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SEMIPARAMETRIC REGRESSION IN TESTICULAR GERM
CELL DATA

BY ANASTASIA VOULGARAKI1, BENJAMIN KEDEM1 AND

BARRY I. GRAUBARD

University of Maryland, University of Maryland and National Cancer Institute

It is possible to approach regression analysis with random covariates
from a semiparametric perspective where information is combined from mul-
tiple multivariate sources. The approach assumes a semiparametric density
ratio model where multivariate distributions are “regressed” on a reference
distribution. A kernel density estimator can be constructed from many data
sources in conjunction with the semiparametric model. The estimator is
shown to be more efficient than the traditional single-sample kernel den-
sity estimator, and its optimal bandwidth is discussed in some detail. Each
multivariate distribution and the corresponding conditional expectation (re-
gression) of interest are estimated from the combined data using all sources.
Graphical and quantitative diagnostic tools are suggested to assess model va-
lidity. The method is applied in quantifying the effect of height and age on
weight of germ cell testicular cancer patients. Comparisons are made with
multiple regression, generalized additive models (GAM) and nonparametric
kernel regression.

1. Introduction. This paper addresses the relationship between weight,
height and age of germ cell testicular cancer patients. The problem is approached
by a nonlinear regression method based on the so-called density ratio model. The
method fuses or combines information from multiple sources in order to create an
efficient kernel density estimator, which is then used in the direct estimation of
the conditional expectation, bypassing linearity and the normal assumption. The
choice of bandwidth parameters associated with the density kernel estimates is
discussed in some detail.

In Section 2 we present the general multidimensional semiparametric density
ratio model, review the procedure for estimating the distributions and parame-
ters of the model, and discuss the asymptotic behavior of the estimators. In Sec-
tion 3 we introduce the combined (from many samples) semiparametric multivari-
ate kernel density estimator, and show that it is more efficient than the traditional
single-sample kernel estimator. Moreover, we discuss the associated problem of
bandwidth selection. Section 4 deals with a semiparametric approach to regression
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with random covariates, that is, semiparametric estimation of E[y|x]. The pro-
posed estimator of E[y|x] may be viewed as a semiparametric extension of the
Nadaraya–Watson nonparametric estimator. We also propose various diagnostic
measures to check model validity. The method is first illustrated by a simulation
study in Section 5 and is then applied in Section 6 to Testicular Germ Cell Tumor
(TGCT) data. A comparison with other methods is made in both Sections 5 and 6.

1.1. Motivation. The p-dimensional formulation of the model was motivated
by an extension of a previous analysis of two risk factors, body weight and height,
of germ cell testicular cancer to including three or more risk factors or covariates;
see Kedem et al. (2009). Increased height has been shown to be associated with
increased risk of germ cell testicular cancer in a majority of studies, reflecting
exposure to, possibly, early life factors due to genetics, nutrition or endogenous
or exogenous hormones; see McGlynn and Cook (2010). Body weight reflects
potentially later life exposures such as dietary intake and energy expenditure be-
havior. A few studies have found that increased body mass (body weight divided
by height squared) was associated with a decrease in risk of testicular cancer, but
most studies have found no association [McGlynn and Cook (2010)]. This lack of
association may be due to inappropriate parametric modeling, usually logistic re-
gression. The use of a two-dimensional density ratio model in the previous analysis
uncovered an important contribution of body weight in the presence of height that
was not observed in logistic regression analyses; see McGlynn et al. (2007). We
wanted to include age in the analysis with height and weight as age is both an im-
portant risk factor and potential confounder since the incidence of testicular cancer
varies by age, peaking around 25–35 years for the most common types of testicular
cancer, and age correlates with body weight; see McGlynn and Cook (2010) and
Ogden et al. (2004). The proposed extension of the density ratio model provides
an opportunity to explore the interrelationships of height and weight with testic-
ular cancer while controlling for age by estimating the conditional expectation of
weight given height and age.

1.2. Background and preliminaries. Suppose there are m = q + 1 data
sources, such as q case groups and a control group, each giving a sample of ran-
dom vectors from an unknown multivariate distribution. In the density ratio model
one of these distributions serves as a reference or baseline, and all other distribu-
tions are tilts of the reference. In its one-dimensional form the model is motivated
by the classical one-way analysis of variance with m = q + 1 independent normal
random samples, and logistic regression; see Fokianos et al. (2001) and Qin and
Zhang (1997). In its multivariate form, the model is motivated by classical clas-
sification given multivariate normal samples, and generalized logistic regression;
see Anderson (1971) and Prentice and Pyke (1979).

In the one-dimensional case there are m = q + 1 random samples,

(x11, . . . , x1n1), . . . , (xq1, . . . , xqnq ), (xm1, . . . , xmnm)
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with probability density functions gi ,

xij ∼ gi, i = 1, . . . , q,m, j = 1, . . . , ni,(1)

where gm ≡ g is called the reference probability density. Assuming exponential
tilts, the gi satisfy the (exponential) density ratio model

gj (x)

g(x)
= exp

(
αj + β ′

j h(x)
)
, j = 1, . . . , q.(2)

It is assumed that the distortion function h(x) is a known vector-valued function.
The objective is to estimate the reference density g, the corresponding cumulative
distribution function (CDF) G and the parameters αj ,βj from the combined data

t = {(x11, . . . , x1n1), . . . , (xq1, . . . , xqnq ), (xm1, . . . , xmnm)}′.(3)

The density ratio model has been applied in various problems including ker-
nel density estimation [Fokianos (2004), Cheng and Chu (2004), Qin and Zhang
(2005)], analysis of variance [Fokianos et al. (2001)], AIDS vaccine trials [Gilbert,
Lele and Vardi (1999)], mortality rate prediction [Kedem et al. (2008)], mi-
croarrays evaluation [Phue et al. (2007)], case-control studies [Prentice and Pyke
(1979), Qin (1998)], logistic model validation [Qin and Zhang (1997)], cluster
detection [Wen and Kedem (2009)] and goodness of fit [Zhang (2000)]. A two-
dimensional case-control application has been made recently in Kedem et al.
(2009).

