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Goodness-of-Fit of Conditional Regression
Models for Multiple Imputation

Stefano Cabras∗, Maŕıa Eugenia Castellanos† and Alicia Quirós‡

Abstract. We propose the calibrated posterior predictive p-value (cppp) as an
interpretable goodness-of-fit (GOF) measure for regression models in sequential
regression multiple imputation (SRMI). The cppp is uniformly distributed under
the assumed model, while the posterior predictive p-value (ppp) is not in general
and in particular when the percentage of missing data, pm, increases. Uniformity
of cppp allows the analyst to evaluate properly the evidence against the assumed
model. We show the advantages of cppp over ppp in terms of power in detecting
common departures from the assumed model and, more importantly, in terms
of robustness with respect to pm. In the imputation phase, which provides a
complete database for general statistical analyses, default and improper priors are
usually needed, whereas the cppp requires a proper prior on regression parameters.
We avoid this problem by introducing the use of a minimum training sample
that turns the improper prior into a proper distribution. The dependency on
the training sample is naturally accounted for by changing the training sample at
each step of the SRMI. Our results come from theoretical considerations together
with simulation studies and an application to a real data set of anthropometric
measures.

Keywords: Calibrated posterior predictive p-value, Discrepancy measure, Mini-
mum training sample, Missing at random, Predictive distribution, Sequential re-
gression multiple imputation

1 Introduction

Multiple imputation (MI) techniques, first introduced by Rubin (1978), have become
popular in the last decades, and nowadays there are a variety of multiple imputation
models and software available (e.g., the MICE package in R). MI consists of filling missing
data values of a variable with multiple samples from an imputation model. In practice,
MI is a simulation technique in which the missing values are replaced by S > 1 draws
from the conditional predictive distribution of the imputed variable given the others
in the data set. Imputation techniques include, among others, ordinary least-squares
regression, logistic regression, factor analysis, variance components estimation, and pro-
portional hazard models. Further details on MI can be found in Rubin (2004, 1996);
Schafer (1999) and references therein.
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In this paper we assume that missing values are generated under the missing at
random (MAR) mechanism, in which the probability of missingness depends only on
available information. Based on this, we focus on linear regression models for impu-
tation. In particular, we consider sequential regression multiple imputation (SRMI)
that imputes each variable in turn, depending on the rest, using a regression model
(Raghunathan et al. 2001). It is important to note that in SRMI, once a variable is
completed, it is used as a regressor for the next variable to be imputed, in a Gibbs-like
manner, until convergence of the regression coefficients is achieved. As SRMI operates
at the level of the conditional distribution of a variable given the rest, then the joint
distribution for all variables is not specified.

Despite the popularity of MI methods, assessing their goodness-of-fit (GOF) is not
a common practice and only a few papers address this problem. Gelman et al. (2005),
Gelman (2004) and Abayomi et al. (2008) propose Bayesian posterior predictive checks
for imputed data sets. Graphical diagnostics and exploratory data analysis are con-
sidered in Gelman et al. (2005) and Gelman (2004) whereas Abayomi et al. (2008)
judge the propriety of the imputed values by comparison with the observed data, using
Kolmogorov-Smirnov (KS) tests for each variable, together with bivariate scatterplots
and residual plots.

In He et al. (2007), the authors suggest the use of the posterior predictive p-value,
ppp, originally proposed by Rubin (1984) and Meng (1994), further formalized and
extended in Gelman et al. (1996), to assess the GOF of a certain imputation parametric
model. Let Y be the variable to be imputed following the sampling model f(y|β) where
β ∈ Θ is distributed according to prior π(β), then the ppp is defined as

ppp(y) = Pr (D(Y rep, β) ≥ D(y,β)|y) . (1)

Here D(y, β) is a discrepancy measure, y represents the observed data and the distri-
bution of Y rep is the posterior predictive distribution, m(Y |y) =

∫
Θ

f(y|β)π(β|y)dβ.
Without loss of generality, in (1) we assume that larger values of D indicate incom-
patibility. The ppp is usually approximated by a Monte Carlo sum where β and Y rep

are drawn from the posterior distribution π(β|y) and f(Y |β), respectively.

