*_valued random variables. Then for p > 1 and integers k > g > 1, we have

4) 189 @) | pr—a.p < k. pllellpe.p(s2a)

for all u € DFP($®K) and some constant Ck, p-
The following three results will be used in the proof of Theorem 4.3. The reader
may refer to [5] and [8] for details.

LEMMA 2.1. Let g > 1 be an integer.

(1) Assume F € D92, u is a symmetric element of Domd?, and (D"F,
8 (u)) gor € L*(Q,9®17" 1) forall0<r + j <q. Then (D"F, u)ger € Dom§”
and

q

Fsluy=Y" (3 ) 897" (D" F. u)ger )

r=0
(2) Suppose that u is a symmetric element of DI T%2($®7). Then we have
Jnk

DI (u)y =" (I:) ({) 18771 (D ).

i=0
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(3) Let u, v be symmetric functions in D24-2(§®4). Then

q 2 ) )
E[87w)s?(v)] =) (i’) E[(DT u, D" v)ga0q-n]-

i=0

In particular,

q 2 .
1870 1320 = B8 @?] = 3 (1) BUD uleer-o]
i=0

Proof of (1). This is proved in [5]; see Lemma 2.1. It follows by induction from
the relation F§(u) =8(Fu) + (DF,u)g; see [8], Proposition 1.3.3.

Proof of (2). This follows from repeated application of the relation D§(u) =
u + 6(Du); see [8], Proposition 1.3.2.

Proof of (3). This follows from repeated application of the duality property;
see [5], equation (2.12).

3. A central limit theorem for multiple Skorohod integrals. Let X =
{X (h), h € H} be an isonormal Gaussian process associated with a real-separable
Hilbert space §, defined on a probability space (2, F, P). We assume that F is
generated by X. The purpose of this section is to prove a multi-dimensional ver-
sion of a theorem proved in [5]; see Theorem 3.1. We begin by defining the notion
of stable convergence.

DEFINITION 3.1. Assume F, is a sequence of d-dimensional random vari-
ables defined on a probability space (€2, F, P), and F is a d-dimensional random
variable defined on (€2, G, P), where F C G. We say that F,, converges stably to F
as n — o0, if, for any continuous and bounded function f :R? — R and bounded,
R-valued, F-measurable random variable Z, we have

Tim E(f(F)Z) =E(f(F)Z).

THEOREM 3.2. Let g > 1 be an integer, and suppose that Fy, is a sequence
of random variables in R4 of the form F,, = 51 (u,) = (84 (u}?), Lo 04 (uz)),for a
sequence of R¢-valued symmetric functions u, in D*424($®9). Suppose that the
sequence F, is bounded in LY, 9) and that:

(a) (u,j;, X, (D F,{Z) ® h)geq converges to zero in LI(Q)for all integers 1 <
J, je <d, all integers 1 <ay,...,am,r <q —1suchthatay+---+ayn +r =gq;
and all h € H®".
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(b) For each 1 <i,j <d, (ufw Dqu{>5§®q converges in LI(Q,ﬁ) to a ran-
dom variable s;;, such that the matrix ¥ := (s;j)axa IS nonnegative definite (i.e.,
AT > 0 for all nonzero A € Rd).

Then F, converges stably to a random variable in R? with conditional Gaussian
law N (0, ) given X.

REMARK 3.3. Conditions (a) and (b) mean that for ¢ > 1, some combinations
of lower-order derivative products are negligible. For example, for g = 2, then the
following scalar products will converge to zero in L' (2, §):

° (uil, h ® hz)ﬁ@)z for all iy, ho € $;

e (i, DF] ®h)ger forall h € $ and all j (including i = j);

e (ul,, DF] ® DF})gen forall 1 <k, j <d.

Only the gth-order derivative products converge to a nontrivial random variable.
Usually (see Section 6), the term (uil, DYF, ,{ ) eq has the same asymptotic behavior
as (uil, u;{;)ﬁ@q.

REMARK 3.4. It suffices to impose condition (a) for & € Sp, where Sy is a
total subset of H&7.

PROOF OF THEOREM 3.2. As in the one-dimensional case considered in [5],
we will use the conditional characteristic function. Given any Ay, ..., h,;, € H, we
want to show that the sequence

g, =(FL,...,F., X(h), ..., X (hw))

converges in distribution to a vector (Folo, cee Fodo, X(h),...,X(hy)), where, for
any vector A € R4, F satisfies
(5) E(e* X (h1), ..., X (hw)) = exp(— 32T TA),

where A - F), = Z?:l Aj F;/ denotes the usual scalar product in R?, and we use this
notation to avoid confusion with the scalar product in £).

Since F;, is bounded in L! (€2, 9), the sequence &, is tight in the sense that for
any ¢ > 0, there is a K > 0 such that P(F, € [-K, K1%) > 1 — ¢, which follows
from Chebyshev inequality. Dropping to a subsequence if necessary, we may as-
sume that &, converges in distribution to a limit (Folo, e Fgo, X(hy),...,X(hy).
Let Y := g(X(hy1),..., X (hp)), where g € C;°(R™), and consider ¢,(A) =
d(1, &) :=E(e*Y) for A € R?. The convergence in law of &, implies that
foreach 1 < j <d,

9 . o
© tim 00— lim E(F o) = (B (FL ),

n— 00 3)\]. n— 00
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where convergence in distribution follows from a truncation argument applied
to F;.

On the other hand, using the duality property of the Skorohod integral and the
Malliavin derivative,

o . N inE, , . P
9, =iE(8(u))e AF, Y)=iE(u], DI (e rF Y)>ﬁ®q)
q
M =i ()R D) & D))
a=0

:i{E(u{,, YDIe ™) o + ) (Z)E(%, D@ DITY) e, 1
a=0

By condition (a), we have that (uj), D% Fn @ pi—a Y) geq converges to zero in
L' () when a < ¢, so the sum term vanishes as n — oo, and this leaves

Cm i Fy
nl;ng()lE(u,Jq, YD1e!™ ™)y

d
= Jim DBl Y DY)
d .
=— Z E(Ake’k'F“skj Y),
k=1

because the lower-order derivatives in D9e'*f also vanish by condition (a). Com-
bining this with (6), we obtain

d
iE(FLe™Tey) = =3 ME(e™ Fosy;v).
k=1

This leads to the PDE system,

9 .
—E(e™ X (h1), ..., X (hw))
Y
d .
==Y hsiE(E X (hy), ..., X (hw)),
k=1

which has unique solution (5). [

4. Central limit theorem for the Stratonovich integral. Suppose that W =
{W;, t > 0} is a centered Gaussian process, as in Section 2, that meets conditions
(i) through (v), below, for any T > 0, where the constants C; may depend on 7':
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(1) Forany 0 <s <t < T, there is a constant C such that
E[(W, — W,—_y)?] < Cys'/2,
(i) Forany s > 0and 2s <r,t <T with |t —r| > 2s,
E[(W, — Wi—) (W, — W,_p)]|
<Cist —r|™ U Ar —s) P 452 —r| 732

for Rgsitive constants «, 8, y, such that | <o < % andoa + 8= %
(i) ForO<t<TandO<s<r<T,

|E[WI(WH—S - 2VVr + Wr—s)]|

{Czsl/z, ifr <2sor|t—r|<2s,
= | Cas?((r — )32 4 |t — r|73/2), if r >2s and |t — r| > 2s,

for some positive constant C».
(iv) ForanyO0 <s <t <T —s,
’E[Wt(Wt+s - Wt—s)]|
- { Cis'/?, if 1 <2s,
— | Cszs(t —5)"1/2, ifr > 2s,
and foreachO<s <r <T,
|E[Wr(Wt+s - Wt—s)]|

{C3s1/2, ift <2sor|t—r|<2s,

<
Czs(t —s)" V2 + Css|t —r|7V/2, ift >2sand |t —r| > 2s,

for some positive constant C3. In addition, for ¢ > 2s,
[E[Ws (W, — Wi—9)]| < C3s'/2H7Y (1 —25)77

for some y > 0.
(v) Consider a uniform partition of [0, o) with increment length 1/n. Define
for integers j, k> 0andn > 1,

Bu(G. k) =E[(W(j+1)n — Win) Wt1y/n — Wiyn)]-
Next, define

[nt/2]

ni) =Y Bu(2j — 1.2k — 1> + B, (2j — 2.2k — 2)%;
jk=1
[nt/2]

My (=D Bu(2j —2,2%k— 1)+ B (2j — 1,2k - 2)%.
j.k=1
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Then for each t > 0,
lim n(t)=n"@¢) and lim n, (t)=n" (1)
n—oo M n—oo N
both exist, where n*(¢), n~ (¢) are nonnegative and nondecreasing functions.

Consider a real-valued function f € C°(R), such that f and all its derivatives
up to order 9 have at most exponential growth, that is,

|f(k)(x)’<K16Xp(K2|xla), xeR, a<?2,

for k =0,...,9, and positive constants K, K>. We will refer to this as condi-
tion (0).

In the following, the term C represents a generic positive constant, which may
change from line to line. The constant C may depend on 7" and the constants in
conditions (0) and (1)—(v), listed above.

The results of the next lemma follow from conditions (i) and (ii).

LEMMA 4.1. Using the notation described above, for integers 0 < a < b and
integers r,n > 1, we have the estimate

b
3 1B, B < Cb—a+ D2,
J.k=a

PROOF. Suppose firstthatr =1.LetI ={(j,k):a < j, k<b,lk—j|=>2,jA
k>2}and J ={(j,k):a < j,k<b,(j, k) ¢ I}. Consider the decomposition

b
STUBG = DD 1B+ D BB

jk=a (.kyel (j,kel
Then by condition (ii), the first sum is bounded by
Soon ik <Cn P —a+ 1),
(j,k)el

and the second sum, using condition (i) and Cauchy—Schwarz, is bounded by
Cn~'2(b —a + 1). For the case r > 1, condition (i) implies |, (j, k)| < Cin~1/?
for all j, k. It follows that we can write

b b
Y BnG B < Cinm T2 N B ()

j,k:a jyk:a
<Clb—a+ Hn"/? O
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COROLLARY 4.2. Using the notation of Lemma 4.1, for each integer r > 1,

[n1/2]
> (1Ba2j = L2k = D"+ a2 — 1,2k = 2)"
Jj.k=1

+[B8u(2j — 2,2k — D|" + 8. (2j — 2,2k —2)|")

< CLn—tJn_r/z.
2

PROOF. Note that
nt /2]
> (1Bu@j = 1,2k = D[ +[Ba(2j — 1,2k = 2)["
Jik=1
+[B8u(2j — 2,2k — D] + 8. 2j — 2,2k —2)|")
2\nt/2]—1

= Y |BGb]".

J:k=0 U

Consider a uniform partition of [0, 00) with increment length 1/n. The
Stratonovich midpoint integral of f/(W) will be defined as the limit in distribution
of the sequence (see [10])

[nt/2]
)] D, (1) = Z F'Waj—1/n)Wajn — Wej—2)/m).
j=1
We introduce the following notation, as used in [5]: & := 1jo,; and 9/, :=

Lij/n. G0 /m1-
The following is the major result of this section.

THEOREM 4.3. Let f be a real function satisfying condition (0), and let W =
{W;,t > 0} be a Gaussian process satisfying conditions (i) through (v). Then

1 ¢t
(Wr, @, (1)) - (Wz, FW) — f(Wo) — 5/0 f,/(Ws)st>

as n — oo in the Skorohod space (D|0, 00))2, where n(t) =n*(t) —n=(t) for the
functions defined in condition (v); and B = {B;, t > 0} is scaled Brownian motion,
independent of W, and with variance IE[BZZ] =2n(1).