In this paper the asymptotic results for the semiparametric kernel density esti-
mator and the estimation of the conditional expectation of a response given covari-
ate information are formulated under the general multiple sample p-dimensional
density ratio model. Specifically, for each of the m data sources, we use the p-
dimensional density ratio model in predicting, via the estimated conditional ex-
pectation, the response variable given the corresponding covariate information,
and propose measures of goodness of fit and diagnostic plots to check model va-
lidity. A comparison with linear multiple regression, generalized additive models
(GAM) and the Nadaraya–Watson kernel nonparametric regression is made using
both real and simulated data.

2. Statistical formulation. Suppose we have m = q + 1 independent data
sets or random samples of p-dimensional vectors x = xp×1 = (x1, x2, . . . , xp)′.
Let gi(x1, x2, . . . , xp) be the probability function corresponding to the ith sample.
Assume that the ith sample size is ni and n = ∑m

i=1 ni is the total sample size.
Thus, for i = 1, . . . , q,m, j = 1, . . . , ni , we have that

xij = (xij1, xij2, . . . , xijp) ∼ gi(x1, . . . , xp)

and

xi1,xi2, . . . ,xini

i.i.d.∼ gi,
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where xij ,xij ′ are independent for j �= j ′ and xij ,xi′k are independent for i �= i ′
and all j and k. We choose xmj as the reference sample. Then g ≡ gm(x) ≡
gm(x1, . . . , xp) is called the reference or baseline probability density function
(p.d.f.). We assume that the gi(x), i = 1, . . . , q , satisfy the (general) density ra-
tio model:

gi(x)

gm(x)
= w(x, θ i )(4)

or, equivalently,

gi(x) = w(x, θ i )gm(x),(5)

where gi(x), gm(x) are not specified, w is a known positive and continuous func-
tion, and the θ i are unknown d-dimensional vectors of parameters. This construc-
tion accommodates both continuous and discrete distributions, and it does not re-
quire symmetry, let alone normality in the continuous case.

Let G(x) ≡ Gm(x) denote the reference cdf and define pij = dG(xij ) =
dGm(xij ). Using the method of constrained empirical likelihood, we can estimate
gi and θ i from the entire combined data, and not just from the corresponding
samples xij and xmj ; see Fokianos (2004). The empirical likelihood based on the
pooled data xij , i = 1, . . . ,m, j = 1, . . . , ni, is

L(θ ,Gm) =
[

n1∏
j=1

p1jw(x1j , θ1)

][
n2∏

j=1

p1jw(x2j , θ2)

]
· · ·

[
nm∏
j=1

pmj

]

(6)

=
[

m∏
i=1

ni∏
j=1

pij

][ q∏
i=1

ni∏
j=1

w(xij , θ i )

]
.

Let θ = (θ ′
1, . . . , θ

′
q)

′, a vector of dimension of qd . The log-likelihood is given by

l = logL =
m∑

i=1

ni∑
j=1

log(pij ) +
q∑

i=1

ni∑
j=1

log(w(xij , θ i ))(7)

and is subject to the constraints

pij ≥ 0,

m∑
i=1

ni∑
j=1

pij = 1,

m∑
i=1

ni∑
j=1

pijw(xij , θk) = 1

(8)
for k = 1, . . . , q.

Fokianos (2004) and Qin and Lawless (1994) gave conditions guaranteeing that,
with probability approaching 1, there is a maximum in a small neighborhood of the
true parameter θ0. Define μk ≡ λk

n
, where λk are the Lagrange multipliers. Then,
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replacing μk and θk by their estimators, pij and Gm(x) are estimated by

p̂ij = 1

n

1

1 + ∑q
k=1 μ̂k[w(xij , θ̂k) − 1] ,(9)

Ĝm(x) =
m∑

i=1

ni∑
j=1

p̂ij I (xij ≤ x)

(10)

= 1

n

m∑
i=1

ni∑
j=1

I (xij ≤ x)

1 + ∑q
k=1 μ̂k[w(xij , θ̂k) − 1] ,

where I (B) is the indicator of the event B , and I (xij ≤ x) is defined component-
wise. More generally, for l = 1, . . . ,m and w(xij , θ̂m) ≡ 1,

Ĝl(x) =
m∑

i=1

ni∑
j=1

p̂ijw(xij , θ̂ l)I (xij ≤ x)

(11)

= 1

n

m∑
i=1

ni∑
j=1

w(xij , θ̂ l)

1 + ∑q
k=1 μ̂k[w(xij , θ̂k) − 1]I (xij ≤ x).

Let θ0 be the true value of θ under model (4). Define the sample size ratios
ρi = ni/nm and set w(x, θ̂ i ) = wi(x) for i = 1, . . . ,m. Then ρm ≡ 1, wm(x) ≡ 1.
We assume the ρi are positive and finite and remain fixed as n → ∞. Let ζ denote
the true value of μ. Set ζ n = (ζ 1n, . . . , ζ qn) and ζln = nl/n for l = 1, . . . , q . As
n → ∞, assume that ζln → ζl . Then Fokianos (2004) showed that ζ n → ζ and that
under regularity conditions θ̂ − θ0 and μ̂ − ζ are jointly asymptotically normal.
The complete statement is Theorem 1 in an Appendix in Voulgaraki, Kedem and
Graubard (2012).