In this work, we focus on a GOF approach based on p-values, pointing out that ppp
cannot be interpreted under the usual uniform distribution in (0,1), as also noted in
Bayarri and Berger (2000); Dahl (2006); Hjort et al. (2006). We show here that ppp is
conservative for GOF of SRMI, when GOF is based on suitable discrepancy measures.
The work of Robins et al. (2000) demonstrated that ppp is asymptotically conservative
when using GOF statistics whose distribution depends on unknown parameters. In
order to overcome these drawbacks we propose to assess the GOF of SRMI with the
calibrated posterior predictive p-value, cppp, proposed in Hjort et al. (2006). In that
work, the authors propose post-processing the ppp obtaining the cppp, defined as

cppp(y) = Pr (ppp(Y ) ≤ ppp(y)) , (2)

where Y comes from the prior predictive distribution, m(Y ) =
∫
Θ

f(y|β)π(β)dβ. In
contrast to ppp, cppp is uniformly distributed under the null model, but it requires proper
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priors for β, being sensitive to the choice of π(β). Nonetheless, Bayesian imputation
techniques usually make use of default and improper priors. This creates a problem
for GOF based on cppp that we overcome by introducing the use of a minimal training
sample. Following Definition 1 in Berger and Pericchi (1996) we make use of the idea
of minimum training sample, that consists of a sample of the data, of minimal size,
that trains an improper prior into a proper distribution through the Bayes’ theorem.
Additionally, we compare this approach with that based on conjugate priors.

Finally, as stated in Hjort et al. (2006), the performance of the GOF critically
depends on the choice of D(y, β). We choose several types of discrepancy measures,
D(y, β), intuitively related to regression models, but a more comprehensive study of
such discrepancies is beyond the scope of this paper. Also note that this paper is focused
on GOF rather than on model selection and we encourage the reader to look at O’Hagan
(2003) for a discussion of the role of Bayesian model checking versus model selection.

The rest of the paper is organized as follows: GOF for SRMI, using two different
priors and several discrepancy measures, is explained in Section 2. Section 3 validates
the performance of the proposed technique with a simulation study and Section 4 illus-
trates an application to a real data set. Further remarks and conclusions are contained
in Section 5.

2 Goodness-of-fit for SRMI

Consider the incomplete dataset, (Y1, . . . , YQ), where variables are ordered by increasing
number of missing values. SRMI imputes each variable, one at a time, given the rest
in a sequence of S imputations. Let s = 1, . . . , S denote the step of the procedure,
the imputation model for Yq, q = 1, . . . , Q, is the posterior predictive distribution,
m(Yq|yq), based on the regression model

Yq|Y−q, β ∼ Nn(Y−qβ, σ2I), β = (β, σ2) ∈ Rpq × R+, q = 1, . . . , Q, (3)

where Y−q denotes the rest of the variables or a subset of these, and the intercept,
while Nn represents the n-dimensional normal distribution. For the sake of simplicity,
regression parameters are denoted by β instead of βq. Notice that Y−q includes a total
of pq ≤ Q variables that are either fully observed or have been completed in previous
steps. In order to evaluate the GOF of the conditional regression models in SRMI,
we propose the cppp as a measure of the adequacy of each regression model (3) used
to impute variable Yq at each step s. In the sequel, we illustrate the details of the
procedure.

As stated in the previous section, cppp requires a proper prior distribution on β. In
order to evaluate the robustness of cppp with respect to π(β), we consider two different
choices: i) a trained prior, πt(β), that is based on the usual default prior trained
with a minimum training sample (Berger and Pericchi 1996), drawn from the observed
data; and ii) a vague conjugate prior, πc(β), in which the analyst specifies the order of
vagueness.
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2.1 Trained prior and posterior distribution

Suppose we are imputing, at a certain step s, variable Y = Yq using model (3) where
Y−q is here denoted by X. Here Y is a vector of length n and X is an n×p matrix with
p = pq. We assume Y and X partitioned as Y = (yT

o , Y T
m )T and X = (XT

o , XT
m)T ,

where subindices o and m indicate the no observed and nm = n − no missing values
of Y . Note that X is either fully observed or previously completed in the sequential
imputation scheme.

Let
πN (β) = πN (β, σ2) ∝ 1

σ2

be the usual default prior for parameters β in the linear regression model. The trained
prior is

πt(β) ∝ f(yt|Xt, β)πN (β)

where f(yt|Xt, β) is the density of model (3) and yt is a random sample of size nt

drawn from the observed data yo, and Xt represents the corresponding rows of X. In
the case of the linear regression model, with p covariates, the minimum training sample
{yt, Xt} that turns πN (β) into a proper density has size nt = p + 1.

The trained prior, πt(β), is given by

β |yt,Xt, σ
2 ∼ Np(β̂t, σ

2V −1
β ) (4)

σ2 |yt, Xt ∼ Inv− χ2(nt − p, σ̂2
t ) = Inv− χ2(1, σ̂2

t )

with

β̂t = (XT
t Xt)−1XT

t yt

Vβ = (XT
t Xt)

σ̂2
t = (yt −Xtβ̂t)T (yt −Xtβ̂t).