The rest of this section consists of the proof of Theorem 4.3, and is presented in
a series of lemmas. The proofs of Lemmas 4.4, 4.5 and 4.9, which are rather tech-
nical, are deferred to Section 6. We begin with an expansion of f(W;), following



CLT FOR A STRATONOVICH INTEGRAL 2831

the methodology used in [10]. Consider the telescoping series

[nt/2]
FW) = fWo)+ > [fWajsm) — fF(Waj—2y/n)]

j=1
+ W) — fFWaymynej21)s

where the sum is zero by convention if L%’J = 0. Using a Taylor series expansion
of order 2, we obtain

D, (1) = f(W) — f(Wo)

1 [nr/2] 5 )
Vi
—5 Do ST W) (AWs,, — AWE ) )
j=1
|nt/2] |nt/2]
— Z Ro(Waj/n) + Z Ri(Waj—2y/n)
j=1 j=1

— (W) — fFWeynyini2)))s

where Ry, R| represent the third-order remainder terms in the Taylor expansion,
and can be expressed in integral form as

©) RoWajm =5 [ " Wajjo =1 w) du
2 JWaj-1ym

and
1 W(zj*])/" 2 +(3)

(10) Ri(W@j—2ym) =—53 Waj—2yn —u)” 7 (u)du.
2 Jwajam

By condition (0) we have for any 7' > 0 that
Jim [ sup | fW) = fFWeymyiney2))| =0,

0<t<T

so this term vanishes uniformly on compacts in probability (ucp), and may be
neglected. Therefore, it is sufficient to work with the term

(11) An(t) := fF(W) — f(Wo) — SW, (1) + Ry (1),
where
[nt/2]
V(1) = Z f”(W(Zj—l)/n)(AWZZj/n - AW(ZZj—l)/n)
j=1
and
[nt/2]

Ri()= Y (Ri(W@j—2)/n) — Ro(Wajn)).
=
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We will first decompose the term W, (¢), using a Skorohod integral representa-
tion. Using (2) and the second Hermite polynomial, one can write AW?(h) =
Hy(AW(h)) + 1 =8%(h®%) + 1 for any h € ) with ||| g = 1. It follows that

Lnt/2]

2(a®2 2
W (1) = Z JM(W(ZJ'—I)/n)‘S (agj—l)/n —3(82,-_z>/n)-
j=1

From Lemma 2.1, we have for random variables u, F,
F8*(u) = 8*(Fu) + 28((DF., u)g) + (D*F, )50,

SO we can write
lnt/2]

W)= Y 8 Wajmnm) 081y m — 083—2m)
j=1

|nt/2]

3 2 2
+ > 28(FOWaj—nmeai-1ym 08— 1/m = 057 -2y /mls)
j=1

Lnt/2)

+ 2 Y Waj—nm(eej-1/m daj-1/m)s
j=1

—(e@j—1)/n 3(21—2)/0%)
= F,(t)+ B,(t) + Cy,(1).

Hence, we have A, (t) = f(W;) — f(Wp) — %(Fn(t) + B,(t) + C, (1)) + R, (2).
In the next two lemmas, we show that the terms B, (¢), C, (¢) and R, (t) converge
to zero in probability as n — co. The proofs of these lemmas are deferred to Sec-
tion 6.

LEMMA 4.4. Let O <r <t <T. Using the notation defined above,

E[(Rn(?) — Rn(r))z] < C(an_tJ _ {%J)nyz

for some positive constant C, which may depend on T. It follows that for any
0 <t <T, R,(t) converges to zero in probability as n — oo.

LEMMA 4.5. Let 0 <r <t <T. Using the above notation, there exist con-
stants Cg, Cc such that

E[(Ba(t) — Ba(r))’] < ng%tJ _ L%J)nm

and

E[(Ca () — ()] < Cc(L%IJ _ {%Dn—w
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It follows that for any 0 <t < T, B,(t) and C, (t) converge to zero in probability
asn — oo.

COROLLARY 4.6. Let Z,(t) := Ry(t) — §Bu(t) — 3Cy(t). Then given 0 <
1 <t <ty <T, there exists a positive constant C such that

E[|Za(t) — Zu(t1)||Zn(12) — Za(D)]] < C (12 — 11)/2.

PROOF. By Lemmas 4.4 and 4.5,

E[(Zn (1‘2) —Zy (tl))z] = 3E[(R” (2‘2) — Ry (tl))z]
+ 2E[(By(12) — Ba(11))*]
+2E[(Co(12) — Ca(11))?]

e[

Then by the Cauchy—Schwarz inequality,
EHZn(t) - Zn(tl)HZn(tZ) - Zn(t)u
< (E[(Zn(6) = Zu () JE[(Za(0) = Zu(t1))*]) 2

e3[4

This estimate implies the required bound C(#, — 11)3/?%; see, for example, [1],
page 156. U]

Next, we will develop a comparable estimate for differences of the form F;, (¢) —
F,(r). In order to prove this estimate, we need a technical lemma which will be
used here and also in Section 6.

LEMMA 4.7. Suppose a, b are nonnegative integers such that a + b < 9. For
fixed T > 0 and interval [t1, t2] C [0, T'], let

lnt2/2]

®2 @2
8a = Z f(a)(W(ZZ—I)/n)(a(N—l)/n - a(zz—z)/n)-
t=|nt1 /2] +1

Then we have for 1 < p < 00

nty nty p/2 _
BID golea] = (| 22 | = |51 ]) 0.
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PROOF. We may assume #; = 0 with #, < T'. For each b we can write

E[(| D" gal50240)""]

Lnty/2]
:EK Yo L Waryn) £ (Wam—1ym)

,m=1
®b ®b
X (8(2€—1)/n’ 8(2m—1)/n>fj®b

p/2
®2 ®2 ®2 ®2
x (8(24—1)/71 - a(2£—2)/n’ 8(2m—1)/n - 8(2m—2)/n)ﬁ®2> }

p/2
< E[ sup |f(a+b)(Ws)|p] (3UP|(8(213—1)/n, 8(2m—1)/n)5(b)
m

0<s<t

Lnt2/2] p/2

®2 ®2 ®2 ®2

X < Z |(8(2e—1)/n - 8(2E—2)/n’ 8(2m—1)/n - a(2m—2)/n),6®2|) .
,m=1

Recall that condition (0) holds for f and its first 9 derivatives, so the first two terms
are bounded. For the last term, note that by Corollary 4.2 with r =2,

o2 ) ) )
® ® ® ®
Z |<8(2€—1)/n - a(2€—2)/n’ 8(2m—1)/n - 8(2m—2)/n>5’)®2|
£,m=1
lnt2/2]
= Y B2 —1,2m —1)* — B, (2t — 1,2m — 2)*
,m=1
— Ba(2€ —2,2m — 1)* + B, (2 — 2,2m — 2)?|
LEMMA 4.8. ForO0<s <t <T,write
Lne/2)
2 2 2
Fa() = Fa(9)= Y. 8 (f”(W(Zj—l)/n)(agj—n/z - 38j—2)/n))-
j=lns/2]+1

Then given 0 <t <t <ty <T, there exists a positive constant C such that

(12) E[|F, (1) — Fo(t)|*| Fa(2) — Fu()|*] < C(12 — 1)

PROOF. First, for each n > 1, we want to show that there is a C such that

E[(Fa(t2) — Fu())"] < CQ%J _ {%“J)zn—%
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By the Meyer inequality (4) there exists a constant ¢; 4 such that

E|(6% )| < caalltnllfoa ger)-

where in this case
[ntz/2] ) )
_ ” ® ®
Un = Z f (W(zj—l)/")(a(Zj—l)/n - 8(2j—2)/n)

nty

Jj=l>]+1
and

4
letn 2.4 5y02) = Ellunllfer + El Dutall s + E Dun [ geu-

From Lemma 4.7 we have E||u,,||4ﬁ®2,E||Du”||%®3,E||D2un||%®4 <C(%] -

L%J)zn_Q, and so it follows that

E[(6%un))'] < C(L%ZJ _ {%Dzn_z‘

From this result, given 0 < #; <t < 1, it follows from the Holder inequality
that

E[| Fou (1) — Fu(t)|*| Fu(22) — Fn(0)|’]
< (B[|Fu@) = Fu(eD)|*]) (B[ | Fa(12) — Fa()]*])
niy| i)’ o
=c([7]-[5])

As in Corollary 4.6, this implies the required bound C (1, —t1)>. O

1/2

By Corollary 4.6 and Lemma 4.8, it follows that A, (¢) = f(W;) — f(Wo) —
%Fn (t) + Z,(¢) is tight, since both sequential parts F;, (), Z,(¢) are tight. Further,
we have that Z, (¢) tends to zero in probability, and F;,(¢) is in a form suitable for
Theorem 3.2. In the next lemma, we show that the conditions of Theorem 3.2 are
satisfied by F;,(t) evaluated at a finite set of points.

LEMMA 4.9. FixO=ty<t; <ty <--- <tq.Set F\ = F,(t;) — Fy(ti—1) for
i=1,...,d,and let F,, = (F,i, e Ff). Then under conditions (0), and (1)—(v),
F, satisfies conditions (a) and (b) of Theorem 3.2, and so given W, F, converges
stably as n — oo to a random variable § = (&1, ..., &;) with distribution N (0, ¥),
where X is a diagonal d x d matrix with the following entries:

2= " pwoins),

Li—1

where n(t) =nt(n) — n~(t) is as defined in condition (V).



2836 D. HARNETT AND D. NUALART

REMARK 4.10. As we will see later, n(¢) is continuous, nonnegative and non-
decreasing.

It follows from the structure of X that, given W, F,, converges stably to a d-
dimensional vector with conditionally independent components of the form

. 1
Foo = Ci\/ f"(Ws)2n(ds),

ti—1
where each ¢; ~ N (0, 1). Thus, we may conclude that for each i,

. ti
Fi5 [ f7(wy)dB,

ti—1

for a scaled Brownian motion B = {B;,t > 0} that is independent of W;, with
E[B}] =n(1).

PROOF OF THEOREM 4.3. To prove Theorem 4.3, it is enough to show that
for any finite set of times 0 =19 < t; <t < --- < tg, we have

(An(tl)’ An(tZ) - An(l‘l)v cee An(td) - An(td—l))

L
— (A1), A(n) — A(t1), ..., A(ta) — A(tg—1))
as n — 00; and that A, (¢) satisfies the tightness condition
(13) E[|An(1) = An@)][An(r2) = An(0)]"] < C(r2 — 1)

forO0<t)j<t<th<oo,y>0anda > 1.
For A, (t) = f(W;) — f(Wp) — %Fn (t) + Z,(t), we have shown in Lemmas 4.4
and 4.5 that

Zu(t) = Ru(t) = 1 (Bu(t) + Co()) 2> 0

for each 0 <t < T, and hence Z,(t;) — Z,(t;i_1) N O foreacht;, 1 <i <d.
By Lemma 4.9, the pair (W, F,) converges in law to (W, F), where F is a d-
dimensional random vector with conditional Gaussian law and whose covariance
matrix is diagonal with entries

2 fi " 2
Si = f7(Wy) n(ds).
ti—1
It follows that, conditioned on W, each component may be expressed as an inde-
pendent Gaussian random variable, equivalent in law to

li
f"(Ws)dBy,
ti—1
where B = {B;,t > 0} is a scaled Brownian motion independent of W with
E[Btz] = n(¢). Finally, tightness follows from Lemma 4.8 and Corollary 4.6. The-
orem 4.3 is proved. [



CLT FOR A STRATONOVICH INTEGRAL 2837

5. Examples.

5.1. Bifractional Brownian motion. The bifractional Brownian motion is a
generalization of fractional Brownian motion, first introduced by Houdré and
Villa [3]. It is defined as a centered Gaussian process BHK —(BH.K (1) ¢ >0},
with covariance defined by

E[B"" B K] = 2%02” +571)% + 2%
where H € (0, 1), K € (0, 1]. (Note that the case K =1 corresponds to fractional
Brownian motion with Hurst parameter H.) The reader may refer to [4] and its
references for further discussion of properties.

