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SPECTRAL STATISTICS OF ERDŐS–RÉNYI GRAPHS I:
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We consider the ensemble of adjacency matrices of Erdős–Rényi ran-
dom graphs, that is, graphs on N vertices where every edge is chosen inde-
pendently and with probability p ≡ p(N). We rescale the matrix so that its
bulk eigenvalues are of order one. We prove that, as long as pN → ∞ (with
a speed at least logarithmic in N ), the density of eigenvalues of the Erdős–
Rényi ensemble is given by the Wigner semicircle law for spectral windows
of length larger than N−1 (up to logarithmic corrections). As a consequence,
all eigenvectors are proved to be completely delocalized in the sense that
the �∞-norms of the �2-normalized eigenvectors are at most of order N−1/2

with a very high probability. The estimates in this paper will be used in the
companion paper [Spectral statistics of Erdős–Rényi graphs II: Eigenvalue
spacing and the extreme eigenvalues (2011) Preprint] to prove the universal-
ity of eigenvalue distributions both in the bulk and at the spectral edges under
the further restriction that pN � N2/3.

1. Introduction. The universality of random matrices has been a central sub-
ject since the pioneering work of Wigner [40], Gaudin [27], Mehta [30] and
Dyson [12]. The problem can roughly be divided into the bulk universality in the
interior of the spectrum and the edge universality near the spectral edge. The bulk
and edge universalities for invariant ensembles have been extensively studied; see,
for example, [4, 7, 8, 31] and [1, 6, 9] for a review. A key contributing factor to the
progress in the study of invariant ensembles is the existence of explicit formulas
for the joint density function of the eigenvalues. There is no such explicit formula
for noninvariant ensembles and, hence, our understanding of them is much more
limited. The most prominent examples for noninvariant ensembles are the Wigner
matrices with i.i.d. non-Gaussian matrix elements. The edge universality of Wigner
matrices can be proved via the moment method and its various generalizations; see,
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for example, [33–35]. The bulk universality for general classes of Wigner matrices
was listed in Mehta’s book [30] as Conjectures 1.2.1 and 1.2.2 on page 7. We shall
refer to these two conjectures collectively as the Wigner–Dyson–Gaudin–Mehta
conjecture, in recognition of the pioneering works of Wigner, Dyson, Gaudin and
Mehta listed above. It remained unsolved until very recently. This is mainly due
to the fact that all existing methods on local eigenvalue statistics depended on ex-
plicit formulas, which are not available for Wigner matrices. In a series of papers
[14, 16–23], a new approach to understanding the local eigenvalue statistics was
developed. In particular, it led to the first proof [14] of the Wigner–Dyson–Gaudin–
Mehta conjecture for Hermitian Wigner matrices whose entries have smooth dis-
tributions. This approach is based on three basic ingredients: (1) a local semicircle
law—a precise estimate of the local eigenvalue density down to energy scales con-
taining around (logN)C eigenvalues; (2) the eigenvalue distribution of Gaussian
divisible ensembles via an estimate on the rate of decay to local equilibrium of
the Dyson Brownian motion [12]; (3) a density argument which shows that for
any probability distribution of the matrix elements there exists a Gaussian divisi-
ble distribution such that the two associated Wigner ensembles have identical local
eigenvalue statistics down to the scale 1/N . Furthermore, the edge universality can
also be obtained by some modifications of (1) and (3) [23]. The class of ensembles
to which this method applies is extremely general; in particular, it includes any
(generalized) Wigner matrices under the sole assumption that the distributions of
the matrix elements have a uniform subexponential decay. We remark that the uni-
versality of Wigner matrices, under certain restrictions on the distribution of the
matrix entries, was also established in [36, 37]. We shall discuss these results in
the companion paper [13].

In this paper and its companion [13], we extend the approach (1)–(3) to cover
a class of sparse matrices. This class includes the Erdős–Rényi matrices, which
we now introduce. Symmetric N × N matrices with 0–1 entries arise naturally as
adjacency matrices of graphs on N vertices. Since every nonoriented graph can
be uniquely characterized by its adjacency matrix, we shall from now talk about
matrix ensembles (with 0–1 entries) and graph ensembles interchangeably. We
shall always normalize the matrices so that their spectra typically lie in an inter-
val of length of order one. One common random graph ensemble is the Erdős–
Rényi graph [24, 25]. In it each edge is chosen independently and with probability
p ≡ p(N). Since each row and column of the adjacency matrix has typically pN

nonzero entries, it is sparse as long as p � 1. We shall refer to pN as the sparse-
ness parameter of the matrix.

Our goal in this paper, and in its companion [13], is to establish both the bulk
and edge universalities for the Erdős–Rényi ensemble under the restriction pN �
N2/3. In other words, we prove that the eigenvalue gap distributions in the bulk and
near the edges are given by those of the Gaussian Orthogonal Ensemble (GOE)
provided that pN � N2/3. We remark that the law of the Erdős–Rényi ensemble
is even more singular than that of the Bernoulli Wigner matrices, since the matrix
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elements are highly concentrated around 0. Another way of expressing the singular
nature of the Erdős–Rényi ensemble is to say that the moments of the matrix entries
decay much more slowly than in the case of Wigner matrices.

The matrix elements of the Erdős–Rényi ensemble take on the values 0 and 1.
Hence, they do not satisfy the mean zero condition which typically appears in the
random matrix literature. Due to the nonzero mean of the entries, the largest eigen-
value of the Erdős–Rényi ensemble is very large and far away from the rest of the
spectrum, which by our normalization lies in the interval [−2,2]. By the edge uni-
versality of the Erdős–Rényi ensemble, we therefore mean that the probability dis-
tribution of the second largest eigenvalue is given by the distribution of the largest
eigenvalue of the GOE, which is the well-known Tracy–Widom distribution.

As the first step of the general strategy to establish universality, we shall prove
a local semicircle law, Theorem 2.9, stating that the eigenvalue distribution of the
Erdős–Rényi ensemble in any spectral window of size η containing on average
Nη ∼ (logN)C eigenvalues is given by the Wigner semicircle law. Theorem 2.9
is valid in the bulk and at the edges as long as the parameter p ≡ p(N) satisfies
pN → ∞ with a rate at least logarithmic in N . Similar results but for much larger
spectral windows [of lengths at least η ∼ (pN)−1/10] were recently proved in [38].

We note that the semicircle law for Wigner matrices in spectral windows of
size η ∼ N−1/2 has been known for some time [2, 29]. The semicircle law in the
smallest possible spectral window (of size η � N−1 in the bulk) was established
in [17, 18]. This estimate, referred to as the local semicircle law, has become a
fundamental tool in the proofs of the universality of random matrices in [14] as
well as in the subsequent works [19, 37]. The local semicircle law in [17, 18] is
optimal in terms of the range of η, but the error estimates, of order (Nη)−1/2 in the
bulk and with a coefficient deteriorating near the spectral edges, were not optimal.
Optimal error estimates, uniform throughout the entire spectrum and valid for more
general classes of Wigner matrices, were obtained in [23]. The local semicircle law
proved in this paper can also be viewed as a generalization of the results in [23] in
two unrelated directions: (a) the laws of the matrix entries are much more singular,
and (b) the matrix entries have nonzero mean.

Besides eigenvalues, eigenvectors also play a fundamental role in the theory of
random matrices. One important motivation for their study is that random matri-
ces can be viewed as mean-field approximations of random Schrödinger operators
where delocalization of eigenfunctions is a key signature for the metallic or con-
ducting phase. Another question about eigenvectors of random graphs is the size
of their nodal domains, which can studied using delocalization bounds [10]. It was
first proved in [16] that eigenvectors for Wigner matrices are completely delocal-
ized, partly motivated by a conjecture of T. Spencer. The method was refined in
[17, 18], and was also adapted in [37, 38]. The key observation behind the proof
is that the delocalization estimate for eigenvectors follows from the local semicir-
cle law provided that the spectral windows can be made sufficiently small. Thus,
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Theorem 2.9 also implies, with vα denoting the �2-normalized eigenvectors, that

max{‖vα‖∞ : 1 ≤ α ≤ N} ≤ (logN)C√
N

(1.1)

holds with exponentially high probability with some constant C (Theorem 2.16).
This establishes the complete delocalization of all eigenvectors as long as the
sparseness parameter pN increases at least logarithmically in N . In particular,
this result gives the optimal answer to a question posed in Section 3.3 of [10],
asking whether ‖vα‖∞ ≤ N−1/2+o(1) holds for all eigenvectors vα . In fact, this
question was originally posed for fixed p, but our result shows that the bound
conjectured in [10] holds even for p ≥ (logN)CN−1. It was recently proved in
[38] that ‖vα‖∞ ≤ (pN)−1/2 away from the spectral edge; some earlier results
were obtained in [11]. These results established only the lower bound pN on the
localization length; the complete delocalization (1.1) corresponds to the optimal
localization length of order N .

Our main result on the bulk and edge universalities will require a further condi-
tion

pN � N2/3.(1.2)

This and related issues will be discussed in the second paper [13].

2. Definitions and results. We begin this section by introducing a class of
N ×N sparse random matrices A ≡ AN . Here N is a large parameter. (Throughout
the following we shall often refrain from explicitly indicating N -dependence.)

The motivating example is the Erdős–Rényi matrix, or the adjacency matrix of
the Erdős–Rényi random graph. Its entries are independent (up to the constraint
that the matrix be symmetric), and equal to 1 with probability p and 0 with proba-
bility 1 − p. For our purposes it is convenient to replace p with the new parameter
q ≡ q(N), defined through p = q2/N . Moreover, we rescale the matrix in such a
way that its bulk eigenvalues typically lie in an interval of size of order one.

Thus, we are led to the following definition. Let A = (aij ) be the symmetric
N × N matrix whose entries aij are independent (up to the symmetry constraint
aij = aji ) and each element is distributed according to

aij = γ

q

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, with probability

q2

N
,

0, with probability 1 − q2

N
.

(2.1)

Here γ := (1 − q2/N)−1/2 is a scaling introduced for convenience. The parameter
q ≤ N1/2 expresses the sparseness of the matrix; it may depend on N . Since A

typically has q2N nonvanishing entries, we find that if q � N1/2, then the matrix
is sparse.
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We extract the mean of each matrix entry and write

A = H + γ q|e〉〈e|,
where the entries of H (given by hij = aij − γ q/N ) have mean zero, and we
defined the vector

e ≡ eN := 1√
N

(1, . . . ,1)T .(2.2)

(As above, we often neglect the subscript N of e; the precise value of this subscript
will always be clear from the context.) Here we use the notation |e〉〈e| to denote
the orthogonal projection onto e, that is, (|e〉〈e|)ij := N−1.

One readily finds that the matrix elements of H satisfy the moment bounds

Eh2
ij = 1

N
, E|hij |p ≤ 1

Nqp−2 ,(2.3)

where p ≥ 2.
More generally, we consider the following class of random matrices with non-

centered entries characterized by two parameters q and f , which may be N -
dependent. The parameter q expresses how singular the distribution of hij is; in
particular, it expresses the sparseness of A for the special case (2.1). The parameter
f determines the nonzero expectation value of the matrix elements.

Throughout the following we shall make use of a (possibly N -dependent) quan-
tity ξ ≡ ξN satisfying

1 + a0 ≤ ξ ≤ A0 log logN(2.4)

for some fixed positive constants a0 > 0 and A0 ≥ 10. The parameter ξ will be
used as an exponent in logarithmic corrections as well as probability estimates.

DEFINITION 2.1 (H ). Fix a parameter ξ ≡ ξN satisfying (2.4). We consider
N × N random matrices H = (hij ) whose entries are real and independent up to
the symmetry constraint hij = hji . We assume that the elements of H satisfy the
moment conditions

Ehij = 0, E|hij |2 = 1

N
, E|hij |p ≤ Cp

Nqp−2(2.5)

for 1 ≤ i, j ≤ N and 3 ≤ p ≤ (logN)A0 log logN , where C is a positive constant.
Here q ≡ q(N) satisfies

(logN)3ξ ≤ q ≤ CN1/2(2.6)

for some positive constant C.
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Note that the entries of H exhibit a slow decay of moments. The variance is of
order N−1, but higher moments decay at a rate proportional to inverse powers of
q and not N1/2. Thus, unlike for Wigner matrices, the entries of sparse matrices
satisfying Definition 2.1 do not have a natural scale. (The entries of a Wigner
matrix live on the scale N−1/2, which means that the high moments decay at a rate
proportional to inverse powers of N1/2. See Remark 2.5 below for a more precise
statement.)

DEFINITION 2.2 (A). Let H satisfy Definition 2.1. Define

A := H + f |e〉〈e|,(2.7)

where f ≡ f (N) is a deterministic number that satisfies

0 ≤ f ≤ NC(2.8)

for some constant C > 0.

REMARK 2.3. For definiteness, and bearing the Erdős–Rényi matrix in mind,
we restrict ourselves to real symmetric matrices satisfying Definition 2.2. How-
ever, our proof applies equally to complex Hermitian sparse matrices.

REMARK 2.4. To simplify the presentation, we assume that all matrix ele-
ments of H have identical variance 1/N . As in [22], Section 5, one may, however,
easily generalize this condition and require that the variances be bounded by C/N

and their column sums (hence, also the row sums) be equal to 1. Thus, one may,
for instance, consider Erdős–Rényi graphs in which a vertex cannot link to itself
(i.e., the diagonal elements of A vanish).

REMARK 2.5. In particular, we may take H to be a Wigner matrix whose
entries have subexponential decay,

P(N1/2|hij | ≥ x) ≤ C exp(−x1/θ )

for some positive constants θ and C. Indeed, in this case we get

Ehij = 0, E|hij |2 = 1

N
, E|hij |p ≤ C

(θp)θp

Np/2 (p ≥ 3).

Now we choose

q := N1/2(θ(logN)A0 log logN)−θ .

Since q−1 ≤ (logN)C log logNN−1/2, we find that all factors q−1 in error estimates
such as (2.16) and (2.17) below may be replaced with N−1/2 at the expense of
a larger exponent in the preceding logarithmic factors. In fact, using Lemma 3.2
below, it is easy to see that in this case all terms depending on q in estimates such
as (2.16) and (2.17) may dropped, as they are bounded by the other error terms. In
particular, Theorem 2.8 generalizes Theorem 2.1 of [23].
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We shall frequently have to deal with events of very high probability, for which
the following definition is useful. It is characterized by two positive parameters,
ξ and ν, where ξ is subject to (2.4).

DEFINITION 2.6 (High probability events). We say that an N -dependent event
	 holds with (ξ, ν)-high probability if

P(	c) ≤ e−ν(logN)ξ(2.9)

for N ≥ N0(ν, a0,A0).
Similarly, for a given event 	0, we say that 	 holds with (ξ, ν)-high probability

on 	0 if

P(	0 ∩ 	c) ≤ e−ν(logN)ξ

for N ≥ N0(ν, a0,A0).

REMARK 2.7. In the following we shall not keep track of the explicit value
of ν; in fact, we allow ν to decrease from one line to another without introducing a
new notation. It will be clear from the proof that such reductions of ν occur only at
a few, finitely many steps. Hence, all of our results will hold for ν ≤ ν0, where ν0
depends only on the constants C in Definition 2.1 and the parameter 
 in (2.10)
below. (In particular, ν is independent of ξ .)

We shall use C and c to denote generic positive constants which may only de-
pend on the constants in assumptions such as (2.4) and (2.5). Typically, C denotes
a large constant and c a small constant. Note that the fundamental large parameter
of our model is N , and the notation �,�,O(·), o(·) always refers to the limit
N → ∞. Here a � b means a = o(b). We write a ∼ b for C−1a ≤ b ≤ Ca.

We now list our results. We introduce the spectral parameter

z = E + iη,

where E ∈ R and η > 0. Let 
 ≥ 3 be a fixed but arbitrary constant and define the
domain

D := {z ∈ C : |E| ≤ 
,0 < η ≤ 3}.(2.10)

We define the density of the semicircle law

�sc(x) := 1

2π

√
[4 − x2]+,(2.11)

and, for Im z > 0, its Stieltjes transform

msc(z) :=
∫

R

�sc(x)

x − z
dx.(2.12)
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The Stieltjes transform msc(z) ≡ msc may also be characterized as the unique so-
lution of

msc + 1

z + msc
= 0(2.13)

satisfying Immsc(z) > 0 for Im z > 0. We define the resolvent

G(z) := (H − z)−1

as well as the Stieltjes transform of the empirical eigenvalue density

m(z) := 1

N
TrG(z).

For x ∈ R we define the distance κx to the spectral edge through

κx := ∣∣|x| − 2
∣∣.(2.14)

THEOREM 2.8 (Local semicircle law for H ). There are universal constants
C1,C2 > 0 such that the following holds. Suppose that H satisfies Definition 2.1.
Moreover, assume that

ξ = A0(1 + o(1))

2
log logN, q ≥ (logN)C1ξ .(2.15)

Then there is a constant ν > 0, depending on A0, 
 and the constants C in (2.5)
and (2.6), such that the following holds.

We have the local semicircle law: the event⋂
z∈D

{
|m(z) − msc(z)| ≤ (logN)C2ξ

(
min
{

1

q2√κE + η
,

1

q

}
+ 1

Nη

)}
(2.16)

holds with (ξ, ν)-high probability. Moreover, we have the following estimate on the
individual matrix elements of G. The event

⋂
z∈D

{
max

1≤i,j≤N
|Gij (z) − δijmsc(z)|

(2.17)

≤ (logN)C2ξ

(
1

q
+
√

Immsc(z)

Nη
+ 1

Nη

)}
holds with (ξ, ν)-high probability.

The results of Theorem 2.8 may be interpreted as follows. Consider first the
bulk, that is, κE ≥ c > 0. Then Theorem 2.8 states roughly that

|m(z) − msc(z)| � 1

q2 + 1

Nη
, |Gij (z) − δijmsc(z)| � 1

q
+ 1√

Nη
,(2.18)
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up to logarithmic factors. Since |msc(z)| ∼ 1, both estimates are stable in a sense
that they identify the leading order terms of m and Gii down to the optimal scale
η � N−1. Note that choosing η � N−1 in

Imm(z) = 1

Nη

∑
α

η2

(E − λα)2 + η2

allows one to resolve individual eigenvalues λα of H . Therefore, below the scale
η � N−1 the quantities m and Gii become strongly fluctuating and these fluctua-
tions are larger than the main term. In the regime η ≥ (logN)CξN−1 in which the
fluctuations are smaller than the main term, a spectral window of size η contains
at least (logN)Cξ eigenvalues, hence, an averaging takes place.

The factor 1/q on the right-hand side of the second inequality of (2.18) arises
from the strong fluctuations of the matrix entries hij , which take on values of size
q−1 with probability of order q2N−1. Indeed, it is apparent from the representa-
tions (3.13) and (3.23) that Gij = m2

schij + · · · , that is, Gij has a component that
fluctuates on the scale q−1. The improvement from q−1 to q−2 in the first inequal-
ity of (2.18) arises from an averaging in the summation m = N−1∑

i Gii . If the
random variables in the average were independent, one would expect the averag-
ing to yield an improvement of order N−1/2; however, in our case there are strong
dependencies, which result in the more modest gain of order q−1.

At the edge (κE = 0), the estimates (2.16) and (2.17) may be roughly stated as

|m(z) − msc(z)| � 1

q
+ 1

Nη
, |Gij (z) − δijmsc(z)| � 1

q
+ η1/4

√
Nη

+ 1

Nη
.

Now we formulate the local semicircle law for the matrix A given in Defini-
tion 2.2. Define the quantities

G̃(z) := (A − z)−1, m̃(z) := 1

N
Tr G̃(z).(2.19)

THEOREM 2.9 (Local semicircle law for A). There are universal constants
C1,C2 > 0 such that the following holds. Suppose that A satisfies Definition 2.2,
and that ξ and q satisfy (2.15). Then there is a constant ν > 0—depending on A0,

 and the constants C in (2.5), (2.6) and (2.8)—such that the following holds.

We have the local semicircle law: the event⋂
z∈D

{
|m̃(z) − msc(z)| ≤ (logN)C2ξ

(
min
{

1

q2√κE + η
,

1

q

}
+ 1

Nη

)}
(2.20)

holds with (ξ, ν)-high probability. Moreover, we have the following estimate on the
individual matrix elements of G̃. If the assumption (2.8) is strengthened to

0 ≤ f ≤ C0N
1/2(2.21)
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for some constant C0, then the event⋂
z∈D

{
max

1≤i,j≤N
|G̃ij (z) − δijmsc(z)|

(2.22)

≤ (logN)C2ξ

(
1

q
+
√

Immsc(z)

Nη
+ 1

Nη

)}
holds with (ξ, ν)-high probability, where ν also depends on C0.

Next, let λ1 ≤ · · · ≤ λN be the ordered family of eigenvalues of H , and let
u1, . . . ,uN denote the associated eigenvectors. Similarly, we denote the ordered
eigenvalues of A by μ1 ≤ · · · ≤ μN and the associated eigenvectors by v1, . . . ,vN .
We use the notation uα = (uα(i))Ni=1 and vα = (vα(i))Ni=1 for the vector compo-
nents. All eigenvectors are �2-normalized and have real components.

We state our main result about the local density of states of A. For E1 < E2
define the counting functions

Nsc(E1,E2) := N

∫ E2

E1

�sc(x)dx,

(2.23)
Ñ (E1,E2) := |{α :E1 < μα ≤ E2}|.

THEOREM 2.10 (Local density of states). Suppose that A satisfies Defini-
tion 2.2 and that ξ and q satisfy (2.15). Then there is a constant ν > 0—depending
on A0, 
 and the constants C in (2.5), (2.6) and (2.8)—as well as a constant C > 0
such that the following holds.

For any E1 and E2 satisfying E2 ≥ E1 + (logN)CξN−1 we have

Ñ (E1,E2)

= Nsc(E1,E2)(2.24)

×
[
1 + O

(
(logN)Cξ

(
1

N(E2 − E1)3/2 + 1

q2(E2 − E1)

))]
with (ξ, ν)-high probability.

Away from the spectral edge we have a stronger statement. Fix κ∗ > 0. Then,
for any E1 and E2 satisfying E2 ≥ E1 + (logN)CξN−1 as well as κE1 ≥ κ∗ and
κE2 ≥ κ∗, we have

Ñ (E1,E2) = Nsc(E1,E2)

[
1 + O

(
(logN)Cξ

(
1

N(E2 − E1)
+ 1

q2

))]
(2.25)

with (ξ, ν)-high probability, where the constant in O(·) depends on κ∗.

REMARK 2.11. Both results (2.24) and (2.25) are special cases of a more
general, uniform, estimate; see Proposition 8.2.
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In the recent work [38], the asymptotics of the local density of states was also
established, but only in much larger spectral windows, of size at least (Np)−1/10 =
q−1/5, and with a weaker error estimate.

Our next result concerns the integrated densities of states,

nsc(E) := 1

N
Nsc(−∞,E), ñ(E) := 1

N
Ñ (−∞,E).(2.26)

THEOREM 2.12 (Integrated density of states). Suppose that A satisfies Defini-
tion 2.2 and that ξ and q satisfy (2.15). Then there is a constant ν > 0—depending
on A0, 
 and the constants C in (2.5), (2.6) and (2.8)—as well as a constant C > 0
such that the event⋂

E∈[−
,
]

{
|̃n(E) − nsc(E)| ≤ (logN)Cξ

(
1

N
+ 1

q3 +
√

κE

q2

)}
(2.27)

holds with (ξ, ν)-high probability.

Next, we prove that the N − 1 first eigenvalues of A are close to their classical
locations predicted by the semicircle law. Denote by γα the classical location of
the αth eigenvalue, defined through

nsc(γα) = α

N
for α = 1, . . . ,N.(2.28)

The following theorem compares the locations of the eigenvalues μ1, . . . ,μN−1 to
their classical locations γ1, . . . , γN−1. It is well known that the largest eigenvalue
μN of the Erdős–Rényi matrix is much larger than γN . This holds for more gen-
eral sparse matrices as well; more precisely, if f ≥ 1 + c, then μN ≈ f + f −1 is
separated from μN−1 ≈ 2 by a gap of order one. The precise behavior of μN in
this regime is established in Theorem 6.2 below.

THEOREM 2.13 (Eigenvalue locations). Suppose that A satisfies Defini-
tion 2.2 and that ξ satisfies (2.15). Let φ be an exponent satisfying 0 < φ ≤ 1/2,
and set q = Nφ . Then there is a constant ν > 0—depending on A0, 
 and the
constants C in (2.5), (2.6) and (2.8)—as well as a constant C > 0 such that the
following holds.

We have with (ξ, ν)-high probability that

N−1∑
α=1

|μα − γα|2 ≤ (logN)Cξ (N1−4φ + N4/3−8φ).(2.29)

Moreover, for all α = 1, . . . ,N − 1 we have with (ξ, ν)-high probability that

|μα − γα| ≤ (logN)Cξ (N−2/3[α̂−1/3 + 1
(
α̂ ≤ (logN)Cξ (1 + N1−3φ)

)]
(2.30)

+ N2/3−4φα̂−2/3 + N−2φ),
where we abbreviated α̂ := min{α,N − α}.
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REMARK 2.14. Under the assumption φ ≥ 1/3, the estimate (2.30) simplifies
to

|μα − γα| ≤ (logN)Cξ (N−2/3α̂−1/3 + N−2φ),(2.31)

which holds with (ξ, ν)-high probability.

REMARK 2.15. Theorems 2.10, 2.12 and 2.13 also hold—with the same
proof—for the matrix H . More precisely, Theorem 2.10 holds with Ñ (E1,E2)

replaced with

N (E1,E2) := |{α :E1 < λα ≤ E2}|,
Theorem 2.12 holds with ñ(E) replaced with

n(E) := 1

N
N (−∞,E),

and Theorem 2.13 holds with μα replaced with λα .

Our final result shows that the eigenvectors of A are completely delocalized.

THEOREM 2.16 (Complete delocalization of eigenvectors). Suppose that A

satisfies Definition 2.2 and (2.21). Then there is a constant ν > 0—depending
on A0, 
 and the constants C in (2.5), (2.6) and (2.8)—such that the following
statements hold for any ξ satisfying (2.4).