Let yo\t = yo \ yt and Xo\t = Xo \Xt be the observed data after removing {yt, Xt},
then the posterior distribution, π(β|yo, Xo), is the result of the usual conjugate analysis
with response yo\t and design matrix Xo\t and the trained prior distribution πt(β)
(4). Notice that the trained posterior, π(β|yo,Xo), equals the posterior distribution
calculated over all observed data with default prior πN (β). An advantage of πt(β) is
that it allows us to use a default improper prior πN (β) in the GOF. Nevertheless, the
main criticism of trained priors is that πt(β) depends on the training sample. It is
important to stress here that this dependency is naturally accounted for by changing
{yt, Xt} in each imputation step of the SRMI.

2.2 Conjugate prior and posterior distribution

The conjugate prior, πc(β), for (3) is

β |σ2 ∼ Np(β0, σ
2V −1

0 ) (5)
σ2 ∼ Inv− χ2(n0, σ

2
0)
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and the posterior distribution, πc(β|yo, Xo), is the usual one for the conjugate analysis,
where prior parameters in (5) must be specified reflecting the analyst’s uncertainty
about β. Here Np denotes a p-dimensional normal distribution.

Note that, different to the case of a non-informative prior, both the posterior
πc(β|yo,Xo) and the GOF, based on cppp, depend on the information contained in
πc(β). In Section 3 the effect of the degree of vagueness of the prior in the performance
of the cppp is analyzed and both priors, πc(β) and πt(β), are compared.

2.3 Discrepancy measures

In this section we specify the discrepancy measures used to compute (1) for each s.
Although many discrepancy measures may be used to assess the GOF of an imputation
model, we consider the following discrepancies which are intuitively related to regression
and are based on residuals, ei = yi − xT

i β, for i = 1, . . . , n:

R2 = 1−
∑n

i=1 e2
i∑n

i=1(yi − ȳ)2
, SSR =

n∑

i=1

e2
i

σ2
,

Max = max
i

|ei|
σ

, KS = KS discrepancy for normality of e1, . . . , en,

where yi is the i-th element of Y , xi is the corresponding row of X and ȳ =
∑n

i=1 yi/n.
These discrepancies are random variables defined over Y , i.e. D((yo, Ym),β). As
R2 has a different interpretation with respect to the rest of measures, in the sense
that lower values of R2 indicate poorer fit, we use the following definition of ppp:
Pr

(
R2(Y rep,β) ≤ R2(y,β)|y)

. Note that all these quantities are discrepancy measures
and not statistics, implying, for instance, that R2 may take negative values.

2.4 SRMI and approximation of cppp

Consider again (Y1, . . . , YQ) ordered by increasing number of missing values. In the first
round of SRMI, s = 1, the first variable with missing values, Yr, is imputed using its
posterior predictive distribution m(Yr|y−r) based on model (3) where, in this case, the
covariates Y−r = (1, Y1, . . . , Yr−1) are the intercept and the fully observed variables, if
any. Note that if r = 1, Y−1 consists only of the intercept term. The rest of the variables,
Yr+1, . . . , YQ, are imputed sequentially using as covariates the fully observed variables
jointly with those previously imputed. For s > 1, the imputation process is carried
out as in round 1, except that, in each regression, all other variables are included as
predictors. Schematically, for round s > 1, and for each q such that r ≤ q ≤ Q, impute
variable Yq by drawing missing values from m(Yq|y−q) for model (3), where

Y−q = Y s
−q = (1,Y1, . . . , Yr−1,Y

s
r . . . , Y s

q−1, Y
s−1

q+1 , . . . , Y s−1
Q )

to obtain the completed qth variable at step s, namely Y s
q .

For fixed s and q in the above SRMI procedure, let Y = Yq, X = Y−q and denote,
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with an abuse of notation, ppp = ppps,q and cppp = cppps,q. The following algorithm
provides an approximation of ppp and cppp when using the trained prior.

1. Draw a minimum training sample, {yt,Xt}, where yt is a random sample of size
nt = p + 1 uniformly drawn from the observed data yo (see Section 2.1), and Xt

are the corresponding rows of X.

2. Calculate ppp(yo) using the following Monte Carlo sum:

ppp(yo) =
1
J

J∑

j=1

I{D(Y rep
j , βj) ≥ D(yo, Ym,j , βj)}, (6)

where βj is drawn from π(β|yo,Xo) defined in Section 2.1, while imputed values,
Ym,j , and replicated data, Y rep

j , are simulated from model (3) given βj with
covariates Xm and X, respectively.