In this section, we show that the results of Section 4 are valid for bifractional
Brownian motion with parameter values H, K such that H < 1/2 and 2HK =
1/2. In particular, this includes the endpoint cases H = 1/4, K =1 studied in [6],
and H =1/2, K =1/2 studied in [10].

It — s|2HK

’

PROPOSITION 5.1. Let {BtH’K, t > 0} denote a bifractional Brownian motion.
The covariance conditions (1)—(iv) of Section 4 are satisfied for values of 0 < H <
1/2and 0 < K <1 such that 2HK =1/2.

PROOF. Condition (i).

E[(B" — B1)’]

2 2
_ 2HK | Z_K(t _g)2HK _ [t2H - S)ZH]K . 2_Ks2HK
1 on 2H\K
5['%—2—,{@ +(t=9)) ‘
1 1
+ ’«/t —s =g (" - 2%+ 2—Ks1/2]

where we used the inequality a™ — b™ < (a —b)" fora >b>0and m < 1.
Condition (ii).
B[(B"* — BZS) (B — BT
1
_ 2_K([l‘ZH +r2H]K _ [l‘2H +(r— S)ZH]K
— [(Z» _ S)ZH +r2H]K + [(I _ S)2H + (r _ S)ZH]K)

1
+ 2—K(|t —r+sPHK 2 —rPHE ) — 1 —sleK).
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This can be interpreted as the sum of a position term, ZLK(p(t, r, s), and a distance
term, ZLKw(t —r,s), where
K K K
(p(t, rs) = [l‘2H + r2H] _ [l‘2H + (r _ S)ZH] _ [(t _ s)2H +r2H]

[ =)+ (r — )21k
and
Vt—rs)=t —r+s?K 21t —rPHE 1|1 — r — s?HK,

We begin with the position term. Note that if K = 1, then ¢(¢,r,s) =0, so we
may assume K < 1 and H > }‘. Assume 0 <s <r <t,and let p:=1t —r. By the
fundamental theorem of calculus, we can write ¢(z,t — p, s) as

ZHK/OS[tZH +(t—p-— E)ZH]K—I(I _po g:)ZH—l
[ =9 = p = - p -9 g
:‘/(;s '/05 4H2K(1 — K)[(t _ 77)2H + (f —p _S)ZH]K—Z

x (== p— &)~ dgdn
<4H?K(1 - K)s?[(t = 1)+ — )] 21 = )21 — )20
< Csz(t . r)2HK—2H—1(r . S)ZH—l‘

This implies condition (ii) for the position term taking o = % 4+2H >1and 8 =
1—-2H.

Next, consider the distance term ¥ (¢ — r, 5). Without loss of generality, assume
r < t. Again using an integral representation, we have

Vit —rs)=t —r+sTK 2 — rPHE 4 p — p — 520K

_ /OS DHK[(t —r + 62K (¢t —p —£)2HK=1]g¢

s (&
=// QHKQHK — D[t —r + K2 gy as
0 J-¢

<Cs*(t —r —5)?HE=2 < Cs?t — r| 732,
since |t — r| > 2s implies (t —r — ) 73/2 < 23/2|r — r|73/2,
Condition (iii).
H.,K (nH K ] H,K
|E[Bt (Br+s - 2BrH K + Br—s )”

1
T 2K e G ) el ] L e R e e

1
- 2—K[|t —r 452K o) — rPHE 4 —r — 52HK]|.
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Take first the term, (¢, r, s). If r < 2s, then
||:t2H + (r +S)2H]K _ 2[t2H +r2H]K + [[2H + (r _S)ZH]K| < CSZHK — CSI/Z,

based on the inequality aX — bX < (a — b)X fora > b > 0 and K < 1. Hence, we

will assume r > 2s. If K =1, then H = %, and we have

s 1 s 1
SrFs—2/r+r=s :‘/701 —/701
Vs vr r—sl 0 2r +x * 0 2r—s+x o

1 s s 1
=- dyd
4/0[0 r—st+xt+ypr

1, -3/2
< — — .
45 (r—ys) ;

andif K < 1,
lo(t,r,s)

S
/ 2HK[PH + (r 4+ 021 o 4+ )2 L dx
0

N
—/ QHK[*H + (r —s+x)2H]K_1(r —s+x)2H gy
0

/(;S/()S4H2K(K—l)

x [0+ (r—s+x+ y)ZH]K_Z(r —s+x+ 0" 2dydx

=

+

) N
/ / 2H(2H—1)K[t2H+(r_S+x+y)2H]K—l
0 Jo

x(r—s+x+y)?12dydx

<4H*K(1 — K)s*(r — )" K2+ 2H(1 = 2H) K 5% (r — 5)*1K 2

< Csz(r — s)_3/2.
This bound for ¢(z, r, s) also holds in the case |t — r| < 2s, so the bound of Cs!/?
is valid for this case. Next for the second term. Note that if |t — r| < 2s, then

1
2—(|t —r 42K 2 —pPHE g — —sleK)‘ <2(3s)?HK < 5172,

If |t — r| > 25, then we have

Wit =rl+s =21t —r[+ ]t —r] =]

s 1 s 1
4 —f d
./0 di—rrx " o 2Sier =t
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N N 1
= d dx
/ofo (|t =7 —s+x+y)3/2 Y

52 52

< <
T4t —r|—$)32 721t —rP/%

using the inequality ﬁ < ﬁ for |t — r| > 2s. This bound for ¥ (t —r, s)

1/2

holds even in the case r < 2s, so the bound of Cs'/< when r < 2s is verified as

well.
Condition (iv). For the first part, we have for all t > s,

(B[ (B3 — B

21 4 (4 5)2H % —

1
Sl = 5|

This is bounded by Cs!/? if r < 25. On the other hand, if # > 2s,

ZK[

! — [ (1 4 5)2H) -

1

2K

1 s -
—K/ 2HK[PH 4 (0 4+ 025 0 4+ 02 ax
)

< Cs(t _S)ZHK—l
=Cs(t —s)" /2.
ForO<s <r <T witht>2s and |t —r| > 2s,
H.K H.K
E[B 5 (Biys — B2y

11([’_21‘1 + ([ _ s)2H]K

< ‘

2K[

2HK 2HK

1
2—K|r—t+s| 2—K|r—t—s

<Cs(t—s)""2 4+ Cslr —t|7V2,

+

If t <25 or |t — r| <2s, then we have an upper bound of Cs!/? by condition (i)
and Cauchy—Schwarz.
For the third bound, if r > 2s,

IE[BK”K(BF*K - Bfi’f)]l




CLT FOR A STRATONOVICH INTEGRAL 2841
< ZK/ HK[s*" +(r - s+x)2H] (t—s+x)"1ax

1
+W/O (I—ZS +X)_1/2dx

< Cs(t—25)" 2= sV (1 —25)77
fory = % U
PROPOSITION 5.2. Let B#-X be a bifractional Brownian motion with param-

eters H < 1/2 and HK = 1/4. Then condition (v) of Section 4 holds, with the
functions nT(t) = 2C;§t and n~(t) =2Cgt, where

C;=4LK(2+Z(«/2m+ —2\/%+\/2m—1)2>,
2-~2?

Ck="2 — 4K Z(¢2m+ —2v2m + 14 v2m)%.

PROOF. As in Proposition 5.1, we use the decomposition

_ 1 /) k1 1 (j—k 1
Bn(j, k) = 2K§0<— o ;)‘FZ—KI//( . »;)

=2"Kn" 20k, )+ 27K Py — k, D).
The first task is to show that

Lnt]
. —1 . 2
(14) Jlim _kZIn 9(j, k, 1)* =0.
JR=

Proof of (14). We consider two cases, based on the value of H. First, assume
H < % Then

T e (T R e e e (TR VN S
= [+ G+ 2 [ R

1
= [ 2HKG+ D o et 02K et 01
0
1
= [ 2HKLP 4 e 02 02
0

=/1/14H2K(1—K)[(j+y)2H+(k+x)2H]K_2
0 Jo

x (k+x)* 171G+ v dy dx
< Ck2HK72H71]-2H71 — Ck71/272H]-2H71.
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With this bound, it follows that

Lnt] \_ntj

12§0(1k1) <= Z]4H ZZkl4H

]kl

< = |_I’lt_]4H_1

< Ctn4H_2,

which tends to zero as n — oo because H < %

Next, we have the case H = 1 Note that this implies K = %, and we have

oGk D =1+ k+2=2/j +k+ 1+ i+ k|
<C(+k2
So with this bound,

Lnt] C |nt]
YoonleGik )P <= > (j+b7?

k=1 =t
L

which tends to zero as n — o0 because j_2 is summable. Hence, (14) is proved.

From (14), it follows that to investigate the limit behavior of nj (t),n, (t),itis
enough to consider

lnt/2) 2 [nt/2]
— 2 V@ =2k D ) 2k D =2 Y Y] -2k 1)
=1 k=1
and
Lnt/2]
— > Y@j =2k + 1, 1D +y(2j —2k— 1, 1)?
n j.k=1
2 [nt/2]

== Z v(2j—2k+1,1)%

jkl
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since the sums of ¥ (2j — 2k + 1, 1)? and v (2j — 2k — 1, 1)? are equal by sym-
metry. We start with
[nt/2]
— ) Y2217
J.k=1
1 [nt/2] )
=5 > (/12 — 2k + 1] = 2,/12) — 2k| +,/12j — 2k — 1))
Jok=1
| /2]
TR
j=1
[nt/2] j—1

+ 5 ; ];(\/21'—2k+1—2\/2j—2k+\/2j—2k—1)2

Alne/2) 2 MW
Pk 3 Y (V2m+1-2v2m+V2m —1)?

j=1 m=1

4lnty2) 2 2 e 5
=%, i > Y (V2m+1-2V2m +2m — 1)

j=1 m=1
) [nt/2] oo
— ks 2 2 (WIm AT =2V2m 4 Vam = 1),
j=1 m=j

where the last term tends to zero since

Y WV2m+1-2V2m+V2m =12 <Y Cm - <C@2j—-1)72

m=j m=j
and
Lne /2]
— Y @2i-D?*—0
n -
j=1
as n — 0o0. We therefore conclude that
Lnt/2)
() = lim ‘kzl(ﬂn@j — 1,2k = 1) + Bu(2j = 2,2k = 2)%)
j7 =
Lnt /2]
T “ . 2 +
= lim_ " > W) -2k 1)>=2CFt,

Jk=1
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where
1 o0
cy = 4_K(2+ Y (V2m +1—232m +2m — 1)2>.
m=1

For the other term,

| lnt/2)
— > Y@Qj—2k+1,1)
n .
Jj.k=1
| /2l

> 2—V2)

T 4Ky A
Jj=1

5 L2l
o Y Y22k 4222 21— 2202
i=1 k=1

Hence, by a similar computation,

Lnt /2]
n(0)= lim Y B(2j — 1,2k —2)° + B,(2j — 2,2k — )* =2Ck,
Jjk=1
where
e N )
Ck=" —T7x 2:1(\/2m+2—2«/2m+1+\/2m) .
m=

As a concluding remark, it is easy to show that C; > Cg, and in general we

have nt (1) = n~(1).