We have with (ξ, ν)-high probability

max
α<N

‖vα‖∞ ≤ (logN)4ξ

√
N

.(2.32)

Moreover, we have with (ξ, ν)-high probability

‖vN − e‖2 = 1

f
+ O

(√√√√ 1

f 3 + (logN)ξ

f
√

N

)
.(2.33)

If additionally f ≤ C for some constant C, then we have with (ξ, ν)-high proba-
bility

‖vN‖∞ ≤ (logN)4ξ

√
N

.(2.34)

Finally, there exists positive constants C,C0 such that if f ≥ C0(logN)ξ , then we
have with (ξ, ν)-high probability

‖vN − e‖∞ ≤ C
(logN)ξ√

Nf
.(2.35)
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REMARK 2.17. If f does not grow with N , then the components vN(i) of the
largest eigenvector fluctuate, and we do not expect (2.35) to hold. However, a delo-
calization bound similar to (2.34) holds for all f . In (2.34) this bound was proved
for f ≤ C. In fact, a slight modification of our proof yields complete delocalization
for the values of f not covered by Theorem 2.16, that is, 1 � f ≤ C0(logN)ξ . We
claim that in this case we have with (ξ, ν)-high probability

‖vN‖∞ ≤ (logN)Cξ

√
N

.(2.36)

The required modifications are sketched at the end of Section 7.3 below.

REMARK 2.18. Similarly, if H satisfies Definition 2.1, all of its eigenvectors
are delocalized in the sense that

max
α

‖uα‖∞ ≤ (logN)4ξ

√
N

with (ξ, ν)-high probability. The proof is a straightforward application of (3.4)
below and the estimate (7.25) applied to Gjj .

In the recent work [38], a weaker upper bound of size (Np)−1/2 = q−1 was
established for the �∞-norm of the eigenvectors of A associated with eigenvalues
away from the spectral edge.

3. The weak local semicircle law for H . In this section we introduce and
prove a weak version of the local semicircle law for the matrix H . This result
is weaker than our final result for H , Theorem 2.8, but it will be used as an a
priori bound for the proof of Theorem 2.8. Moreover, Theorem 3.1 holds under
slightly weaker assumptions on ξ than Theorem 2.8, and is for this reason a more
suitable tool for proving eigenvector delocalization, Theorem 2.16; see Section 7.3
for details.

We shall prove Theorem 3.1 (the weak local semicircle law) for spectral param-
eters z in the set

DL := {z ∈ C : |E| ≤ 
, (logN)LN−1 ≤ η ≤ 3} ⊂ D,(3.1)

where the parameter L ≡ L(N) will always satisfy

L ≥ 8ξ.(3.2)

THEOREM 3.1 (Weak local semicircle law for H ). Let H satisfy Defini-
tion 2.1. Then there are constants ν > 0 and C > 0 such that the following state-
ments hold for any ξ satisfying (2.4) and L satisfying (3.2).

The events ⋂
z∈DL

{
max
i �=j

|Gij (z)| ≤ C

q
+ C(logN)2ξ

√
Nη

}
(3.3)
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and ⋂
z∈DL

{
max

i
|Gii(z) − m(z)| ≤ C(logN)ξ

q
+ C(logN)2ξ

√
Nη

}
(3.4)

hold with (ξ, ν)-high probability. Furthermore, we have the weak local semicircle
law: the event ⋂

z∈DL

{
|m(z) − msc(z)| ≤ C(logN)ξ√

q
+ C(logN)2ξ

(Nη)1/3

}
(3.5)

holds with (ξ, ν)-high probability.

Roughly, Theorem 3.1 states that

|Gij − δijm(z)| � 1

q
+ 1√

Nη
(3.6)

and

|m(z) − msc(z)| � 1√
q

+ 1

(Nη)1/3 .(3.7)

Comparing with the strong local semicircle law, Theorem 2.8, we note that the
error bound in (3.6) for Gij is already optimal in the bulk. However, unlike Theo-
rem 2.8, the quantity Gii is compared to m and not msc.

On the other hand, the estimate (3.7) is considerably weaker than the corre-
sponding bound in (2.18). The smaller power 1/3 in the factor (Nη)−1/3 reflects
the instability near the edge; it appears because we insist on having uniform bounds
up to the edge. If we were interested only in the bulk, it would be easy to repeat
the proof of Theorem 3.1 to obtain (Nηκ)−1/2, thus replacing the power 1/3 with
1/2. The price would be a coefficient which blows up at the edge.

As in Theorem 2.8, the estimates of Theorem 3.1 are stable down to the optimal
scale η � N−1, uniformly up to the edge. Thus, the difference between Theorems
2.8 and 3.1 lies only in the precision of the estimates.

In order to prove Theorem 3.1, we first collect some basic tools and notation.

3.1. Preliminaries. The following lemma collects some useful properties of
msc defined in (2.13).

LEMMA 3.2. For z = E + iη ∈ DL abbreviate κ ≡ κE . Then we have

|msc(z)| ∼ 1, |1 − msc(z)
2| ∼ √

κ + η.(3.8)

Moreover,

Immsc(z) ∼
⎧⎨⎩

√
κ + η, if |E| ≤ 2,
η√

κ + η
, if |E| ≥ 2.

Here the implicit constants in ∼ depend on 
 in (2.10).
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PROOF. The proof is an elementary calculation; see Lemma 4.2 in [21]. �

In order to streamline notation, we shall often omit the explicit dependence
of quantities on the spectral parameter z ∈ DL; thus, we write, for instance,
Gij (z) ≡ Gij . Define the z-dependent quantities

�o := max
i �=j

|Gij |, �d := max
i

|Gii − msc|,
(3.9)

� := |m − msc|, vi := Gii − msc.

DEFINITION 3.3. Let T ⊂ {1, . . . ,N}. Then we define H(T) as the (N −
|T|) × (N − |T|) minor of H obtained by removing all rows and columns of H

indexed by i ∈ T. Note that we keep the names of indices of H when defining
H(T).

More formally, for i ∈ {1, . . . ,N} we define the operation πi on the probability
space by

(πi(H))kl := 1(k �= i)1(l �= i)hkl.(3.10)

For T ⊂ {1, . . . ,N} we also write πT :=∏i∈T πi . Then we define

H(T) := ((πT(H))ij )i,j /∈T.

The quantities G(T)(z), λ
(T)
α , u(T)

α , etc. are defined in the obvious way using H(T).
Here α = 1, . . . , αmax, where αmax := N − |T|.

Moreover, we use the notation

(T)∑
i

:=
N∑

i=1
i /∈T

,

and abbreviate (i) = ({i}) as well as (Ti) = (T ∪ {i}).
We also set

m(T) := 1

N

(T)∑
i

G
(T)
ii .(3.11)

Note that we choose the normalization N−1 instead of the more natural (N −
|T|)−1 in (3.11); this is simply a convenient choice for later applications.

The next lemma collects the main identities of the resolvent matrix elements
G

(T)
ij . Its proof is elementary linear algebra; see, for example, [22].

LEMMA 3.4. For i, j �= k we have

Gij = G
(k)
ij + GikGkj

Gkk

.(3.12)
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For i �= j we have

Gij = −GiiG
(i)
jj (hij − Zij ), Gii = (hii − z − Zii)

−1,(3.13)

where we defined, for arbitrary i, j ∈ {1, . . . ,N},

Zij := hi · G(ij)hj =
(ij)∑
k,l

hikG
(ij)
kl hlj .(3.14)

Here hi denotes the vector given by the ith column of H . Note that in expressions
of the form (3.14) it is implied that the ith and j th entries of hi and hj have been
removed; we do not indicate this explicitly, as it is always clear from the context.

REMARK 3.5. Lemma 3.4 remains trivially valid for the minors H(T) of H .
For instance, (3.12) reads

G
(T)
ij = G

(Tk)
ij + G

(T)
ik G

(T)
kj

G
(T)
kk

for i, j, k /∈ T and i, j �= k.

DEFINITION 3.6. We denote by Ei the partial expectation with respect to the
variables hi = (hij )

N
j=1, and set IEiX := X − EiX.

We abbreviate

Zi := IEiZii = IEi

(i)∑
k,l

hikG
(i)
kl hli =

(i)∑
k,l

(
hikhli − 1

N
δkl

)
G

(i)
kl .(3.15)

The following trivial large deviation estimate provides a bound on the matrix
elements of H .

LEMMA 3.7. For C large enough we have with (ξ, ν)-high probability

|hij | ≤ C

q
.

PROOF. The claim follows by choosing p = ν(logN)ξ in (2.5) and applying
Markov’s inequality. �

We collect here the large deviation estimates for random variables whose mo-
ments decay slowly. Their proof is given in the Appendix.
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LEMMA 3.8. (i) Let (ai) be a family of centered and independent random
variables satisfying

E|ai |p ≤ Cp

Nγ qαp+β
(3.16)

for all 2 ≤ p ≤ (logN)A0 log logN , where α ≥ 0 and β,γ ∈ R. Then there is a ν > 0,
depending only on C in (3.16), such that for all ξ satisfying (2.4) we have with
(ξ, ν)-high probability∣∣∣∣∑

i

Aiai

∣∣∣∣≤ (logN)ξ
[

supi |Ai |
qα

+
(

1

Nγ qβ+2α

∑
i

|Ai |2
)1/2]

.(3.17)

(ii) Let a1, . . . , aN be centered and independent random variables satisfying

E|ai |p ≤ Cp

Nqp−2(3.18)

for 2 ≤ p ≤ (logN)A0 log logN . Then there is a ν > 0, depending only on C in
(3.18), such that for all ξ satisfying (2.4), and for any Ai ∈ C and Bij ∈ C, we
have with (ξ, ν)-high probability∣∣∣∣∣

N∑
i=1

Aiai

∣∣∣∣∣≤ (logN)ξ

[
maxi |Ai |

q
+
(

1

N

N∑
i=1

|Ai |2
)1/2]

,(3.19)

∣∣∣∣∣
N∑

i=1

āiBiiai −
N∑

i=1

σ 2
i Bii

∣∣∣∣∣≤ (logN)ξ
Bd

q
,(3.20)

∣∣∣∣ ∑
1≤i �=j≤N

āiBij aj

∣∣∣∣≤ (logN)2ξ

[
Bo

q
+
(

1

N2

∑
i �=j

|Bij |2
)1/2]

,(3.21)

where σ 2
i denotes the variance of ai and we abbreviated

Bd := max
i

|Bii |, Bo := max
i �=j

|Bij |.

(iii) Let a1, . . . , aN and b1, . . . , bN be independent random variables, each sat-
isfying (3.18). Then there is a ν > 0, depending only on C in (3.18), such that for
all ξ satisfying (2.4) and Bij ∈ C we have with (ξ, ν)-high probability∣∣∣∣∣

N∑
i,j=1

aiBij bj

∣∣∣∣∣≤ (logN)2ξ

[
Bd

q2 + Bo

q
+
(

1

N2

∑
i �=j

|Bij |2
)1/2]

.(3.22)

REMARK 3.9. Note that the estimates (3.19) and (3.20) are special cases of
(3.17). The right-hand side of the large deviation bound (3.17) consists of two
terms, which can be understood as follows. The first term gives the large deviation
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bound for the special case where Ai vanishes for all but one i; in this case it is
immediate that |Aiai | ≤ (logN)ξ |Ai |q−α with (ξ, ν)-high probability. The second
term is equal to the variance of

∑
i Aiai . In particular, (3.17) is optimal (up to

factors of logN ). The estimates (3.19)–(3.22) can be interpreted similarly. [Note
that the powers of q in the estimates (3.21)–(3.22) are not optimal; this is, however,
of no consequence for later applications.]

For a family F1, . . . ,FN we introduce the notation

[F ] := 1

N

N∑
i=1

Fi.

The following lemma contains the self-consistent resolvent equation on which
our proof relies.

LEMMA 3.10. We have the identity

Gii = 1

−z − msc − ([v] − ϒi)
,(3.23)

where

ϒi := hii − Zi + Ai

and

Ai := 1

N

∑
j

GijGji

Gii

.(3.24)

PROOF. The proof is a simple calculation using (3.13) and (3.12). �

3.2. Basic estimates on the event 	(z).

DEFINITION 3.11. For z ∈ DL introduce the event

	(z) := {�d(z) + �o(z) ≤ (logN)−ξ }(3.25)

and the control parameter

�(z) :=
√

�(z) + Immsc(z)

Nη
.(3.26)

Note that �(z) is a random variable. Moreover, on 	(z) we have �(z) ≤
C(logN)−4ξ by (3.2).
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Throughout the following we shall make use of the fundamental identity∑
j

|Gij |2 =∑
j

∑
α

ūα(i)uα(j)

λα − z

∑
β

uβ(i)ūβ(j)

λβ − z̄

(3.27)

=∑
α

|uα(i)|2
|λα − z|2 = 1

η
ImGii.

A similar identity holds for H(T). Using the lower bound |msc(z)| ≥ c from (3.8)
and the definition (3.25), we find

c ≤ |Gii(z)| ≤ C(3.28)

on 	(z). Using (3.12) repeatedly, we find that on 	(z) we have

c ≤ ∣∣G(T)
ii (z)

∣∣≤ C(3.29)

for |T| ≤ 10 (here 10 can be replaced with any fixed number). Similarly, we have
on 	(z) that

max
i �=j

∣∣G(T)
ij (z)

∣∣≤ C�o(z) ≤ C(logN)−ξ(3.30)

for |T| ≤ 10.

LEMMA 3.12. Fixing z = E+ iη ∈ DL, we have for any i and T ⊂ {1, . . . ,N}
satisfying i /∈ T and |T| ≤ 10 that

m(iT)(z) = m(T)(z) + O

(
1

Nη

)
(3.31)

holds in 	(z).

PROOF. We use (3.12) to write

1

N

(iT)∑
j

G
(iT)
jj = 1

N

(iT)∑
j

G
(T)
jj − 1

N

(iT)∑
j

G
(T)
j i G

(T)
ij

G
(T)
ii

= 1

N

(T)∑
j

G
(T)
jj − 1

N

(T)∑
j

G
(T)
j i G

(T)
ij

G
(T)
ii

.

Therefore,

1

N

(iT)∑
j

G
(iT)
jj = 1

N

(T)∑
j

G
(T)
jj + O

(
1

N

(T)∑
j

∣∣G(T)
ij

∣∣2)

= 1

N

(T)∑
j

G
(T)
jj + O

(
1

Nη
ImG

(T)
ii

)
.

The claim now follows from (3.29). �
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LEMMA 3.13. For fixed z ∈ DL we have on 	(z) with (ξ, ν)-high probability

�o(z) ≤ C

(
1

q
+ (logN)2ξ�(z)

)
,(3.32)

max
i

|Zi(z)| ≤ C

(
(logN)ξ

q
+ (logN)2ξ�(z)

)
.(3.33)

PROOF. We start with (3.32). Let i �= j . Using (3.13), (3.29), (3.30) and (3.12)
we get on 	(z) with (ξ, ν)-high probability

|Gij | ≤ C(|hij | + |Zij |) ≤ C

q
+ C

∣∣∣∣∣
(ij)∑
k,l

hikG
(ij)
kl hlj

∣∣∣∣∣
(3.34)

≤ C

q
+ C(logN)2ξ �o

q
+ C(logN)2ξ

(
1

N2

(ij)∑
k,l

∣∣G(ij)
kl

∣∣2)1/2

,

where the last step follows using (3.22) and (2.6). Using (3.12) repeatedly and
recalling (3.29), we find on 	(z) that G

(ij)
kk = Gkk + O(�2

o). Thus, we get on
	(z), by (3.27),

1

N2

(ij)∑
k,l

∣∣G(ij)
kl

∣∣2 = 1

N2η

(ij)∑
k

ImG
(ij)
kk ≤ Imm

Nη
+ C�2

o

Nη
.(3.35)

Taking the maximum over i �= j in (3.34) therefore yields, on 	(z) with (ξ, ν)-
high probability,

�o ≤ C

q
+ o(1)�o + C(logN)2ξ

√
Imm

Nη
,

where we used (2.6) and the fact that Nη ≥ (logN)8ξ by (3.2). This concludes the
proof of (3.32).

In order to prove (3.33), we write, recalling the definition (3.15),

Zi =
(i)∑
k

(
|hkk|2 − 1

N

)
G

(i)
kk +

(i)∑
k �=l

hikG
(i)
kl hli .

Using (3.20), (3.21) and (3.29), we therefore get, on 	(z) with (ξ, ν)-high proba-
bility,

|Zi | ≤ C(logN)ξ

q
+ C(logN)2ξ

[
�o

q
+
(

1

N2

(i)∑
k,l

∣∣G(i)
kl

∣∣2)1/2]

≤ C(logN)ξ

q
+ C(logN)2ξ�o√

Nη
+ C(logN)2ξ

√
Imm

Nη
,
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similarly to above. Invoking (3.32) and recalling (3.2) finishes the proof. �

We may now estimate �d in terms of �.

LEMMA 3.14. Fix z = E + iη ∈ DL. On 	(z) we have with (ξ, ν)-high prob-
ability

max
i

|Gii(z) − m(z)| ≤ C

(
(logN)ξ

q
+ (logN)2ξ�(z)

)
.(3.36)

PROOF. We use the resolvent equation (3.23). On 	(z) we have |Ai | ≤ C�2
o

and |hii | ≤ C/q with (ξ, ν)-high probability by Lemma 3.7. Thus, Lemma 3.13
yields on 	(z) with (ξ, ν)-high probability

|ϒi | ≤ C

(
(logN)ξ

q
+ (logN)2ξ�(z)

)
� 1.(3.37)

From (3.23) we therefore get on 	(z) with (ξ, ν)-high probability

|Gii − Gjj | = |Gii ||Gjj ||ϒi − ϒj | ≤ C

(
(logN)ξ

q
+ (logN)2ξ�(z)

)
.(3.38)

Since m = 1
N

∑
j Gjj , the proof is complete. �

Note that (3.36) implies

�d(z) ≤ �(z) + C

(
(logN)ξ

q
+ (logN)2ξ�(z)

)
(3.39)

on 	(z) with (ξ, ν)-high probability.

3.3. Stability of the self-consistent equation of [v] on 	(z). We now expand
the self-consistent equation into a form in which the stability of the averaged quan-
tity [v] may be analyzed. Recall the definition vi := Gii − msc.

LEMMA 3.15. Fix z ∈ DL. Then we have on 	(z) with (ξ, ν)-high probability

(1 − m2
sc)[v] = m3

sc[v]2 + m2
sc[Z]

(3.40)

+ O

(
(logN)2ξ+1

q2 + (logN)4ξ+1�2 + �2

logN

)
.

PROOF. Recall that on 	(z) we have vi = o(1). Moreover, (2.13) and (3.8)
imply that |msc(z)+z| = |msc(z)|−1 ≥ c for z ∈ DL. With (3.37) we may therefore
expand (3.23) on 	(z) up to second order to get, with (ξ, ν)-high probability,

vi = m2
sc([v] − ϒi) + m3

sc([v] − ϒi)
2 + O([v] − ϒi)

3.(3.41)
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Averaging over i in (3.41) yields with (ξ, ν)-high probability

(1 − m2
sc)[v] = −m2

sc[ϒ] + m3
sc[v]2 − 2m3

sc[v][ϒ] + m3
sc[ϒ2]

+ O
(
[v] + max

i
|ϒi |
)3

.

Recall the definition (3.24) of Ai . Using (3.19) and (3.29), we find on 	(z) with
(ξ, ν)-high probability

[ϒ] = 1

N

∑
i

hii − [Z] + [A] = −[Z] + O

(
(logN)ξ

N
+ 1

N2

∑
i,j

|Gij |2
)

= −[Z] + O

(
(logN)ξ

N
+ �2

)
,

where in the last step we used (3.27). Moreover, recalling that |[v]| = �, we get
by Young’s inequality

−2m3
sc[v][ϒ] = O

(
�2

logN
+ (logN)|[ϒ]|2

)
.

Recalling (3.37), we therefore have

(1 − m2
sc)[v]

= m3
sc[v]2 + m2

sc[Z]

+ O

(
(logN)ξ

N
+ �2 + (logN)|[ϒ]|2 + max

i
|ϒi |2 + �3 + �2

logN

)

= m3
sc[v]2 + m2

sc[Z] + O

(
(logN)2ξ+1

q2 + (logN)4ξ+1�2 + �2

logN

)
,

where we used that on 	(z) we have � ≤ �d ≤ (logN)−ξ ≤ (logN)−1. �

Note that, together with (3.33), Lemma 3.15 implies a weak self-consistent
equation on [v]:

(1 − m2
sc)[v] = m3

sc[v]2 + O

(
�2

logN

)
+ O

(
(logN)ξ

q
+ (logN)2ξ�

)
(3.42)

on 	(z) with (ξ, ν)-high probability. Here we used (2.6) and (3.2). For the proof
of the weak semicircle law, Theorem 3.1, we shall only use the weaker form (3.42)
of the self-consistent equation.

3.4. Initial estimates for large η. In order to get the continuity argument of
Section 3.6 started, we need some initial estimates on �d + �o for large η. In
other words, we need to prove that 	(E + iη) is an event of high probability for
η ∼ 1.
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LEMMA 3.16. Let η ≥ 2. Then for z = E + iη ∈ DL we have

�d(z) + �o(z) ≤ C(logN)ξ

q
+ C(logN)2ξ

√
N

≤ C(logN)−2ξ

with (ξ, ν)-high probability.

PROOF. Fix z = E + iη ∈ DL with η ≥ 2. We shall repeatedly make use of the
trivial estimates ∣∣G(T)

ij

∣∣≤ 1

η
,

∣∣m(T)
∣∣≤ 1

η
, |msc| ≤ 1

η
,(3.43)

where T ⊂ {1, . . . ,N} is arbitrary. These estimates follow immediately from the
definitions of G(T) and msc.

We begin by estimating �o. For i �= j we get, following the calculation in (3.34)
and recalling (3.27), with (ξ, ν)-high probability,

|Gij | ≤ C

q
+ o(1)�o + C(logN)2ξ

√
Imm(ij)

Nη
≤ C

q
+ o(1)�o + C(logN)2ξ

√
N

.

Taking the maximum over i �= j yields with (ξ, ν)-high probability

�o ≤ C

q
+ C(logN)2ξ

√
N

.

What remains is an estimate on �d . We begin by estimating with (ξ, ν)-high
probability

|ϒi | ≤ C

q
+ |Zi | + |Ai |.

In order to estimate |Ai |, we observe that (3.13) implies

Gij

Gii

= −G
(i)
jj (hij − Zij ) (i �= j).

Therefore, we have with (ξ, ν)-high probability

|Ai | ≤ 1

N
|Gii | + 1

N

(i)∑
j

∣∣G(i)
jj

∣∣|Gji |(|hij | + |Zij |)
(3.44)

≤ C

N
+ C�o

(
1

q
+ sup

i �=j

|Zij |
)

≤ C

q
,

where we used that with (ξ, ν)-high probability

|Zij | ≤ (logN)2ξ

[
C

q2 + �o

q
+ C√

N

]
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as follows from (3.22) and (3.27). Similarly, from (3.15) and using (3.20) and
(3.21), we find with (ξ, ν)-high probability

|Zi | ≤ C(logN)ξ

q
+ C(logN)2ξ

√
N

.

Thus we have proved that with (ξ, ν)-high probability |ϒi | ≤ C(logN)ξq−1 +
C(logN)2ξN−1/2.

Next, using (2.13), we write the self-consistent equation (3.23) in the form

vi = [v] − ϒi

(z + msc + [v] − ϒi)(z + msc)
.(3.45)

The denominator of (3.45) is with (ξ, ν)-high probability larger in absolute value
than (

2 − 1 − O
(
(logN)ξq−1 + (logN)2ξN−1/2))2 ≥ 3/2,

since |z + msc| = |msc|−1 ≥ 2 and |[v]| ≤ 1 by (3.43). Thus,

|vi | ≤ �d + O((logN)ξq−1 + (logN)2ξN−1/2)

3/2
,

which yields, after taking the maximum over i,

�d ≤ �d + O((logN)ξq−1 + (logN)2ξN−1/2)

3/2
.

This completes the estimate of �d , and hence the proof. �

3.5. Dichotomy argument for �. The following dichotomy argument serves
as the basis for the continuity argument of Section 3.6.

We introduce the control parameters

α :=
∣∣∣∣1 − m2

sc

m3
sc

∣∣∣∣, β := (logN)ξ√
q

+ (logN)4ξ/3

(Nη)1/3 ,(3.46)

where α = α(z) and β = β(z) depend on the spectral parameter z. For any z ∈ DL

we have the bound β ≤ (logN)−ξ .
From Lemma 3.2 it also follows that there is a constant constant K ≥ 1, de-

pending only on 
, such that

1

K

√
κ + η ≤ α(z) ≤ K

√
κ + η(3.47)

for any z ∈ DL.
We shall fix E and vary η from 2 down to (logN)LN−1. Since

√
κ + η is in-

creasing and β(E + iη) decreasing in η, we find that, for any U > 1, the equa-
tion

√
κ + η = 2U2Kβ(E + iη) has a unique solution η, which we denote by
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η̃ = η̃(U,E) (recall that κ = ||E| − 2| is independent of η). Moreover, it is easy to
see that for any fixed U we have

η̃ � 1.(3.48)

LEMMA 3.17 (Dichotomy). There exists a constant U0 such that, for any fixed
U ≥ U0, there exists a constant C1(U), depending only on U , such that the follow-
ing estimates hold for any z = E + iη ∈ DL:

�(z) ≤ Uβ(z) or �(z) ≥ α(z)

U
if η ≥ η̃(U,E),(3.49)

�(z) ≤ C1(U)β(z) if η < η̃(U,E)(3.50)

on 	(z) with (ξ, ν)-high probability and for sufficiently large N .

PROOF. Fix z = E + iη ∈ DL. From (3.42) and Lemma 3.2 we find

1 − m2
sc

m3
sc

[v] = [v]2 + O

(
�2

logN

)
+ O

(
(logN)ξ

q
+
√

β3� + β3α

)
with (ξ, ν)-high probability. The third term on the right-hand side is bounded by
C∗(β� + αβ + β2) for some constant C∗ ≥ 1. We set U0 := 9(C∗ + 1). We con-
clude that in 	(z) we have with (ξ, ν)-high probability∣∣∣∣1 − m2

sc

m3
sc

[v] − [v]2
∣∣∣∣≤ O

(
�2

logN

)
+ C∗(β� + αβ + β2).(3.51)

Depending on the size of β relative to α, which is determined by z, we shall
estimate either [v] or [v]2 using (3.51). This gives rise to the two cases in Lem-
ma 3.17.

Case 1: η ≥ η̃. From the definition of η̃ and C∗ we find that

β ≤ α

2U2 ≤ α

2C∗ ≤ α.(3.52)

Recalling that � = |[v]|, we therefore obtain from (3.51) with (ξ, ν)-high proba-
bility

α� ≤ 2�2 + C∗(β� + αβ + β2) ≤ 2�2 + α�

2
+ 2C∗αβ,

which gives

α� ≤ 4�2 + 4C∗αβ.

