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Rejoinder

Jason Wyse∗, Nial Friel† and H̊avard Rue‡

We would like to begin by expressing our gratitude to the discussants for their
insightful comments on the work presented in this paper and possible further improve-
ments which could be made to the methodology. Both discussants highlight strengths
and weaknesses associated with the approaches developed in the paper which have given
us much food for thought. We’ll reply to the discussants in turn.

Fearnhead

Motivation for RFRs

One of the main outcomes of the paper is to widen the class of changepoint models
which can be analyzed using recursive computing approaches (Yao (1984); Barry and
Hartigan (1992); Liu and Lawrence (1999); Fearnhead (2006)). However, it is does
not seem sensible to fit these classes of models, i.e. GMRFs modelling dependence,
to a very small amount of data. Thus the recursive methods of the aforementioned
articles can not be used in their raw form- there needs to be some mechanism to allow
GMRF models to be fitted to at least reasonable sized segments. Dependency cannot
be sensibly modelled using just a few data points. Fearnhead notes that the motivation
for the RFRs in the paper is purely computational. We agree that there are distinct
computational advantages to using RFRs, however we point out that the motivation for
RFRs is two-fold; they give a reduction in computation and additionally enforce larger
segments (with at least, say g = 5 data points) so that GMRFs can be used to model
data dependence.

Asymptotics

Consideration of asymptotics would be a promising direction to proceed in developing
the approaches proposed in this paper further. Hypothetically, such results would give
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a more formal validation of the proposed methods. If n À K, RFRs should introduce a
negligible error as noted by Fearnhead, and would be a sensible choice for a practitioner.
Moreover n À K would imply that a large value of g may be reasonable, with less fear
of missing changepoints, hence making segments larger and any approximations using
INLA more accurate. However, if the number of changepoints increases approximately
linearly with the amount of data then it may be more difficult to make an intuitive
choice of g. If it is too large, changepoints may be missed and having this value too
small adds considerably to the computation, especially when n is large.

It may be possible to consider the case of modelling segment lengths as iid in the
framework considered in the paper, although we have not explored this. Potentially,
one could take the popular geometric prior on segment lengths (or some other member
of the negative binomial family as considered in Fearnhead (2006)), but adjust for the
situation where we only allow changepoints to occur in the reduced time index set
by choosing the geometric parameter pg taking g into consideration. This does not
avoid the problem of a large g missing changepoints in the case where the number of
changepoints increases approximately linearly as more data are collected. However, if
we are considering classes of changepoint models where data are iid within a segment
and the segment marginal likelihood may be computed exactly, even using a small value
of g could reduce the computational effort for the recursions mentioned by Fearnhead
which will ordinarily scale quadratically with n. On a rough inspection it appears that
the computational demands of such a recursive scheme would be about O(n2

r) where
nr = bn/g + 1 − I(g = 1)c since the recursions will only be computed at nr points in
the data, where bac denotes the greatest integer less than a. The storage requirements
would be O(nr). Choosing pg could be difficult, but if there is a value already considered
reasonable for g = 1, say, p, then one possibility may be to use pg = pn/nr. It has been
documented by Wyse and Friel (2010) that analyses may be sensitive to the choice of p

however, so this is still an issue.

MAP estimation

Fearnhead outlines some subtle issues associated with the MAP estimation of the num-
ber of changepoints and their positions as used in the paper. Fearnhead notes that if
you compute the joint MAP estimate of all changepoints using a Viterbi algorithm it
may give different results to first computing the MAP number of changepoints and then
computing their MAP positions recursively. This is a subtlety to bear in mind when
proposing possible extensions to this work in the future. While the results given in
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the paper act as a useful summary of the datasets analyzed, the possibility that their
accuracy may be compromised by a more poorly defined MAP approximation than that
given by the Viterbi algorithm should be kept in mind. One way of overcoming these
potential problems while still maintaining the advantages of using RFRs and the wider
class of segment models given by GMRFs may be to use the type of O(n2

r) recursive
algorithm outlined at the end of the previous section on asymptotics. It would then be
possible to extend the Viterbi algorithm in Fearnhead (2005) to this situation where
recursions are computed instead at the time points in the reduced time index set.