5.2. A Gaussian process with differentiable covariance function. Consider the
following class of Gaussian processes. Let {F;,0 <t < T} be a mean-zero Gaus-

sian process with covariance defined by

(15) E[F, F,] = rqb(f), f>r,

where ¢ :[1, 00) — R is twice-differentiable on (1, o) and satisfies the follow-

ing:

(@.1) ll@lloc :=sup,> P (x)| < cg,0 < 0.
(¢.2) For1 <x < o0,

1§/ ()] < 2L,
Jx =1
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(¢.3) For 1 <x < o0,

¢" (x)| < cpox VP(x — )72,

where ¢y j, j =0, 1, 2 are nonnegative constants.

PROPOSITION 5.3. The process {F;,0 <t < T} described above satisfies
conditions (1)—(iv) of Section 4.

PROOF. Condition (i). By conditions (¢.1) and (¢.2),

E[(F — Fr—)?] = 16 (1) + (t — )¢ (1) = 2(1 — s)¢(1 + ﬁ)

<2(t—ys)

¢(1 4 ﬁ) —¢<1>j T sg(D)]
1+s/(t—s)
/1 ¢’ (x)dx

SZ(t_S)/HS/(I_S) 0L dx +sllplloo
1 Jx—1
<Cs'2 /1 =54 5|9l

< Cs'/?,

=2(t—s) + sll@llco

where the constant C depends on max{~/T, ||$|loc}-
Condition (ii). For 2s <r <t — 2s we have by the mean value theorem

“E[FIFr - Ft—sFr - FtFr—s + Ft—sFr—s]|

() -o(5)] e -ole(G55) (=)

” t t—s
<s sup " (|| —— —
[(t=s)/r1/(r—=s5)] r—s r

- <t—s)_1/2(t—s 1)—3/2< ts )
C S —
= 9.2 r r r(r—s)

C+/Ts?
< 0*/_7;/2 — CJTs?t —r| 732
—r

Condition (iii). By symmetry we can assume r < f. Consider the following
cases: First, suppose 2s <r <t — 2s. Then we have

‘E[FI(FV—FS - 2Fr + Fr—s)]’

o) o) ol )
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ool ) ol )] o) o)

T sup |¢”<x)|(t ’)

T [t/(r+s),t/(r—s)] r—s r+s

252t%cy 2 <r+s>1/2< r+s )3/2

A

Trr—=s)r+s)\ t t—r—s
52302

<.

Tt —r)3?

There are two possibilities, depending on the value of . If » > £, then f <2, and
we have a bound of

Csz(t)(i) <2CVTs?|t —r| 2.

r)\ @t —r)32

On the other hand, if r < %, then ﬁ <?2andr <t —r. Then the bound is

of 1 VT 20 —3/2 =32
Cs (z—r)<rm)52Cﬁs [(r = )72+ |t —r| 2.

For the case |t — r| < 2s, assume that t = r + ks for some 0 < k < 2. Then

|E[F/(Fyis — 2F, + Fr—y)]|
vV (r+s) t !

- ‘(t " (“))‘Z’(z A (: +j)) _M(F) o _S)¢<r —s)’

tv(r+s)

tA@+s)

~29(H) #2000+ =99 () = 0 =90 01)

—
o(1+E22) —pa)

/-1+(k+1)s/(rs)

= ‘(tA(rs))qb( )—(r+s)¢(1)

<3 +ys)

<3 +s) ¢’ (x)dx

1

1+(k+1)s/(r—s) o1
—— dx
JVx—1

53(r+s>f]

<CVTs'2.

For the last case, note that if # A r < 2s, then we have an upper bound of C si/2,
since E[Fs F;] < 5(|¢]l oo-
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Condition (iv). Take first the bound for E[ F; (Fy+s — F;—s)]. Note that if t < 2s,
then an upper bound of Cs!/? is clear, so we will assume 7 > 2s. We have

|ELF; Fys — FiFy]|

o) e )

t+s t t+s
<@—s) s |¢@) ——j+s‘¢( )‘
[(t+s)/t.1/(t—s5)] t r—s !

- 52 t t+ VT
Cop1—.——./—+cpo8
- ¢’1t t+s\s .0 NI

<CsVT(@t—s)712

For the case r # ¢, first assume r <t — 2s. By condition (¢.2),

t t—
() ro(7)
r r
<2s sup " (x)|
[(t=s)/7,(t+s)/7]

- 2s3/reg - C\Ts
T Vt—r—s T Jt—r

|E[FrFt+s - FrFt—s]| =

If r >t + 2s, then

r r
{E[FrFH—S - FrFt—s]| = ‘(t +S)¢(m> — (¢ —S)(ﬁ(:)‘

2| r
<[ W (=)
- 2stcg 1N/T+s + 2sc¢,’0«/7
=T i1 Ji—s
<Cs(r—1)"V2 4 Cst —s)7 V2

dx 4 25]|¢ll o

For the case t < 2s or |r — t| < 2s, the bound follows from condition (i) and
Cauchy-Schwarz.
For the third part of condition (iv), we have for ¢t > 2s,

1 r—s
E[FSFZ_FsFt—s]=S¢<_>_S¢< >
S

h)
r -
<s sup |¢’(x)|<— - S) < 1
[(t—s)/s.t/s] s s J(E—s)/s —

<Cs3 %t —25)7 V2 = sV (1 —25)77
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where y = % O

PROPOSITION 5.4.  Suppose ¢ (x) satisfies conditions (¢.1), (¢.3), and in ad-
dition, ¢ (x) satisfies

£y ¥ (x)
x—=1  Jx'
where k € R and y : (1, 00) — R is a bounded differentiable function satisfying
[v'(14+x)| < CI/,)C_I/2 for some positive constant Cy,. Then condition (v) of Sec-
tion 4 is satisfied, with n*(t) = C;tz, and n~(t) = C/;t2 for positive constants
Cy.Cy.

@d: ') =

REMARK 5.5. Observe that condition (¢.4) implies (¢.2), but not (¢.3).

PROOF OF PROPOSITION 5.4. We want to show

Lnt /2]

(16) > Bu2j— 1,2k — 1) — Cpt%;
jk=1
Lnt /2]

(17) > Bu(2j — 2,2k —2)* — Cpat’;
jk=1
Lnt /2]

(18) > Bu(2j — 1,2k —2)* — Cp3t?,
jk=1

so that C;{ =Cp,1 + Cp2 and Cp =2Cg 3. We will show computations for (16),
with the others being similar. As in Proposition 5.2,

Lt /2] Lnt/2]
Yo B2j—1.2k—1)2= 3" Bu(2j - 1,2j — 1)
J-k=1 j=1
nt/2] j—1
+2 3 Y Bu2j — 1,2k — 1),
j=1 k=1

S0 it is enough to show

lnt/2] j—1
. . 2 _ 2
(19) Jim 0> B2 — 1.2k — 1)* = Cit
j=1 k=1
and
Lnt/2]
. . . 2 2
(20) im0 B2 —1,2j — 1)? = Car®.

j=1
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Proof of (19).For1 <k <j — 1, we have

w102 6(3) o)

() ()
n 2k — 1 2k —1
2k [2j/2k)

nJ@2j=1)/@k)
2k_1/-2j/(2k—1)
(

¢ (x)dx

¢’ (x)dx.

n 2j—1)/(2k—1)

Using the change of index j = k +m and a change of variable for the two integrals,
this becomes

poj—1.2k-n="1 [ #(1+ 2 )ar

n J2m-—1

1 2m+1 y
— - 1+—2—)d
n/zm ¢<+2k ) v

With the decomposition of (¢.4), we will address (21) in two parts. Using the
first term, we have

/ 2+l [op — 1
_ _/ —dy
2m y

= FK[@(M— Vam = 1) = 2k = 1(v2m + 1= ~2m)].

We are interested in the sum
\nt/2] |nt/2]— k4 2
22 > > [V2k(V2m — 2m — 1) — 2k — 1(N2m + 1 — ~2m) .

k=1 m=1

2D

We can write
V2k(V2m — 2m — 1) — 2k — 1(V2m + 1 — v/2m)
= 2k —1(V2m + 1 = 22m + 2m — 1)
+ (V2k — V2k = )(V2m — 2m — 1).

Observe that

[(V2k — v/2k = 1)(v2m — 2m — D]* < !

2k —1D(@2m — 1)
and so
dyc? L’%ZJ L"’% k 1 - 42 L’%J 1\ - Clog(nt)?
— 2k —1D2m—1) — n? P 2k —1 n? '
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Therefore the contribution of this term is zero, and it follows by Cauchy—Schwarz
that the only significant term is

4/(2 |nt/2] |nt/2]—k

Yo S @k—DW2m A 1= 2v2m +2m — 1)

2
"ok=t om=1
|nt/2] \nt/2]|—m 2% — 1
=4k> Y (V2m+1-2vV2m+~2m—1)* -
n
m=1 k=1
Lnt/2] 2
t/2] —
— 42 S (Vam 1 - 23w+ Vam = A =
n
m=1

which converges as n — 0o to
o0
K22 (V2m 41— 232m + V2m — 1)%.
m=1

Next, we consider the term ﬁx//(x). The contribution of this term to (21) is

lfzm 2k 1//(14- y)d
nJom_1\ 2k + y 2% )4

(23)
1/2m+1 2% —1 ¢(1+ y )d
ndm  \2k—1+y %—1)Y"
We can bound (23) by
11| p2m 2k y 2m+1 2k — 1 y
- 1+ = )dy— g1+ =—"—)d
n/Zm—l 2k+yw( +2k) Y fzm 2k—1+y‘/’< +2k—1) y‘
V2k — 2k =1

1
<—| su X) | —F—
- n|:(1,£)|w( )| 2k +2m—1

n 2k me ¢/<1+ y)d
2k + 2m — 1| o1 2% )"
2m—+1 y
_ 14—
Am l”( +2k—1> ﬂ}
1
= —(Ak.m + Bim).

" n
Since [ (x)] is bounded, we have
C C
Ak,m =< < .
N2k =12k +2m —1 7 2k —1/2m — 1

(24)
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For By, using that [¢/(x + 1)| < Cx~1/2,

2m | y 4 2m+-1 | y J
/;m—lw< +ﬂ> y_/zm w( +2k—1) y‘

(1) =155

2m u/(2k)
5/ / V' (14 v)dv|du
2m—11J u+1)/(2k—1)
2m  p(u41)/(2k—1)
<C / v 12 dvdu
2m—1 Ju/(2k)
C
<—W2m+1—-+2m
2k — 1( )
- C
T WV2k—14/2m — 1

so that

2k C C
(25 Bim = : =< .
’ 2k+2m—1 2k —1/2m =1~ 2k —142m — 1

Hence, from (24) and (25), we obtain
Lnt/2] (nt/2]—k

C L’%J 1 _ Clog(n)?
“n? = Gm—-Dk-1) - a2

so the portion represented by (23) tends to zero as n — oo. Since this term is not
significant, it follows by Cauchy—Schwarz that the behavior of

lnt/2] j—1

3> Bu2j — 1,2k —1)?

j=1 k=1
is dominated by equation (22), and we have result (19), with

Ci=k>Y (V2m+1-2V2m+2m —1)>.

m=1

Proof of (20). For each j,
Bu(2j —1,2j — 1)

R D)
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_ n—lz[m) +(4) —2>(¢<1> —¢’(1 + ﬁ))]z

s =o(1+5—))

o(1) —¢<1 + 2j1_ 1>>2.