Thus, either α�/2 ≤ 4�2 which implies � ≥ α/8 ≥ α/U , or α�/2 ≤ 4C∗αβ

which implies � ≤ 8C∗β ≤ Uβ . This proves (3.49).
Case 2: η < η̃. In this case the definition of η̃ yields α ≤ 2U2K2β . We express

|[v]|2 = �2 from (3.51) and we get

�2 ≤ 2α� + 2C∗(β� + αβ + β2) ≤ C ′β� + C′β2(3.53)

for some constant C′ depending on U . Now (3.50) is an immediate consequence.
�
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3.6. Continuity argument: Conclusion of the proof of Theorem 3.1. We com-
plete the proof of Theorem 3.1 using a continuity argument in η to go from η = 2
down to η = N−1(logN)L. We focus first on proving (3.5). We use Lemma 3.16
for the initial estimate, and the dichotomy in Lemma 3.17 to propagate a strong
estimate on � to smaller values of η.

Choose a decreasing finite sequence ηk , k = 1,2, . . . , k0, satisfying k0 ≤ CN8,
|ηk − ηk+1| ≤ N−8, η1 = 2, and ηk0 = N−1(logN)L. We fix E ∈ [−
,
] and set
zk := E + iηk . Throughout this section we fix a U ≥ U0 in Lemma 3.17, and recall
the definition of η̃(U,E) from Section 3.5.

Consider first z1. It is easy to see that, for large enough N , we have η1 ≥
η̃(U,E), for any E ∈ [−
,
]. Therefore, Lemmas 3.16 and 3.17 imply that both
	(z1) and

�(z1) ≤ Uβ(z1)

hold with (ξ, ν)-high probability. This estimate takes care of the initial point η1.
The next lemma extends this result to all k ≤ k0.

LEMMA 3.18. Define the event

	k := 	(zk) ∩ {�(zk) ≤ C(k)(U)β(zk)
}
,

where

C(k)(U) :=
{

U, if ηk ≥ η̃(U,E),
C1(U), if ηk < η̃(U,E).

Then

P(	c
k) ≤ 2ke−ν(logN)ξ .(3.54)

PROOF. We proceed by induction on k. The case k = 1 was just proved. Let
us therefore assume that (3.54) holds for k. We need to estimate

P(	c
k+1) ≤ P

(
	k ∩ 	(zk+1) ∩ 	c

k+1
)+ P

(
	k ∩ (	(zk+1))

c)+ P(	c
k)

(3.55)
= B + A + P(	c

k),

where we defined

A := P[	k ∩ {�d(zk+1) + �o(zk+1) > (logN)−ξ }],
B := P

[
	k ∩ 	(zk+1) ∩ {�(zk+1) > C(k+1)(U)β(zk+1)

}]
.

We begin by estimating A. For any i, j , we have

|Gij (zk+1) − Gij (zk)| ≤ |zk+1 − zk| sup
z∈DL

∣∣∣∣∂Gij (z)

∂z

∣∣∣∣
(3.56)

≤ N−8 sup
z∈DL

1

(Im z)2 ≤ N−6.
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Therefore, by (3.32) and (3.39), we have on 	k with (ξ, ν)-high probability

�d(zk+1) + �o(zk+1) ≤ �d(zk) + �o(zk) + 2N−6

≤ C

(
(logN)ξ

q
+ (logN)2ξ�(zk)

)
+ �(zk)

≤ Cβ(zk) � (logN)−ξ .

Thus, we find that A ≤ e−ν(logN)ξ .
Next, we estimate B . Suppose first that ηk ≥ η̃(U,E). Then, similarly to (3.56),

we find |�(zk+1) − �(zk)| ≤ N−6. Thus, we find on 	k with (ξ, ν)-high proba-
bility

�(zk+1) ≤ �(zk) + N−6 ≤ Uβ(zk) + N−6 ≤ 3U

2
β(zk+1).(3.57)

Suppose now that ηk+1 ≥ η̃(U,E). Then from (3.57) and (3.52) we find �(zk+1) <
α(zk+1)

U
. Now the dichotomy of (3.49) yields on 	k ∩ 	(zk+1) with (ξ, ν)-high

probability that �(zk+1) ≤ Uβ(zk+1). On the other hand, if ηk+1 < η̃(U,E), then
(3.57) immediately implies �(zk+1) ≤ C1(U)β(zk+1). This concludes the proof
of B ≤ e−ν(logN)ξ if ηk ≥ η̃(U,E).

Finally, suppose that ηk < η̃(U,E). Thus, we also have ηk+1 < η̃(U,E). In
this case we immediately get from (3.50) on 	(zk+1) with (ξ, ν)-high probability
�(zk+1) ≤ C1(U)β(xk+1).

We have therefore proved, for all k, that P(	c
k+1) ≤ 2e−ν(logN)ξ + P(	c

k), and
the claim follows. �

In order to complete the proof of Theorem 3.1, we invoke the following sim-
ple lattice argument which strengthens the result of Lemma 3.18 to a statement
uniform in z ∈ DL. The main ingredient is the Lipschitz continuity of the map
z �→ Gij (z), with a Lipschitz constant bounded by η−2 ≤ N2.

COROLLARY 3.19. There is a constant C such that

P

[ ⋃
z∈DL

(	(z))c
]

+ P

[ ⋃
z∈DL

{�(z) > Cβ(z)}
]

≤ e−ν(logN)ξ .(3.58)

PROOF. Take a lattice L ⊂ DL such that |L| ≤ CN6 and for any z ∈ DL there
is a z̃ ∈ L satisfying |z − z̃| ≤ N−3. From the definition of G it is easy to see that
for z, z̃ ∈ DL

|Gij (z) − Gij (z̃)| ≤ η−2|z − z̃| ≤ 1

N
.(3.59)
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The same bound holds for |m(z) − m(z̃)|. Moreover, Lemma 3.18 immediately
yields

P

[⋂
z̃∈L

{
�(z̃) ≤ C

2
β(z̃)

}]
≥ 1 − e−ν(logN)ξ(3.60)

for some C large enough and some ν > 0. From (3.59), (3.60) and N−1 � β(z)

we get

P

[ ⋃
z∈DL

{�(z) > Cβ(z)}
]

≤ e−ν(logN)ξ .

The first term of (3.58) is estimated similarly. �

We have proved (3.5). In order to prove (3.3), we note that (3.5), (3.32) and
(3.58) imply

�o(z) ≤ C

q
+ C(logN)2ξ

√
Nη

with (ξ, ν)-high probability. Now a lattice argument analogous to Corollary 3.19
yields (3.3). The diagonal estimate (3.4) follows similarly using (3.36). This con-
cludes the proof of Theorem 3.1.

4. Proof of Theorem 2.8. In the previous section we proved Theorem 3.1,
which is weaker than the main result Theorem 2.8 (strong local semicircle law),
but will be used as an a priori bound in the proof of Theorem 2.8. The key ingre-
dient that allows us to strengthen Theorem 3.1 to Theorem 2.8 is the following
lemma, which shows that [Z], the average of the Zi’s, is much smaller than that of
a typical Zi . (Notice that in the proof of Theorem 3.1, to arrive at (3.42), [Z] was
estimated by the same quantity as each individual Zi .) This lemma is analogous to
Lemma 5.2 in [21] and Corollary 4.2 in [23], but we will present a new proof (in
Section 5.3), which admits sparse matrix entries and effectively tracks the depen-
dence of the exponent p. Our new proof is based on an abstract decoupling result,
Theorem 5.6 below, which is useful in other contexts as well, such as for proving
Proposition 7.11 below.

LEMMA 4.1. Recall the notation [Z] = 1
N

∑
i Zi . Suppose that ξ satisfies

(2.4), q ≥ (logN)5ξ and that there exists D̃ ⊂ DL with L ≥ 14ξ such that we
have with (ξ, ν)-high probability

�(z) ≤ γ (z) for z ∈ D̃,(4.1)
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where γ is a deterministic function satisfying γ (z) ≤ (logN)−ξ . Then we have
with (ξ − 2, ν)-high probability

|[Z](z)| ≤ (logN)14ξ

(
1

q2 + 1

(Nη)2 + (logN)4ξ Immsc(z) + γ (z)

Nη

)
(4.2)

for z ∈ D̃.

In particular, by (3.40), we have with (ξ − 2, ν)-high probability∣∣∣∣1 − m2
sc

m3
sc

[v] − [v]2
∣∣∣∣

(4.3)

≤ C
�2

logN
+ C(logN)14ξ

(
1

q2 + 1

(Nη)2 + (logN)4ξ Immsc + γ

Nη

)
for any value of the spectral parameter z ∈ D̃.

The proof of Lemma 4.1 is given in Section 5. In this section we use it to prove
Theorem 2.8 and to derive an estimate on ‖H‖ (Lemma 4.4).

The basic idea behind the proof of Theorem 2.8 using Lemma 4.1 is to iterate
(4.2) in order to obtain successively better estimates for �. Each step of the itera-
tion improves the power 1 − τ of the control parameter (q−1 + (Nη)−1)1−τ . The
iteration is started with the weak local semicircle law, Theorem 3.1, which yields
1 − τ = 1/3. At each step of the iteration, τ is halved at the expense of reduc-
ing the parameter ξ to ξ − 2, thus reducing the probability on which the estimate
holds. This iteration procedure is repeated an order log logN times, which allows
us effectively to reach τ = 0.

The iteration step is based on the following lemma, which is entirely determin-
istic.

LEMMA 4.2. Let 1 ≤ ξ1 ≤ ξ2 and q > 1. Let 0 < τ < 1 and L > 1. Suppose
that there is a number γ (z) satisfying

γ (z) ≤ (logN)19ξ2

(
1

q
+ 1

Nη

)1−τ

for z ∈ DL(4.4)

such that (4.1) holds with D̃ := DL. We also assume that∣∣∣∣1 − m2
sc

m3
sc

[v] − [v]2
∣∣∣∣

≤ C
�2

logN
+ C(logN)14ξ1

(
1

q2 + 1

(Nη)2 + (logN)4ξ1
α + γ

Nη

)
(4.5)

for z ∈ DL,
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where α was defined in (3.46). Finally, we assume that if η ∼ 1, then

�(z) � 1.(4.6)

Then we have

�(z) ≤ (logN)19ξ2

(
1

q
+ 1

Nη

)1−τ/2

(4.7)

for z ∈ DL and large enough N .

PROOF. The proof is based on a dichotomy argument. Define

α0(z) := (logN)(18+3/4)ξ2

(
1

q
+ 1

Nη

)1−τ/2

.(4.8)

We consider two cases.
Case 1: α ≤ 10α0. Using the estimate (4.4), we find

1

q2 + 1

(Nη)2 + (logN)4ξ1
γ

Nη
≤ 2(logN)23ξ2

(
1

q
+ 1

Nη

)2−τ

.(4.9)

Now in (4.5) we may absorb the term �2/ logN into the term |[v]|2 on the left-
hand side, at the expense of a constant 2. Then we complete the square on the
left-hand side and take the square root of the resulting equation; this yields

� ≤ 4α + C(logN)37ξ2/2
(

1

q
+ 1

Nη

)1−τ/2

+ C(logN)9ξ1

√
α

Nη
,(4.10)

where we used (4.9). Now (4.7) follows from (4.10).
Case 2: α ≥ 10α0. Let us assume that � ≤ α/2. Then in (4.5) the terms [v]2 and

�2 can be absorbed into the term α|[v]|, so that we get

� ≤ C
(logN)14ξ1

α

(
1

q
+ 1

Nη

)2

+ C(logN)18ξ1
γ

Nηα
(4.11)

+ C(logN)18ξ1
1

Nη
.

By the definitions of γ and α0, we have

C(logN)18ξ1
γ

Nηα
≤ α0

(logN)1/4 ≤ 10α

(logN)1/4(4.12)

and the first term in the right-hand side of (4.11) is bounded by α/ logN thanks to
(4.8). The last term can be estimated similarly. Hence, (4.11) implies that � ≤ α/4
provided that � ≤ α/2.

In other words, if α ≥ 10α0, then either � > α/2 or � ≤ α/4. Using the conti-
nuity of �(z) and α = α(z) in η = Im z, and the assumption

�(z) � 1 = O(α)
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for η ∼ 1, we get � ≤ α/4 on the whole DL. Together with (4.11), we obtain (4.7).
�

PROOF OF THEOREM 2.8. The main work is to prove Theorem 2.8 for spectral
parameters z ∈ DL, where

L := 120ξ.(4.13)

Once this is done, the extension to all z ∈ D is relatively straightforward, and is
given at the end of the proof. Recall the definitions (3.26) of � and (3.25) of 	(z).
It is clear that if D is replaced everywhere by DL, then (2.17) follows from (2.16),
(3.32) and (3.36). Therefore, we only need to prove (2.16).

We begin by introducing

ξ̃ := 2(log logN/ log 2) + ξ.(4.14)

By the assumptions (2.15) and (4.13), we have ξ̃ ≤ 3ξ/2 ≤ A0 log logN , L ≥ 60ξ̃ ,
and q ≥ (logN)60ξ̃ . To prove (2.16) with D replaced by DL, it therefore suffices
to establish⋂

z∈DL

{
|m(z) − msc(z)| ≤ (logN)20ξ̃

(
min
{
(logN)20ξ̃

√
κE + η

1

q2 ,
1

q

}
+ 1

Nη

)}
(4.15)

with (ξ, ν)-high probability.
The weak local semicircle law, Theorem 3.1 with ξ̃ replacing ξ , yields

� ≤ (logN)2ξ̃

(
1

q
+ 1

Nη

)1/3

(4.16)

≤ (logN)19ξ̃

(
1

q
+ 1

Nη

)1−2/3

for z ∈ DL

with (̃ξ , ν)-high probability. Thus, (4.1) holds with

γ (z) := (logN)19ξ̃

(
1

q
+ 1

Nη

)1/3

.(4.17)

With L ≥ 60ξ̃ and q ≥ (logN)60ξ̃ , we also have γ ≤ (logN)−ξ̃ . Thus, Lemma 4.1
implies that, with ξ̃ replacing ξ and D̃ = DL, the statement∣∣∣∣1 − m2

sc

m3
sc

[v] − [v]2
∣∣∣∣

≤ C
�2

logN
+ C(logN)14ξ̃

(
1

q2 + 1

(Nη)2 + (logN)4ξ̃ Immsc + γ

Nη

)
(4.18)

for z ∈ DL
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holds with (̃ξ − 2, ν)-high probability. This implies (4.5), with the choice ξ1 = ξ̃

in (4.5), since Immsc ≤ Cα. Moreover, γ satisfies (4.4) with ξ2 = ξ̃ and τ = 2/3.
We also find that � satisfies (4.6), since � ≤ γ ≤ (logN)−ξ̃ [see (4.16)]. We may
therefore apply Lemma 4.2 with ξ1 = ξ2 = ξ̃ to get that

� ≤ (logN)19ξ̃

(
1

q
+ 1

Nη

)1−1/3

for z ∈ DL(4.19)

holds with (̃ξ − 2, ν)-high probability. We now repeat this process M times, each
iteration yielding a stronger bound on � which holds with a smaller probability.
After M iterations we get that

� ≤ (logN)19ξ̃

(
1

q
+ 1

Nη

)1−2(1/2)M/3

for z ∈ DL(4.20)

holds with (̃ξ − 2M,ν)-high probability.
To clarify the iteration, we spell out the details of the second step. We start from

(4.19) and define γ as the right-hand side of (4.19),

γ (z) := (logN)19ξ̃

(
1

q
+ 1

Nη

)1−1/3

.(4.21)

Thus, Lemma 4.1, with ξ̃ − 2 replacing ξ , implies that∣∣∣∣1 − m2
sc

m3
sc

[v] − [v]2
∣∣∣∣

≤ C
�2

logN
(4.22)

+ C(logN)14(̃ξ−2)

(
1

q2 + 1

(Nη)2 + (logN)4(̃ξ−2) Immsc + γ

Nη

)
for z ∈ DL

holds with (̃ξ − 4, ν)-high probability. We now apply Lemma 4.2 with ξ1 = ξ̃ − 2,
ξ2 = ξ̃ and τ = 1/3. [Similarly, in the kth step we set ξ1 = ξ̃ − 2(k − 1), ξ2 = ξ̃ ,
and τ = (2/3)(1/2)k−1.] This shows that

� ≤ (logN)19ξ̃

(
1

q
+ 1

Nη

)1−1/6

for z ∈ DL(4.23)

holds with (̃ξ − 4, ν)-high probability. This is (4.20) for M = 2.
Now we return to (4.20) and choose M := [log logN/ log 2] − 1 (where [·] de-

notes the integer part). Using q−1 + (Nη)−1 ≥ cN−1/2 [by (2.6)], we get(
1

q
+ 1

Nη

)−2(1/2)M/3

≤ C ≤ (logN)ξ̃/2.
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Thus,

� ≤ (logN)39ξ̃ /2
(

1

q
+ 1

Nη

)
for z ∈ DL(4.24)

holds with (ξ +2, ν)-high probability. Recalling (3.47), we find that (4.24) implies
(4.15), unless

(logN)−39ξ̃ /2α ≥ 1

q
≥ 1

Nη
.(4.25)

Let us therefore assume that (4.25) holds. Then it remains to prove that with
(ξ, ν)-high probability

� ≤ (logN)40ξ̃ 1

αq2 + (logN)20ξ̃ 1

Nη
for z ∈ DL.(4.26)

Defining γ as the right-hand side of (4.24), we use Lemma 4.1, with ξ + 2 replac-
ing ξ , to get∣∣∣∣1 − m2

sc

m3
sc

[v] − [v]2
∣∣∣∣≤ C

�2

logN
+ C(logN)18ξ̃

(
1

q2 + α

Nη

)
(4.27)

with (ξ, ν)-high probability, where we used (4.25) and |Immsc(z)| ≤ Cα(z). We
can estimate the term [v]2 by (4.24) and (4.25), so that

α� = α|[v]| ≤ C(logN)39ξ̃ 1

q2 + C(logN)18ξ̃ α

Nη
.(4.28)

This yields (4.26) and hence completes the proof of (2.16) with D replaced
with DL. (Recall the simple lattice argument of Corollary 3.19.)

What remains is to extend (2.16) and (2.17) from z ∈ DL to z ∈ D. Let us
therefore assume that z = E + iη ∈ D with 0 < η ≤ η̃ := (logN)LN−1. For any
i, j = 1, . . . ,N we get the bound

|Gij (E + iη)| =
∣∣∣∣∑

α

ūα(i)uα(j)

λα − z

∣∣∣∣≤ max
l

∑
α

|uα(l)|2
|λα − z| .

We define the dyadic decomposition of the eigenvalues

U0 := {α : |λα − E| < η}, Uk := {α : 2k−1η ≤ |λα − E| < 2kη} (k ≥ 1).

This yields

∑
α

|uα(l)|2
|λα − z| =∑

k≥0

∑
α∈Uk

|uα(l)|2
|λα − z| ≤ C

∑
k≥0

∑
α∈Uk

Im
|uα(l)|2

λα − E − i2kη

≤ C
∑
k≥0

ImGll(E + i2kη).
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Next, we break the summation over k into three pieces delimited by k1 :=
max{k : 2kη < η̃} and k2 := max{k : 2kη < 3}. By spectral decomposition, it is easy
to see that the function y �→ y ImGll(E + iy) is monotone increasing. Therefore,
we get

∑
k≥0

ImGll(E + i2kη) ≤
k1∑

k=0

η̃

2kη
ImGll(E + iη̃)

+
k2∑

k=k1+1

ImGll(E + i2kη) +
∞∑

k=k2+1

1

η2k

≤ (logN)Cξ

Nη
+ C(k2 − k1) + C

≤ (logN)Cξ

Nη

with (ξ, ν)-high probability, where in the second step we used (2.17) for z ∈ DL.
Therefore, we have proved that

max
i,j

|Gij (E + iη)| ≤ (logN)Cξ

Nη

with (ξ, ν)-high probability. This concludes the proof of Theorem 2.8. �

4.1. Estimate of ‖H‖. In this section we derive an upper bound on the norm
of H . A standard application of the moment method yields the following weak
bound on ‖H‖. Its proof is given in the Appendix.

LEMMA 4.3. Suppose that H satisfies Definition 2.1, that ξ satisfies (2.4) and
that q satisfies (2.6). Then with (ξ, ν)-high probability we have

‖H‖ ≤ 2 + (logN)ξq−1/2.(4.29)

Using the local semicircle law, Theorem 2.8, we may prove a much stronger
bound on ‖H‖. Lemma 4.3 will be used as an a priori bound in the proof of Lem-
ma 4.4.

LEMMA 4.4. Suppose that H satisfies Definition 2.1, and that ξ and q satisfy
(2.15). Then with (ξ, ν)-high probability we have

‖H‖ ≤ 2 + (logN)Cξ (q−2 + N−2/3).(4.30)
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PROOF. We only consider the largest eigenvalue λN = maxα λα ; the smallest
eigenvalue λ1 is handled similarly. Set L = 120ξ . Using (2.16) with ξ + 2 replac-
ing ξ , we get with (ξ + 2, ν)-high probability

�(z) ≤ (logN)41ξ

(
1

q
+ 1

Nη

)
.(4.31)

Then applying Lemma 4.1 with

γ (z) := (logN)41ξ

(
1

q
+ 1

Nη

)
(4.32)

and ξ + 2 replacing ξ , we have with (ξ, ν)-high probability∣∣∣∣1 − m2
sc

m3
sc

[v] − [v]2
∣∣∣∣

≤ C
�2

logN
+ C(logN)C1ξ

(
1

q2 + 1

(Nη)2 + Immsc

Nη

)
(4.33)

for z ∈ DL,

where C1 is a sufficiently large constant. Now if E > 2 and κ ≥ η, then Lemma 3.2
and (3.47) yield

Immsc ∼ η√
κ

, α ∼ √
κ.(4.34)

Inserting (4.34) into (4.33), we find with (ξ, ν)-high probability∣∣∣∣1 − m2
sc

m3
sc

[v] − [v]2
∣∣∣∣≤ C

�2

logN
+ C(logN)C1ξ

(
1

q2 + 1

(Nη)2 + 1

N
√

κ

)
.(4.35)

Next, for any fixed C1 > 0, we can find a large enough constant C2 > 2C1 such
that if E satisfies

2 + (logN)C2ξ (q−2 + N−2/3) ≤ E ≤ 3,(4.36)

then

min{N−1/2κ1/4,N−1κ1/2q2, κ} ≥ (logN)C1ξ+2N−1κ−1/2.(4.37)

(Here κ = κE = E −2.) From now on we assume that E satisfies (4.36). We define

η = ηE := (logN)C1ξ+1N−1κ−1/2.(4.38)

Note that η depends on E via κ . From (4.37) we have

κ ≥ η.(4.39)

Using (4.37), (4.38) and (4.34), we get

1

Nη
� η√

κ
∼ Immsc(E + iη).(4.40)
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Similarly, using (4.37), we have

1

Nη
≥ 1

q2
√

κ
.(4.41)

Next, with the lower bound α ≥ √
κ/K from (3.47) and (4.39), we find, using

(4.31), that

α ≥ c(logN)C1ξ+1
(

1

q
+ 1

Nη

)
� �(4.42)

with (ξ, ν)-high probability, where we used (4.36) to obtain the first term q−1 on
the right-hand side and we used Nη

√
κ = (logN)C1ξ+1 [see the definition (4.38)

of η] for the second term. Now we can assume

q ≥ (logN)C3ξ(4.43)

for some large C3 > 0 [otherwise (4.30) holds for some constant C by Lemma 4.3].
We have E + iη ∈ DL [recall that E satisfies (4.36)]. Using (4.42), we can neglect
the terms �2 and [v]2 in (4.35) to get, with (ξ, ν)-high probability,

� ≤ C(logN)C1ξ

(
1

αq2 + 1

α(Nη)2 + 1

αN
√

κ

)
.(4.44)

Since α ≥ K
√

κ , the last term is bounded by

1

αN
√

κ
≤ (logN)−C1ξ−1 η√

κ
≤ (logN)−C1ξ−1 1

Nη
,

where we have used (4.40). The first term on the right-hand side of (4.44) can be
estimated similarly using (4.41) and (4.37). Finally, the middle term on the right-
hand side of (4.44) can be estimated by using (4.42). Putting everything together,
we obtain, for any E satisfying (4.36), that

�(z) � 1

Nη
for z = E + iη ∈ DL(4.45)

with (ξ, ν)-high probability. Furthermore, with (4.34) and (4.40), we obtain that
for any E in (4.36)

Imm(z) ≤ Immsc(z) + �(z) � 1

Nη
for z = E + iη ∈ DL(4.46)

with (ξ, ν)-high probability. Since

Imm(z) = 1

N

∑
α

η

(λα − E)2 + η2 ,(4.47)

we have

Imm(z) ≥ c

Nη
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if there is an eigenvalue in [E − η,E + η]. Then (4.47) and (4.46) imply that, for
any E satisfying (4.36), there is no eigenvalue in [E − η,E + η] with (ξ, ν)-high
probability. The regime E ≥ 3 is covered by Lemma 4.3. This completes the proof.

�

5. Abstract decoupling lemma and applications. In this section we prove
an abstract decoupling lemma which is independent of the random matrix model.
We shall apply this abstract result to random matrices in Sections 5.2, 5.3 and 7.4.

5.1. Abstract decoupling lemma. Throughout this section we use the letters A

and B to denote abstract random variables. Note that A in this context has nothing
to do with the matrix A from Definition 2.2. We work on the probability space
generated by the N × N random matrices H . Let (A[U]) be a family of random
variables indexed by subsets U ⊂ {1, . . . ,N}, and denote A := A[∅]. For U ⊂ S ⊂
{1, . . . ,N} we define the random variable

AS,U := ∑
T⊂U

(−1)|T|A[(S\U)∪T] = (−1)|S\U| ∑
V : S\U⊂V⊂S

(−1)|V|A[V].(5.1)

LEMMA 5.1 (Resolution of dependence). For any S we have

A = ∑
U⊂S

AS,U.(5.2)

PROOF. The proof is a standard inclusion-exclusion argument. �

DEFINITION 5.2. Let A := A(H) be a random variable. Then we define the
new random variable A(T) through

A(T)(H) := A(πT(H)),(5.3)

where πT was defined in (3.10).

REMARK 5.3. Note that the operation (·)(T) is compatible with algebraic op-
erations in the sense that

(A + B)(T) = A(T) + B(T), (AB)(T) = A(T)B(T).(5.4)

Since πU ◦ πV = πU∪V, we also have (A(U))(V) = A(U∪V).

REMARK 5.4. The matrices H(T) and G(T) defined through (5.3) are N × N

matrices. We adopt this convention only in this section. This is in contrast to Defi-
nition 3.3, where the same notation was used for the (N −|T|)× (N −|T|) minors
of the same matrices. This slight abuse of notation will not cause ambiguity, how-
ever, because we shall only consider matrix elements H

(T)
ij and G

(T)
ij for i, j /∈ T;

for these matrix elements the two definitions coincide.
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DEFINITION 5.5. We say that a random variable A is independent of the set
U ⊂ {1, . . . ,N} if A = A(U) [or, equivalently, if A is independent of the family
(hij : i ∈ U or j ∈ U)].