3. Approximate cppp according to:

cppp(yo) =
1
K

K∑

k=1

I{ppp(Yo,k) ≤ ppp(yo)}, (7)

where Yo,k is drawn from model (3) with covariates Xo, and βk is simulated from
πt(β). For each Yo,k, compute ppp(Yo,k) using step 2.

In the case of using a conjugate prior, in order to approximate ppp and cppp, remove
step 1 and replace πt(β) and π(β|yo, Xo) with πc(β) and πc(β|yo,Xo), respectively.

We propose to assess the GOF of SRMI, for a certain variable Yq, using the whole
sequence cppp1,q, . . . , cpppS,q, as illustrated in the application. We suggest discarding
the whole SRMI if there is at least one q such that the corresponding model is not
compatible with the observed data. In fact, due to the nature of SRMI, the imputation
of variable Yq affects the imputation of the rest of variables.

It is worth remarking here that we are assessing the GOF of conditional regression
models and it is theoretically possible that the imputation procedure may not converge
to a stationary distribution, because the conditional densities may not be compatible
with any joint distribution of all variables (Gelman and Speed 1993). This problem
is beyond the scope of the paper and our GOF procedure is not able to detect any
such kind of incompatibility even if all conditional models were compatible. However,
as noted in Raghunathan et al. (2001), this rarely occurs in practical cases. Moreover,
according to van Buuren (2007), the approach of Fully Conditional Specification, that
includes SRMI, should be preferred to that of Joint Modeling when the joint distribution
of the data cannot easily be specified.

3 Simulation study

In this section we present the results of a simulation study in which we investigate and
compare the performance of ppp and cppp using πt(β) and some choices of πc(β).
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Firstly, we consider one variable with missing values, y, and one complete covariate,
x, and, secondly, we explore the case where both y and x are incomplete. We generate
n observations according to three models:

Null model: yi|xi ∼ N(1 + xi, 1);

Alternative 1: yi|xi ∼ N(1 + x2
i , 1);

Alternative 2: yi|xi ∼ N(1 + zi, 1), where z is another covariate such that z 6= x,

for i = 1, . . . , n. Covariates x and z are generated independently from two standard
normal distributions. In order to mimic a MAR mechanism, let pm denote the pro-
portion of missing values, then we randomly delete [n · pm] elements of y and x, with
probability of missingness proportional to Φ(x) and Φ(y), respectively, where Φ denotes
the cumulative standard normal distribution. The above MAR mechanism corresponds,
under Alternative 2, to an MCAR mechanism for y and x.

Within these frameworks we consider assessing the GOF of the following imputation
model:

yi|xi ∼ N(β0 + β1xi, σ
2), for the case of missing observations only in y.

In the case of two incomplete variables, the two models derived from SRMI definition
are:

yi|xi ∼ N(β0 + β1xi, σ
2)

xi|yi ∼ N(β′0 + β′1yi, σ
′2).

This study has been performed with different sample sizes, n ∈ {100, 500}, and pro-
portion of missing values, pm ∈ {0.1, 0.4, 0.6, 0.9}. For each scenario, we evaluate the
null sampling distribution of ppp and cppp, using the four discrepancy measures defined
above, and their behavior under alternatives 1 and 2, using 100 replications of data.

In the case of missing observations only in y, we consider the improper prior πN (β) =
πN (β0, β1, σ

2) joint with the training procedure, where the training sample, yt, changes
for each cppp. We compare this with three different conjugate priors πc(β) =
πc(β0, β1, σ

2) with n0 = 2, 0.2 and 0.1, σ2
0 = 1, β0 = (0, 0) and V −1

0 = 100I, in (5). Such
parameters have been chosen in order to evaluate the effect of vagueness. In particular,
note that the moments of πc(β) are not defined for n0 ≤ 2. When x and y are both
incomplete, we only consider the trained prior.

Figure 1 shows the sampling distributions of cppp and ppp under the null model,
with n = 100 and pm = 0.1 and 0.6, considering the trained prior when only y is
incomplete. As expected, the cppp is uniformly distributed under the null model, while
this generally does not apply to ppp. In particular, for discrepancies R2 and SSR, ppp
concentrates around 0.5 (plots in the left), while for KS and Max it loses uniformity
when pm increases (plots in the right). The same comments apply to all considered
versions of πc(β), showing that under the null model, the automatic procedure, based
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on πN (β) provides similar results to that based on πc(β). By construction, sampling
null distributions of the cppp are uniform, therefore they are so when both x and y are
incomplete (not shown here).