Since ¢ (1) — (1 + 2J-L_l)l < —23_ py (¢.3), we see that

n2

p(1)?  42j — Dg(1)
= —|— n2 (

42j = 1)?
A2

o]
[nt/2] 2 .

¢()”  42j— Do) B 1 —1/2
;[ A ‘¢>(1) ¢(1+2J__1)H§Cn ,

which implies only the last term is significant in the limit. Again we use (¢.4) to
obtain

¢<1)—¢(1+ﬁ)

1+1/2j—1)
= —/ ¢ (x)dx
1

14+1/@2j-1) 1 1+1/2j-1) 1
=—K dx—/ — Y (x)dx
./; x—1 1 ﬁw( )

. 2K +O( 1 )
V21 2j—1)

42j — 1)? 1\\? _ 16k2(2j —1)? jl/?
2 <¢(1>—¢’<1+27)) BEETED (')

hence

and taking n — oo,

[nt/2] 209 ; 2172
. 16k°(2j — 1) J 4,22
im Zl TJFO(?) =417,
j=
which gives (20). Thus (16) is proved with Cg 1 = 4% 4 2u? Yoo (WV2m+1—

232m + 2m — 1)

By similar computations,
o0
Cpa=4k>+26> > (V2m+1-2v2m+2m — 1)
m=1

and

(9]
Cpa=4"+2> Y (V2m +2—2v2m + 1 4+ v2m)?

m=1
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and so

o0
Ci=Cpi+Cpa=8c"+4> Y (V2m+1—-2v2m+2m — 1),
m=1

oo
Cy =2Cp3=8k>+4> Y (V2m +2 = 24/2m + 1+ v2m)*.

m=1

Note that C;r > CE, and it follows that (t) = n*(t) — ™ (¢) is nonnegative, and
strictly positive if « 0. [

For a particular example, we consider a mean-zero Gaussian process {F;, t > 0},
with covariance given by

E[F,F;] = +/rtsin («/r—t)

This process was studied by Swanson in a 2007 paper [9], and it appears in the limit
of normalized empirical quantiles of a system of independent Brownian motions.

COROLLARY 5.6. The process {F;,0 <t < T}, with the covariance described
above, satisfies the conditions of Section 4, with n(t) = (C; - C,g)tz, where C;{,

C/g are as given in Proposition 5.4, with k*> = 1/4.

PROOF. Assume O <r <t <T. We can write

«/ﬁsin_l (\/é) = \/r_ttan_1 (\/E) = rq&(;),

ﬁtan_l(\/%), ifx>1,
—, if x =1.
2
Condition (¢.1) is clear by continuity and L’Hopital. Conditions (¢.2) and
(¢.3) are easily verified by differentiation. For (¢.4) we can write,

¢’(X)=—2¢%+2\1/;<%_tan_l( x1—1)>

so that k = —1/2, and

=t ()

where

(26) ¢(x) =

satisfies (¢.4). [
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5.3. Empirical quantiles of independent Brownian motions. For our last ex-
ample, we consider a family of processes studied by Swanson in [11]. Similar
to [9], this Gaussian family arises from the empirical quantiles of independent
Brownian motions, but this case is more general, and does not have a covariance
representation (15).

Let B ={B(t),t > 0} be a Brownian motion with random initial position. As-
sume B(0) has a density function f € C°°(R) such that

sup(1+ |x|")| £ (0)] < 00
xeR
for all nonnegative integers m and n. It follows that for > 0, B has density
ute.n = [ F0p@x=y)dy.

where p(t,x) = (271t)_1/ze_x2/(2’). For fixed @ € (0, 1), define the «-quantile

q(t) by
q()
/ u(x,t)dx =«,

—00
where we assume f(g(0)) > 0. It is proved in [11] (Theorem 1.4) that there exists
a continuous, centered Gaussian process {F'(¢), t > 0} with covariance

P(B(r) <q(r), B(t) <q(t)) — o?
u(q(r),ryu(q(t),1)
In [11], the properties of p are studied in detail, and we follow the notation

and proof methods given in Section 3 of that paper. Swanson defines the following
factors:

p(r,t) =P(B(r) <q(r), B(t) <q(t)) —a®> and 60(t) = (u(q(t), 1))~

so that p(r,t) = 6(r)0(t)p(r,t). For fixed T > 0 and 0 <r <t < T, the first
partial derivatives of p are calculated in [11] [see equations (3.4), (3.7)]

27) E[F, F]=p(r, 1) =

1

J _ , q(r)
SAr D =q'() /_OO pt —rox — q(O)uCx. r)dydx

1
— Ep(t —r,q(r) —q@®))ul(g(r),r)
(28)

, q()
+u(g(r),r)q (r)/m p(t—r.q(r) —y)dy

1 ra@® pq@) 92
w5 [ b=k = Su  dxdy:
2 —00 —00 8x2

0 . 1
@9 plnn) = Ep(t—F,Q(t)—q(r))“(CI(r),r)-
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LEMMAS5.7. LetO<T,andO <r <t < T.Then there exist constants C;,i =
1,2, 3,4, such that:

(a)
0 12
8—,0(”,1) <Cilt —r]| ;
.
(b)
82
‘ﬁp(ﬁ l‘)‘ < Colt —r| /%
.
(c)
0 —12
EP(F,I‘) <Cslt —r] ;
(d)
82
‘ﬁp(h I)‘ < Cqlt —r| 72,

PROOF. Results (a) and (c) are proved in Theorem 3.1 of [11]. Bounds for (b)
and (d) follow by differentiating the expressions for d,0(r, t) and 9;p(r, t) given
in the proof of that theorem. [

PROPOSITION 5.8. LetT >0,0<s<T Alands <r <t <T.Then p(r,t)
satisfies conditions (1)—(iv) of Section 4.

PROOF. Conditions (i) and (ii) are proved in [11] (Corollaries 3.2, 3.5 and
Remark 3.6). For condition (iii), there are several cases to consider.
Case 1: s <r <t — 2s. Using Lemma 5.7(a),

|E[F1(Fr+s _2Fr +Fr—s)]| =< |/0("+S7f) —,O(I", t)| + |/0(’”7 t) —,O(I" —S,t)|

519 0
5/ —p(r+x,t)|dx +
0 |or

—S

9
—p(r+y,t)‘dy
or

N
52/ C1|t—r—x|_1/2dx§Cs1/2.
0

Case 2: If |t — r| < 2s, the computation is similar to case 1, where we use the
fact that

S
/ x 12 dx = 25172,
0

Case 3: For r,t > 2s and |t — r| > 2s, the results follow from Lemma 5.7(b)
and (d) for r <t and r > ¢, respectively.
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Now to condition (iv). For the first part, we first assume ¢ > 2s. Then using the
above decomposition,

E[F(Fiys — Fi—9) ] =p(t,t +5) — p(t, 1 —5)
=000 +5)pEt,t+5)—0(—s)p(t,t —s)]
=00 [5(1.1 4 5)A0 +6(t —$)AS],

where A0 =6(t) —6(t —s) and Ap = p(t,t +5) — p(t,t — ). First, note that

3 3
lu'(q(0), 1) = au(q(t),t)q/(t)—F Eu(q(t),t) <C,

where we used that ¢’(¢) is bounded; see Lemma 1.1 of [11]. Since u(g(t),t) is
continuous and strictly positive on [0, T'], it follows that 8(¢) is bounded and

W q®.0l _

GO OOl = g =

hence,
S
|AG] < |9/(t+x)|dx§Cs.
—S

For Ap, we have

|Ap| = [P(B(1) <q(1), B(t +5) < q(t +5))
—P(B(t) <q@),B(t —s) <q(t —s))|

q(t) prq(t+s)
=/ / (s, x — yyulx, ) dydx
—00 J—00

qt—s) rq()
—/ / p(s,x —y)u(x,t —s)dydx
—00 —00

qt—s) rq(@)
= V / p(s,x —Yu(x,t) — p(s,x —Yu(x,t —s)dydx|+Cs
—00 —00

qt—s)
</ lu(x,t —s) —u(x,1)|dx + Cs

—00

<[
i

%/ / /._A|f”(y)|p(rx—y)drdydx+Cs<Cs.

r 9
/ a—u(x ,r)ydr|dx +Cs
t—s

dx +Cs

o 2u(x r)dr
1—s
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When ¢ < 2s, we write

|E[Fi(Frqs — Fi—o)]| < |p(t,t +5) — p(t, )| + |p(t, 1) — p(t — 5,1)|

N 0
</
0

S Csl/za

dx +

—S

9
—o(t,t
atp( +x)

0
a—p<r+y,t)‘dy
-

using Lemma 5.7 and the fact that
‘/S x 12 gy =252,
0

For the second part of condition (iv), we consider
’E[Fr(Ft—H - Ft—s)]‘ and ’E[Fs(Ft - Ft—s)j”-

When r <t — s (including r = s), an upper bound of Cs|t — r|~!/? is proved
in [11]; see Corollary 3.4 and Remark 3.6. When r > ¢ 4 2s, or |t — r| < 2s, the
bounds follow from Lemma 5.7. [

The rest of this section is dedicated to verifying condition (v). We start with
two useful estimates. As in Proposition 5.8, suppose 0 < s <r <t < T. It follows
from Lemma 1.1 of [11] that for some positive constant C,

(31) lg(t) —q(r)| < C@—r).
Using this estimate and the fact that e™¢ — e’ <b—afor0<a<b,we obtain

(32) |e=@D=4()/ Q=) _ ,~(g()=qr=s)*/QU—r+s)| < C5 < 1.

Recalling the definitions in condition (v), we can write for ¢t € [0, T],

2|nt/2)
@ =, = > B —1,0-D*+2 Y B2k —1,2j — 1)?
=1 k<j—1
+2 ) Bu2k—2,2j =27 =2 Y Bu(2k—2,2j — 1)?
k<j-1 k<j—1
—2 3 Bu(2k—1,2j —2)%
k<j—1

For the first sum, since Fy/, — F¢—1)/, 1s Gaussian, we have

2
Bu€ —1,€—1)? = (E[(Fo/n — Fe—1y/n)?])" = %E[(FZ/n - F(e-l)/n)4]-
By Theorem 3.7 of [11],

[nt] 6

_ a0 [ -2
;(Fz/n Fe—1)/n) —>ﬂf0(u(q(S),S)) ds
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in L2 as n — oo. For the second sum, assume 1 < k < J, and we study the term

Bn(2k — 1,25 —1)

% 2j % —1 2] % 2j—1 %—1 2j—1
=p(—. =) -»r e I +o| =,
n n n n n n n n
2. 2k/n 2- 2.
=9<_J>f |:9/(r)/5<r, —]> +9(r)8rﬁ<r, —]>]dr
n ) Jok—1y/n n n
2i 1\ [2k/n 2i—1 2i—1
—9( / )/ [9/(1”),5(1”, / >+0(r)8r,5(r, J )}dr.
n Qk—1)/n n n

We can write this as

0 o) [ (a4 o
W )AL el 2

2%k/n : . . .
N R (Y ) R e
Qk—1)/n n n n .