3. Combined semiparametric density estimators. Fokianos (2004), Cheng
and Chu (2004) and Qin and Zhang (2005) constructed a kernel-based density es-
timator by smoothing the increments of Ĝi, i = 1, . . . ,m. Fokianos (2004) studied
the statistical properties of the proposed kernel density estimator (mean, variance)
and showed that combining data leads to more efficient kernel density estima-
tors under the univariate case of the general model (4). Qin and Zhang (2005)
studied semiparametric inference for the univariate version of model (4) with
w(x,α,β) = exp(α + r(x)β). Cheng and Chu (2004) studied the same special
case as Qin and Zhang (2005) but followed a different approach.

In this section we aim to study the corresponding asymptotic theory and conver-
gence properties of the proposed kernel density estimator for the general multivari-
ate multiple-sample case model (4). The estimator is shown to be more efficient
than the traditional kernel density estimator. In addition, several methods for cal-
culating the optimal bandwidth are discussed. Precise statements and proofs are
given in Voulgaraki, Kedem and Graubard (2012).
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The traditional kernel density estimator is a convolution of the jumps in the
empirical distribution function obtained from a single sample of size n and a ker-
nel function taken as a symmetric probability density function parametrized by a
bandwidth parameter [Parzen (1962)]. Specifically, the traditional kernel density
estimator of a probability density f (x) is given by

f̂ (x) = 1

nh
p
n

n∑
i=1

K

(
x − xi

hn

)
,(12)

where hn is a sequence of bandwidths such that hn → 0 and nh
p
n → ∞ as n → ∞.

The kernel function K(x) is defined for p-dimensional x. It is nonnegative, sym-
metric around 0 and satisfies

∫
Rp K(x) dx = 1. Under certain conditions, f̂ (x) is a

consistent estimator of f (x) [Parzen (1962), Shao (2003)]. As such, the traditional
kernel density estimator is a “single sample” estimator.

Using a similar idea to (12), we use the the probabilities p̂ij in (9) to form kernel
estimates for the probability densities gl(x),

ĝl(x) = 1

h
p
n

m∑
i=1

ni∑
j=1

p̂ij ŵl(xij )K

(
x − xij

hn

)
,(13)

where hn is a sequence of bandwidths such that hn → 0 and nh
p
n → ∞ as n → ∞,

wl(x) ≡ w(x, θ l), ŵl(x) ≡ w(x, θ̂ l), and K is a nonnegative kernel function that
satisfies the following requirements:

(1)
∫

K(x) dx = 1 and
∫ |K(x)|dx < ∞;

(2)
∫

xK(x) dx = 0 and
∫ |xK(x)|dx < ∞;

(3)
∫

x′xK(x) dx = k2 and
∫ |x′xK(x)|dx < ∞.

It is easy to verify that ĝl is a proper probability function.

3.1. Asymptotic results for ĝl . To facilitate the study of ĝl , it is convenient to
define first g̃l(x):

g̃l(x) = 1

h
p
n

m∑
i=1

ni∑
j=1

pijwl(xij )K

(
x − xij

hn

)
.(14)

With this device, and with the help of Lemmas 1–4 and Theorem 2 in Voulgaraki,
Kedem and Graubard (2012), in Corollary 1 in there it is shown that√

nh
p
n

(
ĝl(x) − gl(x) − 1

2
h2

n

∫
u′ ∂2gl(x∗)

∂x ∂x′ uK(u) du
)

D→ N(0, σ 2(x))

as n → ∞, where

σ 2(x) = wl(x)gl(x)∑m
k=1 ζkwk(x)

∫
K2(u) du

for any fixed x.
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3.2. Comparison of ĝl and the traditional f̂ . In Theorem 3 in Voulgaraki,
Kedem and Graubard (2012) we show that as n → ∞, hn → 0, and nh

p
n → ∞,

MISE(ĝl) = 1

nh
p
n

∫
wl(x)gl(x)∑m
k=1 ζkwk(x)

dx
∫

K2(u) du

+ h4
n

4

∫ (∫
u′ ∂2gl(x)

∂x ∂x′ uK(u) du
)2

dx

+ o

(
1

nh
p
n

)
+ o(h4

n),

from which we get the optimal bandwidth h∗
n given in formula (4) in Voulgaraki,

Kedem and Graubard (2012). In Theorem 4 there it is shown that under mild con-
ditions ĝl is more efficient (MISE) than the traditional single-sample f̂ for every l,
as n → ∞, hn → 0, and nh

p
n → ∞.

3.3. Bandwidth selection for ĝl . From Section 3.1 we see that, as is the case
with the traditional single-sample estimator, the pooled estimator ĝl also suffers
from a similar bias-variance trade-off problem where a smaller hn reduces the bias
at the expense of the variance, whereas a larger hn increases the bias but reduces
the variance. We discuss next practical ways for choosing bandwidths which are
optimal in some sense.

The formula for the asymptotically optimal bandwidth h∗
n given in equation (4)

in Voulgaraki, Kedem and Graubard (2012) is not practical since gl is not known.
In the one-dimensional case Silverman (1986) proposes to either use the normal
density N(μ,	), where μ and 	 are estimated from the data, or f̂ to approxi-
mate gl . Following Silverman (1986), Fokianos (2004) and Qin and Zhang (2005),
both replace gl by ĝl . However, in the multidimensional setting the computational
burden is heavier and, as Silverman (1986) remarks, it is somewhat hazardous to
estimate ∂2gl(x)/∂x ∂x′ by ∂2ĝl(x)/∂x ∂x′ unless very large samples are available.

The bandwidth can also be selected via cross-validation, which minimizes, with
respect to hn, an estimate for the integrated squared error (ISE):

ISE(hn) =
∫ (

ĝl(x) − gl(x)
)2

dx

=
∫

ĝ2
l (x) dx − 2

∫
ĝl(x)gl(x) dx +

∫
g2

l (x) dx.