Therefore, it is more interesting to compare the power of ppp and cppp when rejecting
the null model for a cut-off of 0.05 under alternatives 1 and 2. Power, under each
alternative, is approximated by the proportion of the 100 p-values below 0.05. Figure 2
represents the approximated power for alternatives 1 and 2 using πN (β) and πc(β) with
n0 = 0.2, for n = 100 and values of pm ranging between 0.1 and 0.9 and only missing
values in y. For Alternative 1, KS and Max are the most powerful discrepancies
followed by R2 and SSR, with the corresponding cppp showing better performance
than ppp. Under Alternative 2, the most powerful discrepancy is R2 and again, it is
more powerful under cppp than under ppp. When using the vague conjugate prior, power
of both measures increases slightly.

For both alternatives, power generally increases with n, see Figure 3. As expected,
the larger the pm, the smaller the power, specially in the case of ppp whose robustness
with respect to pm is considerably lower than that of cppp, in particular for reasonable
pm, i.e. pm < 0.9. Due to the missing mechanism, for pm = 0.9, data loses its quadratic
structure in Alternative 1, leading to a sensible loss of power. Instead, when assuming
the MCAR mechanism in Alternative 1, data keep the original quadratic structure also
for pm = 0.9 and the power of cppp rises.

Figures 4-5 report the power of cppp under the trained priors for the imputation
models of y|x and x|y, respectively. For Alternative 1, in spite of the larger overall
number of missing values, when both x and y are missing, powers for the imputation
model of y|x are essentially in line with those in Figures 2-3. Regarding x|y, the lower
power, compared to that of y|x, is due to the quadratic relationship we suppose between
y|x. However, the power’s decrease for x|y is abundantly compensated with the power’s
increase for y|x and thus the joint assessment of the GOF of the linear imputation model
would strongly indicate its inadequacy. The increase of the power, at pm = 0.4 of KS
and Max for x|y, is due to the combination of the quadratic relationship y|x and
the assumed MAR mechanism. In fact, after deleting observations, there remain some
points, corresponding to large y, that act as outliers inducing linear model rejection.
For large pm such outliers disappear resulting in model compatibility. However, also in
such situations, using ppp, instead of cppp, we cannot detect model incompatibility. For
Alternative 2, as the overall number of missing values increases, power decreases more
than when only y is missing, specially for n = 500.

The above results show that the power of cppp depends on the prior used and the
global amount of missing values in the data. However, differences between priors seem
to vanish for large sample sizes. The smaller power of the ppp using πN (β) is due to
less weight of this prior with respect to data, when compared with πc(β). Using πc(β)
instead of πN (β) we are measuring not only the discrepancy of the imputation model
with data, but also between the assumed imputation model and the prior. The same
reason can be ascribed to the behavior of cppp: when it is based on the trained prior
its power decreases compared to the corresponding one based on the conjugate prior.
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Figure 1: For the case of an improper prior and a minimum training sample, this figure
shows, through QQ-plots, sampling distributions of cppp (black) and ppp (red), under
the null model, where missing values are only in y, with n = 100 and n = 500 and two
proportions of missing values, namely 10% and 60%. Posterior predictive p-values are
not uniformly distributed under the null hypothesis.
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Figure 2: Powers of cppp (continuous lines) and ppp (dashed lines), under rejection of
the null with p-value less than 0.05, and missing values only in y. Powers are calculated
with n = 100 and proportion of missing varying from 10% up to 90%.
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Figure 3: Powers of cppp (continuous lines) and ppp (dashed lines), under rejection of
the null with p-value less than 0.05, and missing values only in y. Powers are calculated
with n = 500 and proportions of missing varying from 10% up to 90%.
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Figure 4: Powers of cppp (continuous lines) and ppp (dashed lines), for the imputation
model of y|x when rejecting the null for p-value less than 0.05. Powers are calculated
with n = 100, n = 500 and proportion of missing varying from 10% up to 90% on each
variable.
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Figure 5: Powers of cppp (continuous lines) and ppp (dashed lines), for the imputation
model of x|y when rejecting the null for p-value less than 0.05. Powers are calculated
with n = 100, n = 500 and proportion of missing varying from 10% up to 90% on each
variable.
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Finally, for the considered different degrees of freedom, n0, in πc(β), we obtain similar
results (not shown here).