Koop

Priors for segment parameters

It is certainly the case that priors on the parameters in each segment will have a big
impact on forecasts from changepoint models because of the issues outlined by Koop.
If there is only a small amount of data collected after a changepoint a forecast from any
model which regards segments as being entirely independent will be dominated by the
prior assumptions on the segment parameters. It is thus imperative for such situations
to use an approach which allows the prior on the parameters for segment j to depend
on the parameters in segment j − 1, as in time-varying state-space models. It would
be a sensible next step to try to extend the approaches developed in this paper for this
situation, drawing on the work of Fearnhead and Liu (2011). This brings up another
important extension, which is to the online analysis of changepoint models (Fearnhead
and Liu (2007)), which would be particularly important in the forecasting setting. For
the examples considered in the paper, segment lengths are of a reasonable duration,
and forecasting has not been considered. But for similar reasons outlined in our reply
to Fearnhead (Motivation for RFRs), forecasting with a small amount of data may still
be an issue because of the use of an elaborate data model within segments. It will be
interesting to see the further challenges that arise through extensions of the current
methodology in these directions.

Priors for the changepoints

Koop’s point about the misleading nature of uniform distributions in
p(τ1, τ2) = p(τ1)p(τ2|τ1) is very interesting, especially from the perspective of the fore-
caster. Here, our reason for using such a prior is for computational benefit. In fact the



544 Rejoinder

particular prior we use has very good computational properties as spotted by Fearnhead
(2006). Not all priors of the above form will have these good computational properties,
and so a general recommendation based on Koop’s argument would be not to use these
priors in settings where recursions are the tool of analysis, since you lose in two ways–
computation and prior objectivity.

A more difficult issue is the desire which Economists would often have in incor-
porating dependence between priors on the durations dj = τj − τj−1. This will be a
difficult issue in general for approaches involving recursions, not just the simulation free
approach outlined in this paper. This is since computing the recursions for all possi-
ble segmentations of the data and hence possible priors on the durations would lead
to a formidable computing and storage task. Monte Carlo simulation is still the most
promising option for these types of priors on the durations.

Priors for the number of changepoints

Following the comments by Fearnhead on the subtleties of MAP estimation for change-
point models and the argument given by Koop on the advantages of allowing in and
out-of-sample changepoints, a very useful avenue appears to be in pursuing the O(n2

r)
recursions discussed in the reply to Fearnhead (MAP estimation). This would mimic the
approaches advocated by Koop, since the number of changepoints is not set in advance.
There may still be situations when placing a prior on the number of changepoints is
sensible if there is existing considerable knowledge that a certain number should occur.
For example, in the coal mining data the identified changes can be linked to changes
in the coal mining industry at those times in history. Other settings may have similar
“big events” that have been known to occur, with the desire to detect these events in
series of data retrospectively– possibly in the search for markers of these events in the
future. In such situations the approaches outlined in this paper will still be very useful,
especially if the series are very long and need to be scanned on a large scale to find
potential changepoints.

References

Barry, D. and Hartigan, J. A. (1992). “Product Partition Models for Change Point
Problems.” The Annals of Statistics, 20: 260–279.

Fearnhead, P. (2005). “Exact Bayesian Curve Fitting and Signal Segmentation.” IEEE



J. Wyse, N. Friel and H. Rue 545

Transactions on Signal Processing , 53: 2160–2166.

— (2006). “Exact and efficient Bayesian inference for multiple changepoint problems.”
Statistics and Computing , 16: 203–213.

Fearnhead, P. and Liu, Z. (2007). “On-line inference for multiple changepoint problems.”
Journal of the Royal Statistical Society, Series B, 69: 589–605.

— (2011). “Efficient Bayesian analysis of multiple changepoint models with dependence
across segments.” Statistics and Computing , 21: 217–229.

Liu, J. S. and Lawrence, C. E. (1999). “Bayesian inference on biopolymer models.”
Bioinformatics, 15: 38–52.

Wyse, J. and Friel, N. (2010). “Simulation-based Bayesian analysis for multiple change-
points.” arXiv:1011.2932v1 [stat.CO].

Yao, Y.-C. (1984). “Estimation of a Noisy Discrete-Time Step Function: Bayes and
Empirical Bayes Approaches.” The Annals of Statistics, 12: 1434–1447.



546 Rejoinder