The last term does not depend on hn, so we may drop it in the minimization of
ISE. To minimize ISE, we need to rewrite the first and second terms as functions
of hn and the data. Denote by

t = [x′
11, . . . ,x′

1n1
, . . . ,x′

m1, . . . ,x′
mnm

]′n×1 = (t′1, . . . , t′n)′
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the combined data. So t has n rows. The first term can be written∫
ĝ2

l (x) dx =
∫ [

1

h
p
n

m∑
i=1

ni∑
j=1

p̂ij ŵl(xij )K

(
x − xij

hn

)]2

dx

= 1

h
2p
n

∫ m∑
i=1

ni∑
j=1

m∑
i′=1

ni∑
j ′=1

p̂ij ŵl(xij )K

(
x − xij

hn

)

× p̂i′j ′ŵl(xi′j ′)K
(x − xi′j ′

hn

)
dx

= h−p
n

n∑
i=1

n∑
i′=1

p̂(ti )ŵl(ti )p̂(ti′)ŵl(ti′)
∫

K(z)K
(

z + ti − ti′

hn

)
dz.

For the second term notice that
∫

ĝl(x)gl(x) dx = Eĝl(x). Following Silverman
(1986) and Cheng and Chu (2004), we can estimate Eĝl(x) using the leave one

out estimator Êĝl(x),

Êĝl(x) = 1

nl

nl∑
i=n1+···+nl−1+1

ĝl,i(ti ),

where ĝl,i(ti ) is ĝl(ti ) with ti dropped from the combined data. Therefore, a nearly
optimal bandwidth hn is obtained by minimizing

h−p
n

n∑
i=1

n∑
i′=1

p̂(ti )ŵl(ti )p̂(ti′)ŵl(ti′)
∫

K(z)K
(

z + ti − ti′

hn

)
dz

(15)

− 2

nl

nl∑
i=n1+···+nl−1+1

ĝl,i(ti).

In general, cross-validation using the leave one out estimator is computationally
inefficient. However, for sufficiently large samples and l = 1, . . . , q,m, a useful
simplification is obtained from the approximation∫

ĝl(x)gl(x) dx
n→∞→

∫
g̃l(x)gl(x) dx.

Moreover,

E

[∫
g̃l(x)gl(x) dx

]

= E

[∫ 1

nh
p
n

m∑
i=1

ni∑
j=1

wl(xij )∑m
k=1 ζkwk(xij )

K

(
x − xij

hn

)
gl(x) dx

]

= h−p
n

∫ ∫
K

(
x − y
hn

)
gl(x)gl(y) dxdy
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= E

[
h−p

n K

(
x − y
hn

)]

= E

[
1

nl(nl − 1)h
p
n

∑
i �=j

K

(
xli − xlj

hn

)]
.

Thus, for sufficient large n, an unbiased estimator for
∫

g̃l(x)gl(x) dx is

1

nl(nl − 1)h
p
n

∑
i �=j

K

(
xli − xlj

hn

)
.

Therefore, an alternative way to find hn is by minimizing

h−p
n

n∑
i=1

n∑
i′=1

p̂(ti )ŵl(ti)p̂(ti′)ŵl(ti′)
∫

K(z)K
(

z + ti − ti′

hn

)
dz

(16)

− 2

nl(nl − 1)h
p
n

∑
i �=j

K

(
xli − xlj

hn

)
.

Cross-validation has the advantage that (15) and (16) can easily be modified if
we wish to use different bandwidths h1, . . . , hp to smooth each term, respectively.

4. Semiparametric regression. Suppose we have m = q + 1 data sets or
samples of p-dimensional vectors, where each vector consists of p − 1 covari-
ates and one response, and assume that the ith sample size is ni . Thus, for
i = 1, . . . , q,m, j = 1, . . . , ni , we have(

xij1, xij2, . . . , xij (p−1), yij

) ∼ gi

(
x1, . . . , x(p−1), y

)
.

We choose g ≡ gm(x1, . . . , x(p−1), y) as a reference or baseline probability density
function (p.d.f.), and let each gi(x1, . . . , x(p−1), y), i = 1, . . . , q , be an exponential
distortion or tilt of the reference distribution,

gi(x)

g(x)
= exp(αi + β ′

ix), i = 1, . . . , q,(17)

where x = (x1, . . . , x(p−1), y)′ and β i = (βi1, . . . , βip)′. Since the gi(x), i =
1, . . . , q,m, are probability densities, β i = 0 implies αi = 0, j = 1, . . . , q . It fol-
lows that the hypothesis H0 :β1 = · · · = βq = 0 implies equidistribution: all the gi

are equal.

REMARK 1. Model (17) is motivated from the ratio of two multivariate normal
densities assuming the same covariance matrices [Anderson (1971), Kedem et al.
(2009)]. It is a special case of model (4) with w(x, θ i ) = w(x, αi,βi ) ≡ exp(αi +
β ′

ix).
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Let t denote the vector of combined data of length n = n1 + n2 + · · ·+ nm. Fol-
lowing the method of constrained empirical likelihood, we obtain score equations
for α̂j and β̂j :

∂l

∂αj

= −
n∑

i=1

ρjwj (ti )
1 + ρ1w1(ti ) + · · · + ρqwq(ti )

+ nj = 0,(18)

∂l

∂βj

= −
n∑

i=1

ρjwj (ti )ti
1 + ρ1w1(ti ) + · · · + ρqwq(ti )

+
nj∑
i=1

(xji1, . . . , yji)
′ = 0(19)

for j = 1, . . . , q and ρj = nj/nm. Then

p̂i = 1

nm

· 1

1 + ρ1ŵ1(ti ) + · · · + ρqŵq(ti )
,(20)

Ĝ(t) = 1

nm

·
n∑

i=1

I (ti ≤ t)
1 + ρ1ŵ1(ti ) + · · · + ρqŵq(ti )

,(21)

where (ti ≤ t) is defined componentwise, ŵj (ti) = exp(α̂j + β̂
′
j ti ), and I (B) is

the indicator of the event B . Following Lu (2007), we can show that as n → ∞ the
estimators θ̂ = (α̂1, . . . , α̂q, β̂1, . . . , β̂q)

′ are asymptotically normal.