It is interesting to analyze in more detail the behavior of some of these measures
under both alternatives. As we have seen the calibration has no power when using
D = SSR. This is explained, in Figures 6 and 7, by the fact that posterior distributions
of D(Y rep,β)|y and D((y, Ym),β)|y, used to calculate ppp in equation (6), do not
change for y = yo and y = Yo,k coming from alternatives 1 or 2 and the prior predictive
distribution, respectively. This is due to the fact that the sampling distribution of
SSR do not change for the three considered scenarios and it makes this discrepancy
useless for GOF even using cppp.

For D = R2 we observe that posterior distributions of D(Y rep, β)|yo and
D((yo,Ym), β)|yo are located in the same region (around 0.7) for yo coming from Al-
ternative 1, bottom-left plot of Figure 6, while D(Y rep,β)|Yo,k and D((yo,Ym), β)|Yo,k

are located in another region (around 0.95). In both cases the shape of the clouds is the
same around the bisector, leading to the same ppp and rendering useless the calibration
with cppp. This is why we cannot detect incompatibilities working with R2 under Alter-
native 1. Instead, under Alternative 2, D(Y rep, β)|yo is centered around 0 meanwhile
D((yo,Ym), β)|yo is located in smaller values, bottom-left plot in Figure 7. Also in
this case, ppp (0.322) is not able to detect incompatibilities whereas, if we consider the
calibration, we have that values ppp(Yo,k) for k = 1, . . . , K are around 0.5 and these
values are sufficiently different from the observed one (0.322) to detect incompatibility
under Alternative 2.

This simulation study is limited in the sense that it only considers two types of
departures from the null model, which are the most common found in practice. Other
types of departure from the null model may need other discrepancies to be detected,
but a comprehensive study of such departures and discrepancies is beyond the scope of
the paper. Instead, the focus of this work is to analyze the behavior of cppp, selecting
several discrepancy measures but without an extensive study of these.

4 Application

For illustration purposes we present an application to the boys data set included in
the MICE package. This data set consists of a random sample of 10% of observations
from the cross-sectional data used to construct the Dutch growth references in 1997
(Fredriks et al. 2000). In this data set there are several variables related to n = 748
Dutch boys, from which we restrict to the following continuous ones: Age, Height,
Weight and Head Circumference (HC). A matrix of dispersion plots for these variables
along with their marginal distributions appears in Figure 8. We can see that, as growth
rates differ from younger to older boys, there are highly non linear relations between
these four variables across all ages. In contrast, these are very well approximated by
linear relations for small age groups, such as that of boys under 1 year old. Based on
this, we expect that the linear imputation model (3) is compatible with data if applied
to a specific age group rather than to the whole data set. The percentage of missing
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Figure 6: For a random sample of size n = 100 and pm = 0.1, generated under Al-
ternative 1, we show, 1000 generations of D(Y rep,β)|yo and D((yo, Ym),β)|yo (left
plots) used in (6) for SSR (top) and R2 (bottom). In each case ppp is obtained by the
proportion of black points for each discrepancy. Right plots contain 1000 generations
of D(Y rep, β)|Yo,k and D((Yo,k, Ym),β)|Yo,k, Yo,k ∼ m(Y ) based on πt(β). These
simulations are used to approximate ppp(Yo,k) in (7).
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Figure 7: For a random sample of size n = 100 and pm = 0.1, generated under Alter-
native 2, we show, 1000 generations of D(Y rep, β)|yo and D((yo, Ym), β)|yo (left plots)
used in (6) for D = SSR (top) and D = R2 (bottom). In each case ppp is obtained
by the proportion of black points for each discrepancy. Right plots contain 1000 gen-
erations of D(Y rep, β)|Yo,k and D((Yo,k, Ym), β)|Yo,k, Yo,k ∼ m(Y ) based on πt(β).
These simulations are used to approximate ppp(Yo,k) in (7).
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values for the considered variables are: 0.5% for Weight; 5% for Height; 6% for HC;
and Age is fully observed.

SRMI was iterated S = 100 times and we computed {cppps,q, q = 1, 2, 3, s =
1, . . . , 100} for assessing the GOF of each imputation model (3), where each variable
was imputed given the rest, i.e. all the variables except the one being imputed are
covariates in the imputation model. We considered the two classes of priors proposed
here. For the conjugate prior, we used the same values of hyperparameters as in the
simulation study but with V −1

0 = 200I. As the results for both priors were similar and
based on the previous simulation study, we only show the results for the trained prior
πt(β), provided that n is large.