We shortly explain the idea behind these definitions. In many applications we
choose A[U] := A(U), so that A[U] is independent of U. In this case, the decom-
position (5.2) can be interpreted as follows. We first fix a reference set S. From
(5.1) it is clear that AS,U is independent of S \ U, that is, it depends only on the
set U (among the variables in S). Therefore, (5.2) can be viewed as a resolution
of dependence of A on subsets of S. We shall see that when we apply this de-

composition to resolvent matrix elements, that is, set A = Gij , then G
S,U
ij will be

comparable in size with a product of at least |U| + 1 off-diagonal resolvent matrix
elements, which are small with high probability. Hence, in this case, the decompo-
sition (5.2) is effectively a graded resolution with a trade-off between dependence
and size. A larger U means that G

S,U
ij is smaller, but it depends on more variables.

For smaller U’s we will exploit that GS,U is independent of more variables.
The purpose of this graded decoupling is to obtain large deviation estimates on

the average [Z] := 1
N

∑
i Zi of N weakly dependent centered random variables Zi .

The precise result is given in Theorem 5.6 below. Before stating it, we outline the
main ideas.

In our applications, the covariances between different variables Zi are too large
to be controlled in terms of their variances and, hence, standard methods for sums
of weakly dependent random variables relying on such ideas do not apply. In-
stead, the weak dependence will be expressed in terms of the smallness of Z S,U

i

for large U; the size of Z S,U
i reflects how strongly Zi depends on the set U. The

basic strategy is a high-moment estimate

E1(�)|[Z]|p = 1

Np

∑
i1,...,ip

E(1(�)Zi1 · · · Z̄ip )

on some high-probability event �, whereby each term Zij is expanded accord-
ing to the graded expansion of (5.2). The right-hand side is controlled using the
two following facts: (i) Z S,U

i is small for large U (weak dependence of Zi on U).
(ii) The expectation vanishes if all factors are independent. Note that this graded
expansion differs from the conventional martingale-type arguments used to estab-
lish central limit theorems for correlated random variables.

The basic idea of a graded expansion to control large deviations of sums of
weakly dependent random variables was introduced in Lemma 5.2 of [21] in the
context of Wigner matrices. This result considers the special case Zi = Zi [as
defined in (3.15)] and uses expansions in full rows and columns to detect depen-
dencies. For the applications in [21], only large but N -independent powers p were
considered. Hence, in [21] it was not necessary to keep track of the p-dependence
or the probability of �.
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A new proof was given in Lemma 4.1 of [23], where the p-dependence and
the probability of � were tracked precisely. This proof relied on an expansion
in terms of individual matrix elements and not full rows and columns. Thus, the
expansion was more economical, but its combinatorial structure was considerably
more involved.

In this paper we present an abstract generalization of the row and column ex-
pansion method of [21]. It is formulated for an arbitrary family of random vari-
ables Z1, . . . , ZN . As input, it needs bounds on the terms of the graded expansion
of Zi . The abstract formulation thus streamlines the argument by dissociating two
unrelated steps of the proof: (i) the moment estimate using the graded expansion
(a probabilistic estimate given in Theorem 5.6) and (ii) controlling the size of the
graded terms for a concrete application (in the case of resolvent matrix elements,
a deterministic, almost entirely algebraic, argument given in Section 5.2).

For our purposes, this increased generality is needed for two reasons. First, it al-
lows for an efficient control of the strong fluctuations associated with sparse matrix
entries. Second, we use it to control the average of not only Zi (Lemma 5.13) but
also quantities like (7.27) with a different algebraic structure. In the special case
Zi = Zi and q = N1/2 (Wigner matrix), our result reduces to that of Lemma 4.1
in [23].

THEOREM 5.6 (Abstract decoupling lemma). Let Z1, . . . , ZN be random
variables and recall the notation

[Z] = 1

N

N∑
i=1

Zi .

Let � be an event and p an even integer. Suppose that there exists a family of
random variables (Z [U]

i )i,U indexed by i ∈ {1, . . . ,N} and U ⊂ {1, . . . ,N} satis-

fying i /∈ U, such that Z [∅]
i = Zi and the following assumptions hold with some

constant C:

(i) Recall the partial expectation Ei from Definition 3.6. For i /∈ U we have
that Z [U]

i is independent of U and

Ei Z [U]
i = 0.(5.5)

(ii) (Lr -norm in �). For any U, S with U ⊂ S and i /∈ S we consider Z S,U
i

defined by (5.1) from the family Z [U]
i . Then for any numbers r ≤ p with |S| ≤ p

we have

E(1(�)|Z S,U
i |r ) ≤ (Y (CXu)u)r with u := |U| + 1,(5.6)
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where X and Y are deterministic and X satisfies

X ≤ 1

p5 logN
.(5.7)

(iii) (rough bound on the L2-norm in [�]i). Define

[�]i := (π−1
i ◦ πi)(�).(5.8)

For any U, S satisfying U ⊂ S, i /∈ S, and |S| ≤ p we have

E(1([�]i )|Z S,U
i |2) ≤ NCp.(5.9)

(iv) (rough bound on Zi ). For any U we have

1(�)
∣∣Z [U]

i

∣∣≤ YNC.(5.10)

(v) (� has high probability). We require that

P[�c] ≤ e−c(logN)3/2p.(5.11)

Then, under the assumptions (i)–(v), we have

P
(
1(�)|[Z]| ≥ p12Y(X2 + N−1)

)≤ Cp

pp
(5.12)

for some C > 0 and sufficiently large N . The constant in (5.12) depends on the
constants in (5.6), (5.10) and (5.11).

The key assumptions in Theorem 5.6 are (i) and (ii); the key (small) parameter
is X. Assumption (i) simply ensures that all terms of the graded expansion of Zi

have zero expectation. Assumption (ii) defines the decay of Z S,U
i in the size of U;

roughly, it states that

|Z S,U
i | � X|U|+1

in the sense of high moments. This is in accordance with the principle outlined
above that terms of the graded expansion which depend on many variables have a
small size, while those which are independent of many variables may be larger. The
parameter Y is trivial in our applications, where we shall take it to be a logarithmic
factor. In Lemma 4.1 of [23], the role of X was played by the parameter � defined
in (3.26).

PROOF OF THEOREM 5.6. We find

E(1(�)|Z|p) = N−p
N∑

α1,α2,...,αp=1

E

(
1(�)

p∏
j=1

Z #
αj

)
,(5.13)
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where # stands for either nothing or complex conjugation. Let α = (α1, . . . , αp)

and define S ≡ S(α) := {α1, α2, . . . , αp}. Then we have

E(1(�)|Z|p) ≤ N−ppp
p∑

s=1

Ns max
α : |S(α)|=s

∣∣∣∣∣E
(

1(�)

p∏
j=1

Z #
αj

)∣∣∣∣∣.(5.14)

Abbreviating Sj := S \ {αj }, we find from (5.2) that

Zαj
= ∑

U
′
j⊂Sj

Z
Sj ,U′

j
αj .(5.15)

Thus, (5.14) implies

E(1(�)|Z|p)
(5.16)

≤ N−ppp
p∑

s=1

Ns max
α : |S(α)|=s

∣∣∣∣∣E
(

1(�)
∑

U
′
1⊂S1

· · · ∑
U′

p⊂Sp

p∏
j=1

[Z #
αj

]Sj ,U′
j

)∣∣∣∣∣
(abbreviating AS,U = ĀS,U). Writing Uj := U

′
j ∪ {αj }, we have

E(1(�)|Z|p)

≤
(

p

N

)p p∑
s=1

sp∑
n=1

Nssnnp max

{∣∣∣∣∣E
(

1(�)

p∏
j=1

[Z #
αj

]Sj ,U′
j

)∣∣∣∣∣ : |S(α)| = s,(5.17)

U
′
j ⊂ Sj ,

p∑
j=1

|Uj | = n

}
.

Now we claim that

Nssnnp max

{∣∣∣∣∣E
(

1(�)

p∏
j=1

[Z #
αj

]Sj ,U′
j

)∣∣∣∣∣ : |S(α)| = s,U
′
j ⊂ Sj ,

p∑
j=1

|Uj | = n

}
(5.18)

≤ (CNp10Y(X2 + N−1)
)p

for some C > 0. Then inserting (5.18) into (5.17), we find

E(1(�)|Z|p) ≤ (Cp11Y(X2 + N−1)
)p

,(5.19)

which implies (5.12) by Markov’s inequality.
It only remains to prove (5.18). We consider two cases: n ≥ 2s and n ≤ 2s − 1.
We begin by proving (5.18) for the case n ≥ 2s. Using Hölder’s inequality, we

find ∣∣∣∣∣E
(

1(�)

p∏
j=1

[Z #
αj

]Sj ,U′
j

)∣∣∣∣∣≤
( p∏

j=1

E(1(�)|[Z #
αj

]Sj ,U′
j |p)

)1/p

.(5.20)
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Applying (5.6) to the right-hand side, we obtain that( p∏
j=1

E(1(�)|[Z #
αj

]Sj ,U′
j |p)

)1/p

≤ Yp(CnX)n(5.21)

since
∑

j (|U′
j |+1) =∑j |U′

j | = n. Combining (5.20), (5.21) and the factor n ≥ p,
we have bounded the left-hand side of (5.18) as follows:

Nssnnp max

{∣∣∣∣∣E
(

1(�)

p∏
j=1

[Z #
αj

]Sj ,U′
j

)∣∣∣∣∣ : |S(α)| = s,U
′
j ⊂ Sj ,

p∑
j=1

|U′
j | = n

}

≤ NsYp(Cn2Xs)n

≤ NsYp(Cn2Xs)2s

≤ (CNp10Y(X2 + N−1)
)p

,

where in the second inequality we used

Cn2Xs ≤ CXs3p2 ≤ CXp5 � 1

[see (5.7)] and n ≥ 2s, and in the third inequality s ≤ p and n ≤ sp. This completes
the proof of (5.18) for the case n ≥ 2s.

Now we prove (5.18) for the case n ≤ 2s − 1. Fix sets U
′
j with

∑
j |Uj | = n,

where we recall that Uj := U
′
j ∪ {αj } and |Uj | = |U′

j | + 1. By definition of Uj ,
we have αj ∈ Uj for all j . Since n ≤ 2s − 1, we therefore find that there exists
a k such that αk ∈ Uk and αk /∈ Uj for j �= k. By the definitions (5.1) and (5.5),

[Z #
αj

]Sj ,U′
j is independent of Sj \ U

′
j , that is, of S \ Uj . We conclude that

p∏
j �=k

[Z #
αj

]Sj ,U′
j(5.22)

is independent of {αk}. Therefore,

E

(
1([�]αk

)

p∏
j=1

[Z #
αj

]Sj ,U′
j

)
(5.23)

= E

([ p∏
j �=k

[Z #
αj

]S,Uj

]
1([�]αk

)Eαk
[Z #

αk
]Sk,U

′
k

)
= 0.

Thus,

E

(
1(�)

p∏
j=1

[Z #
αj

]Sj ,U′
j

)
= −E

(
1([�]αk

\ �)

p∏
j=1

[Z #
αj

]Sj ,U′
j

)
,(5.24)
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which yields∣∣∣∣∣E
(

1(�)

p∏
j=1

[Z #
αj

]Sj ,U′
j

)∣∣∣∣∣
≤ E

(
1([�]αk

\ �)

p∏
j=1

|[Z #
αj

]Sj ,U′
j |
)

(5.25)

≤
∥∥∥∥∥1([�]αk

\ �)

p∏
j �=k

|[Z #
αj

]Sj ,U′
j |
∥∥∥∥∥∞E

(
1([�]αk

\ �)|[Z #
αk

]Sk,U
′
k |).

Since (5.22) is independent of αk , we get∥∥∥∥∥1([�]αk
\ �)

p∏
j �=k

|[Z #
αj

]Sj ,U′
j |
∥∥∥∥∥∞ ≤

∥∥∥∥∥1([�]αk
)

p∏
j �=k

|[Z #
αj

]Sj ,U′
j |
∥∥∥∥∥∞

(5.26)

=
∥∥∥∥∥1(�)

p∏
j �=k

|[Z #
αj

]Sj ,U′
j |
∥∥∥∥∥∞.

Using the definition of Z S,U
i in (5.1) and (5.10), we have

|1(�)[Z #
αj

]Sj ,U′
j | ≤ YNC2|Uj |(5.27)

and ∣∣∣∣∣1(�)

p∏
j �=k

[Z #
αj

]Sj ,U′
j

∣∣∣∣∣≤ (YNC)p−12n ≤ (YNC)p−122p,(5.28)

where we used s ≤ p and n ≤ 2s in the last inequality. Combining (5.25), (5.26)
and (5.28), we get∣∣∣∣∣E

(
1(�)

p∏
j=1

[Z #
αj

]Sj ,U′
j

)∣∣∣∣∣≤ (YNC)p−122p(
E1([�]αk

\ �)|[Z #
αk

]Sk,U
′
k |).(5.29)

Applying Schwarz’s inequality on the right-hand side, we find∣∣∣∣∣E
(

1(�)

p∏
j=1

[Z #
αj

]Sj ,U′
j

)∣∣∣∣∣
(5.30)

≤ (YNC)p−122p(
P([�]αk

\ �)
)1/2

(E1([�]αk
)|[Z #

αk
]Sk,U

′
k |2)1/2.

Using (5.7), (5.11), (5.9) and that n ≤ 2s − 1 ≤ 2p, we get for any C̃ > 0∣∣∣∣∣E
(

1(�)

p∏
j=1

[Z #
αj

]Sj ,U′
j

)∣∣∣∣∣≤ (YNC)p22p
P(�c)1/2 ≤ YpN−C̃p.(5.31)

Since s ≤ p, the proof of (5.18) in the case n ≤ 2s − 1 is complete. �
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5.2. Decomposition of Gij . In order to apply Theorem 5.6 to estimate [Z],
we need to derive bounds, and hence formulas, for the decomposition G

S,U
ij of

resolvent matrix elements Gij . As usual, G refers to the resolvent of H at a fixed
spectral parameter z (which is suppressed in the notation), that is, G = G(H) is
viewed as a function of H . The main result of this section is the bound (5.73)
below.

Note that the results in this subsection are entirely deterministic.

LEMMA 5.7. Let z = E + iη ∈ D, where D ⊂ C is some compact domain. Let
U ⊂ {1,2, . . . ,N} and

|U| ≤ 1

(�o + �d) logN
.(5.32)

Then for any i, j /∈ U, we have∣∣G(U)
ij − mscδij

∣∣≤ C
(
1(i = j)�d + �o

)
.(5.33)

In particular, if �d + �o ≤ (logN)−1, then

inf
i /∈U

∣∣G(U)
ii

∣∣≥ c.(5.34)

Here the constants c and C depend only on D.

PROOF. Define

Bm := max
{∣∣G(V)

ij − δijGii

∣∣ : i, j /∈ V, |V| = m
}
.(5.35)

In the case m = 0, (5.33) follows from the definitions of �o and �d . The estimate
(5.34) follows from (5.33), noting that |msc(z)| ≥ c on a compact domain z ∈ D

with c depending on D. Next, from (3.12) we get

G
(kT)
ij = G

(T)
ij − G

(T)
ik G

(T)
kj

G
(T)
kk

where i, j /∈ {k} ∪ T and k /∈ T.(5.36)

Assuming (5.34) for |U| = m, we therefore obtain

Bm+1 ≤ Bm + C0B
2
m(5.37)

for some constant C0 > 0 independent of m. This implies that

Bm+1 ≤ C0

m∑
k=0

B2
k + B0.(5.38)

By induction on m one obtains Bm ≤ 2B0 as long as C0mB0 ≤ 1/2. �

In order to state the next result, we introduce a class of rational functions in
resolvent matrix elements. Fix two sets U ⊂ S satisfying U �= ∅. For fixed n ∈ N

let the following be given:
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(i) a sequence of integers (ir )
n+1
r=1 satisfying ik �= ik+1 for 1 ≤ k ≤ n;

(ii) a collection of sets (Uα)nα=1 satisfying iα, iα+1 /∈ Uα as well as S \ U ⊂
Uα ⊂ S for 1 ≤ α ≤ n;

(iii) a collection of sets (Tβ)nβ=2 satisfying iβ /∈ Tβ as well as S \ U ⊂ Tβ ⊂ S

for 2 ≤ β ≤ n.

Then we define the random variable, parametrized by (ir )
n+1
r=1 , (Uα)nα=1, (Tβ)nβ=2,

F((ir )
n+1
r=1 , (Uα)nα=1, (Tβ)nβ=2) := P

Q
,(5.39)

where

P =
n∏

α=1

G
(Uα)
iα,iα+1

, Q =
n∏

β=2

G
(Tβ)

iβ ,iβ
.

Note that F depends on the randomness via the resolvent matrix elements. All
matrix elements are off-diagonal in the numerator and diagonal in the denominator;
n counts the number of off-diagonal elements in the numerator. The sequence of
indices of these matrix elements is consecutive if P/Q is written as an alternating
product of off-diagonal elements from the numerator P and reciprocals of diagonal
elements from the denominator Q, that is, in the form

P

Q
= G

(U1)
i1i2

[
G

(T2)
i2i2

]−1
G

(U2)
i2i3

[
G

(T3)
i3i3

]−1 · · ·G(Un)
inin+1

.(5.40)

DEFINITION 5.8. For U ⊂ {1, . . . ,N} and i, j /∈ U define G
[U]
ij := G

(U)
ij . For

i, j /∈ S and U ⊂ S define G
S,U
ij through (5.1).

LEMMA 5.9. Let S ⊂ {1, . . . ,N} and i, j /∈ S. Then

G
S,∅
ij = G

(S)
ij .(5.41)

If ∅ �= U ⊂ S, then G
S,U
ij can be written as

G
S,U
ij =

2|U|∑
n=|U|+1

Fn, Fn =
Kn∑
k=1

Fn,k,(5.42)

where
∑2|U|

n=|U|+1 Kn ≤ 4|U||U|! and each Fn,k is of the form (5.39) (with a possible
minus sign), with i2, . . . , in ∈ U, i1 = i, in+1 = j , and with some appropriately
chosen sets (Uα)nα=1 and (Tβ)nβ=2 which may be different for each Fn,k .

Note: the index n in Fn and Fn,k refers to the number of off-diagonal elements
appearing in the rational functions (5.39), while k is just a counting index.



2324 ERDŐS, KNOWLES, YAU AND YIN

PROOF OF LEMMA 5.9. First, (5.41) follows from (5.1).
It remains to prove (5.42) in the case U �= ∅. Using Definition 5.8 and Re-

mark 5.3, one readily sees that, for a set T satisfying T ∩ U = ∅ and i, j /∈ S ∪ T,
we have

(G
S,U
ij )(T) = G

S∪T,U
ij .(5.43)

Thus, if a ∈ U ⊂ S, we get from (5.1) and (5.43) that

G
S,U
ij = G

S\{a},U\{a}
ij − G

S,U\{a}
ij

(5.44)
= G

S\{a},U\{a}
ij − (GS\{a},U\{a}

ij

)(a) for i, j /∈ S.

In the special case |U| = 1, writing U = {a}, we have

G
S,U
ij = G

S,{a}
ij = G

(S\{a})
ij − G

(S)
ij .(5.45)

Using (3.12), we obtain (5.42) for the case |U| = 1, that is,

G
S,{a}
ij = G

(S\{a})
ij − G

(S)
ij = G

(S\{a})
ia G

(S\{a})
aj

G
(S\{a})
aa

.(5.46)

For a general set U with |U| ≥ 2, using (5.44), we can write GS,U iteratively
as F − F (a), where F itself is of the form E − E(b) for some appropriate E. For
example, for a, b ∈ U we have

G
S,U
ij = G

S\{a},U\{a}
ij − (GS\{a},U\{a}

ij

)(a)

= G
S\{ab},U\{ab}
ij − (GS\{ab},U\{ab}

ij

)(b)

− (GS\{ab},U\{ab}
ij − (GS\{ab},U\{ab}

ij

)(b))(a)
.

Recall F (a) = F ◦ πa from Definition 5.2. Then to prove (5.42) in the case U

with |U| ≥ 2, we use induction on |U|. The key step is Lemma 5.10 below, which
contains the required properties of F − F (a). Its proof will be given later.

LEMMA 5.10. Let F be of the form (5.39). We assume that∣∣∣∣∣
(

n⋃
α=1

Uα

)
∪
(

n⋃
β=2

Tβ

)∣∣∣∣∣≤ 1

(�o + �d) logN
− 1.(5.47)

If

s /∈ {i1, i2, i3, . . . , in+1} ∪
(

n⋃
α=1

Uα

)
∪
(

n−1⋃
β=1

Tβ

)
,(5.48)
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then F −F (s) is equal to the sum (with signs ±) of 2n−1 terms of the form (5.39),

F − F (s) =
n∑

l=1

FA
l ((ĩAl,r )

ñA+1
r=1 , (ŨA

l,α)ñ
A

α=1, (T̃
A
l,β)ñ

A

β=2)

(5.49)

+
n−1∑
l=1

FB
l ((ĩBl,r )

ñB+1
r=1 , (ŨB

l,α)ñ
B

α=1, (T̃
B
l,β)ñ

B

β=2),

where the new arguments, carrying a tilde, satisfy the following relations:

(i)

ñA = n + 1 and ñB = n + 2.(5.50)

(ii) For 1 ≤ l ≤ n, the family (ĩAl,r ) is given by

(ĩAl,1, ĩ
A
l,2, ĩ

A
l,3, . . . , ĩ

A
l,n+2) := (i1, i2, . . . , il, s, il+1, . . . , in+1).(5.51)

For 1 ≤ l ≤ n − 1, the family (ĩBl,r ) is given by

(ĩBl,1, ĩ
B
l,2, ĩ

B
l,3, . . . , ĩ

B
l,n+3) := (i1, i2, . . . , il, il+1, s, il+1, il+2, . . . , in+1).(5.52)

(iii) All sets Ũ
A
l,α , T̃

A
l,β , Ũ

B
l,α and T̃

B
l,β appearing in (5.49) are subsets of(

n⋃
α=1

Uα

)
∪
(

n⋃
β=2

Tβ

)
∪ {s}.(5.53)

Now we return to complete the proof for Lemma 5.9. Using (5.44), we get for
s ∈ U and i, j /∈ S that

G
S,U
ij = G

S\{s},U\{s}
ij − (GS\{s},U\{s}

ij

)(s)
.(5.54)

Using induction on |U| and applying the decomposition (5.42) to G
S\{s},U\{s}
ij , we

get

G
S\{s},U\{s}
ij =

2|U|−2∑
n=|U|

Fn, Fn =
K ′

n∑
k=1

Fn,k,(5.55)

where
∑2|U|−2

n=|U| K ′
n ≤ 4|U|−1(|U| − 1)! and each Fn,k is of the form (5.39) (with

a possible minus sign) with i2, . . . , in ∈ U \ {s}, i1 = i, in+1 = j , and with some
appropriately chosen sets (Uα)nα=1, (Tβ)nβ=2 satisfying

S \ U ⊂ Uα, Tβ ⊂ S \ {s}, 1 ≤ α ≤ n,2 ≤ β ≤ n.

Now from (5.54) we get

G
S,U
ij =

2|U|−2∑
n=|U|

K ′
n∑

k=1

(
Fn,k − (Fn,k)

(s)).(5.56)
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Moreover, using (5.49), we get

Fn,k − (Fn,k)
(s) =

n∑
l=1

FA
n,k,l +

n−1∑
l=1

FB
n,k,l,(5.57)

where each FA
n,k,l and FB

n,k,l is of the form (5.39) (with a possible minus sign) with
i1 = i, im+1 = j , where m = n + 2 for FA

n,k,l and m = n + 3 for FB
n,k,l , and the

other indices belong to U. Here the sets (Ũα)mα=1 and (T̃β)mβ=2 satisfy

S \ U ⊂ Ũα, T̃β ⊂ S, 1 ≤ α ≤ m,2 ≤ β ≤ m.

Furthermore, with (5.50), the number of off-diagonal elements in the numerators
of FA

n,k,l and FB
n,k,l are n + 1 and n + 2, respectively. Hence, together with (5.56),

we obtain

G
S,U
ij =

2|U|−2∑
n=|U|

K ′
n∑

k=1

(
n∑

l=1

FA
n,k,l +

n−1∑
l=1

FB
n,k,l

)
.

With the assumption of
∑2|U|−2

n=|U| K ′
n ≤ 4|U|−1(|U| − 1)! for the summation bounds

in (5.55), we know that G
S,U
ij can be written in the form (5.42) with

∑2|U|
n=|U|+1 Kn ≤

4|U||U|!. This completes the proof of Lemma 5.9. �

PROOF OF LEMMA 5.10. Using (3.12), it is easy to derive the following two
identities for s /∈ U:

G
(U)
ij = G

(Us)
ij + G

(U)
is G

(U)
sj

G
(U)
ss

for i, j /∈ U ∪ {s},(5.58)

1

G
(U)
kk

= 1

G
(Us)
kk

+ G
(U)
ks G

(U)
sk

G
(Us)
kk G

(U)
ss G

(U)
kk

for k /∈ U ∪ {s}.(5.59)

Now (5.58) implies that Lemma 5.10 holds in the case n = 1. We shall first prove
it for the case n = 2, and then give the proof of the general case. If n = 2, then by
assumption F has the form

F = G
(U)
ij G

(V)
jk

G
(T)
jj

(5.60)

with some sets U, V, T and indices i, j , k. For s /∈ U ∪ V ∪ T ∪ {ijk} we get from
(5.58) that

F = G
(Us)
ij G

(V)
jk

G
(T)
jj

+ G
(U)
is G

(U)
sj G

(V)
jk

G
(U)
ss G

(T)
jj

.(5.61)
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Next, using (5.59) on the first term, we obtain

F = G
(Us)
ij G

(V)
jk

G
(Ts)
jj

+ G
(Us)
ij G

(T)
js G

(T)
sj G

(V)
jk

G
(Ts)
jj G

(T)
ss G

(T)
jj

+ G
(U)
is G

(U)
sj G

(V)
jk

G
(U)
ss G

(T)
jj

.(5.62)

Using (5.58) again on the first term, we have

F = F (s) + G
(Us)
ij G

(V)
js G

(V)
sk

G
(Ts)
jj G

(V)
ss

+ G
(Us)
ij G

(T)
js G

(T)
sj G

(V)
jk

G
(Ts)
jj G

(T)
ss G

(T)
jj

+ G
(U)
is G

(U)
sj G

(V)
jk

G
(U)
ss G

(T)
jj

.(5.63)

One can easily check that the last three terms are of the form (5.39), and the indices
satisfy (5.50)–(5.53). This completes the proof for Lemma 5.10 in the case n = 2.