4.1. Computing E[y|x] using the density ratio model. Under the p-dimen-
sional density ratio model we can predict the response y given the covariate infor-
mation x1, x2, . . . , x(p−1) for any of the m data sets as follows:

Êj

(
y|x1, . . . , x(p−1)

) =
nj∑
i

yi

ĝj (x1, . . . , x(p−1), yi)∑
yi

ĝj (x1, . . . , x(p−1), yi)
,

(22)
j = 1, . . . , q,m.

The ĝj in (22) are the semiparametric kernel density estimates. Theorem 5 in
Voulgaraki, Kedem and Graubard (2012) establishes the consistency of (22) un-
der some conditions.

It is interesting to compare the semiparametric estimator for E[y|x] against the
Nadaraya–Watson estimator [Nadaraya (1964), Watson (1964)] and the estimators
obtained from linear regression [Rencher (2000)], and GAM [Hastie and Tibshi-
rani (1990), Wood (2006)].

4.2. Diagnostic plots and measures of goodness of fit. The density ratio model
motivates graphical and quantitative diagnostic tools for measuring both goodness
of fit of the model and the quality of the regression (22). Goodness-of-fit tests
have been proposed by Gilbert (2004), Qin and Zhang (1997) and Zhang (1999,
2001, 2002), where the appropriateness of the model is judged by the closeness
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of the estimated reference distribution to the corresponding empirical distribu-
tion. Bondell (2007) suggests a reformulation of this in terms of the corresponding
kernel density estimates. We suggest data analytic tools to measure discrepancies
stemming from all case and control (reference) groups.

Graphical evidence of goodness of fit can be obtained from the plots of Ĝi

versus the corresponding empirical multivariate distribution function G̃i , i =
1, . . . , q,m, evaluated at some selected p-dimensional points as to obtain two-
dimensional plots. Figures 1 and 2 in the next section are examples of this. We
refer to these plots as diagnostic plots.

We found the following measure of goodness of fit useful. Consider the ith
sample of size ni . Let xα be the number of times the estimated semiparametric cdf
falls in the estimated 1 − α confidence interval obtained from the corresponding
empirical cdf, both evaluated at the sample points. Define

R2
α,k = 1 − exp

{
−

(
xα

ni − xα

)k}
,(23)

where k > 0, and k and α are free parameters, which can be set by the user. Observe
that:

• R2
α,k takes values between 0 and 1, being close to 1 when xα approaches ni and

close to 0 when xα is close to 0.
• R2

α,k is a flexible criterion that can be adjusted by changing the parameters α

and k. Larger α means smaller confidence interval bounds.
• Computing R2

α,k is both simple and fast.

We now describe three natural alternatives to R2
α,k . First, as in multiple regres-

sion, goodness of fit may be approached by residual analysis. In this vein, we
define “R2” as in linear regression:

R2
1 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2 .(24)

Next, define

R2
2 = corr(y, ŷ)2.(25)

Notice that R2
1 and R2

2 depend on ŷ, and the process of calculating ŷ involves
selecting the bandwidth, making the process of calculating them complicated. In
addition, some early simulation results suggested that they are misleading as mea-
sures of goodness of fit, and, thus, they were rejected.

Next, following Qin and Zhang (1997), define

R2
3 = exp

(−√
n · max|G̃i − Ĝi |).(26)

Clearly, R2
3 takes values between 0 and 1. Alternatives to R2

3 are exp(−√
n ·

median|G̃i − Ĝi |) or exp(− 1
n

∑ |G̃i − Ĝi |2).
The following simulation study compares R2

α,k and R2
3. The simulation suggests

that R2
α,k is a useful indicator of goodness of fit.
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5. Some simulation results. In the present simulation study m = 2, g2 de-
notes the reference distribution, and the results were obtained from 100 runs (rep-
etitions) of the following four bivariate cases:

(1) g1 ∼ N((0,0)′,�)), g2 ∼ N((0,0)′,�)) with � = (4
2

2
3

)
, n1 = 40,

n2 = 30.
(2) g1 ∼ N((0,0)′,�)), g2 ∼ N((1,1)′,�)) with � = (3

1
1
2

)
, n1 = 200,

n2 = 200.
(3) g1 from standard two-dimensional Multivariate Cauchy and g2 from

two-dimensional Multivariate Cauchy with μ = (1,1)′, V = (5
5

5
10

)
, n1 = 200,

n2 = 200.
(4) g1 from standard two-dimensional Multivariate Cauchy and g2 from uni-

form distribution on the triangle (0,0), (6,0), (−3,4), and n1 = 200, n2 = 200.

The normal distribution follows the density ratio model, but this is not true for
the Cauchy and the uniform distributions. Hence, we expect to see straight lines in
the diagnostic plots and high R2’s, as defined above, in cases (1) and (2). On the
other hand, we expect to see deviations from straight lines in the diagnostic plots
and lower R2’s in cases (3) and (4).

Figures 1 and 2 show the estimated Ĝ1 and Ĝ2 [where Ĝ1 is the exponential
tilt of Ĝ2 defined in (21)] versus the empirical cdf G̃1 and G̃2, respectively, all
obtained from one run of the simulated case-control data, and evaluated at selected
points in R2. As expected, in cases (1) and (2), there is almost a perfect agreement
between Ĝi versus G̃i, i = 1,2, whereas Figure 2 shows clearly that the density
ratio model is not appropriate for the data from cases (3) and (4).

FIG. 1. Case-control plots of Ĝi vs. G̃i , i = 1,2, simulations (1) and (2).
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FIG. 2. Case-control plots of Ĝi vs. G̃i , i = 1,2, simulations (3) and (4).