The corresponding cppp, for all iterations and all three imputation models, are shown
in Figure 9 for Max and KS with individuals of all ages (first row). The values of cppp
in Figure 9 suggest that the conditional regression models are incompatible with the
observed data. There are problems with the normality of residuals for the three models,
as shown by the cppp associated with the KS discrepancy. Also the Max discrepancy
reflects incompatibility between the observed values and the predicted maximum for
models: Weight|rest and HC|rest. Based on this, and also on what has been noted
above, we consider imputing only data for boys younger than 1 year. The corresponding
cppp for this case are shown in the second row of Figure 9. We can see that, for this
age group, all linear imputation models are compatible with the observed data. These
results are in line with the above considerations on the growth rates. The same analysis
was performed using ppp as shown in Figure 10. Results from Figures 9-12 are further
summarized in Table 1, where the proportion of times in which cppp or ppp are lower
than 0.05 and 0.1 are reported. These proportions approximate the power of the method
when considering boys of all ages. For the case of younger boys, these quantities can
be interpreted as the Type I error. Although the results for ppp are basically similar to
those for cppp, it can be seen in Table 1 that power of ppp is 0.27 (for a cut-off of 0.05)
for model HC|rest when using KS in all ages, while the corresponding cppp are clearly
below 0.05 (power 0.77).

In order to check whether the performance of the cppp is adequate with a higher
percentage of missing values, and only for illustration purposes, we repeat the previous
analysis by considering the same individuals, in which a total of 30% of the observations
of each variable Weight, Height and HC have been uniformly deleted at random. This
way of introducing missing values mimics the missing completely at random mechanism,
a particular case of MAR. Results of the GOF for the three imputation models over all
ages and younger boys are shown in Figure 11, while corresponding ppp are shown in
Figure 12.

Using the cppp we reach the same conclusions with respect to the analysis with all
available data, although the cppp exhibits larger noise. Instead, the results obtained
through the ppp for KS measure suggest that models HC|rest and Height|rest are
compatible with data for all ages. These results provide evidence for the fact that the
proposed method is robust with respect to the percentage of missing data.

Both Figures 9 and 11 suggest stability of the cppp with respect to the sequential
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Figure 8: Boys Data. Linear Regressions (black) and Lowess Regressions (red) show
that relations among variables are not linear, meanwhile for boys younger than 1 year
it seems to be linear.
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Figure 9: Calibrated posterior predictive p-values, cppp, for assessing the GOF of the
multiple linear imputation models of a variable given the rest. We used Boys data
with the original missing values. Corresponding cppp, for all iterations of imputation
steps, are showed for Max and KS with all ages (first row) and with only younger boys
(second row).
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Figure 10: Posterior predictive p-values, ppp, for assessing the GOF of the multiple
linear imputation models of a variable given the rest. We used Boys data with the
original missing values. Corresponding ppp, for all iterations of imputation steps, are
showed for Max and KS with all ages (first row) and with only younger boys (second
row).
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Figure 11: Calibrated posterior predictive p-values, cppp for assessing the GOF of the
multiple linear imputation models of a variable given the rest. We used Boys data with
artificial 30% of missing values in each variable. Corresponding cppp, for all iterations
of imputation steps, are showed for Max and KS with all ages (first row) and with only
younger boys (second row).
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Figure 12: Posterior predictive p-values, ppp, for assessing the GOF of the multiple linear
imputation models of a variable given the rest. We used Boys data with artificial 30%
of missing values in each variable. Corresponding ppp, for all iterations of imputation
steps, are showed for Max and KS with all ages (first row) and with only younger boys
(second row).
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Results with original data
cppp < 0.05 cppp < 0.1

Max KS Max KS
all < 1 all < 1 all < 1 all < 1

Height 0.00 0.00 0.96 0.00 0.00 0.00 1.00 0.05
Weight 1.00 0.00 1.00 0.00 1.00 0.04 1.00 0.00
HC 1.00 0.00 0.77 0.05 1.00 0.00 1.00 0.33

ppp < 0.05 ppp < 0.1
Max KS Max KS

all < 1 all < 1 all < 1 all < 1
Height 0.00 0.00 0.94 0.00 0.00 0.00 1.00 0.00
Weight 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
HC 0.99 0.00 0.27 0.00 0.99 0.00 0.96 0.01

Results with 30% of missings
cppp < 0.05 cppp < 0.1

Max KS Max KS
all < 1 all < 1 all < 1 all < 1

Height 0.00 0.01 0.74 0.00 0.00 0.04 0.90 0.00
Weight 1.00 0.06 1.00 0.01 1.00 0.15 1.00 0.04
HC 0.98 0.02 0.85 0.01 0.98 0.12 0.94 0.01

ppp < 0.05 ppp < 0.1
Max KS Max KS

all < 1 all < 1 all < 1 all < 1
Height 0.00 0.00 0.13 0.00 0.00 0.00 0.37 0.00
Weight 1.00 0.02 1.00 0.00 1.00 0.03 1.00 0.00
HC 0.98 0.00 0.18 0.00 0.99 0.00 0.55 0.00