The first task is to show that components (34) and (35) have a negligible contribu-
tion to n(z). For (34), it follows from (30) that

o) oo

n n
and using (29), we have

2%/n o 2j—1
/ 9(r)8,p(r, )a’r
(2k—1)/n

2k/n 2j—1 2j—1
= p( —r,q< )—q(r))dr
(2k—1)/n n n

-1/2

<Cn

Hence, the contribution of (34) to the sum of 8,2k — 1,2j — 1)? is bounded by
C(n=3/%)? . n% < Cn~"'. We can write component (35) as

R G R Gy
() )el2)

2k—1 2k]

n ’>n

2j 2j —1
,5<r, —]> —,5<r, J )l <CcnV2Qj — 2k — 1)1,
n n

Using (29), we have for each r € [
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Then, using (36) and (30), we have (35) bounded by
Cln™12@2j =2k —1)~12 4010,
Hence, the contribution of (35) to the sum of B, (2k — 1,2 — 1)? is bounded by

Lnt/2) -1
cn2 Y M [n'@j-2k-D +nH <Cn
j=1 k=1

We now turn to component (33). By (29),

To simplify notation, define
Vo (j,r) = e @(/m=q)?/Q(j/n=r))

2k—1 Zk]

" =

By (31), we have for the interval Ip; = [ -
{((q(2j/n)—q(r))2} CQj—2k+1)
su < .
rely

22j/n—=r)

This implies that inf{y,, (2], ), r € Ipx} > e~ €Ri=2k+D/n "and hence when j, k
are small compared to n, || is close to unity. We can write

2k/n _ 2j _ 2j —1
/ 9<r)(arp(r, —) _ arp(r, ))dr
(2k—=1)/n n n

n

(37)
1 2k/n 1 1 4
= — - r
22w Jak-vm N2j/n—r  J2j—D/n—r
1 2%k/n
_ 1=, 2j —1,
221 (2k—1)/n( Yn(2J 2
(38) ! 1
* <\/2J'/”—r - VQ2j— 1)/n—r)dr
2%/n Doy ;
(39) 4 1 Yu(2j,r) =¥ (25 —1,1) dr.

24/2m J(2k—1)/n J2j/n—r

For component (38), by the above estimate for inf{y,, (2, r), r € I}, we have

sup [1 =y (2j,r)| <Cn™'(2j —2k+1) <1,

reby

hence (38) is bounded by

Cn=32Q2j — 2k + 1)(2) — 2k +1-2,/2j — 2k + /2] — 2k — 1).
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Given ¢ > 0, we can find an M > 1 such that

Z (V2m+1=22m+2m —1)? <.

m=M

The contribution of (38) to the sum of 8,(2k — 1,2 — 1)? is thus bounded by

I 2j j-1 B -
Qrn)~t Y0 > sup (1 — (2, 7))

j=1 k=1T€hk

X (2] = 2k +1-2,/2j = 2%+ /2 — 2k — 1)?

lnt/2] j—M—1

<Cn™' Y Y (f2) -2k +1-2/2j — 2%+ 2j — 2k — 1)?
=1 k=1

/2] j=1
+cn ' Y Y enTl@j—2k+ 1)
j=1 k=j—-M
X (/2] = 2k +1-2,/2j = 2k +,/2j — 2% — 1)?
g2 NUTEIRYS
<Cn~ e+Cn~ —,

which is less than Ce as n — 00, since 0(¢) is bounded.

For (39), by we have sup{|{,(2j,7r) — ¥, (2] — 1,7)|,r € I} < Cn~!, and
hence (39) is bounded by C n=322 j—2k— 1)~1/2. Therefore the contribution of
the term including (39) to the sum of 8, (2k — 1,2 — 1)? is bounded by

[nt/2] j=1
Cn> > > @2j—2k—1)"" <Cn?log(nt),
j=1 k=1

because 6(¢) is bounded.
It follows that the sum of 8,2k — 1,2 — 1)? is dominated by (33), and the
significant term in (33) is given by (37). Hence, it is enough to consider

2 3 92<ﬂ>(\/2j—2k+1—2\/2j—2k+\/2j—2k—1)2.
nnjfk_] n

Using the change of index j = k 4 m, this is

Lnt /2] . j—1
2 3 92<2]>Z(«/2m+ — 2V2m 4+ v2m — D2
m=1

nmw “ n
j=l1
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Taking n — oo, this behaves like

t
ﬁf 02(s) ds.
T Jo

a= Y (V2m+1-2v2m+2m —1)%

m=1

where

By similar computation,

t
3 ﬁ,,(2k-2,2j-2)2—>3/ 02(s) ds,
ol w Jo

Chhi2_ bt
Zﬁﬂklblwﬁnﬁemm

k<j—1
and
2 by ' 5
> Bu(2k—1,2j-2) —>—/ 0%(s) ds,
k<j—1 T Jo
where

by=Y (V2m+2—2v2m + 1+ v2m)?,

m=1

(0.0)
by=Y (vV2m —24/2m — 1+ /2m —2)*.

m=1

We have proved the following result:

PROPOSITION 5.9. Under the above assumptions, p(r,t) satisfies condi-
tion (v) of Section 4, where

24+4a —2by —2b ¢ _
() =12 ZA(ManDZd&

T

The coefficient 2 4+ 4a — 2b; — 2b; is approximately 1.3437, while u(g(¢),t)
depends on f and «.

6. Proof of the technical lemmas. We begin with two technical lemmas. The
first is a version of Corollary 4.2 with disjoint intervals.

LEMMA 6.1. ForO<ty<ti<th<t3<T,
[nt1/2] Lnt3/2]

: ®2 ®2 ®2 ®2 _
Jim S > M0 1w = 02w Ok —1y/n — Ok -2yl =0-
j=lnto/2)4+1 k=Lniz/2]+1
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PROOF. We may assume 79 = 0 and #; = ;. Observe that

®2 ®2 ®2 ®2
(a(Zj—l)/n =932 /n> O2k—1)/n — 8(2k—2)/n>57)®2

= Bu(2j — 1,2k — 1)* — (2] — 1,2k — 2)* — B, (2j — 2,2k — 1)*
+ B2 — 2,2k —2)°.
Therefore, it is enough to show that

nta]  |nt3]

(40) oY BuGkPscn®

j=0 k=|nt2]+1
for some ¢ > 0. We can decompose the sum in (40) as

[nt3] [nt3] nr]—1  |ns3]

2 .
Yo B0+ D> Bullnnl k) T+ DD DY B2
k=|nt|+1 k=|ntp|+1 j=1 k=lntr]+1
By condition (iv), for some y > 0 we have
Lnt3 ] Lnt3]
Yo B0 < sup [B.0,0] Y [Bal0,k)|
k=|nt]+1 I<j<lnt3] k=nty]+1
[nt3]
<cn' > k—-D7V+CnlzCn.
k=|ntr|+2

By condition (ii), for some 1 < o < %,

Lnt3] [nt3]

Y Bu(lnna) k) < Bu(lnna), lnn) +1)° +Cn7t Y Bu(lnnal) k)
k=|nty|+1 k=|nts|+2
[nt3]
<cn'+cnt Y (k—nn)) " <Cn”!
k=|nty]+1

and again by condition (ii), for 8 = % —a,

lni]—1  |n13]

YooY B k)?

j=1 k=|ntr]+1

[nr2]—1  |n53]
<cn™t Y Y (k=) k=

j=1 k=|nt]+1

[n13] [n1] [n12] "
< Cn_l<z k‘“) (Z j—f’) +Cn Y () — )7
k=1 j=1

j=1

< cnP + Cn*I/Z;
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hence the sum is bounded by Cn—¢ for & = min{8, v, %}. O

LEMMA 6.2. For 0 <t <T and integer j > 1,

[(e,0/n) 5| <cn~1/?

for a positive constant C which depends on T .

PROOF. By conditions (i) and (ii), we have for j > 1 and ¢ > 0,

lnt]—1

[(er, 0j/n)g| < Z [(Ok/n, Bj/m) | + (€1 — Elneys Djn) sy
1) k=0

o0
<C> 7 VP(lj k™Al +O0mA) <cn 2 -
k=0

6.1. Proof of Lemma 4.4. By the Lagrange theorem for the Taylor expansion
remainder, the terms Ro(W2/,), R1(W2j—2)/,) can be expressed in integral form,

RoWajy) =3 [ " (Wajpn =2 ) d
Waj-1/n
and
1 W(2j—1)/n 2 (3)
Ri(Waj-2)/n) = —3 Waj-2yn —w)" 7 (u) du.
Waj-2)/n

After a change of variables, we obtain
Ro(W2j/n)
1 1
= E(WZj/n — W(zj—l)/n)3_/0 v O WWeaj—1ym + (1 = v)Waj ) dv
and
1 3
Ri(W@j—2y/m) = E(W(Zj—Z)/n —Wej-1/m)
! 2 3
x /0 v P (WWej—nm + (1= v)Waj—2)/m) dv.
Define

1t
Go(2)) = 5/0 sz(3)(vw(2j—l)/n + (1 —v)Waj/n)dv
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and
- 1ty 5
Gi2j—2)= 5/(; v f (UW(zj_l)/n +(1— v)W(zj_z)/n)dv.

We may assume r = 0. Define AWy, = Wigi1y/n — Weyn. We want to show that

nt /2] 2
E[( > {G0(2j)AW(32j_1)/n +Gi(2j —2)AW(32j_2)/n}) }
j=1

<[ |
2

This part of the proof was inspired by a computation in [6]; see Lemma 4.2.
Consider the Hermite polynomial identity x> = H3(x) + 3 H; (x). We use the map
89(h®7) = Hy(W(h)) [see (2) in Section 2], for h € § with || h||s = 1. For each j,

(42)

let w; := |AW,/nll, and note that condition (i) implies w; < Cn~'/% for all .
Then
AW?3 AW; AW;
;/":H3< ]/")+3H1( J/n>
wj wj wj
®3

=53 (M) + 35<M)
w3 w;

J

so that
3 3(0®3 2
AW;), =8(05,) +3wi8@)/n)-
It follows that we can write

GO(2j)AW(32j—l)/n —G12j — 2)AW(32J—2)/11
= G0(2j)83(823_1)/n) - Gi1(2) — 2)53(823—2)/;1)

+ 3w%jG0(2j)6(a(2j—l)/n) - 3w%j_1G1(2j —2)8(02j—2)/n)-
It is enough to verify the individual inequalities

Lnt/2] 27

. nt| _
(43) E[ Y Go)EOE ;). |=C = | 32,
j=1 . -
Lnt/2) 2+ nt
.\ e3(q®3 nt 3
(44) E[ ]2::1 G1(2j =28 (337 _2)) _ §C_2_n ,
r[lnt/2] 25 nt
(45) E|| 20 w3;Go@)S@aj-nm)| | <C| 7 |n~*2
LI j=1 . - -
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and
Lnz/2] 2 nt

(46) E|: Z w%j_1G1(2j — 2)5(3(2j—2)/n) i| < CL?Jn—3/2.
j=1

We will show (43) and (45), with (44) and (46) being essentially similar.
Proof of (43). Using (3) and the duality property,

nt /2] 2
E[( > G0(2j)53(88;—1)/n)> ]

j=1
[nt/2]
=K Z [Go(Zj)Go(Zk)

jik=1

3
6-2r (q®3— ®3—
X <Z5 r(a(zij)/n ® a(zqu)/n)w@j—l)/n’ 3(2k—1)/n>%)i|
r=0

lnt/2] 3

< 2 2 l0j-1y/m: dek—1/n)]

j.k=1r=0

x E[|(D° (Go(2/)Go(2K)). 88371, ® 0811 )gee 2 ]

For integers » > 0, we have

1]
D" Go(2j) = Dr/O SV WWajoiyn + (1= 0)Waj ) dv
L e
47) = Efo vef (VWi + (1 =v)Waj/y)

® ®
X (Ug(z;_])/n + (1 — U)82jr/n)dl).
By product rule and (47) we have
6—2 . 3— 3—
E[|{D°*(Go(2/)Go(2)). 3351, 1 ® 93~y pulges-= ]

<C Z E[ sup |f(“) (UW(Zj—l)/n + (1 — v)W(Zj—Z)/n)
a+b=6—2r O=vw=l

x fO(wWak—1y/n + (1 — w)W(Zk—Z)/n)|]

1 pl
< [ [ ey + 1 —055)

®b ®b
® (weg_1yn + (1 —wleg,).