A comparison of R2
3 and R2

α,k obtained from 100 runs is given in Table 1. It
seems that R2

3 is sensitive to outliers and can give low values even for data that
follow the density ratio model [e.g., case (2)]. On the other hand, the proposed
measure R2

α,k classifies correctly the four cases, giving high values for simulations
(1) and (2) and low values for (3) and (4). The values of R2

α,k in Table 1 were
calculated with k = 2 and 1 − α = 95%. We observed that, by lowering 1 − α,
R2

α,k gets closer to 0 for cases (3) and (4).

As noted earlier, calculating the semiparametric Ê[Y |X] for cases (1) and (2)
entails bandwidth selection, which can be done either via the asymptotically op-
timal formula (4) in Voulgaraki, Kedem and Graubard (2012), replacing gl with
N(μ̂, �̂) (parameters estimated from the data), or via cross-validation and min-

TABLE 1
Comparison of R2

3 and R2
0.05,2 for 100 repetitions

of case and control

Run Group R2
3 R2

0.05,2

(1) Case 0.6307 1
Control 0.5976 1

(2) Case 0.3912 0.9353
Control 0.3766 0.9718

(3) Case 0.1080 0.3342
Control 0.1129 0.3324

(4) Case 0.0507 0.3361
Control 0.0495 0.0033
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TABLE 2
Bandwidth (BW) selection using formula (4) in

Voulgaraki, Kedem and Graubard (2012)

Case Control
BW BW

Simulation 1 0.46 0.47
Simulation 2 0.33 0.51

imize either (15) or (16) (which also allows different bandwidths h1, . . . , hp to
smooth the different terms). Tables 2–4 summarize the results for the estimated
bandwidths for one run of the simulations, using equations (4) in Voulgaraki, Ke-
dem and Graubard (2012), (15) and (16). The integrals in (4) in Voulgaraki, Kedem
and Graubard (2012) were calculated using Mathematica. There were no signifi-
cant differences in the regression results using single or multiple bandwidths.

Using the semiparametric model, the standard normal distribution for the kernel
and (22), we estimated E[Y |X] for a single predictor. Table 5 provides MSE and
MAE comparisons between the different methods for the first two simulations.
In the table SP stands for semiparametric regression, MR for multiple regression,
GAM for generalized additive model and NW for Nadaraya–Watson. We did not
estimate E[Y |X] for simulations 3 and 4 because the semiparametric model is not
applicable in these cases (and was rejected as we saw from the R2 comparisons). In
simulations 1–2, for both case and control, we fitted a thin plate regression spline
GAM assuming the normal distribution and identity link. The results for tensor
product were almost identical. In simulation 1 the GAM line was almost identical
to the multiple regression line. We see that the semiparametric regression performs
comparably with the other methods in terms of MSE and MAE.

6. Application to testicular germ cell cancer. Testicular germ cell tumor
(TGCT) is a common cancer among U.S. men, mainly in the age group of 15–
35 years [McGlynn et al. (2003)]. In McGlynn et al. (2007) it was shown that

TABLE 3
Bandwidth (BW) selection using the cross-validation method (15)

Case Control

Same BW
h

Diff. BWs
Same BW

h

Diff. BWs

h1 h2 h h1 h2

Simulation 1 0.61 0.90 0.40 0.59 0.31 0.61
Simulation 2 0.38 0.50 0.20 0.61 0.36 0.71
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TABLE 4
Bandwidth (BW) selection using the cross-validation method (16)

Case Control

Same BW
h

Diff. BWs
Same BW

h

Diff. BWs

h1 h2 h h1 h2

Simulation 1 0.64 0.90 0.50 0.63 0.21 0.71
Simulation 2 0.30 0.40 0.20 0.74 0.11 0.96

increased risk was significantly related to height, whereas body mass index was
not significant. In Kedem et al. (2009), using the two-dimensional semiparametric
model, it was shown that jointly height and weight are significant risk factors. The
TGCT data consist of age (years), height (cm) and weight (kg) of 1691 individuals,
of which n1 = 763 are cases and n2 = 928 belong to the control group. We con-
sidered two cases: the 2D TGCT data set with variables height and weight and the
3D TGCT data set with variables height, weight and age. In both cases the control
distribution was the reference distribution.

Equation (4) in Voulgaraki, Kedem and Graubard (2012), (15), (16) with kernel
K = N(0,1) and w(x, θ i ) ≡ exp(αi + β ′

ix) were used to calculate the different
bandwidths. The three methods gave similar results. For the 2D TGCT data set, the
case bandwidths were 1.01 and 3.51 for height and weight, respectively, whereas,
for control, we used 2.02 and 1.01. For the 3D TGCT the bandwidths were 2.24
for control and 2.5 for case.

Before applying the three-dimensional density ratio model to the TGCT data,
it is interesting to apply the two-dimensional model to get a prediction of weight
given height only. As Figure 3 shows, the density ratio model is a suitable model
for the TGCT data: there is almost a perfect agreement between the plots of the
semiparametric Ĝi and the corresponding empirical G̃i , i = 1,2. The value of
R2

0.20,1 is 1 for both case and control. Figure 4 shows the estimated E[Y |X] using

TABLE 5
MAE and MSE comparison between regression methods, for simulations 1 and 2. G1, G2 signify

case and control, respectively

MSE MAE

SP MR GAM NW SP MR GAM NW

Simulation 1 G1 0.913 0.834 0.834 0.851 0.752 0.741 0.741 0.736
G2 0.856 0.892 0.892 0.849 0.750 0.786 0.786 0.740

Simulation 2 G1 0.820 0.841 0.799 0.792 0.723 0.730 0.709 0.704
G2 1.740 1.482 1.429 1.388 1.001 0.992 0.958 0.946
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FIG. 3. 2D problem: diagnostic plots of Ĝi versus G̃i , i = 1,2, evaluated at (height, weight) pairs
for the case and control groups from the TGCT data.