Table 1: Table entry is the proportion that cppp or ppp is under the specified threshold.
Values are obtained from Figures 9-12.
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imputation, as the cppp does not show any trend along iterations as a consequence of
the sequential imputation. The peaks, for checking HC|Rest using maximum in all ages
(Figures 10-12), appear because the apparent outlier in the HC measure (Figure 8) has
been sampled in the training, and it is not used to calculate the discrepancy. However,
this behavior is not a problem in our procedure as we change the training sample in each
iteration. The noise observed in the cppp sequence is similar for both priors, meaning
that it is due to the change in the imputed values along the imputation steps. In fact,
for a percentage of missing tending to one we expect that the distribution of the cppp
will converge to the uniform, as most of data are simulated according to the model.

Results for R2 and SSR are not shown because the corresponding cppp are essentially
uniformly distributed, not allowing us to assess the fit of the imputation models. This
is consistent with the low power of R2 and SSR in the simulation study, because the
underlying model, for all data, is similar to that in the Alternative 1.

5 Conclusion

In this paper we show that GOF of a conditional regression imputation model, using
a specific discrepancy measure, needs a calibrated measure such as cppp. In fact, in
the simulation study, ppp does not exhibit a satisfactory behavior in the considered
alternatives because of its lack of calibration. We propose how to employ cppp in the
presence of missing values when assessing the GOF of SRMI.

In the simulation study we reach the conclusion that some Ds are more sensitive than
others for detecting some kinds of incompatibility between the imputation null model
and the observed data. Based on this, we recommend considering several discrepancy
measures when assessing the fit of SRMI, as illustrated in the application to the Boys
data set. When investigating the fit of SRMI in other types of models, it is convenient to
use discrepancies or statistics more related to the assumed model. For example, in the
case of general linear models, regression coefficients, their standard deviation, percentiles
of complete data under the model, etc. could be used as discrepancy measures. Again,
the investigation of the best discrepancy to be used is beyond the scope of this paper.

In this paper, we consider two types of priors to calibrate ppp, highlighting the
benefits of using each of them. The use of the trained prior based on a default prior
provides an automatic procedure and avoids eliciting prior parameters. On the other
hand, when it is possible to elicit a prior distribution, such as the conjugate one in
Section 2.2, it results in larger power to detect incompatibilities between model and
prior with respect to observed data. Differences between the behavior of cppp, based
on both priors, seem to vanish for larger sample sizes. Given the above considerations
and the fact that MI is made prior to the final analysis, we recommend the use of the
trained prior approach.

The final message is that the cppp has a better performance than the ppp when
assessing the GOF of regression imputation models. However the cppp depends on the
prior distribution specified and on the behavior of the ppp for a given discrepancy as
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illustrated in Section 3 and in Figures 6 and 7. There are other measures to assess the
GOF that are uniformly distributed under the null and whose investigation for SRMI
is beyond the scope of this paper. For example, we may employ the prior predictive
p-value, advocated by Box (1980), in which m(Y ) induces a sampling distribution of
a discrepancy measure under the null model for a given proper prior, π(β). Another
proposal would be the simulation-based model checking in Dey et al. (1998), which also
requires a proper prior distribution. It would be of interest to investigate the behavior of
such measures when using the trained prior proposed in this work. Further possibilities
would be the conditional and partial predictive p-values, proposed in Bayarri and Berger
(1999, 2000), applied to validate the GOF of several models in Bayarri and Castellanos
(2001, 2007). However, in order to employ such measures, it is necessary to work with
statistics which is somewhat less appropriate for GOF of imputation models as this
approach implies using only observed data.

Minimum training samples (MTS) are drawn using an equiprobable distribution in
the observed data yt, as explained in Section 2.1. This strategy of MTS simulation
results in samples that are not random samples from the complete original data set,
Y = (yo, Ym), as we are assuming a MAR mechanism for Y . Making inference about
the probability of missingness could be an interesting piece of future work in order to
use these estimated probabilities to select the training sample, as discussed in Berger
and Pericchi (2004). On the other hand, the use of other optimality criteria to select the
MTS, as the information of each observation (Berger and Pericchi 2004), could avoid,
for instance, the peaks appearing in Figures 10-12.
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