Now we consider the case of a general n. Inserting (5.58) and (5.59) into each
term in (5.39), we have

F((ir)
n+1
r=1 , (Uα)nα=1, (Tβ)nβ=2) = P

Q
,(5.64)

where

P =
n∏

α=1

G
(Uα)
iα,iα+1

=
n∏

α=1

(
G

(Uαs)
iα,iα+1

+ G
(Uα)
iα,s G

(Uα)
siα+1

G
(Uα)
ss

)
and

Q−1 =
n∏

β=2

(
G

(Tβ)

iβ ,iβ

)−1 =
n∏

β=2

(
1

G
(Tβs)

iβ ,iβ

+
G

(Tβ)

iβs G
(Tβ)

siβ

G
(Tβ)

iβ iβ
G

(Tβ)
ss G

(Tβs)

iβ iβ

)
.

On the other hand,

(F ((ir )
n+1
r=1 , (Uα)nα=1, (Tβ)nβ=2))

(s) = P (s)

Q(s)
,(5.65)

where

P (s) =
n∏

α=1

G
(Uαs)
iα,iα+1

and
(
Q(s))−1 =

n∏
β=2

(
G

(Tβs)

iβ ,iβ

)−1
.

For m ∈ N, we write, using (5.58) and (5.59),

G
(Um)
im,im+1

= A2m−1 + B2m−1,(5.66)

where

A2m−1 := G
(Ums)
im,im+1

and B2m−1 := G
(Um)
im,s G

(Um)
s,im+1

G
(Um)
ss

.(5.67)
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Similarly, we write (
G

(Tm+1)

im+1,im+1

)−1 = A2m + B2m,(5.68)

where

A2m := (G(Tm+1s)

im+1,im+1

)−1 and B2m := G
(Tm+1)

im+1s
G

(Tm+1)

sim+1

G
(Tm+1)

im+1im+1
G

(Tm+1)
ss G

(Tm+1s)

im+1im+1

.(5.69)

Then

F =
2n−1∏
m=1

(Am + Bm), F (s) =
2n−1∏
m=1

Am.

To complete the proof, we use the identity

2n−1∏
m=1

(Am + Bm) −
2n−1∏
m=1

Am =
2n−1∑
m=1

(
m−1∏
j=1

Aj

)
Bm

( 2n−1∏
j=m+1

(Aj + Bj)

)
.(5.70)

It is easy to check that, for any term of the form(
m−1∏
j=1

Aj

)
Bm

( 2n−1∏
j=m+1

(Aj + Bj)

)

in the sum (5.70), the desired properties (5.49)–(5.53) hold. �

We may now easily obtain the following bound on G
S,U
ij .

LEMMA 5.11. Let U ⊂ S ⊂ {1,2, . . . ,N} and

|S| ≤ 1

(�o + �d) logN
.(5.71)

Then

|GS,∅
ij − mscδij | ≤ C

(
1(i = j)�d + �o

)
.(5.72)

If in addition U �= ∅ and i, j /∈ S, then

|GS,U
ij | ≤ (C|U|�o)

|U|+1(5.73)

and

|(1/Gii)
S,U| ≤ (C|U|�o)

|U|+1.(5.74)
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PROOF. The estimate (5.72) follows (5.41) and (5.33). In order to prove
(5.73), we apply Lemma 5.9 to each G

S,U
ij , and get

G
S,U
ij =

2|U|∑
n=|U|+1

Fn, Fn =
Kn∑
k=1

Fn,k,(5.75)

where
∑2|U|

n=|U|+1 Kn ≤ 4|U||U|!. Here each Fn,k is of the form (5.39) (with a pos-
sible minus sign), where n counts the number of off-diagonal elements in the nu-
merator; the indices satisfy i2, . . . , in ∈ U, i1 = i, in+1 = j . Note that the factors
P in (5.39) are the product of off-diagonal terms and the factors Q the product of
diagonal terms. Applying (5.33) and (5.34) on the off-diagonal and diagonal terms
in P and Q, we get

Fn,k ≤ (C�o)
n

cn−1 ≤ (C�o)
n.(5.76)

Together with
∑2|U|

n=|U|+1 Kn ≤ 4|U||U|!, this implies (5.73).
In order to prove (5.74), we observe that, similarly to Lemma 5.9, we have

|(1/Gii)
S,U| ≤ (C|U|)|U|+1

(maxk,j /∈T,T⊂S |G(T)
kj |)|U|+1

(minj /∈T,T⊂S |G(T)
jj |)|U|+2

(5.77)

provided that

max
k,j /∈T,T⊂S

∣∣G(T)
kj

∣∣≤ min
j /∈T,T⊂S

∣∣G(T)
jj

∣∣.
Hence, (5.74) follows. �

5.3. Proof of Lemma 4.1. Observe first that (4.3) follows immediately from
(4.2) and Lemma 3.15. It therefore remains to prove (4.2).

We define the event � by requiring that on it (4.1) and the following two events
hold:

(i) For every z ∈ D̃ we have

�o(z) ≤ C

(
1

q
+ (logN)2ξ�(z)

)
(5.78)

≤ C

(
1

q
+ (logN)2ξ

√
Immsc(z) + γ (z)

Nη

)
.

(ii) For every z ∈ D̃ we have

max
i

|Gii(z) − m(z)| ≤ C

(
(logN)ξ

q
+ (logN)2ξ�(z)

)
(5.79)

≤ C

(
(logN)ξ

q
+ (logN)2ξ

√
Immsc(z) + γ (z)

Nη

)
.
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Now Theorem 3.1, Lemmas 3.13 and 3.14, as well as (4.1) and D̃ ⊂ DL imply
that � holds with (ξ − 1/2, ν)-high probability. Note that here we reduced the ξ

to ξ − 1/2 to account for the intersection of three events of (ξ, ν)-high probability.
It is crucial that ν remain constant in this step, as in some applications, such as
Theorem 2.8, it is iterated.

We write Zi as

Zi =
(i)∑
k

(
h2

ik − 1

N

)
G

(i)
kk +

(i)∑
k �=l

hikG
(i)
kl hli .(5.80)

Lemma 4.1 follows from the next two lemmas. As before, we shall consistently
omit the spectral parameter z ∈ D̃ from the notation in the following arguments.

LEMMA 5.12. On � we have with (ξ, ν)-high probability∣∣∣∣∣1(�)
1

N

∑
i

(i)∑
k

(
h2

ik − 1

N

)
G

(i)
kk

∣∣∣∣∣
(5.81)

≤ (logN)4ξ

(
1

q2 + 1

(Nη)2 + Immsc + γ

Nη

)
.

LEMMA 5.13. On � we have with (ξ − 2, ν)-high probability∣∣∣∣∣1(�)
1

N

∑
i

(i)∑
k �=l

hikG
(i)
kl hli

∣∣∣∣∣
(5.82)

≤ (logN)14ξ

(
1

q2 + 1

(Nη)2 + (logN)4ξ Immsc + γ

Nη

)
.

PROOF OF LEMMA 5.12. We split the sum inside the absolute value on the
left-hand side of (5.81) as

1

N

∑
i �=k

(
h2

ik − 1

N

)
m + 1

N

∑
i �=k

(
h2

ik − 1

N

)(
m(i) − m

)
(5.83)

+ 1

N

∑
i �=k

(
h2

ik − 1

N

)(
G

(i)
kk − m(i)).

In order to estimate the first term of (5.83), we use the estimate (3.17) [with (h2
ik −

N−1) playing the role of ai , and setting Ai = N−1, α = 2, β = −2 and γ = 1] to
get, with (ξ, ν)-high probability,∣∣∣∣ 1

N

∑
i �=k

(
h2

ik − 1

N

)∣∣∣∣≤ (logN)ξ
1

N1/2q
.(5.84)
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Therefore, ∣∣∣∣1(�)

(
1

N

∑
i �=k

(
h2

ik − 1

N

))
m

∣∣∣∣≤ (logN)ξ
∣∣∣∣1(�)

m

N1/2q

∣∣∣∣
(5.85)

≤ C(logN)ξ
1

N1/2q
.

Similarly, in order to estimate the second term of (5.83), we fix i and sum over k,
which yields with (ξ, ν)-high probability∣∣∣∣∣max

i

(i)∑
k

(
h2

ik − 1

N

)∣∣∣∣∣≤ (logN)ξq−1,(5.86)

where the sum over k was estimated by (3.17). This yields with (ξ, ν)-high proba-
bility ∣∣∣∣∣1(�)

1

N

∑
i

(i)∑
k

(
h2

ik − 1

N

)(
m(i) − m

)∣∣∣∣∣
(5.87)

≤ 1

N

∑
i

∣∣1(�)(logN)ξq−1(m(i) − m
)∣∣.

Using (3.31), we have in �∣∣m(i) − m
∣∣= ∣∣∣∣− 1

N

∑
j

GjiGij

Gii

∣∣∣∣≤ O

(
ImGii

η

)
.

Thus, we get with (ξ, ν)-high probability∣∣∣∣1(�)
1

N

∑
i �=k

(
h2

ik − 1

N

)(
m(i) − m

)∣∣∣∣≤ C(logN)ξ
Immsc + γ

qNη
.(5.88)

Finally, we estimate the third term of (5.83). First, with (3.12) and |msc| ≥ c, we
note that if �d � 1, then∣∣Gij − G

(k)
ij

∣∣≤ C�2
o for i, j �= k.(5.89)

Together with (5.79) we get with (ξ, ν)-high probability

max
k �=i

∣∣(G(i)
kk − m(i))∣∣≤ C(logN)2ξ

(
1

q
+
√

Immsc + γ

Nη

)
.(5.90)

Then we use (3.19) [with (h2
ik − N−1) playing the role of ak and G

(i)
kk − m(i)

playing the role of Ak , and setting α = 2, β = −2 and γ = 1] to get, with (ξ, ν)-
high probability,

max
i

∣∣∣∣∣
(i)∑
k

(
h2

ik − 1

N

)(
G

(i)
kk − m(i))∣∣∣∣∣≤ (logN)4ξ

(
1

q
+
√

Immsc + γ

Nη

)
q−1.(5.91)
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Hence, we have with (ξ, ν)-high probability∣∣∣∣∣1(�)
1

N

∑
i

(
(i)∑
k

(
h2

ik − 1

N

)(
G

(i)
kk − m(i)))∣∣∣∣∣

(5.92)

≤ (logN)4ξ

(
1

q
+
√

Immsc + γ

Nη

)
q−1.

Note that, in applying (3.19), we used that the family {h2
ik −N−1}k is independent

of the family {G(i)
kk −m(i)}k . Combining (5.85), (5.88) and (5.92), we obtain (5.81).

�

PROOF OF LEMMA 5.13. We shall apply Theorem 5.6 to the quantities

Zi :=
(i)∑
k �=l

hikG
(i)
kl hli , Z [V]

i := 1(i /∈ V)

(iV)∑
k �=l

hikG
(iV)
kl hli ,(5.93)

and define � as in the beginning of Section 5.3, that is, � is defined by requiring
that (4.1) and (5.78)–(5.79) hold. Recall that the collection of random variables
Z

[V]
i generates random variables Z

S,U
i for any U ⊂ S by (5.1). Let

p := (logN)ξ−3/2.(5.94)

Next, choose

X := 1

q
+ (logN)2ξ

√
Immsc + γ

Nη
,

(5.95)
Y := (logN)2ξ .

[In other words, X is defined as the right-hand side of (5.78) up to a constant.] We
now derive a bound which implies both (5.6) and (5.9), that is, we establish the
assumptions (ii) and (iii) of Theorem 5.6. To this end, we shall prove the stronger
statement that, for i /∈ S, r ≤ p and any sets U ⊂ S with |S| ≤ p, we have

E(1([�]i )|Z S,U
i |r ) ≤ (Y (CXu)u)r for u = |U| + 1.(5.96)

Using the assumptions of Lemma 4.1, we have in D̃ that

q ≥ (logN)5ξ , Nη ≥ (logN)14ξ , γ ≤ (logN)−ξ .(5.97)

It is therefore easy to check that Zi and � satisfy the assumptions (i), (iv) and
(v) of Theorem 5.6. Thus, the conclusion of Theorem 5.6, (5.12), implies the
claim (5.82).
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It remains to prove (5.96). By the definition of Z S,U
i in (5.1) and (5.93), for

i /∈ S, we have

Z S,U
i = (−1)|S\U| ∑

V : S\U⊂V⊂S

(−1)|V|
(iV)∑
k �=l

hikG
(iV)
kl hli

= (−1)|S\U|
(i∪S\U)∑

k �=l

∑
V : S\U⊂V⊂S\{k,l}

(−1)|V|hikG
(iV)
kl hli

(5.98)

=
(i∪S\U)∑

k �=l

hikhli

∑
V : S\U⊂V⊂S\{k,l}

(−1)|S\U|(−1)|V|G(iV)
kl

=
(i∪S\U)∑

k �=l

hikhli[Gkl](Si)\{k,l},U\{k,l},

where in the last equality we used the definition of GS,U, Definition 5.8. Thus, we
may write

Z S,U
i = A1 + A2 + A3 + A4,(5.99)

where

A1 :=∑
k∈U

∑
l∈U\{k}

hikhli[Gkl](Si)\{k,l},U\{k,l},

A2 :=∑
k∈U

(Sik)∑
l

hikhli[Gkl](Si)\{k},U\{k},

A3 :=∑
l∈U

(Sil)∑
k

hikhli[Gkl](Si)\{l},U\{l},

A4 :=
(Si)∑
k �=l

hikhli[Gkl](Si),U.

Now we have

E(1([�]i)|Z S,U
i |r ) = E

(
1([�]i )|A1 + A2 + A3 + A4|r)

(5.100)

≤ 4r
4∑

j=1

E(1([�]i )|Aj |r ),

and we are going to bound E(1([�]i )|Aj |r ) for each j = 1,2,3,4. Using the as-
sumption (4.1), that is,

� ≤ γ ≤ (logN)−ξ ,(5.101)



2334 ERDŐS, KNOWLES, YAU AND YIN

(5.78) and (5.79), we get �o + �d ≤ C(logN)−ξ , which implies the assumption
(5.71) of Lemma 5.11.

Throughout the following we set u := |U| + 1. We begin by estimating the con-
tribution of A1. Observe that if i �= k, l, i ∈ A and i /∈ B, then [Gkl]A,B is indepen-
dent of the ith row and column of H . (The same argument will be repeatedly used
in the rest of the proof below.) Thus, we have∥∥1([�]i )[Gkl](Si)\{k,l},U\{k,l}∥∥∞ = ∥∥1(�)[Gkl](Si)\{k,l},U\{k,l}∥∥∞ ≤ (C|U|X)|U|−1,

where in the second step we used (5.73) and �o ≤ CX on �. Thus, we find, using
|U| ≤ |S| ≤ p = (logN)ξ−3/2 and q−1 ≤ X, that

E1([�]i )|A1|r ≤ (logN)2ξ max
i,k,l

E|hik|r |hli |r((C|U|X)|U|−1)r
≤ (logN)2ξ q−2r((C|U|X)|U|−1)r(5.102)

≤ (Y (CXu)u)r .

In order to bound the contribution of A2, we estimate, as above,∥∥1([�]i )[Gkl](Si)\{k},U\{k}∥∥∞ = ∥∥1(�)[Gkl](Si)\{k},U\{k}∥∥∞ ≤ (C|U|X)|U|,
where in the last step we used (5.73) and �o ≤ CX on �. Thus, we may apply the
moment estimate (A.4) from the Appendix with

Bkl := 1(k ∈ U)1(l /∈ S ∪ {i})1([�]i)[Gkl](Si)\{k},U\{k}.
This yields

E1([�]i)|A2|r ≤ (Cr)2r

((
1

q
+
(

1

N2 (logN)ξN

)1/2)
(C|U|X)|U|

)r

≤ (Cr)2r(X(C|U|X)|U|)r ,
where we used that |U| ≤ (logN)ξ , that the Bkl defined above are independent of
the randomness in the ith column of H , and that

1

q
+ (logN)ξ/2

√
N

≤ 1

q
+ (logN)2ξ

√
Immsc

Nη
≤ X

as follows from Immsc ≥ √
η and η ≤ 3. Thus, we get

E1([�]i)|A2|r ≤ (Y (CXu)u)r .(5.103)

(Recall that u = |U| + 1.)
Exchanging k and l in the above estimate of A2, we obtain

E1([�]i)|A3|r ≤ (Y (CXu)u)r .(5.104)

Finally, we estimate the contribution of A4. As above, we estimate∥∥1([�]i )[Gkl](Si),U
∥∥∞ = ∥∥1(�)[Gkl](Si),U

∥∥∞ ≤ (C|U|X)|U|+1
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by (5.73) and �o ≤ CX on �. We may now apply the moment estimate (A.4) the
Appendix with

Bkl := 1(k, l /∈ S ∪ {i})1([�]i )[Gkl](Si),U.

This yields

E1([�]i)|A2|r ≤ (r2(C|U|X)|U|+1)r ,
where we used that the Bkl are independent of the randomness in the ith column
of H . This gives

E1([�]i )|A2|r ≤ (Y (CXu)u)r .(5.105)

Combining (5.102), (5.103), (5.104) and (5.105), we obtain (5.96). This com-
pletes the proof. �

6. The largest eigenvalue of A.

6.1. Eigenvalue interlacing. We now concentrate on the spectrum of A. We
begin by proving the following interlacing property. Recall that λ1 ≤ · · · ≤ λN

denote the eigenvalues of H and μ1 ≤ · · · ≤ μN =: μmax the eigenvalues of A.
The associated eigenvectors of H are denoted by u1, . . . ,uN , and those of A by
v1, . . . ,vN =: vmax. Also, we set G̃(z) := (A − z)−1.

LEMMA 6.1. The eigenvalues of H and A are interlaced,

λ1 ≤ μ1 ≤ λ2 ≤ μ2 ≤ · · · ≤ μN−1 ≤ λN ≤ μN.(6.1)

PROOF. We use the identity

〈e, G̃e〉−1 = f + 〈e,Ge〉−1,(6.2)

which follows by taking 〈e, ·e〉 in

G̃(z)(A − z)G(z) = G̃(z)(H − z)G(z) + f G̃(z)|e〉〈e|G(z).

From (6.2) we get(∑
α

|〈vα, e〉|2
μα − z

)−1

= f +
(∑

α

|〈uα, e〉|2
λα − z

)−1

.(6.3)

It is easy to see that the left-hand side of (6.3) defines a function of z ∈ R with
N − 1 singularities and N zeros, which is smooth and decreasing away from the
singularities. Moreover, its zeros are the eigenvalues of A. The interlacing property
now follows from the fact that z is an eigenvalue of H if and only if the right-hand
side of (6.3) is equal to f . �
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6.2. The laws of μmax and vmax. In this section we establish the basic proper-
ties of μmax and vmax. We make the assumption that f ≥ 1 + ε0 uniformly in N

[see (6.4) below], which is necessary to guarantee that μN−1 and μN are separated
by a gap of order one. Note that in [26] it was proved, in the case where H is a
Hermitian Wigner matrix, that if f ≤ 1 no such gap exists.

The following result collects the main properties of μmax and vmax for the rank-
one perturbation A = H + f |e〉〈e| of the sparse matrix H . The most important
technical result is (6.9). It states that, for large f , the eigenvector vmax is almost
parallel to the perturbation e. Consequently, e is almost orthogonal to the eigenvec-
tors vα for α = 1, . . . ,N −1 (Corollary 6.7). As it turns out, this near orthogonality
is the key input for establishing the local semicircle law for A in Section 7. We re-
fer to the discussion at the beginning of Section 7.1 for more details on the use of
Corollary 6.7.

THEOREM 6.2. Suppose that A satisfies Definition 2.2 and that in addition to
(2.8) we have the lower bound

f ≥ 1 + ε0(6.4)

for some constant ε0 > 0.
Then we have with (ξ, ν)-high probability

μmax = f + 1

f
+ o(1).(6.5)

In particular, there is a constant c, depending on ε0, such that with (ξ, ν)-high
probability we have

μmax ≥ 2 + c.(6.6)

Also, we have

Eμmax = f + 1

f
+ O

(
1

f 3 + 1

f 2q
+ 1

f N

)
(6.7)

as well as, with (ξ, ν)-high probability,

μmax = f + 1

f
+ O

(
1

f 3 + 1

f 2q
+ (logN)ξ√

N

)
.(6.8)

Note that (6.7) and (6.8) locate μmax more precisely than (6.5) in the large-f
regime.

Moreover, the phase of vmax can be chosen so that we have with (ξ, ν)-high
probability

〈vmax, e〉 = 1 − 1

2f 2 + O

(
1

f 3 + (logN)2ξ

f
√

N

)
.(6.9)
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Finally, there is a constant C0 such that if

f ≥ C0(logN)2ξ and ξ ≥ 2,(6.10)

then we have with (ξ, ν)-high probability

μmax = Eμmax + 1

N

∑
i,j

hij + O

(
(logN)2ξ

f
√

N

)
.(6.11)

In particular, if (6.10) holds, we have (by the central limit theorem)√
N

2
(μmax − Eμmax) −→ N (0,1)(6.12)

in distribution, where N (0,1) denotes a standard normal random variable.

REMARK 6.3. In analogy to Definition 3.3, we define A(T) as the (N −
|T|) × (N − |T|) minor of A obtained by removing all columns of A in-
dexed by i ∈ T; here T ⊂ {1, . . . ,N}. If A satisfies Definition 2.2, then so does
(N/(N − |T|))1/2A(T). Therefore, all results of this section also hold for A(T) pro-
vided |T| ≤ 10. (Here 10 can be any fixed number.) Throughout Sections 6 and 7
we abbreviate μ

(T)
max := μ

(T)
N−|T| and v(T)

max := v(T)
N−|T|.

REMARK 6.4. Statistical properties of the k largest eigenvalues of a random
Wigner matrix with a large rank-k perturbation have been studied in [3, 5, 26, 32].
Theorem 6.2 collects analogous results for the more singular case of sparse matri-
ces. We restrict our attention to the special case where the perturbation is f |e〉〈e|.
(Note that in [3, 5, 32] the authors allow quite general finite-rank perturbations of
Wigner matrices.)

The rest of this section is devoted to the proof of Theorem 6.2. It is based on
the following standard observation. Let μ be an eigenvalue of A with associated
normalized eigenvector v. This means that

(μ − H)v = f 〈e,v〉e.
Suppose now that μ is not an eigenvalue of H . Thus, we can choose v and K > 0
such that

v = K(μ − H)−1e,(6.13)

1 = f 〈e, (μ − H)−1e〉.(6.14)

Using the spectral decomposition of H , we rewrite (6.14) as

1

f
=∑

α

|〈e,uα〉|2
μ − λα

.(6.15)
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It is easy to see that (6.15) has a unique solution, μmax, greater than λN . Moreover,
(6.15) readily yields μmax − λN ≤ f ≤ μmax − λ1, that is,

μmax ∈ [f + λ1, f + λN ].(6.16)

Our proof is based on the series expansions

μmax = f
∑
k≥0

〈e, (H/μmax)
ke〉,(6.17)

vmax = K
∑
k≥0

(H/μmax)
ke.(6.18)

Note that the expansions (6.17) and (6.18) can be interpreted as perturbative cor-
rections around the matrix f |e〉〈e|.

In order to control the expansions (6.17) and (6.18), we shall need the following
large deviation bound, proved in the Appendix.

LEMMA 6.5. Let 1 ≤ k ≤ logN . Then

|〈e,Hke〉 − E〈e,Hke〉| ≤ C
(logN)kξ

N1/2(6.19)

with (ξ, ν)-high probability provided that 1 ≤ q ≤ CN1/2.

PROOF OF (6.5). The key observation is that∣∣∣∣E〈e,Hke〉 −
∫

xk�sc(x)dx

∣∣∣∣≤ C(k)

q
(6.20)

for some constant C(k) depending on k. Indeed, a standard application of the mo-
ment method (see, e.g., [28], Section 1.2) shows that E〈e,H 2ne〉 = Cn +On(q

−2),
where Cn := 1

n+1

(2n
n

)= ∫ x2n�sc(x)dx is the nth Catalan number. If k is odd, one
finds by a similar moment estimate that E〈e,Hke〉 = Ok(q

−1). We omit the de-
tails.

For the following we work on the event of (ξ, ν)-high probability on which
(4.29) holds. We consider solutions μ of (6.14) in the interval I := [2+ε2

0/20,∞).
By monotonicity of the right-hand side of (6.15) in I , we know that (6.14) has at
most one solution in I . For any k0 ∈ N, using (6.19) and (6.20) we may expand
(6.14) in I [see (6.17)] as

μ = f

k0∑
k=0

∫ (
x

μ

)k

�sc(x)dx

+ O

(
f
∑
k>k0

(‖H‖
μ

)k

+ C(k0)

q
+ k0(logN)ξk0√

N

)
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= −f μmsc(μ)

+ O

(
f
∑
k>k0

( ‖H‖
2 + ε2

0/20

)k

+ f
∑
k>k0

(
2

2 + ε2
0/20

)k

+ C(k0)

q
+ k0(logN)ξk0√

N

)
,

where the first term comes from extending the sum over k to infinity and using that
∞∑

k=0

∫ (
x

μ

)k

�sc(x)dx = μ

∫
�sc(x)dx

μ − x

for μ > 2. It is easy to see that the second term is o(1) by an appropriate choice of
k0(N). Thus, we have proved that, for μ ∈ I , the equation (6.14) reads msc(μ) =
−f −1 + r(μ), where r(μ) → 0 as N → ∞ uniformly in μ.

Next, the function μ �→ msc(μ) is continuous and monotone increasing on
(2,∞), with range (−1,0). Let μ̄ be the unique solution of msc(μ̄) = −f −1.
(Note that here we need the assumption f > 1.) Using (2.13), we find that
μ̄ = f +f −1 ≥ 2+ε2

0/10. We therefore find that, for N large enough, the equation
msc(μ) = −f −1 + r(μ) [which is equivalent to (6.14) on I ] has a unique solution
μ ∈ I which satisfies μ = μ̄ + o(1). Since μ is the only solution of (6.14) in I , we
must have μ = μmax. �

Note that (6.5) remains valid if e in (2.7) is replaced with any �2-normalized
vector. It is a simple matter to check that (6.20) is valid for arbitrary vectors e.
Moreover, Lemma 6.5 remains correct for arbitrary e provided one replaces N−1/2

on the right-hand side of (6.19) with q−1. We omit the details, as we shall not need
this result.

From (6.6) and (4.29) we find that with (ξ, ν)-high probability

‖H‖
μmax

≤ 1 − c(6.21)

for some constant c > 0. In particular, (6.17) and (6.18) converge with (ξ, ν)-high
probability.