(22) for the case and control groups, where in the 2D TGCT data set Y is weight
and X is height. Superimposed are the regression lines obtained from linear regres-
sion under the normal assumption, GAM and the Nadaraya–Watson regression.
For the 2D TGCT data, assuming normal distribution and identity link, we fitted a
tensor product GAM; there were essentially no differences between the different
kinds of splines. We notice that all models give similar results. The residual plots
for the semiparametric model in Figure 5 are centered around zero.

Next we fitted the 3D TGCT data with variables age, height and weight. The
semiparametric model is an appropriate model for this data set as Figure 6 shows.

FIG. 4. Comparison of Ê[weight|height] for the 2D TGCT data set.
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FIG. 5. Residual plots for the semiparametric model in the 2D TGCT data set.

The value of R2
0.20,1 is 1 for both case and control. An advantage of the method

is that it gives estimates for the joint probabilities of age, height and weight in
both case and control groups as in Table 6. The table shows the two groups are
moderately different.

In order to calculate Ê[Y |X] for the case and control groups, we used (22),
where in the 3D TGCT data set Y is weight and X represents jointly height and
age. Figure 7 shows the residual plots for the semiparametric model. Table 7 gives
the MSE and MAE comparison between the different regression methods for the
2D and the 3D TGCT data. For the 3D TGCT data, assuming normal distribution

FIG. 6. Case-control diagnostic plots of Ĝi versus G̃i , i = 1,2, for the 3D TGCT problem: the
Ĝi , G̃i are evaluated at selected (age, height, weight) triplets.
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TABLE 6
Some joint probabilities of age, height and weight in the case and control groups

Probability Case Control

Pr(A ≤ 45, H ≤ 152.40, W ≤ 58.967) 0.000378 0.000767
Pr(A ≤ 26, H ≤ 165.10, W ≤ 58.967) 0.004502 0.007074
Pr(A ≤ 29, H ≤ 177.80, W ≤ 65.317) 0.042723 0.054313
Pr(A ≤ 33, H ≤ 185.42, W ≤ 70.307) 0.157968 0.184774
Pr(A ≤ 34, H ≤ 180.34, W ≤ 79.832) 0.316077 0.362967
Pr(A ≤ 37, H ≤ 180.34, W ≤ 89.811) 0.513664 0.575512
Pr(A ≤ 40, H ≤ 187.96, W ≤ 94.801) 0.797157 0.833803
Pr(A ≤ 43, H ≤ 200.66, W ≤ 99.790) 0.943058 0.956300
Pr(A ≤ 45, H ≤ 203.20, W ≤ 117.934) 0.995010 0.996560

and identity link, we fitted a thin plate regression spline GAM because it produced
better looking residual and Q–Q plots. The semiparametric regression performs
comparably with the other estimators, although it has a somewhat higher MSE.
These results can be explained by the fact that our method consists of an extra step
of density estimation. However, we have the extra advantage that we also obtain
joint probabilities of the variables, unlike multiple regression and GAM.

Tables 8 and 9 give some predicted values for weight given age and height for
the two groups. The results from the different methods are not much different.

We end this section by providing Ê(y|x) in (22) to help the reader interpret
the results of the semiparametric analysis. Tables 10 and 11 give the case-control
weight predictions (22) and the actual weights. From the tables, as expected,
Ê(y|x) in (22) tends to be close to the average of y’s which correspond to the

FIG. 7. Residual plots for the semiparametric model in the 3D TGCT data set.
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TABLE 7
MAE and MSE comparison of the semiparametric, multiple, GAM and Nadaraya–Watson

regression methods for 2D and 3D TGCT data

MSE MAE

SP MR GAM NW SP MR GAM NW

2D TGCT G1 104.003 99.510 99.250 98.648 7.947 7.784 7.770 7.774
G2 93.010 92.264 90.284 90.332 7.347 7.296 7.246 7.241

3D TGCT G1 98.283 96.367 96.091 89.124 7.770 7.679 7.672 7.390
G2 91.643 90.291 88.147 86.932 7.280 7.244 7.173 7.139

same x. Empty entries in the table correspond to subjects with the same height
and age (i.e., same x), but possibly different weights. The averaging property can
be seen by averaging the run of weights in the “empty cells” and the run “upper
point.” Thus, for example, the control-weights corresponding to age 22 and height
175.26 average to 74.3894 and the prediction is 76.62195. Across different ages,
except for heights less than 167.64 cm, the estimated conditional expectation in
cases consistently has greater body weights than controls, indicating that later life
exposures such as increased caloric diet intake and/or reduced energy expenditure
and lack of physical exercise may increase the risk of testicular cancer.

7. Summary. In this paper we have shown that using our proposed semi-
parametric regression method we can detect an important increased risk of germ
cell testicular cancer with greater body weight after adjusting for age and height
that was not found with these same data using standard logistic regression model-
ing. This is an important finding because body weight is likely a later life exposure
involving dietary caloric intake and/or energy expenditure from physical activity.
This is in contrast to height that is influenced by early life factors such as genet-

TABLE 8
Predicted control values of weight given height and age

Case

Age Height Weight SP MR GAM NW

26 193.04 102.058 89.81775 92.47554 92.80697 95.96000
24 167.64 72.575 73.59282 70.00329 70.68805 71.90371
29 180.34 65.771 81.41551 82.42360 82.17237 81.60395
38 185.42 81.647 86.29762 89.46406 89.50287 89.70666
34 195.58 89.811 89.03635 97.03194 98.08814 92.45555
27 162.56 58.967 68.53652 66.51540 67.76775 65.18988
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TABLE 9
Predicted case values of weight given height and age

Control

Age Height Weight SP MR GAM NW

29 180.34 90.718 81.11841 82.06293 83.06542 82.35544
39 175.26 77.111 79.40282 80.36549 79.78087 80.05940
19 172.72 63.503 74.76493 73.58821 72.76199 73.40060
33 177.80 83.915 80.51759 80.97707 81.4916 81.14195
31 190.50 102.058 86.0598 90.67494 90.69862 87.47080
25 165.10 58.967 72.08147 68.90777 68.0279 69.49050

ics, early life nutrition or endogenous or exogenous hormones. The possibility of
intervening to reduce body weight among young men could help to stem the rise
in incidence of testicular cancer.