(48)

®3— ®3—
8(2]._’1)/" ® a(Zk—}i‘)/n>g’J®672r |dvdw.
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Notice that by condition (0), E[sup|f (3+’)(§)|P ] < 0o, where the supremum is
taken over the random variables {§ = vW, + (1 —v)W,,0<v <1,0<s1,5 <
T}. From Lemma 6.2, for integers a and b with a + b = 6 — 2r, we have the
following estimate:

//| Ug(zj Y e U)82]/n)

® (w8(2k71)/n + (1 - w)82k/n)

®3—
93— 1)/n ®a(2k 1/nlgee-2r | dvdw

(49)

<Cn= B,
It follows that if » # 0, then by Lemma 4.1, equation (48) and equation (49),

Lnt/2]

C > [02j-1)/n 0ak=1)/n)|
k=1

x E[|[(D° (Go(2))Go(2k)), 383 Hyn ® 8(2k 1)/n>5’3®6 ]

Lnt/2]

<Cn" 7 3" [Baj—1ym. dak—1)m)%]
k=1

<C{ J r/2-3
2

which satisfies (42) because % —-3< —%. On the other hand, if r = 0, then

Lnt/2]
> Cn_3<C{ J -2,

Jj.k=1
and we are done with (43).

Proof of (45). Proceeding along the same lines as above,

Lnt/2] 2
E|:( > ngGo(zj)a(aaj_])/n)) }

j=1

Ln1/2]
:E[ Y w3;w3,Go(2/)Go(2Kk)
jk=1

X {52(3(2j—1)/n ® d2k—1)/n) + (02j—1)/n> a(Zk—l)/n)fJ}:|
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Lnt /2]
<cn™! ZE[E sup |G0(£)|2|<8(2j71)/n»a(2k71)/n)5§|:|
k=1 0<e<|nt/2]
Lnt /2]

+cnt Yy IE[ > E|(D“Go(2j) D" Go(2k),
jk=1 ‘“a+b=2

82 (2 —1)/n ® 3(2k—1)/n))ﬁ®z|]-

By Lemma 4.1 we have an estimate for the second term,
|nt/2]

- nt| _
cnt Y |<a(2j1)/nva(2k1)/n>ﬁ|§CL7Jn 3/2,
J.k=1

Then the first term has the same estimate as (48) when r = 2, which proves (45)
and the lemma.

6.2. Proof of Lemma 4.5. Asin Lemma 4.4, we may assume r = (. Start with
B, (1). Define

Lnt/2]
. 3 2 2
ya®) = > f¢ )(W(2j—l)/n)<8(2j—l)/n’agj—l)/n - 3Sj—z>/n>ﬁ
j=1
[nt/2]
= > FOWaj—1yme@j—1)/ns dj—1y/m — d2j—2/n)%
Jj=1
X (0@2j-1)/n — 02j-2)/n),
so that By, (t) = 25(yx(¢)). By Lemma 2.1, we have

2 2 2
[8(rn @) 120 < Elva @5 +E| Dy (@) [ge0-
We can write
5 [nt/2]
lya®lg= > FOWaj—nm) O War—1y/n)
k=1
X (e@j—1)/n: 02j-1)/n = 02j-2)/n)H
X (€k=1)/n> 02k—1)/n — 02k=2)/n)%
X (0@2j—1)/n — 0@2j—2)/ns 02k—1)/n — 02k—2)/n)$
2
< sup | fOWy)[* sup (e@j—1)/ns 02j—1)/n — 8(2j—2)/n>%
0<s<t 1<j<|ni]

Lnt/2]

x> [B8@j-1y/m = B@j=2)/ns dk—1)/n — d@k-2)/n)5]-
k=1
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Note that E[supy—,, | f® (W,)|?] = C by condition (0), and by Lemma 6.2,
e, 02j—1)/n — 02j—2)/n) 5| =< Con~ Y2 for all Jj,t. By Corollary 4.2 we know

|nt/2)

> 1Bj—n/n = 8@j-2)/ns Bk—1y/n — Bk-2)/m)8|
k=1

<c| %]
-2
Hence, it follows that E||y, (1) [|§ < CL4 In~'n~ 12 < C|% |n3/%. Next,
Lnt /2]

Dy, (1) = Z FOWaj—1y/m)(E@j-1)/n> 02j—1)/n — B2j-2 /)5
j=1

X (e@2j-1)/n ® O@j-1)/n — 02j-2)/n));
and this implies
2 “4) 2
”D)/n(t)”;)cbz < sup |f (Ws)|
0<s<t
Lnt /2]

Y (@1 02j—1y/n — B@j—2)/n)%
k=1

X

X {€@k=1)/n> 02k—1)/n — 02k=2)/n)$

X [(e@j-1)/n ® B@j—1)/n — 82j-2)/n)
£2k—1)/n ® (02k—1)/n — a(Zku)/n)>5§®2|

2
< sup |fP Wy (SI}P<8(2j—1)/n, 02j—1)/n — a(2j—2)/n>%>
j

O<s<t
X sup ’<8s,8r>3’)‘

0<s,r<t

|nt/2]

x> [8@j-1y/n = 8@j=2)/ns dk=1)/n — dk-2)/n) |-
Jj.k=1

By condition (0), E[supofsf, |f(4>(Ws)|] is bounded, and SUPg<s < |(&rs &) 5l 18
bounded. Hence, it can be seen that IE||D)/,Z(I)||52§®2 gives the same estimate as
V().
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For C, (1), using condition (0) and the identity a* — b*> = (a — b)(a + b), we
can write

B[Co("] < E| sup [FOWol’]

0<s<t

X ( sup  [{e@j—1)/n> 8@j—1)/n — d2j-2)/n) |
1<j<nt)2

[nt/2] 2
x ) |<s<z,~_1)/n,8(2j_1)/n+8(2,~_2)/n);,|> :
j=1

By Lemma 6.2, |(8(2j_1)/n, 3(2_,'_1)/n — 8(2j_2)/n)5§| < Czl’l_l/2 and by condi-
tion (iv),

lnt/2] [nt/2]
> e@j—ty/n Ni@j—2/n2j/m) sl < Cn 2+ cn1? > @Qj- 2712
j=l1 j=2

1/2
|| e
2

Hence it follows that E[C,(1)%] < C I_%’Jn_2 for some constant C, and the lemma
is proved.

6.3. Proof of Lemma 4.9. Fori=1,...,d,set

Lnt; /2]
i ®2 ®2
Uy = Z f//(W(zj_l)/”)(a(Zj—l)/n - a(2j—2)/n)
J=lnti—1/2]+1
and recall that F,’; = 82(u£l). As in Remark 3.3, we want to show:

Conditi(_)n (a). For each 1 <i < d, the following converge to zero in LY(Q):
(@.1) (uy, h1 ® ha)gen for all by, hy € § of the form ¢, (see Remark 3.4).

(a.2) (ul, DFy @ h)ge2 foreach 1 < j <d and h € §.
(a.3) (', DF; ® DFrIf>y3®2 foreach 1 < j, k<d.

Condition (b).
(b.1) (ui, D*F)ge2 —> O0in L1 if i # j.
(b.2) (uf?, D2F,§) @2 converges in L' to a random variable of the form
L
Flo=c| f'(W)’n(ds).
L1

The proofs of (a.1) and (a.2) are essentially the same as those given in [5] (see
Theorem 5.2), but the proof of (a.3) is new.
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Proof of (a.1). We may assume i = 1. Let hi1 @ ho = &5, Q &; € $H®2 for some
values s, T € [0, ¢]. Then

Lnt1/2]

g h1 @ ha)gor = Y f"(We2j—1y/m)(B2j—1y/n — 02j-2)/n+ €)%
=

X (02j—1)/n — 02j—2)/n> €1) %>

so that

!(”rlz hi ® h2>5®2|
< sup |f"(Wy)| sup sup [(d2j—1)/n — 02j—2)/n> &s) 9|

0<s<t 1<j<|nt;/2] 0<s<ti

Lnt1/2]
X Z [(02j—1y/n — 02j—2)/ns E1) |-
j=1

It follows from condition (iii) that for fixed t > 0,

nt1 /2]
Y 18@j-1y/n = 02j-2)/n: €1) 8]
j=1
[nty /2]
= Y [EB[We(Wajn —2Waj—1)/n + Waj-2)/m)]|
=1
(50) !
Lnt1 /2]
<cn V24 cnm1? Z (2) — )32 e —2j1732 A 1)
j=2
< Cn—l/z’

and Lemma 6.2 implies

sup sup [(3(zj—1y/n — daj-2)/ms €s)n| < Cn ™'/

1<j<|nt1/2] 0<s<t
so that
E(‘(”rlzv h ® h2>5®2|) =< Cl‘lnfl —> 0.

Proof of (a.2). _As in (a.1), assume i = 1. Using the same technique as in (a._l),
we can write DF} ®h as DF,{ ® &, for some 7 € [0, T]. By Lemma 2.1, DF; =
D&% (u3) = 8%(Duy) + 8(u3)), which gives

(tp. DF] ® £1)gon = (i, 8> (D)) ® ex )0 + (i, 8(u}) ® &1) g0
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For the first term,
Elfu,, 8*(Duj) ® &) ge2]

Lnt1/2]

= > Elf"Wae-1ym)0ae—1y/n — d@e—2)/n: *(Du)))g
=1

X (02e—1y/n — 020—2)/n, €2) 9|
<2E[ sup [/ WOl|E[  sup  [{de/n, 87(Duf))s ]

0<s=<n 1<t<|nt; /2]
[nt1/2]

x Y [(Bae-1)/n — de-2)/n- Ex) 5.
=1

By (50), the sum has estimate C n~1/2 and for the second term we can take
(8e/n. 8% (D)) | = Sup e/l |8%(Duh) | -
It follows from condition (i) that [|dg/, |l < Cn~'/4. This leaves the [|52(Du})ls,
term. By the Meyer inequality for a process taking values in ),
(51)  E[|8*(Dup)|5] < 1E| Duf |Ges + 2] D*uf [ Ges + c3E| DXu) [ s,
so that by Lemma 4.7, E[||8?(Du)||§] < C, and we have
E|(uy., 8*(Du}) ® e)gea| < Cn™/%,
Then similarly,

el 8(15) ® e} o0]

< 2[ sup | £ (Wy)|sup|(de/n. 8(u]))| D _[(02e—1)/n — d2e-2)/n 8t>ﬁ|]-

0<s<t; V4 7
Similar to the above case, foreach 1 < /{ < I_%J,
E[[{3e/n- 8(u3))g ] < E[19e/nll5 16 () ]
< Cn™ VP E]uj | o2 + B[ Duth | 05)
<cn ',
and hence with (50) we have
E[[{uy. 6(uf) ® ec)gen|] < Cn ™%,

Proof of (a.3). For this term we consider the product (u;'l, DF,{ ® DF,’f )ge2-
Lemma 6.1 shows that scalar products of this kind are small in absolute value
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when the time intervals are disjoint, and therefore it is enough to consider the
worst case (ul, DF! ® DFn1>§J®2, and assume #; =t. We have