PROOF OF (6.8). From (6.17) and Lemma 4.3 we find μmax = f (1 + r(f ))

with (ξ, ν)-high probability, where limf →∞ r(f ) = 0. Together with the simple
identities

E〈e,He〉 = 0, E〈e,H 2e〉 = 1,(6.22)

(6.17), (6.21) and Lemma 6.5 yield with (ξ, ν)-high probability

μmax = f + 1

f
+ E〈e,H 3e〉

f 2 + O

(
1

f 3

)
+ O

(
(logN)ξ√

N

)
.(6.23)
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By explicit computation we find that

E〈e,H 3e〉 = O(q−1).(6.24)

Thus, (6.8) follows. �

PROOF OF (6.7). From (6.17) and (6.21) we get with (ξ, ν)-high probability

μmax = f + f

μmax
〈e,He〉 + f

μ2
max

〈e,H 2e〉 + O

(
1

f 3 + 1

f 2q

)
,(6.25)

where we used (6.24). Iterating (6.25) yields with (ξ, ν)-high probability

μmax = f + 〈e,He〉 − 〈e,He〉2/f + 〈e,He〉3/f 2 − 〈e,He〉〈e,H 2e〉/f 2

(6.26)

+ 〈e,H 2e〉/f − 2〈e,He〉〈e,H 2e〉/f 2 + O

(
1

f 3 + 1

f 2q

)
,

where we used Lemma 4.3. In order to complete the proof of (6.7), we use the
rough estimate Eμ2

max ≤ E TrA2 ≤ CNf 2 + N ≤ NC , by (2.8). Recalling (6.19),
we also get

|E〈e,He〉2| ≤ C

N
, |E〈e,He〉3| ≤ C

Nq
, |E〈e,He〉〈e,H 2e〉| ≤ C

Nq

by explicit calculation using (2.5). Now taking the expectation in (6.26), using
(6.22) yields (6.7). �

PROOF OF (6.9). We compute the normalization constant K in (6.18) from

K−2 = ∑
k,k′≥0

μ−k−k′
max 〈e,Hk+k′

e〉

= 1 + 2μ−1
max〈e,He〉 + 3μ−2

max〈e,H 2e〉 + O(μ−3
max)(6.27)

= 1 + 3

f 2 + O

(
1

f 3 + (logN)2ξ

f
√

N

)
with (ξ, ν)-high probability, where we used Lemmas 6.5 and 4.3, as well as (6.8)
and (6.21). Now (6.9) is an easy consequence of (6.18), (6.8) and Lemmas 6.5
and 4.3. �

What remains is to prove (6.11).

PROOF OF (6.11). We assume (6.10), and, in particular, μmax ≥ C0
2 (logN)2ξ

by (6.5). Thus, from Lemma 4.3 we get with (ξ, ν)-high probability

‖H‖
μmax

≤ 6

C0(logN)2ξ
.
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From (6.17) and (6.8) we therefore get with (ξ, ν)-high probability

μmax = f

c0 logN∑
k=0

〈e,Hke〉
μk

max
+ O(e−c0 logN log logN),

where c0 ≤ 1 is a positive constant to be chosen later. Thus, we find with (ξ, ν)-
high probability

μmax = f

c0 logN∑
k=0

E〈e,Hke〉
μk

max
+ f

μmax
〈e,He〉 + f

c0 logN∑
k=2

〈e,Hke〉 − E〈e,Hke〉
μk

max

+ O(e−c0 logN log logN).

Therefore, we get, for any 0 < c0 ≤ 1 and using (6.8) and Lemma 6.5, that with
(ξ, ν)-high probability we have

μmax = f

c0 logN∑
k=0

E〈e,Hke〉
μk

max
+ f

μmax
〈e,He〉 + O

(
(logN)2ξ

f
√

N

)
.

Here the constant in O(·) depends on c0.
Next, Lemma 4.3 yields

|E〈e,Hke〉| ≤ (5/2)k + NCke−ν(logN)ξ ≤ 3k(6.28)

for k ≤ (ν/C)(logN)ξ−1. [Here we used Schwarz’s inequality and the trivial es-
timate E〈e,He〉 ≤ NC to estimate the contribution of the low-probability event
on which (4.29) does not hold.] By the assumption (6.10) on ξ , (6.28) holds for
k ≤ c0 logN for c0 small enough. It is therefore easy to see that the equation

μ̄ = f

c0 logN∑
k=0

E〈e,Hke〉
μ̄k

has a unique solution μ̄ > 0, which satisfies μ̄ = f + O(f −1). Writing μmax =
μ̄ + ζ , we get with (ξ, ν)-high probability

ζ = f

μmax
〈e,He〉 + f

c0 logN∑
k=0

E〈e,Hke〉
μ̄k

[(
1 + ζ

μ̄

)−k

− 1
]

(6.29)

+ O

(
(logN)2ξ

f
√

N

)
.

Next, by (6.8) we find ζ = O(f −1) with (ξ, ν)-high probability. Moreover,
(6.22) and Lemma 6.5 imply that 〈e,He〉 = O((logN)ξN−1/2) with (ξ, ν)-high
probability, and that the sum in (6.29) starts at k = 2. This yields the expression
with (ξ, ν)-high probability

ζ = 〈e,He〉 + 1

f

∑
l≥1

alζ
l + O

(
(logN)2ξ

f
√

N

)
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for some coefficients al = O(1), by (6.28). We conclude that with (ξ, ν)-high
probability we have

ζ = 〈e,He〉(1 + O(f −1)
)+ O

(
(logN)2ξ

f
√

N

)
= 〈e,He〉 + O

(
(logN)2ξ

f
√

N

)
,

where we used that |〈e,He〉| ≤ (logN)ξN−1/2 with (ξ, ν)-high probability.
Summarizing, we have proved that with (ξ, ν)-high probability we have

μmax = μ̄ + 1

N

∑
i,j

hij + R,(6.30)

where |R| ≤ O(
(logN)2ξ

f
√

N
). Using Eμ2

max ≤ NC , we therefore get

E|R| ≤ O

(
(logN)2ξ

f
√

N

)
,

and (6.11) follows by taking the expectation in (6.30). �

This concludes the proof of Theorem 6.2.
For future reference, we record two simple corollaries which we shall use in

Section 7 to control the matrix elements of G̃.

COROLLARY 6.6. Suppose that A satisfies Definition 2.2. Then we have with
(ξ, ν)-high probability

|μα| ≤ max
β

|λβ | = ‖H‖ ≤ 2 + (logN)ξq−1/2 for α = 1, . . . ,N − 1.(6.31)

PROOF. Use (6.1) and Lemma 4.3. �

COROLLARY 6.7. Suppose that A satisfies Definition 2.2 and that, in addi-
tion, f ≤ C0N

1/2. Then we have with (ξ, ν)-high probability∑
α �=N

|〈vα, e〉|2 = O(f −2).(6.32)

PROOF. The statement is trivial unless f ≥ 1 + ε0, in which case we use (6.9)
and ‖e‖ = 1. �

7. Control of ˜G: Proofs of Theorems 2.9 and 2.16. In this section we adopt
the convention that if F = F(H) is any function of H , then F(A) is denoted
by F̃ , that is, we use the tilde (̃·) to indicate quantities defined in terms of A =
H + f |e〉〈e|. Thus, for example, we have

A = H̃ , μα = λ̃α, vα = ũα,

G̃(z) := (A − z)−1, m̃(z) := 1

N

∑
G̃ii(z)
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and

�̃o := max
i �=j

|G̃ij |, �̃d := max
i

|G̃ii − msc|,
(7.1)

�̃ := |m̃ − msc|, ṽi := G̃ii − msc.

Note that G̃ and m̃ were already introduced in (2.19).
We begin by using the interlacing property (6.1) to derive a bound on �. Recall

the convention that if F = F(H) is any function of H , then F̃ is defined as F(A),
where, we recall, A = H + f |e〉〈e|.

LEMMA 7.1. Let A satisfy Definition 2.2. Then for any z ∈ DL we have

|�̃(z) − �(z)| ≤ π

Nη
.

PROOF. Define the empirical density �̃(x) := 1
N

∑
α δ(x −μα). Thus, the inte-

grated empirical density defined in (2.23) can be written as ñ(E) = ∫ E
−∞ �̃(x)dx.

Similarly, define the quantities � and n in terms of the eigenvalues λ1, . . . , λN

of H . Using integration by parts, we find

�̃(z) − �(z) =
∫

�̃(x) − �(x)

x − z
dx = −

∫
ñ(x) − n(x)

(x − z)2 dx.

By (6.1) we have |̃n(x) − n(x)| ≤ N−1 for all x. Thus, we find

|�̃(z) − �(z)| ≤ 1

N

∫ 1

|x − z|2 dx = π

Nη
. �

We note that the claim (2.20) of Theorem 2.9 is now an immediate consequence
of Lemma 7.1 and the strong local semicircle law (2.16) for H .

The rest of this section is devoted to the proof of the estimate (2.22) for the
matrix elements of G̃. From now on we consistently assume the upper bound (2.21)
on f .

7.1. Basic estimates on the good events. In this section we control the indi-
vidual matrix elements G̃ij in terms of �̃, which in turn will be estimated using
Lemma 7.1. Our basic strategy is similar to that of Section 3, but, owing to the non-
vanishing expectation of aij , the self-consistent equation for G̃ii has several addi-
tional error terms as compared to Lemma 3.10; see Lemma 7.2 and Proposition 7.6
below. The most dangerous of these error terms is estimated in Lemma 7.5 below.
We will use the spectral decomposition of H̃ , combined with bounds on 〈e,vα〉 and
‖vα‖∞. The former quantities are estimated using Corollary 6.7, while the latter
are estimated by bootstrapping. The spectral decomposition requires simultaneous
control of all eigenvectors, whose associated eigenvalues are distributed through-
out the spectrum. Since bounds on ‖vα‖∞ (delocalization bounds) may be derived
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from a priori bounds on �̃d(z) for Re z being near the corresponding eigenvalue,
we will therefore need bounds on �̃d(z) that are uniform for all z ∈ DL with a
fixed imaginary part. Hence, the bootstrapping now occurs simultaneously for all
E ∈ [−
,
] (see Definition 7.3 below).

We use the following self-consistent equation for G̃, whose proof is an elemen-
tary calculation using (3.12) and (3.13) applied to G̃; see also Lemma 3.10.

LEMMA 7.2. We have the identity

G̃ii = 1

−z − msc − ([ṽ] − ϒ̃i)
,(7.2)

where

ϒ̃i := hii − Z̃i + Ãi

and

Z̃i := IEi

(i)∑
k,l

aikG̃
(i)
kl ali ,

(7.3)

Ãi := f

N
− f 2

N

N − 1

N

〈
e, G̃(i)e

〉+ 1

N

∑
j

G̃ij G̃ji

G̃ii

.

Recall that in expressions such as (7.3) the vector e stands for eN−1; see (2.2).

DEFINITION 7.3. For N−1(logN)L ≤ η ≤ 3 introduce the set D(η) := {z ∈
DL : Im z = η}. We define the event

	̃(η) :=
{

sup
z∈D(η)

(
�̃d(z) + �̃o(z)

)≤ (logN)−ξ
}
.(7.4)

Recall the definition of A(T) from Remark 6.3. Similarly to Lemma 3.12, we
have the following result for the matrix A.

LEMMA 7.4. Fixing z = E + iη ∈ DL, we have for any i and T ⊂ {1, . . . ,N}
satisfying i /∈ T and |T| ≤ 10 that

m̃(iT)(z) = m̃(T)(z) + O

(
1

Nη

)
(7.5)

holds in 	̃(η).

The following lemma is crucial in dealing with error terms arising from the
nonvanishing expectation of aij . Recall that, when indexing the eigenvalues and
eigenvectors of A(T), we defined αmax := N − |T|.



ERDŐS–RÉNYI GRAPHS 2345

LEMMA 7.5. Fixing z = E + iη ∈ DL, we have for any T ⊂ {1, . . . ,N} satis-
fying |T| ≤ 10 and for any i ∈ T that∣∣∣∣∣

(T)∑
k,l

f

N
G̃

(T)
kl hli

∣∣∣∣∣≤ C(logN)ξ

(
1

q
+
√

Im m̃

Nη
+ 1

Nη

)
(7.6)

on 	̃(η) with (ξ, ν)-high probability.

PROOF. For technical reasons, it is convenient to avoid the situation where
μmax is close to 
. In order to ensure this, we may if necessary increase 
 slightly
and hence assume that f ≤ 
 −3 or f ≥ 
 +3. We start by proving the following
delocalization bound. Define

R := max|T|≤10
max

α �=αmax
max

j

∣∣v(T)
α (j)

∣∣, Rmax := max|T|≤10
max

j

∣∣v(T)
max(j)

∣∣.(7.7)

First we claim that on 	̃(η) we have with (ξ, ν)-high probability

R ≤ C
√

η(7.8)

and, assuming f ≤ 
 − 3, we have with (ξ, ν)-high probability

Rmax ≤ C
√

η.(7.9)

In order to prove (7.8) and (7.9), we note that on 	̃(η) we have, in analogy to
(3.29),

c ≤ ∣∣G̃(T)
jj (z)

∣∣≤ C(7.10)

for all z ∈ DL such that Im z = η and N large enough. From (6.31) we find that
z := μ

(T)
α + iη ∈ DL with (ξ, ν)-high probability for α �= αmax; see Remark 6.3.

Thus, we get with (ξ, ν)-high probability

C ≥ Im G̃
(T)
jj

(
μ(T)

α + iη
)=∑

β

η|v(T)
β (j)|2

(μ
(T)
β − μ

(T)
α )2 + η2

≥ |v(T)
α (j)|2

η
.

This concludes the proof of (7.8). Next, if f ≤ 
−3, then by (6.5) and Lemma 4.3
we have μ

(T)
max ∈ [−
,
] with (ξ, ν)-high probability. Thus, we get (7.9) just like

above.
Having established (7.8) and (7.9), we may now estimate the left-hand side

of (7.6), using the spectral decomposition of G̃(T), by

f√
N − |T|

∣∣∣∣∣ 〈e,v(T)
max〉

μ
(T)
max − z

(T)∑
l

v(T)
max(l)hli

∣∣∣∣∣
(7.11)

+ f√
N − |T|

∣∣∣∣∣ ∑
α �=αmax

〈e,v(T)
α 〉

μ
(T)
α − z

(T)∑
l

v(T)
α (l)hli

∣∣∣∣∣.
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By the delocalization bound (7.8) and the large deviation estimate (3.19), we find
for α �= αmax on 	̃(η) with (ξ, ν)-high probability∣∣∣∣∣

(T)∑
l

v(T)
α (l)hli

∣∣∣∣∣≤ (logN)ξ
(

R

q
+ 1√

N

)
.

Similarly, we have ∣∣∣∣∣
(T)∑
l

v(T)
max(l)hli

∣∣∣∣∣≤ (logN)ξ
(

Rmax

q
+ 1√

N

)
.

Next, we estimate the first term of (7.11). If f ≤ 
 − 3, then f ≤ C, and the first
term of (7.11) is bounded, with (ξ, ν)-high probability, by

C√
Nη

(logN)ξ
(√

η

q
+ 1√

N

)
≤ C(logN)ξ

(
1

q
+ 1

Nη

)
.

If f ≥ 
 + 3, then by (6.5) and (6.8) we get |μ(T)
max − z| ≥ cf with (ξ, ν)-high

probability. Thus, the first term of (7.11) is bounded with (ξ, ν)-high probability
by

Cf√
N

(logN)ξ

f

(
1

q
+ 1√

N

)
≤ C(logN)ξ√

Nq
,

where we used the trivial bound Rmax ≤ 1. We therefore get that the left-hand side
of (7.6) is bounded with (ξ, ν)-high probability by

C(logN)ξ
(

1

q
+ 1

Nη

)
+ C(logN)ξ

f√
N

(
R

q
+ 1√

N

) ∑
α �=αmax

|〈e,v(T)
α 〉|

|μ(T)
α − z|

≤ C(logN)ξ
(

1

q
+ 1

Nη

)

+ C(logN)ξ
f√
N

(
R

q
+ 1√

N

)( ∑
α �=αmax

∣∣〈e,v(T)
α

〉∣∣2)1/2

×
(∑

α

1

|μ(T)
α − z|2

)1/2

.

By (6.32) this becomes

C(logN)ξ
(

1

q
+ 1

Nη

)
(7.12)

+ C(logN)ξ
1√
N

(
R

q
+ 1√

N

)(∑
α

1

|μ(T)
α − z|2

)1/2

.
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Using (7.5), we get∑
α

1

|μ(T)
α − z|2 = 1

η
Im
∑
α

1

μ
(T)
α − z

= 1

η
Im Tr G̃(T) = N

η
Im m̃ + O

(
1

η2

)
,

which therefore yields the bound

C(logN)ξ
(

1

q
+ 1

Nη

)
+ C(logN)ξ

( √
η√

Nq
+ 1

N

)(√
N

η
Im m̃ + 1

η

)

on 	̃(η) with (ξ, ν)-high probability. Here we used (7.8). The claim follows. �

For the following statements it is convenient to abbreviate

�(z) := (logN)ξ

q
+ (logN)2ξ

(√
Im m̃(z)

Nη
+ 1

Nη

)
.(7.13)

PROPOSITION 7.6. Assume (2.21). Then for z = E + iη ∈ DL we have

�̃o(z) ≤ C�(z),(7.14)

max
i

|Z̃i(z)| ≤ C�(z),(7.15)

max
i

|Ãi (z)| ≤ C

Nη
(7.16)

in 	̃(η) with (ξ, ν)-high probability.

PROOF. We start with (7.14). Let i �= j . Using (3.13) for A instead of H , and
writing aij = f/N + hij , we get with (ξ, ν)-high probability

C−1|G̃ij | ≤ 1

q
+
∣∣∣∣∣
(ij)∑
k,l

hikG̃
(ij)
kl hlj

∣∣∣∣∣+
∣∣∣∣∣
(ij)∑
k,l

f

N
G̃

(ij)
kl hlj

∣∣∣∣∣
(7.17)

+
∣∣∣∣∣
(ij)∑
k,l

hikG̃
(ij)
kl

f

N

∣∣∣∣∣+
∣∣∣∣∣
(ij)∑
k,l

f

N
G̃

(ij)
kl

f

N

∣∣∣∣∣
by Lemma 3.7 and (7.10).

The second term of (7.17) is bounded exactly as in (3.34) and (3.35); using
(3.22) and (7.10), we estimate it by

(logN)ξ
C

q
+ C(logN)2ξ

(√
Im m̃

Nη
+ 1

Nη

)

on 	̃(η) with (ξ, ν)-high probability.
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The last term of (7.17) is bounded with (ξ, ν)-high probability by

f 2

N2 (N − 2)
∣∣〈e, G̃(ij)e

〉∣∣≤ C
f 2

N

|〈e,v(ij)
max〉|2

|μ(ij)
max − z|

+ f 2

N

∑
α �=αmax

|〈e,v(ij)
α 〉|2

|μ(ij)
α − z|

≤ Cf

N
+ C

Nη
+ f 2

Nη

∑
α �=αmax

∣∣〈e,v(ij)
α

〉∣∣2(7.18)

≤ Cf

N
+ C

Nη
,

where in the first step we used (6.8), and in the last step (6.32). Here we estimated
the term arising from μ

(ij)
max by C(Nη)−1 if f ≤ 2
, and by Cf/N if f ≥ 2
.

Using Lemma 7.5, the third and fourth terms in (7.17) are bounded on 	̃(η) with
(ξ, ν)-high probability by the right-hand side of (7.6). This concludes the proof of
(7.14).

Next, we prove (7.15). By definition,

Z̃i =
(i)∑
k,l

hikG̃
(i)
kl

f

N
+

(i)∑
k,l

f

N
G̃

(i)
kl hli + IEi

(i)∑
k,l

hikG̃
(i)
kl hli .(7.19)

The first two terms are bounded using Lemma 7.5, and the last one exactly as
(3.33).

Finally, we prove (7.16). Using (6.8), (6.9), (6.32) and (7.10), we find on 	̃(η)

with (ξ, ν)-high probability

Ãi = f

N
− f 2

N

N − 1

N

|〈e,v(i)
max〉|2

μ
(i)
max − z

− f 2

N

N − 1

N

∑
α �=αmax

|〈e,v(i)
α 〉|2

μ
(i)
α − z

+ 1

N

∑
j

G̃ij G̃ji

G̃ii

= f

N
− f 2

N

N − 1

N

1

f

[
1 + O

(
1

f

)]
(7.20)

+ O

(
1

Nη

)
+ O

(
f 2

Nη

∑
α �=αmax

∣∣〈e,v(i)
α

〉∣∣2)+ O

(
1

N

∑
j

|G̃ij |2
)

= O

(
1

Nη

)
,

where in the second step we distinguished the two cases f ≤ 2
 and f ≥ 2
, as
in (7.18). �

We may now estimate �̃d in terms of �̃.
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LEMMA 7.7. Assume (2.21). For z = E + iη ∈ DL we have

max
i

|G̃ii(z) − m̃(z)| ≤ C�(z)(7.21)

on 	̃(η) with (ξ, ν)-high probability. In particular, on 	̃(η) we have with (ξ, ν)-
high probability

�̃d(z) ≤ �̃(z) + C�(z).(7.22)

PROOF. Using (7.15), (7.16) and Lemma 3.7, we find

max
i

|ϒ̃i | ≤ (logN)ξ
C

q
+ C(logN)2ξ

(√
Im m̃

Nη
+ 1

Nη

)
(7.23)

on 	̃(η) with (ξ, ν)-high probability. From (7.2) we therefore get

|G̃ii − G̃jj | = |G̃ii ||G̃jj ||ϒ̃i − ϒ̃j |
(7.24)

≤ (logN)ξ
C

q
+ C(logN)2ξ

(√
Im m̃

Nη
+ 1

Nη

)

on 	̃(η) with (ξ, ν)-high probability. Since m̃ = 1
N

∑
j G̃jj , the proof is complete.

�

7.2. Establishing 	̃(η) with high probability. What remains to complete the
proof of Theorem 2.9 is to prove that the events 	̃(η) hold with (ξ, ν)-high proba-
bility. We do this using a simplified version of the continuity argument of Sections
3.4 and 3.6.

LEMMA 7.8. If η ≥ 2, then 	̃(η) holds with (ξ, ν)-high probability.

PROOF. The proof is similar to that of Lemma 3.16; we merely sketch the
modifications.

Let z = E + iη ∈ DL for η ≥ 2. We estimate �̃o(z) following closely the proof
of (7.14), using (7.6) and setting R = 1 in (7.12). Using the rough bound |G̃ij | +
|m̃| ≤ 1 as in (3.43), we find

�̃o ≤ (logN)ξ
C

q
+ (logN)2ξ C√

N
+ Cf

N
≤ C(logN)−2ξ

with (ξ, ν)-high probability. Similarly, we find

|Z̃i | ≤ (logN)ξ
C

q
+ (logN)2ξ C√

N
≤ (logN)−2ξ
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with (ξ, ν)-high probability. In order to estimate Ãi , we proceed similarly to (3.44)
and find

|Ãi | ≤ f

N
+ f 2

N

∣∣〈e, G̃(i)e
〉∣∣+ 1

N

∑
j

∣∣G̃(i)
jj

∣∣|G̃ji |(|aij | + |Z̃ij |).

The term Z̃ij is estimated exactly as �̃o above; using the calculation of (7.18), we
therefore get

|Ãi | ≤ (logN)ξ
C

q
+ (logN)2ξ C√

N
+ Cf

N
≤ C(logN)−2ξ

with (ξ, ν)-high probability.
Now we may follow the proof of Lemma 3.16 to the letter, starting from (3.45)

to get �̃d ≤ C(logN)−2ξ with (ξ, ν)-high probability.
Thus, we have proved that �̃d(z)+�̃o(z) ≤ C(logN)−2ξ with (ξ, ν)-high prob-

ability. A simple lattice argument along the lines of Corollary 3.19 then concludes
the proof. �

The following simple continuity argument establishes 	̃(η) with (ξ, ν)-high
probability for smaller η. Let ηk be a sequence as in Section 3.6.

Note that, unlike in Section 3.6, each step k → k + 1 of the continuity argument
has to establish a statement for all z ∈ D(ηk+1).

LEMMA 7.9. We have

P(	̃(ηk)
c) ≤ ke−ν(logN)ξ .

PROOF. We proceed by induction on k. The case k = 1 was proved in Lem-
ma 7.8. We write

P(	̃(ηk+1)
c) ≤ P

(
	̃(ηk) ∩ 	̃(ηk+1)

c)+ P(	̃(ηk)
c).

Now for any w ∈ D(ηk) and on 	̃(ηk) we have, using (7.14), (7.22) and (2.20),

�̃d(w) + �̃o(w) ≤ C(logN)−2ξ

with (ξ, ν)-high probability. Using the estimate (3.56), we find, for any z ∈
D(ηk+1),

�̃d(z) + �̃o(z) ≤ C(logN)−2ξ

with (ξ, ν)-high probability. Using a lattice argument similar to Corollary 3.19, we
therefore find

P
(
	̃(ηk) ∩ 	̃(ηk+1)

c)≤ e−ν(logN)ξ .

The claim follows. �

This estimate (2.22) now follows from (7.14), (7.22), (2.20) and the lattice ar-
gument of Corollary 3.19. This concludes the proof of Theorem 2.9.
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7.3. Eigenvector delocalization: Proof of Theorem 2.16. We may now prove
Theorem 2.16. Delocalization for the eigenvectors v1, . . . ,vN−1 is an immediate
consequence of the weak local semicircle law. From (6.1) and Lemma 4.3 we find
that μ1, . . . ,μN−1 ∈ [−
,
] with (ξ, ν)-high probability. Let L = 8ξ and set
η := (logN)L. Using (3.5), Lemma 7.1 and (7.22), we therefore find with (ξ, ν)-
high probability

C ≥ Im G̃jj (μα + iη) =∑
β

η|vβ(j)|2
(μβ − μα)2 + η2 ≥ |vα(j)|2

η
(α < N).(7.25)

This concludes the proof of (2.32). Moreover, the same argument [with α = N in
(7.25)] proves (2.34) if f ≤ 
 − 3, since in that case μmax ∈ D with (ξ, ν)-high
probability by (6.5) and Lemma 4.3.

Next, we note that (2.33) is an immediate consequence of (6.9).
In order to prove (2.35), we use the following large deviation estimate which is

proved in the Appendix.

LEMMA 7.10. For k ≤ logN and fixed i we have with (ξ, ν)-high probability

|(Hke)(i)| =
∣∣∣∣ ∑
i1,...,ik

hii1hi1i2 · · ·hik−1ik

∣∣∣∣≤ (logN)kξ .(7.26)

Now from the expansion (6.18) we get with (ξ, ν)-high probability

K−1vmax(i) = 1√
N

+ O

(
(logN)ξ√

Nf

)
,

and (2.35) follows since K = 1 + O(f −2) [see (6.27)]. In this argument we used
that f ∼ μmax ≥ C0(logN)ξ for some large enough C0 to overcome the logarith-
mic factors in (6.18) that arise from (7.26). This concludes the proof of Theo-
rem 2.16.