The semiparametric regression approach taken in this paper requires first effi-
cient estimation of multivariate distributions. This can be achieved under the mul-
tidimensional density ratio model, given multiple data sources of multivariate data,
and known tilts up to unknown parameters. Subject to this construct, the method
produces more efficient kernel density estimators than the traditional single-sample
kernel density estimator. This is so since all the finite and infinite-dimensional pa-
rameters are estimated from the entire combined data from all sources, and not
just from single sources. As in the traditional kernel estimation, our kernel esti-
mates require bandwidths and we have discussed ways for obtaining optimal and
nearly optimal kernel bandwidths. The process of fitting the density ratio model
and obtaining estimates is quite straightforward and quick. In this regard, several
diagnostic measures have been suggested.

Going a step further, the estimated distributions can be used in estimating
joint probabilities, in ANOVA-like problems of determining differences between
groups, and in estimating the conditional expectation of a response variable given
random covariates, provided that multiple data sources are available. An applica-
tion to predicting weight from height and age in a case-control problem shows
the method competes well with several well-known regression methods, and at the
same time it provides estimates of joint probabilities. Our experience suggests that
the method is effective for a small number of covariates. Computational problems
can arise as the number of variables increases.

We have made some numerical comparisons with GAM, but a general compar-
ison is not our focus or intention in the present paper. Still, a few points are in
order. From our limited comparison it seems the two methods produce similar re-
gression estimates, and both methods are more complex than multiple regression.
The complexity of GAM stems from their iterative nature, which is reminiscent of



SEMIPARAMETRIC REGRESSION 1205

TABLE 10
Case-control weight and Ê[weight|height, age]. Empty entries in the table correspond to subjects

with the same height and age, but possibly different weights

Control Case

Age Height Weight Ê[W |H,A] Weight Ê[W |H,A]
27 162.56 58.967 69.08335 58.967 68.53652
28 162.56 77.111 69.05132 65.771 68.59858

68.039
30 165.10 68.039 72.20524 72.575 72.0028
37 165.10 69.40 72.42138 63.503 71.8504
25 167.64 86.183 73.68129 72.575 73.69978

90.718
63.503

30 167.64 72.575 74.81333 88.451 74.93543
18 170.18 61.235 73.67032 72.575 73.67518
32 170.18 70.307 76.53351 81.647 76.64543

63.503
37 172.72 74.843 77.88598 88.451 77.9417
40 172.72 70.307 77.97789 90.718 78.0441

77.111
22 175.26 77.111 76.62195 86.183 76.70862

65.771 65.771
79.379 86.183
83.915
65.771

25 175.26 68.039 77.14234 79.379 77.21755
83.915 72.575
74.843 83.915
83.915 74.843
79.379 72.575
86.183 74.843

61.235
61.235
65.771
79.379

26 177.80 79.379 78.74752 77.111 78.92705
81.647 104.326
58.967 77.111
81.647
79.379
74.843
88.451
68.039

42 177.80 70.307 80.50100 91.626 80.67493
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TABLE 11
Case-control weight and Ê[weight|height, age] continued. Empty entries in the table correspond to

subjects with the same height and age, but possibly different weights

Control Case

Age Height Weight Ê[W |H,A] Weight Ê[W |H,A]
20 180.34 79.832 79.17623 84.368 79.35688

65.771 68.039
77.111 79.379
79.379 81.647

72.575
33 180.34 79.379 81.92536 77.111 82.17689

81.647
18 182.88 77.111 80.23013 68.039 80.29011
41 182.88 79.379 83.65558 86.183 84.06475
19 185.42 63.503 81.45580 68.039 82.09186

94.347
68.039

21 185.42 86.183 82.46773 79.379 82.78140
72.575 77.111

102.058 97.522
22 190.50 97.522 85.23493 86.183 85.64845

95.254 71.668
31 190.50 102.058 86.05980 104.326 86.27744

74.843
22 193.04 86.183 86.73352 102.058 87.18440

80.739
24 193.04 99.337 87.50020 108.862 88.23938

86.183
99.790

108.862
34 193.04 113.398 87.72937 88.451 88.58960

117.934
34 195.58 83.915 88.81524 89.811 89.036535

fixed point problems in repeated parametric filtering where estimates are evaluated
at estimates iteratively, and this may affect the interpretability of the results [Li and
Song (2002)]. It seems to us that the semiparametric approach, on the other hand,
is somewhat more straightforward. We have illustrated in the TGCT data analysis
that the resulting semiparametric regression estimate is indeed close to the average
of the response conditional on fixed covariates, as one would expect. This property
is shared by GAM as well. GAM assume additivity. On the other hand, the density
ratio approach requires an assumption about the tilts. The suggested diagnostic
tools shed light, albeit indirectly, on the appropriateness of the tilts.
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APPENDIX

This Appendix contains supplemental material described in Voulgaraki, Kedem
and Graubard (2012). It provides formal statements and indication of proofs of the
results described in Sections 3.1 and 3.2.
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SUPPLEMENTARY MATERIAL

Supplement to “Semiparametric regression in testicular germ cell data”
(DOI: 10.1214/12-AOAS552SUPP; .pdf). The supplementary material contains all
the mathematical proofs of the lemmas, corrolaries and theorems supporting the
statements and results, including some additional references.
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