E[|(uy. DF, ® DF; )]

< > B Wae-1m) 087 _1y/n = 95-2)y)s DFy ® DFy)ge2]|

2 2
<C Y E[[{dee-1/n. DF,)g — (d2e-2)/n. DF, ]
=1
Lnt/2]
<C Y E[|(d@e-1y/n — d@e-2)/n: DF,)g|[(Li2e—2)/n.20/m1- DF,)g|]-
=1

Using the decomposition DFnl = 62(Du}l) + 8(14,11), the above summand expands
into four terms:

() [(02e-1y/n — dae—2)/n> 8 (D))o [|(N2e-2)/m.20/m1, 87 (Dity) )

) B@e=1)/n — Bae—2)/m. 82 (Duy))g |[{Li2e-2)/m,20/m1 (1)), |1

’

k]

3) [0e—1y/n — dae-2y/n> 8(u))g | (t2e—2)/n.20/m1 82 (Duy) g
@ [(0e-1y/n = dae-2y/m> ()5 | [(\r@e—2)/m.20/m1 8(uy) g -

We will show computations for the terms (1) and (4) only, with the others being
similar. For (1) we have

nt/2)
C Y~ E[[@e-1y/n — dae-2)/n> 8> (Duy))g | [(e—2)/n.20/m1 8> (Du,y))g ]
=1

[nt/2]
=C Z E|{de—1)/n — d2e-2)/n,

Cmm'=1
P Wam-1ymecn—1/m(OGi-1yn = 3n-20))s|
X |(Xp2e=2)/n,2¢/n1,
(1O Weam 1 )& @m—1)/n (0G0 -1y/n = G —20/a))s|

2
=C sup (E[H52(f(3)(W<2k—1>/n>(38§_1)/n - 881%—2)/n))|‘53®2])
I<k<|nt/2]
[nt/2]
X Z [(02e—1)/n — B20—2)/ns E@m—1)/n)%|

Lm,m'=1

X |(Xj2e=2)/n,2¢/n1> E2m'—1)/n) 9 -
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By Lemmas 2.1 and 4.7, the Skorohod integral term is bounded by Cn~1/2, and
we use conditions (iii) and (iv) for the scalar products to obtain an estimate of the
form

Lnt /2]
Cn? Y (@m =174 20 —2m|7?)
C,m,m'=1
x (20 =272 4 |20 — 2m!| 7
<cn712,

For term (4), we have by a computation similar to the proof of Lemma 4.7,

E[[|8(f® (Wak—1y/n) @@k—1)/n — d2k—2)/n)) le] < cn4,

and by conditions (i) and (ii) we have

[nt/2]
Cn™3/? Z [(826—1)/n — 02¢—2)/n> B2m—1)/n — B2m—2)/n) 8|
L,m,m'=1

X | (X2e—2)/n,2¢/n1> 2m'—1)/n — @m'—2)/n) 5|
[nt/2]

<cn 3 (120 —2m|7Y)(]2¢ — 2m/|7%)

L,m,m'=1
< cn V2,

Proof of (b.1). By Lemma 2.1, we can expand D’ F,, as follows:

) (. D* F )00 = {1t 8% (D?uj)) g0 + 41y 8(Du) gy

+2(uy, i) ge2-

Without loss of generality, we may assume that ufl is defined on [0, 7], and F;/
is defined on [#1, 1] for #; < t;, so that the sums are over

[nt1/2]
[ ®2 ®2
U, = Z fN(W(ZE—l)/n)(a(zzfl)/n - 8(2572)/,1)
(=1
and
Lnty/2] ) )
i /" ® ®
uj) = Z f (W(Zm—l)/n)(a(zm—l)/n - a(2m—2)/n)-

m=|nty/2]+1
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First term.

E |y, 8%(D%u;)) 0]

Lnt1/2]
2 2
=E < Z f”(W(ZE—l)/n)(age—l)/n - 8(%@—2)/”)’

(=1

) Lnty/2] " )
®
5( > Y Wan-nmEGm 1)
m=|nty/2]+1

®2 ®2
® (8(2m—1)/n - 8(2m—2)/n)>>
5§52

<E[ sup [£7(Wy)|]

0<s<t

2 2 2
X E[Z > eGm—1y/ne 93e—1)/n — ¥3e—2y/n)ge2]
¢ m

2 2
X |52(f(4)(W(Zm—l)/n)(agmfl)/n - ang)/n))q

<E[ sup | (W]

0<s<t
[nt2/2] |nty/2]

X52P||52(g4)||L2(Q) Yo Y Heam—tym dae—n/m)s
=1 m=l1

—(&@m—1)/n> 3(2@—2)/,1)%]-

First we need an estimate for the 82(g4) term, where in the notation of Lem-
ma 4.7,

. 4 2 2
4= FYWan-1)/n) O3m_1)/n = om—2)/n)-

By Lemma 2.1, [|6%(g4)l| 12(q) < c1Ellgall go2 + 2| Dgallgos + c3E[ D? g4l gos.

and so ||52(g4)||Lz(Q) < Cn~ Y2 for each L%J <m< L%J. We can write

E|<”£n 52(D2”2)>ﬁ®2|

Lnty/2]
<cn1? Z |(8(2m—l)/na8(26—1)/n>%

£,m=1

— (e@m-1)/n> 3(2{—2)/n)525|~
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We need an estimate for the double sum. We have by condition (iii),
[ntr/2] 5
Z [[(e@m—1)/n 3(215—1)/n>,2~j — (E@m—1)/n> d2e-2)/n)5 ]
£,m=1

< sup|(e@m—1)/n> L{2e=2)/n,2¢/n1) |
¢,m

lntz/2)

X Z [{€@m—1)/ns 02e—1)/n — 020—2)/n) 5|
,m=1

lnt2/2]

<Cn™ 23 Con V(1 =m0t - 1)) AL
,m=1

ln12/2] oo
<cn! Z Zp—3/2 <cC.
=1 p=1
This provides an upper bound for the double sum, and hence the first term of
(52) is O(n~1/%). Note that in the above estimate the double sum is taken over

1<t,m< L%J. It follows that this estimate also holds for the case i = j, that is,
E[(ul,, *(D?u})) ge2| < Cn~1/2,

Second term. Using t| < tp as above,
E|{uty, 8(Du))gye2 |

Lnty/2]
®2 ®2
=k < Z fN(W(Zj—l)/n)(8(2_,'_1)/n - 8(2j—2)/n)’
j=1

Lnty/2]

3 ®2 ®2

5( Y FOWaronym)ek-1)/m ® Ok —1)/n — a(2k—2)/n)>>
k=|nt/2] 9

=K

Z Z I Waj—1ymlek—1)/n @ B@k—1)/n — d2k—2)/n)-
Tk

Bj—1)/n — 82j-2)) %) g2

X |8(F @ (Wak—1y/n) @@k—1)/n — d2k—2)/n))|

< CIE[ sup ]f”(Ws)\](SUP’(Es» 3j/n).6\)(S‘Iipua(&)uﬂ(sz))
8,7

O<s<t

Lntr ] [nty ]

X Y Y @jsns yndsl;

j=0 k=0



2876 D. HARNETT AND D. NUALART

where in this case, g3 corresponds to the term including ) (W;). It follows from
Lemma 6.2 that sup |(es, Ok/n) 0| < Cn~1/2; and the double sum is bounded by
cn'/? by Corollary 4.2. This leaves an estimate for [|6(g3)[/2(g)- By Lemma 2.1,
18(g3) 11120 < c1llg3lls + c2ll Dgall 2. For this case,

2 _
||g3||~2¢J < E[OSUP FaUA] ]”a(Zk—l)/n - a(2k—2)/n||525 <Cn 12,
<s<t

—1/4

hence ||g3]lg < Cn . Similarly,

| Dg3llge2 < E[ sup |f(4)(Ws)}] sup llesllgllook—1)/n — 92k—2)/nll5
O0<s<t 0<s<t
<cn V4,

hence the second term is O (n~!/%). As in the first term, the double sum estimate
shows that this result also holds for (ufl, 8(DF,§)) §®2-

Third term. We can write

lnt1/2]  nta/2)

. . 2
(A B N VA US TR DI DI RS i Py
O<s=<t (=1 m=|nt;/2]+1

®2 ®2
a(2m—1)/n - 8(2m—2)/n>fj®2 |’

and it follows from Lemma 6.1 that E| (uf,l, u£)5®z| < Cn~¢, for some ¢ > 0.

Proof of (b.2). As in case (b.1), this has the expansion (52). From remarks in the
proof of (b.1), the first two terms have the same estimate as the i # j case, hence
only the term (u,,, u;,) ge2 is significant.

Third term. Assume for the summation terms that the indices run over L%T“J +

1 <j,k<[%]. Wehave
(i uh) oo = D " (Wezj—1yyn) f" (Weak—1y/n)
/7k
®2 ®2 ®2 ®2
X (a(Zj—l)/n = 9272 /n 2k -1)/n a(Zk—Z)/n)Sﬁ®2'
Expanding the product, observe that

®2 ®2 ®2 ®2
(a(Zj—l)/n - 8(21—2)/n’ a(2k—1)/n - 8(2k—2)/n).6®2

= Bn(2j — 1,2k — 1)* — B,(2j — 1,2k — 2)?
— Bu(2j = 2,2k — 1)? + B,(2j — 2,2k — 2)%,
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where 3, (¢, m) is as defined for condition (v). For each n, define discrete measures
on{l,2,...}%% by

0
=" Bu(2j— 1,2k — 1)* + Bu(2j — 2,2k —2)%8 jy;
jk=1
o
wy =Y Ba(2j — 1,2k —2)* + B, (2 — 2,2k — 1)*8y,
jk=1

where in this case §j; denotes the Kronecker delta. In the following, we show
only n:[ , with 1" being similar. It follows from condition (v) that for each t > 0,

o= £} 2)

Lnt/2)
=lim Y B(2j — 1,2k - D%+ Bu(2j — 2,2k —2)°
jk=1

=nt@).

Moreover, if 0 < s < ¢, then
155))
Mn 2 ’ 2
-w([3}7))
—:Uvn 2 ) 2

lns/2]  |nt/2]
+ > > B2 —1.2k— 1?4 B,(2j — 2,2k —2),
j=1 k=|ns/2]+1

which converges to 7 ([0, s]?) because the disjoint sum vanishes by Lemma 6.1.
Hence, we can conclude that u, converges weakly to the measure given by
wt ([0, s] x [0,1]) =nT(s At). It follows by continuity of f”(W;) and Portman-
teau theorem that

[nt/2]
Y Waj—tym) f Wak—ym) (Bn(2j — 1,2k — 1)* + Bu(2j — 2,2k — 2)%)
jk=1

= [ OV 5 WLt s,

converges to

t
/0 £t (ds).
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Combining this result with a similar integral defined for ©~, we have for ¢ > 0,

nt/2)
Jim .;1 F"Waj-1ym) [ (Wak-1y/n)
-/7 =

®2 ®2 ®2 ®2
X (3(2j—1)/n =922 /n> Y2k—1y/n — a(2k—2)/n>5§®2

t t t
- / £ Wt (ds) / £ (W)= (ds) = / £ (Wy)n(ds).
0 0 0

where we define n(t) = n*(t) — n~(¢). It follows that on the subinterval [t;_1, t;]
we have the result

. . ti
(uh ub)oer — [ f7 (W) n(ds)

ti—1

in LY(Q) as n — oo.
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