Finally, we outline the proof of (2.36) for 1 � f ≤ C(logN)ξ . The idea is to
use the same proof as for (2.34), relying on the estimate (7.25). In order to do
this, we need the pointwise bound C ≥ G̃ii(μN + iη) which we get by extending
the proof of Theorem 2.9 to a larger set DL. Here DL has to contain μN , so that
we have to choose 
 = C(logN)ξ in the definition (3.1) of DL with some large
constant C.

This extension requires some modifications in our proof of the local semicir-
cle law. Now instead of the bounds (3.8), we have c(logN)−ξ ≤ |msc(z)| ≤ 1 for
z ∈ DL. We modify the definitions (3.25) of 	(z) and (7.4) of 	̃(η) by replac-
ing (logN)−ξ with (logN)−2ξ . Then, on these events, we get the lower bound
|Gii(z)| ≥ c(logN)−ξ instead of (3.28). One can then check that all estimates of
Sections 3–7 remain valid with some deterioration in the form of larger powers of
(logN)ξ , provided that L ≥ Cξ for some large enough C; we omit the details.
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7.4. Control of the average of
∑

k �=i G̃
(i)
1k hki . In this final section we estimate

the averaged quantity

� := 1

N

∑
i �=1

∑
k �=i

G̃
(i)
1k hki .(7.27)

The estimate of � is not needed for the local semicircle law, but we give its proof
here, as it is a natural application of the abstract decoupling lemma, Theorem 5.6.
The expression (7.27) arises as an error term when controlling resolvent expan-
sions of the noncentered matrix A. Such expansions are used in the companion
paper [13] to establish the universality of the extreme eigenvalues; see Section 6.3
in [13].

Note that a naive application of the large deviation bound (3.19) yields |�| ≤
(logN)Cξq−1 with (ξ, ν)-high probability. In order to establish universality of the
extreme eigenvalues in [13], it is crucial that the factor q−1 be improved to q−2.
This is the content of the following proposition.

PROPOSITION 7.11. Suppose that the assumptions of Theorem 2.9 hold. Then
for any z ∈ D120(ξ+2) we have with (ξ, ν)-high probability

|�(z)| ≤ (logN)Cξ

(
1

q2 + Immsc(z)

Nη
+ 1

(Nη)2

)
.(7.28)

PROOF. We shall apply Theorem 5.6 to the quantities

Zi := 1(i �= 1)

(i)∑
k

G̃
(i)
1k hki,

(7.29)

Z [U]
i := 1(i �= 1)1(i,1 /∈ U)

(Ui)∑
k

G̃
(Ui)
1k hki .

Thus, � = [Z] and Z [∅]
i = Zi .

We define the deterministic control parameters

X(z) := (logN)40(ξ+2)

(
1

q
+
√

Immsc(z)

Nη
+ 1

Nη

)
, Y (z) := (logN)ξ

and the event

� := ⋂
z∈D120(ξ+2)

{
max

1≤i,j≤N
|G̃ij (z) − δijmsc(z)| ≤ X(z)

}
.

Recall that the collection of random variables (Z [U]
i )U generates random variables

Z S,U
i through (5.1). We choose p := (logN)ξ in Theorem 5.6. It is immediate that
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the assumptions (i) and (iv) of Theorem 5.6 are satisfied. By Theorem 2.9, the
assumption (v) of Theorem 5.6 holds as well.

We shall prove that, for any U ⊂ S with 1, i /∈ S, |S| ≤ p, and r ≤ p, we have

E(1([�]i )|Z S,U
i |r ) ≤ (Y (CuX)u)r ,(7.30)

where u := |U| + 1. Supposing (7.30) is proved, both assumptions (ii) and (iii) of
Theorem 5.6 are satisfied. Then the claim of Theorem 5.6, (5.12) and Markov’s
inequality yield (7.28).

It remains to prove (7.30). Throughout the following we abbreviate u := |U|+1.
By the definition of Z S,U

i in (5.1) and (7.29) we find, for 1, i /∈ S,

Z S,U
i = 1(i �= 1)(−1)|S\U| ∑

V : S\U⊂V⊂S

(−1)|V|
(Vi)∑

k

G̃
(Vi)
1k hki

= 1(i �= 1)

((iS)\U)∑
k

hki(−1)|S\U| ∑
V : S\U⊂V⊂S\{k}

(−1)|V|G̃(Vi)
1k

= 1(i �= 1)

((iS)\U)∑
k

hkiG̃
(Si)\{k},U\{k}
1k ,

where in the last step we again used (5.1), as well as Definition 5.8 and the fact
that ((Si) \ {k}) \ (U \ {k}) = (Si) \ U. We split

Z S,U
i = D1 + D2,

where

D1 := 1(i �= 1)
∑
k∈U

hkiG̃
(Si)\{k},U\{k}
1k , D2 := 1(i �= 1)

(Si)∑
k

hkiG̃
(Si),U
1k .

Thus, we may estimate

E(1([�]i )|Z S,U
i |r ) ≤ 2r

2∑
j=1

E(1([�]i )|Dj |r ).

To that end, we shall make use of (5.73). Note that Lemma 5.11 is entirely deter-
ministic. In particular, it applies if all quantities are defined in terms of A rather
than H (and hence bear a tilde in our convention). We shall apply it to the Green
function G̃.

We start by estimating D1. Since G̃
(Si)\{k},U\{k}
1k in D1 is by definition indepen-

dent of the ith column of H , for |U| ≤ |S| ≤ p = (logN)ξ we get from (5.73)
that ∥∥1([�]i)G̃(Si)\{k},U\{k}

1k

∥∥∞ = ∥∥1(�)G̃
(Si)\{k},U\{k}
1k

∥∥∞ ≤ (C|U|X)|U|.
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Here we used that �̃o ≤ X on �. Now we may estimate, using |U| ≤ (logN)ξ ,

E(1([�]i )|D1|r ) ≤ (logN)rξ max
k,i

E|hki |r (C|U|X)r|U|

≤ (C(logN)ξq−1(C|U|X)|U|)r
≤ (Y (CuX)u)r .

Next, we estimate D2. As above, since G̃
(Si),U
1k in D2 is by definition indepen-

dent of the ith column of H , for |U| ≤ (logN)ξ we get from (5.73) that∥∥1([�]i )G̃(Si),U
1k

∥∥∞ = ∥∥1(�)G̃
(Si),U
1k

∥∥∞ ≤ (C|U|X)|U|+1.

Now we use the moment estimate (A.2) with α = 1, β = −2, γ = 1 and

Ak := 1(k /∈ S ∪ {i})1([�]i)G̃(Si),U
1k .

This yields

E(1([�]i)|D2|r ) ≤ (r(C|U|X)|U|+1)r .
Here we used that Ak defined above is independent of the randomness in the ith
column of H . Thus, we conclude that

E(1([�]i )|D2|r ) ≤ (Y (CuX)u)r .

This completes the proof of (7.30), and hence of (7.28). �

8. Density of states and eigenvalue locations.

8.1. Local density of states. The following estimate is the key tool for control-
ling the local density of states—and hence proving Theorems 2.10 and 2.12.

LEMMA 8.1. Recall the definition (2.14) of the distance κE from E to the
spectral edge. Suppose that the event⋂

z∈DL

{
|m̃(z) − msc(z)| ≤ (logN)Cξ

(
min
{

1

q2√κE + η
,

1

q

}
+ 1

Nη

)}
(8.1)

holds with (ξ, ν)-high probability for L := C0ξ , where C0 is a positive constant.
For given E1 < E2 in [−
,
] we abbreviate

κ := min{κE1, κE2}, E := max{E2 − E1, (logN)LN−1}.(8.2)

Then, for any −
 ≤ E1 < E2 ≤ 
, we have∣∣(̃n(E2) − ñ(E1)
)− (nsc(E2) − nsc(E1)

)∣∣≤ (logN)Cξ

[
1

N
+ E

q2
√

κ + E

]
(8.3)

with (ξ, ν)-high probability.
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PROOF. Recall the definitions (2.11) and (2.12). Similarly, we have

�̃(x) = 1

N

N∑
α=1

δ(x − μα), ñ(E) =
∫ E

−∞
�̃(x)dx = 1

N
|{α :μα ≤ E}|.

Thus, we may write

m̃(z) = 1

N
TrG(z) =

∫
�̃(x)dx

x − z
.

We introduce the differences

�� := �̃ − �sc, m� := m̃ − msc.

Following [15], we use the Helffer–Sjöstrand functional calculus. Set η̃ :=
(logN)LN−1. (Recall that L = C0ξ .) Let χ be a smooth cutoff function equal to 1
on [−E , E ] and vanishing on [−2E ,2E ]c, such that |χ ′(y)| ≤ CE −1. Set η := N−1

and let f be a characteristic function of the interval [E1,E2] smoothed on the
scale η :f (x) = 1 on [E1,E2], f (x) = 0 on [E1 − η,E2 + η]c, |f ′(x)| ≤ Cη−1,
and |f ′′(x)| ≤ Cη−2. Note that the supports of f ′ and f ′′ have measure O(η).

Then we have the estimate (see equation (B.13) in [15])∣∣∣∣∫ f (λ)��(λ)dλ

∣∣∣∣≤ C

∣∣∣∣∫ dx

∫ ∞
0

dy
(
f (x) + yf ′(x)

)
χ ′(y)m�(x + iy)

∣∣∣∣
+ C

∣∣∣∣∫ dx

∫ η

0
dy f ′′(x)χ(y)y Imm�(x + iy)

∣∣∣∣(8.4)

+ C

∣∣∣∣∫ dx

∫ ∞
η

dy f ′′(x)χ(y)y Imm�(x + iy)

∣∣∣∣.
Since χ ′ vanishes away from [E ,2E ], the first term on the right-hand side of (8.4)
is bounded with (ξ, ν)-high probability by

C

E

∫
dx

∫ 2E

E
dy |f (x) + yf ′(x)|(logN)Cξ

(
1

q2
√

κ + E
+ 1

N E

)

≤ (logN)Cξ

( E
q2

√
κ + E

+ 1

N

)
,

where we abbreviated κ := min{κE1, κE2}. In order to estimate the two remaining
terms of (8.4), we estimate Imm�(x + iy). If y ≥ η̃, we may use (8.1). Consider
therefore the case 0 < y ≤ η̃. From Lemma 3.2 we find

|Immsc(x + iy)| ≤ C
√

κx + y.(8.5)

By spectral decomposition of A, it is easy to see that the function y �→ y Im m̃(x +
iy) is monotone increasing. Thus, we get, using (8.5), x + iη̃ ∈ DL and (8.1), that

y Im m̃(x + iy) ≤ η̃ Im m̃(x + iη̃) ≤ (logN)Cξ η̃

(√
κx + η̃ + 1

q
+ 1

Nη̃

)
(8.6)

≤ (logN)Cξ

N
(y ≤ η̃)
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with (ξ, ν)-high probability. From (8.5), m� = m̃ − msc, and the definition of η̃,
we find

|y Imm�(x + iy)| ≤ (logN)Cξ

N
(y ≤ η̃)(8.7)

with (ξ, ν)-high probability. Since η ≤ η̃, we therefore find that the second term of
(8.4) is bounded with (ξ, ν)-high probability by

C(logN)Cξ

N

∫
dx |f ′′(x)|

∫ η

0
dy χ(y) ≤ (logN)Cξ

N
.

In order to estimate the third term on the right-hand side of (8.4), we integrate
by parts, first in x and then in y, to obtain the bound

C

∣∣∣∣∫ dx f ′(x)η Rem�(x + iη)

∣∣∣∣
+ C

∣∣∣∣∫ dx

∫ ∞
η

dy f ′(x)χ ′(y)y Rem�(x + iy)

∣∣∣∣(8.8)

+ C

∣∣∣∣∫ dx

∫ ∞
η

dy f ′(x)χ(y)Rem�(x + iy)

∣∣∣∣.
The second term of (8.8) is similar to the first term on the right-hand side of (8.4),
and is easily seen to be bounded by

(logN)Cξ

( E
q2

√
κ + E

+ 1

N

)
.

In order to bound the first and third terms of (8.8), we estimate, for any y ≤ η̃,

|m�(x + iy)| ≤ |m�(x + iη̃)| +
∫ η̃

y
du
(|∂um̃(x + iu)| + |∂umsc(x + iu)|).

Moreover, using (8.6) and (3.27), we find for any u ≤ η̃ that

|∂um̃(x + iu)| =
∣∣∣∣ 1

N
Tr G̃2(x + iu)

∣∣∣∣≤ 1

N

∑
i,j

|Gij (x + iu)|2

= 1

u
Im m̃(x + iu) ≤ 1

u2 η̃ Im m̃(x + iη̃)

with (ξ, ν)-high probability. Similarly, we find from (2.12) that

|∂umsc(x + iu)| ≤ 1

u2 η̃ Immsc(x + iη̃).

Thus, (8.1) yields

|m�(x + iy)| ≤ (logN)Cξ

(
1 +
∫ η̃

y
du

η̃

u2

)
≤ (logN)Cξ η̃

y
(y ≤ η̃)(8.9)
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with (ξ, ν)-high probability.
Using (8.9), we may now bound the first term of (8.8) by (logN)CξN−1.
What remains is the third term of (8.8). We first split the y-integration domain

[η,∞)] into the pieces [η, η̃] and [η̃,∞). Using (8.9), we estimate the integral
over the first piece, with (ξ, ν)-high probability, by∫

dx |f ′(x)|
∫ η̃

η
dy |m�(x + iy)| ≤ (logN)Cξ

N
.

Using (8.1), we may therefore estimate the third term of (8.8), with (ξ, ν)-high
probability, by

(logN)Cξ

N
+ (logN)Cξ

∫
dx

∫ 2E

η̃
dy |f ′(x)|

(
1

Ny
+ 1√

κx + y

1

q2

)

≤ (logN)Cξ

N
+ (logN)Cξ

∫
dx |f ′(x)|

[∫ 2E

η̃
dy

1

Ny
+ 1

q2

∫ 2E

η̃
dy

1√
κ + y

]

≤ (logN)Cξ

(
1

N
+ E

q2
√

κ + E

)
.

Summarizing, we have proved that∣∣∣∣∫ f (λ)��(λ)dλ

∣∣∣∣≤ (logN)Cξ

[
1

N
+ E

q2
√

κ + E

]
(8.10)

with (ξ, ν)-high probability.
In order to estimate |̃n(E) − nsc(E)|, we observe that (8.6) implies

|̃n(x + η) − ñ(x − η)| ≤ Cη Im m̃(x + iη) ≤ (logN)Cξ

N

with (ξ, ν)-high probability. Thus, we get∣∣∣∣̃n(E1) − ñ(E2) −
∫

f (λ)�(λ)dλ

∣∣∣∣≤ C
∑

i=1,2

(̃
n(Ei + η) − ñ(Ei − η)

)

≤ C(logN)Cξ

N

with (ξ, ν)-high probability. Similarly, since �sc has a bounded density, we find∣∣∣∣nsc(E1) − nsc(E2) −
∫

f (λ)�sc(λ)dλ

∣∣∣∣≤ Cη = C

N
.

Together with (8.10), we therefore get (8.3). �

We draw two simple consequences from Lemma 8.1.
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PROPOSITION 8.2 (Uniform local density of states). Suppose that A satisfies
Definition 2.2 and that ξ and q satisfy (2.15). Then, for any E1 and E2 satisfying
E2 ≥ E1 + (logN)CξN−1 we have

Ñ (E1,E2)
(8.11)

= Nsc(E1,E2)

[
1 + O

(
(logN)Cξ

Nsc(E1,E2)

(
1 + N

q2

E2 − E1√
κ + E2 − E1

))]
with (ξ, ν)-high probability, where we abbreviated κ := min{κE1, κE2}.

PROOF. By (2.20), the estimate (8.1) holds. Assuming −
 ≤ E1 ≤ E2 ≤ 
,
we get from (8.3), with (ξ, ν)-high probability,

|Ñ (E1,E2) − Nsc(E1,E2)| ≤ (logN)Cξ

(
1 + N

q2

E2 − E1√
κ + E2 − E1

)
,

from which the claim follows. If E1 < −
 and E2 ≤ 
, the claim follows by
replacing E1 with −
 and using Lemma 4.4. The other cases where −
 ≤ E1 ≤
E2 ≤ 
 does not hold are treated similarly using Lemma 4.4. �

The proof of Theorem 2.10 is completed by observing that both its statements,
(2.25) and (2.24), are special cases of (8.11). [Recall that in the bulk we have
Nsc(E1,E2) ∼ N(E2 − E1); at the spectral edge we have Nsc(E1,E2) ≥ N(E2 −
E1)

3/2, which is sharp for E1 = −2.]

PROOF OF THEOREM 2.12. Let us assume that E ≤ 0; the case E > 0 is
treated similarly. Setting

E1 := −2 − (logN)C1ξ (q−2 + N−2/3)

for some constant C1 > 0, we find that nsc(E1) = 0 and ñ(E1) = 0 with (ξ, ν)-high
probability for C1 large enough, by Lemma 4.4. We may assume that E ≥ E1.

By (2.20), the estimate (8.1) holds. Therefore, setting E2 = E in Lemma 8.1
yields

|̃n(E) − nsc(E)| ≤ (logN)Cξ

(
1

N
+ 1

q2

√
E − E1 + (logN)CξN−1

)

≤ (logN)Cξ

(
1

N
+ 1

q3 +
√

κE

q2

)
with (ξ, ν)-high probability. This holds for any fixed E. The claim (2.27), which is
uniform in E, now follows by a lattice argument similar to Corollary 3.19, whereby
we choose a lattice of points Ei ∈ [−
,
] with |Ei+1 − Ei | ≤ N−1; we omit the
details. �
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8.2. Eigenvalue locations. The following result contains the main estimate on
the locations of the eigenvalues μα of A. Recall the definition (2.28) of the classical
location γα of the αth eigenvalue.

PROPOSITION 8.3. Suppose that A satisfies Definition 2.2 and that ξ sat-
isfies (2.15). Let φ be an exponent satisfying 0 < φ ≤ 1/2 and assume that
q = Nφ . Then the following statements hold with (ξ, ν)-high probability for all
α = 1, . . . ,N − 1, for some sufficiently large constant K :

(i) If max{κμα , κγα } ≤ (logN)Kξ (N−2/3 + N−2φ), then

|μα − γα| ≤ (logN)Cξ (N−2/3 + N−2φ).(8.12)

(ii) If max{κμα , κγα } ≥ (logN)Kξ (N−2/3 + N−2φ), then

|μα − γα| ≤ (logN)Cξ (N−2/3α̂−1/3 + N2/3−4φα̂−2/3 + N−2φ),(8.13)

where we abbreviated α̂ := min{α,N − α}.
PROOF. To simplify the presentation, we concentrate only on the eigenvalues

μ1, . . . ,μN/2. The remaining eigenvalues μN/2+1, . . . ,μN−1 are dealt with simi-
larly, using Lemma 4.4 and the estimate μN ≥ 2 + c which holds with (ξ, ν)-high
probability.

We define the event 	̃ as the intersection of the events on which (4.30) holds
and on which

|̃n(E) − nsc(E)| ≤ (logN)C0ξ

(
1

N
+ 1

q3 +
√

κE

q2

)
(8.14)

holds for all E ∈ [−
,
] and some positive constant C0. Recalling (2.27) and
(4.30), we find that 	̃ holds with (ξ, ν)-high probability for large enough C0. Note
that on 	̃ we have μN/2 ≤ 1. Indeed, the condition μN/2 ≤ 1 is equivalent to
ñ(1) ≥ 1/2, which follows from (8.14) and the fact that nsc(1) > 1/2.

Abbreviate ζ := min{2φ,2/3} and let C1 > C0. We use the dyadic decomposi-
tion

{1, . . . ,N/2} =
2 logN⋃
k=0

Uk,

where we defined

U0 := {α ≤ N/2 : 2 + max{γα,μα} ≤ 2(logN)C1ξN−ζ },
Uk := {α ≤ N/2 : 2k(logN)C1ξN−ζ < 2 + max{γα,μα} ≤ 2k+1(logN)C1ξN−ζ }

for k ≥ 1.

By definition of U0 and Lemma 4.4, on 	̃ we have

|μα − γα| ≤ (logN)CξN−ζ (α ∈ U0).
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This proves (8.12).
Next, let k ≥ 1. From (8.14) we find that on 	̃ we have

α

N
= nsc(γα) = ñ(μα) = nsc(μα) + (logN)C0ξO

(
1

N
+ 1

q3 +
√

κμα

q2

)
.(8.15)

On 	̃ and for α ∈ Uk , the second term on the right-hand side of (8.15) may be
estimated as

(logN)C0ξO

(
1

N
+ 1

q3 +
√

κμα

q2

)
≤ (logN)C0ξ (N−1 + N−3φ) + C2(k+1)/2(logN)(C0+C1/2)ξN−ζ/2−2φ,

since κμα ≤ 2 + μα . Moreover, on 	̃ and for α ∈ Uk we have

nsc(γα) + nsc(μα) ≥ c23k/2(logN)(3/2)C1ξN−3ζ/2,

where we used the simple estimate nsc(−2 + x) ∼ x3/2 for 0 ≤ x ≤ 3. Thus, we
have, on 	̃ and for α ∈ Uk ,

(logN)C0ξO

(
1

N
+ 1

q3 +
√

κμα

q2

)
� nsc(γα) + nsc(μα),

from which we deduce using (8.15) that

nsc(μα) = nsc(γα)
(
1 + O

[
(logN)−(C1−C0)ξ

])
.

Thus, we find, on 	̃ and for α ∈ Uk , that 2 + γα ∼ 2 + μα and, hence, n′
sc(x) ∼

n′
sc(γα) for any x between γα and μα . Here we used that n′

sc(x) ∼ (nsc(x))1/3 ∼√
2 + x for −2 ≤ x ≤ 1. Thus, the mean value theorem and (8.15) imply, on 	̃ and

for α ∈ Uk ,

|μα − γα|
≤ C|nsc(μα) − nsc(γα)|

n′
sc(γα)

≤ C(logN)C0ξ

(α/N)1/3

(
N−1 + N−3φ + N−2φ√

κμα

)
≤ C(logN)C0ξ

α1/3

(
N−2/3 + N1/3−3φ + N−2φα1/3 + N1/3−2φ

√|μα − γα|),
where we used that κμα ≤ κγα + |μα − γα| and κγα ∼ (α/N)2/3. Thus, we find, on
	̃ and for α ∈ Uk ,

|μα − γα| ≤ (logN)Cξ (N−2/3α−1/3 + N2/3−4φα−2/3 + N−2φ).

This proves (8.13). �
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PROOF OF THEOREM 2.13. We apply Proposition 8.3. As before, we only
deal with the eigenvalues α ≤ N/2; the proof for the eigenvalues N/2 < α ≤ N −1
is the same. Suppose that α satisfies Case (i) of Proposition 8.3. Using α/N =
nsc(γα) ∼ (2 + γα)3/2, we find that

α ≤ (logN)Kξ (1 + N1−3φ).(8.16)

Therefore, we get, squaring (8.12) and (8.13) and summing over α,

N−1∑
α=1

|μα − γα|2 ≤ (logN)Cξ (1 + N1−3φ)(N−4/3 + N−4φ)

+ (logN)Cξ (N−1 + N4/3−8φ + N1−4φ)

with (ξ, ν)-high probability. This concludes the proof of (2.29).
Finally, we note that (2.30) follows from (8.12) and (8.13) as well as the above

observation that Case (i) in Proposition 8.3 implies (8.16). �

APPENDIX: MOMENT ESTIMATES: PROOFS
OF LEMMAS 3.8, 4.3, 6.5 AND 7.10

In order to prove Lemma 3.8, we prove the following high moment bounds,
which are also independently useful.

LEMMA A.1. (i) Let (ai) be a family of centered and independent random
variables satisfying

E|ai |p ≤ Cp

Nγ qαp+β
(A.1)

for all 2 ≤ p ≤ (logN)A0 log logN , where α ≥ 0 and β,γ ∈ R. Then for all even p

satisfying 2 ≤ p ≤ (logN)A0 log logN we have

E

∣∣∣∣∑
i

Aiai

∣∣∣∣p ≤ (Cp)p
[

supi |Ai |
qα

+
(

1

Nγ qβ+2α

∑
i

|Ai |2
)1/2]p

(A.2)

for some constant C > 0 depending only on the constant in (A.1).
(ii) Let a1, . . . , aN be centered and independent random variables satisfying

E|ai |p ≤ Cp

Nqp−2(A.3)

for all 2 ≤ p ≤ (logN)A0 log logN . Then for all even p satisfying 2 ≤ p ≤
(logN)A0 log logN and all Bij ∈ C we have

E

∣∣∣∣∑
i �=j

āiBij aj

∣∣∣∣p ≤ (Cp)2p

[
maxi �=j |Bij |

q
+
(

1

N2

∑
i �=j

|Bij |2
)1/2]p

(A.4)

for some C depending only on the constant in (A.3).
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PROOF. We begin with (i). To prove (A.2), we set p = 2r and compute

E

∣∣∣∣∑
i

Aiai

∣∣∣∣2r

= ∑
i1,...,i2r

Āi1 · · · Āir Air+1 · · ·Ai2r
Eāi1 · · · āir air+1 · · ·ai2r

.(A.5)

Each configuration of labels (i1, . . . , i2r ) defines an equivalence relation (or par-
tition) � on the index set {1, . . . ,2r} by requiring that the indices j and k are in
the same equivalence class if and only if their labels satisfy ij = ik . We organize
the summation over the labels i1, . . . , i2r by (i) prescribing a partition � of the
set of indices, (ii) summing over all label configurations yielding the partition �,
and (iii) summing over all partitions �. Thus, let a partition � be given. Let l de-
note the number of equivalence classes of �, and order the equivalence classes in
some arbitrary fashion. Let rs be the size of equivalence class s; clearly, we have
r1 + · · · + rl = 2r . Moreover, since the random variables ai are centered, we find
that each equivalence class has size at least 2; in particular, rs ≥ 2 for each s and,
hence, l ≤ r . Using the independence of the ai ’s, we thus find that the contribution
of the partition � to (A.5) is bounded in absolute value by

∑
i1,...,il

l∏
s=1

|Ais |rs E|ais |rs ≤
l∏

s=1

(∑
i

|Ai |rs Crs

Nγ qαrs+β

)
.(A.6)

Abbreviating A := maxi |Ai |, we find that (A.6) is bounded by

l∏
s=1

(
(CAq−α)rsA−2N−γ q−β

∑
i

|Ai |2
)

= (CAq−α)2r

(
1

A2Nγ qβ

∑
i

|Ai |2
)l

≤ (CAq−α)2r max
{

1,

(
1

A2Nγ qβ

∑
i

|Ai |2
)r}

≤ Cr

[
A

qα
+
(

1

Nγ qβ+2α

∑
i

|Ai |2
)1/2]2r

.

Next, it is easy to see that the total number of partitions of 2r elements is
bounded by (Cr)2r , so that we get

E

∣∣∣∣∑
i

Aiai

∣∣∣∣2r

≤ (Cr)2r

[
A

qα
+
(

1

Nγ qβ+2α

∑
i

|Ai |2
)1/2]2r

.

This concludes the proof of (A.2).
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The proof of (A.4) needs more effort. Without loss of generality, we set Bii = 0
for all i. As above, we set p = 2r . We find

E

∣∣∣∣∑
i �=j

āiBij aj

∣∣∣∣2r

= ∑
i1,...,i4r

B̄i1i2 · · · B̄i2r−1i2r
Bi2r+1i2r+2 · · ·Bi4r−1i4r

(A.7)
× Eai1 āi2 · · ·ai2r−1 āi2r

āi2r+1ai2r+2 · · · āi4r−1ai4r
.

As above, we associate a partition �(i) ≡ � = {γ } of the index set {1, . . . ,4r}
with every label configuration i = (i1, . . . , i4r ) by requiring that k and l are in
the same equivalence class of � if and only if ik = il . We rewrite (A.7) by first
specifying a partition � and summing over all label configurations i satisfying
�(i) = �, and subsequently summing over all partitions �. Note that a partition
� yields a nonzero contribution to the right-hand side of (A.7) only if (i) each
equivalence class contains at least two indices, and (ii) [2k − 1] �= [2k] for all
k = 1, . . . ,2r ; here [n] denotes the equivalence class γ � n of n in �.

Next, we encode � using a multigraph (i.e., a graph which may have multiple
edges) G ≡ G(�) defined as follows. The vertex set of G is the set of equivalence
classes {γ } of �. Each factor B̄i2k−1i2k

or Bi2k−1i2k
gives rise to an edge of G con-

necting the vertices [2k − 1] and [2k]. Note that, by property (ii) of �, no edge of
G connects a vertex to itself. Moreover, G has 2r edges.

Let G be a multigraph with v vertices. We define the value of G through

V (G) := ∑
i1,...,iv

( ∏
{γ,γ ′}∈E(G)

|Biγ iγ ′ |
) v∏

γ=1

1

Nq[δγ −2]+ ,(A.8)

where δγ is the degree of γ in G.
Fix a partition �. We claim that the contribution to the right-hand side of (A.7)

of all label configurations i satisfying �(i) = � is bounded in absolute value by
CrV (G(�)). This is an easy consequence of the definition of G(�): each vertex
γ carries a label iγ , and the contribution of vertex γ is bounded by E|aiγ |δγ ≤
Cδγ (Nqδγ −2)−1. [Note that, by the property (i) of �, we have δγ ≥ 2. Here we
also used that

∑
γ δγ = 4r .]

Next, we estimate V (G(�)). Let G0 := G(�). The idea is to construct a se-
quence of multigraphs G0,G1, . . . ,Gs by successively removing edges incident
to vertices of degree greater than two, until all vertices have degree at most two.

If all vertices of G0 have degree at most two, set s = 0. Otherwise, pick a vertex
γ̃ of G0 with degree greater than two, and let γ̃ ′ be adjacent to γ̃ . Define R(G0) as
the multigraph obtained from G0 by removing an edge connecting γ̃ and γ̃ ′. We
claim that

V (G0) ≤ Bo

d
V (R(G0))(A.9)

(regardless of the choice of the removed edge). Here we abbreviated Bo :=
maxi �=j |Bij |. The estimate (A.9) is obtained by estimating |Biγ̃ iγ̃ ′ | ≤ Bo in (A.8),
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and by noting that [δγ − 2]+ in G0 is strictly greater than in R(G0). Now set
G1 := R(G0).

We continue inductively in this manner, generating a sequence G0, . . . ,Gs of
multigraphs with the properties that Gk+1 = R(Gk) (for an immaterial choice
of R), Gs has 2r − s edges, and all vertices of Gs have degree at most two.
By (A.9), we have

V (G0) ≤
(

Bo

q

)s

V (Gs).(A.10)

Next, it is immediate from its definition that Gs is a disjoint union of sim-
ple closed and open paths. Here a simple open path of length l ≥ 0 is the
graph with vertices 1, . . . , l + 1 and edges {1,2}, . . . , {l, l + 1}; similarly, a sim-
ple closed path of length l ≥ 2 is the graph with vertices 1, . . . , l and edges
{1,2}, . . . , {l − 1, l}, {l,1}.

From the definition (A.8) we immediately find

V (G ∪ G′) = V (G)V (G′),(A.11)

where ∪ denotes disjoint union. We shall now prove that, if G is a simple (open or
closed) path of length l, we have

V (G) ≤
(

1

N2

∑
i,j

|Bij |2
)l/2

.(A.12)

Using (A.10), (A.11) and (A.12), we find that

V (G(�)) ≤
(

Bo

q

)s( 1

N2

∑
i,j

|Bij |2
)(2r−s)/2

.(A.13)

Let us now prove (A.12). We start with a simple closed path of length l, whose
value (A.8) is given by

Cl := 1

Nl

∑
i1,...,il

|Bi1i2 | · · · |Bil−1il ||Bili1 |.

Assume first that l = 2k is even. Then

C2k ≤ 1

N2k

( ∑
i1,...,i2k

|Bi1i2 |2|Bi3i4 |2 · · · |Bi2k−1i2k
|2
)1/2

×
( ∑

i1,...,i2k

|Bi2i3 |2|Bi4i5 |2 · · · |Bi2ki1 |2
)1/2

≤
(

1

N2

∑
i,j

|Bij |2
)l/2

.



ERDŐS–RÉNYI GRAPHS 2365

If l = 2k + 1 is odd, we find

C2k+1 = 1

N2k+1

∑
i1,i2

|Bi1i2 |
( ∑

i3,...,i2k+1

|Bi2i3 | · · · |Bi2k+1i1 |
)

≤ 1

N2k+1

(∑
i1,i2

|Bi1i2 |2
)1/2

×
( ∑

i1,...,i2k+1

∑
i′3,...,i′2k+1

|Bi2i3 | · · · |Bi2k+1i1 ||Bi2i
′
3
| · · · |Bi′2k+1i1

|
)1/2

≤
(

1

N2

∑
i,j

|Bij |2
)1/2

C 1/2
4k ≤

(
1

N2

∑
i,j

|Bij |2
)l/2

.

This proves (A.12) for closed simple paths. Consider now an open simple path of
length l, whose value (A.8) is

Ol := 1

Nl+1

∑
i1,...,il+1

|Bi1i2 | · · · |Bilil+1 |.

If l = 2k is even, we get

Ol ≤ 1

N2k+1

( ∑
i1,...,i2k+1

|Bi1i2 ||Bi3i4 | · · · |Bi2k−1i2k
|
)1/2

×
( ∑

i1,...,i2k+1

|Bi2i3 ||Bi4i5 | · · · |Bi2ki2k+1 |
)1/2

≤
(

1

N2

∑
i,j

|Bij |2
)l/2

.

Finally, if l = 2k + 1 is odd, we find

Ol ≤ 1

N2k+2

∑
i1,i2

|Bi1i2 |
( ∑

i3,...,i2k+2

|Bi2i3 | · · · |Bi2k+1i2k+2 |
)

≤ 1

N2k+2

(∑
i1,i2

|Bi1i2 |2
)1/2

×
( ∑

i1,...,i2k+2

∑
i′3,...,i′2k+2

|Bi2i3 |2 · · · |Bi2k+1i2k+2 |2|Bi2i
′
3
|2 · · · |Bi′2k+1i

′
2k+2

|2
)1/2

≤
(

1

N2

∑
i,j

|Bij |2
)1/2

O1/2
4k ≤

(
1

N2

∑
i,j

|Bij |2
)l/2

.
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This concludes the proof of (A.12).
Thus, we get from (A.13) that the contribution to the right-hand side of (A.7) of

all label configurations i satisfying �(i) = � is bounded in absolute value by

Cr

(
Bo

q
+
(

1

N2

∑
i �=j

|Bij |2
)1/2)2r

.

In order to conclude the proof of (A.4), we need a combinatorial bound on the
number of multigraphs of the above type containing 2r edges, as well as on the
number of partitions � associated with any given multigraph G. Their product is
easily seen to be bounded by (Cr)4r . This completes the proof of (A.4). �

PROOF OF LEMMA 3.8. The proof is a simple application of Lemma A.1 and
Markov’s inequality.

In order to prove (i), we choose p = ν(logN)ξ in (A.2) and apply a high mo-
ment Markov inequality.

Next, we prove (ii). The bound (3.19) follows immediately from (i) by setting
α = 1, β = −2 and γ = 1. Similarly, the bound (3.20) follows easily by applying
(i) to the random variables |ai |2 − σ 2

i and setting Ai = Bii ; here α = 2, β = −2
and γ = 1, as can be easily seen using (3.18). Moreover, the claim (3.21) follows
by setting p = ν(logN)ξ in (A.4) and applying a high moment Markov inequality.

Finally, we prove (iii). Write∣∣∣∣∑
i,j

aiBij bj

∣∣∣∣≤ ∣∣∣∣∑
i

aiBiibi

∣∣∣∣+ ∣∣∣∣∑
i �=j

aiBij bj

∣∣∣∣.
The first term is dealt with by noting that the random variables a1b1, . . . , aNbN

are independent and satisfy (3.16) for α = 2, β = −4 and γ = 2. Therefore, (3.17)
yields with (ξ, ν)-high probability∣∣∣∣∑

i

aiBiibi

∣∣∣∣≤ (logN)ξ
[
Bd

q2 +
(

1

N2

∑
i

|Bii |2
)1/2]

≤ 2(logN)ξ
Bd

q2 .

In order to bound the off-diagonal terms, we set Ai :=∑j �=i Bij bj . Then we
may again apply (3.17) to get with (ξ, ν)-high probability

|Ai | ≤ (logN)ξ
[
Bo

q
+
(

1

N

∑
j �=i

|Bij |2
)1/2]

.
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Since Ai is independent of aj , we therefore get from (3.17)∣∣∣∣∑
i �=j

aiBij bj

∣∣∣∣= ∣∣∣∣∑
i

Aiai

∣∣∣∣
≤ (logN)ξ

[
maxi |Ai |

q
+
(

1

N

∑
i

|Ai |2
)1/2]

≤ C(logN)2ξ

[
Bo

q
+
(

1

N2

∑
i �=j

|Bij |2
)1/2]

with (ξ, ν)-high probability. We remark finally that the constant C may be ab-
sorbed into the small constant ν when applying the high moment Markov inequal-
ity used to prove (3.17). �

PROOF OF LEMMA 6.5. To prove (6.19) for k = 1, we estimate with (ξ, ν)-
high probability

|〈e,He〉| =
∣∣∣∣ 1

N

∑
i,j

hij

∣∣∣∣= O((logN)ξN−1/2),

where we invoked (2.5) and applied (3.17) to the O(N2) variables {hij : i < j }
(and similarly for i ≥ j ) with α = 1, β = −2 and γ = 1.

If k ≥ 2, we use a high moment expansion. The following notation will prove
helpful. We abbreviate α = (i, j) and write hα := hij . Defining

B(i,j)(k,l) := δjk,

we may thus write

IE〈e,Hke〉 = 1

N

∑
α1,...,αk

Bα1α2Bα2α3 · · ·Bαk−1αk
IE(hα1 · · ·hαk

),(A.14)

where IE(·) := (·) − E(·). In order to make all matrix entries independent of each
other, we split H = H ′ + H ′′ into two triangular matrices, where

h′
ij := hij 1(i ≤ j), h′′

ij := hij 1(i > j).

This results in a splitting of (A.14) into 2k terms, of which we only consider

Xk := 1

N

∑
α1,...,αk

Bα1α2Bα2α3 · · ·Bαk−1αk
IE(h′

α1
· · ·h′

αk
)

(the other terms are dealt with in exactly the same manner and the resulting factor
2k is immaterial).

We abbreviate α = (α1, . . . , αk) and write

Xk =∑
α

(ζα − Eζα),
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where we defined

ζα := 1

N
Bα1α2Bα2α3 · · ·Bαk−1αk

h′
α1

· · ·h′
αk

.

For even p ∈ N we get therefore

EX
p
k = ∑

α1,...,αp

E[(ζα1 − Eζα1) · · · (ζαp − Eζαp)].(A.15)

By independence of the family {h′
α}, we find that a summand in (A.15) indexed

by α vanishes if there is an r such that [αr ] ∩ [αr ′ ] = ∅ for all r ′ �= r . Here
[(α1, . . . , αk)] := {α1, . . . , αk}. Thus, we find

EX
p
k = ∑

α1,...,αp

E[(ζα1 − Eζα1) · · · (ζαp − Eζαp)]χ(α1, . . . ,αp),(A.16)

where

χ(α1, . . . ,αp) :=
p∏

r=1

1(∃r ′ : [αr ] ∩ [αr ′ ] �= ∅).

For each given label configuration α = (αr ) = (αr
l ), we define a partition �(α)

of the index set {(r, l) : r = 1, . . . , p, l = 1, . . . , k} by imposing that (r, l) and
(r ′, l′) are in the same equivalence class of �(α) if and only if αrl = αr ′l′ . We
now perform the sum over α in (A.16) by first specifying a partition � and sum-
ming over all α satisfying � = �(α), and then summing over all partitions �. Note
that any partition � yielding a nonzero contribution to (A.16) satisfies the two
following conditions:

(i) Each equivalence class of � contains at least two elements.
(ii) For each r = 1, . . . , p there are r ′ = 1, . . . , p and l, l′ = 1, . . . , k such that

(r, l) and (r ′, l′) are in the same equivalence class of �.

Condition (i) follows from the fact that h′
α is centered, and condition (ii) from the

definition of χ .
Let us fix a partition � satisfying (i) and (ii). Its contribution to (A.16) is∣∣∣∣ ∑

α : �(α)=�

E[(ζα1 − Eζα1) · · · (ζαp − Eζαp)]χ(α)

∣∣∣∣
(A.17)

≤ ∑
α : �(α)=�

E[(|ζα1 | + E|ζα1 |) · · · (|ζαp | + E|ζαp |)]χ(α).

Next, we note that � gives rise to a multigraph G ≡ G(�) defined as fol-
lows. The vertex set V (G) is given by the equivalence classes of �. Each pair
{(r, l), (r, l + 1)}, l = 1, . . . , k − 1, gives rise to an edge that connects the vertices
γ � (r, l) and γ ′ � (r, l + 1). Thus, the set of edges E(G) of G contains p(k − 1)
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edges. The interpretation of the edges is that each factor Bαr,lαr,l+1 on the right-hand
side of (A.17) is represented with an edge.

The expectation on the right-hand side of the identity

E[(|ζα1 | + E|ζα1 |) · · · (|ζαp | + E|ζαp |)]

= 1

Np

[
k−1∏
l=1

Bαr
l α

r
l+1

]
E

[ p∏
r=1

( p∏
l=1

|h′
αr

l
| + E

p∏
l=1

|h′
αr

l
|
)]

is bounded by

2p
∏

γ∈V (G)

C|γ |

Nq |γ |−2 ,

where |γ | denotes the size of the equivalence class γ ; this is a simple consequence
of (2.5) and the constraint q ≤ CN1/2. By construction of G, each vertex γ of G

carries a label αγ . Thus, we may bound (A.17) by

2p

Np

∑
α1,...,αv

[ ∏
{γ,γ ′}∈E(G)

Bαγ αγ ′

] ∏
γ∈V (G)

C|γ |

Nq |γ |−2 ,

where v = |V (G)| denotes the number of vertices of G. Here we dropped the
factor χ , and the restriction that α1, . . . , αv be distinct, to obtain an upper bound.
By property (i) above, we have |γ | − 2 ≥ 0 and we get the bound

2pCpk

Np+v

∑
α1,...,αv

∏
{γ,γ ′}∈E(G)

Bαγ αγ ′ .(A.18)

Next, we split G = G1 ∪ · · · ∪Gl into its connected components; here l denotes
the number of connected components. An immediate consequence of the property
(ii) of � is the bound

l ≤ p/2.(A.19)

Thus, (A.18) becomes

Cpk

Np+v

l∏
j=1

[ ∑
α1,...,αvj

∏
{γ,γ ′}∈E(Gj )

Bαγ αγ ′

]
,(A.20)

where vj = |V (Gj )| denotes the number of vertices in Gj .
In order to estimate the contribution of the j th connected component, we pick

a root rj ∈ V (Gj ) and a spanning tree Tj of Gj . First, we use the trivial bound
Bαγ αγ ′ ≤ 1 for edges that do not belong to Tj . Second, we sum over all of the
vj − 1 nonroot labels αγ , starting from the leaves of Tj , and using the identity∑

αγ ′
Bαγ αγ ′ = N
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at each step. Third, we sum over the root label γrj , which yields a factor bounded
by N2. Putting everything together yields∑

α1,...,αvj

∏
{γ,γ ′}∈E(Gj )

Bαγ αγ ′ ≤ Nvj+1.

Returning to (A.20), we thus find that the right-hand side of (A.17) is bounded by

Cpk

Np+v
Nv+l ≤ Cpk

Np/2 ,

where we used (A.19).
Since the number of partitions � is bounded by (kp)kp , we get the bound

EX
p
k ≤

(
(Ckp)k

N1/2

)p

.

Choosing p = 1
2Ck

(logN)ξ and applying a high moment Markov inequality com-
pletes the proof. �

PROOF OF LEMMA 7.10. The proof is similar to (in fact, considerably simpler
than) the proof of Lemma 6.5. We only sketch the argument, using the notation of
the proof of Lemma 6.5 without further comment. Write

Xk := ∑
i1,...,ik

hii1hi1i2 · · ·hik−1ik = ∑
α1,...,αk

Bα0α1Bα1α2 · · ·Bαk−1αk
hα1 · · ·hαk

,

where α0 := (1, i). Then, as in the proof of Lemma 6.5, we write EX
p
k as a sum

over partitions � which give rise to multigraphs G ≡ G(�) whose edges are given
by the factors B and whose vertices are given by equivalence classes γ of the set
{1, . . . , k} × {1, . . . , p}, to which has been adjoined a distinguished vertex γ0. The
vertex γ0 corresponds to the fixed label α0, and it has degree p. Each multigraph
G has pk edges, and is connected. In this fashion we find that the contribution of
the multigraph G to EX

p
k is bounded by∑

(αγ )γ �=γ0

[ ∏
{γ,γ ′}∈E(G)

Bαγ αγ ′

] ∏
γ∈V (G)\{γ0}

E|hαγ ||γ |,(A.21)

where the first sum ranges over families (αγ )γ∈V (G)\{γ0} of labels; every vertex
γ �= γ0 carries a label αγ which is summed over. The vertex γ0 carries the label α0
which is fixed.

Since Ehα = 0, it is easy to see that |γ | ≥ 2 for all γ . Choosing a spanning tree
of the connected graph G, one therefore finds that (A.21) is bounded by

N |V (G)|−1
∏

γ∈V (G)\{γ0}

(
max

α
E|hα|2

)
= 1.
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Since the number of partitions � is bounded by (kp)kp , we find EX
p
k ≤ (Ckp)kp

for p ≤ (logN)ξ . Choosing p = 1
2Ck

(logN)ξ and applying Markov’s inequality
completes the proof. �

PROOF OF LEMMA 4.3. Our proof is a standard application of the moment
method, along the lines of [22], Lemma 7.2.

In a first step, we truncate the entries hij . Let C1 = C be a constant for which
Lemma 3.7 holds. Define

μij := Ehij 1(|hij | ≤ C1q
−1).

Choose an independent family (Xij ) of random variables, independent of H , such
that

P(Xij = q−1) = μijq, P(Xij = 0) = 1 − μijq.

Now set

ĥij := hij 1(|hij | ≤ C1q
−1) − Xij .

It is easy to see that |μij | ≤ e−ν(logN)ξ and, therefore,

P(hij �= ĥij ) ≤ e−ν(logN)ξ .(A.22)

Moreover, we have

Eĥij = 0, |ĥij | ≤ C1 + 1

q
, E|ĥij |2 ≤ 1

N

(
1 + e−ν(logN)ξ ).(A.23)

By (A.22), it suffices to prove that ‖Ĥ‖ ≤ 2 + (logN)ξq−1/2 with (ξ, ν)-high
probability. We shall prove that, for even k ≤ c

√
q , we have

|E Tr Ĥ k| ≤ 3Nk2k.(A.24)

In order to prove (A.24), we write

E Tr Ĥ k = ∑
i1,...,ik

Eĥi1i2 · · · ĥik−1ik ĥiki1(A.25)

and apply a graphical expansion to the right-hand side. Before giving its pre-
cise definition, we outline how it arises from (A.25). Let the label configuration
i1, . . . , ik be fixed. We represent each index j = 1, . . . , k by a vertex [j ], whereby
two indices j and j ′ correspond to the same vertex if their labels agree, ij = ij ′ .
Let p be the number of vertices. We then construct a closed walk through the se-
quence of edges ([1], [2]), ([2], [3]), . . . , ([k], [1]). The walk has k steps. We name
the p vertices 1, . . . , p, whereby vertex v is reached after all vertices 1, . . . , v − 1.
Since Eĥij = 0, it is easy to see from (A.25) that each edge of the walk must appear
at least twice.
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We may now give a precise definition of such walks. Let w = (w1, . . . ,wk)

be a sequence with wv ∈ {1, . . . , p}. With w we associate a multigraph G(w) as
follows. The vertex set of G(w) is {1, . . . , p}; the edge set of G(w) is given by
the undirected edges {w1,w2}, . . . , {wk−1,wk}, {wk,w1}. [Note that G(w) may
contain multiple edges as well as loops.] We say that w is an ordered closed walk
of length k on p vertices if:

(i) A vertex that is visited for the first time at time j is greater than all vertices
visited before time j : maxj ′≤j wj ′ ≤ maxj ′<j wj ′ + 1.

(ii) All vertices are visited: {w1, . . . ,wk} = {1, . . . , p}.
(iii) Every edge of G(w) appears at least twice.

Let W (k,p) denote the set of ordered closed walks of length k on p vertices.
The key combinatorial estimate of our proof is the bound

|W (k,p)| ≤
(

k

2p − 2

)
p2(k−2p+2)22p−2,

proved in [39]. Using the notion of ordered closed walks, it is not hard to see that
(A.25) may be rewritten as

E Tr Ĥ k =
k/2+1∑
p=1

∑
w∈W(k,p)

∑
�∈L(p)

Eĥ�(w1)�(w2) · · · ĥ�(wk−1)�(wk)ĥ�(wk)�(w1),(A.26)

where L(p) is the set of all p-tuples � = (�(1), . . . , �(p)) ∈ {1, . . . ,N}p whose
components are disjoint. See [22], Section 7.1, for a detailed proof.

Next, associate with the multigraph G(w) its skeleton S(w), obtained from
G(w) by discarding the multiplicity of every edge (i.e., by successively removing
edges until it has no multiple edges). For e ∈ E(S(w)), we denote by ν(e) the mul-
tiplicity of the edge e in G(w). We have the obvious relation

∑
e∈E(S(w)) ν(e) = k.

If e = {v, v′}, we write �(e) := (�(v), �(v′)) [the chosen order of the pair �(e) is
immaterial]. Then it is easy to see that∣∣Eĥ�(w1)�(w2) · · · ĥ�(wk−1)�(wk)ĥ�(wk)�(w1)

∣∣
≤ ∏

e∈E(S(w))

E
∣∣ĥ�(e)

∣∣ν(e)

≤ ∏
e∈E(S(w))

1

N

(
1 + e−ν(logN)ξ )Cν(e)−2

qν(e)−2

≤
[

q2

C2N

(
1 + e−ν(logN)ξ )]ES

(
C

q

)k

,

where we used (A.23) and introduced the shorthand ES := |E(S(w))|. Therefore,
summing over � ∈ L(p) in (A.26) yields

|E Tr Ĥ k| ≤
k/2+1∑
p=1

∑
w∈W(k,p)

Np

[
q2

C2N

(
1 + e−c(logN)ξ )]ES

(
C

q

)k

.
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Next, it is immediate that we have the relations p − 1 ≤ ES ≤ k/2; these
inequalities follow from the above properties (ii) and (iii), respectively. Since
d2/N � 1, we therefore get

|E Tr Ĥ k| ≤ N

k/2+1∑
p=1

|W(k,p)|(1 + e−c(logN)ξ )p(C

q

)k−2p+2

.

For k ≤ N this yields

|E Tr Ĥ k| ≤ 3N

k/2+1∑
p=1

S(k,p),

where

S(k,p) :=
(

k

2p − 2

)
p2(k−2p+2)22p−2

(
C

q

)k−2p+2

.

It is elementary to check that S(k, k/2 + 1) = 2k and

S(k,p) ≤ k4

8

(
C

q

)2

S(k,p + 1).

Therefore, choosing k ≤ c
√

q implies S(k,p) ≤ 2k . This concludes the proof
of (A.24).

The claim now follows by setting k = c
√

q with a sufficiently small constant c,
applying a high moment Markov inequality and recalling that

√
q � (logN)ξ

by (2.6). �

REFERENCES

[1] ANDERSON, G. W., GUIONNET, A. and ZEITOUNI, O. (2010). An Introduction to Random
Matrices. Cambridge Studies in Advanced Mathematics 118. Cambridge Univ. Press,
Cambridge. MR2760897

[2] BAI, Z. D., MIAO, B. and TSAY, J. (2002). Convergence rates of the spectral distributions of
large Wigner matrices. Int. Math. J. 1 65–90. MR1825933

[3] BENAYCH-GEORGES, F. and NADAKUDITI, R. R. (2011). The eigenvalues and eigenvec-
tors of finite, low rank perturbations of large random matrices. Adv. Math. 227 494–521.
MR2782201

[4] BLEHER, P. and ITS, A. (1999). Semiclassical asymptotics of orthogonal polynomials,
Riemann–Hilbert problem, and universality in the matrix model. Ann. of Math. (2) 150
185–266. MR1715324

[5] CAPITAINE, M., DONATI-MARTIN, C. and FÉRAL, D. (2009). The largest eigenvalues of
finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the
fluctuations. Ann. Probab. 37 1–47. MR2489158

[6] DEIFT, P. and GIOEV, D. (2009). Random Matrix Theory: Invariant Ensembles and Univer-
sality. Courant Lecture Notes in Mathematics 18. Amer. Math. Soc., Providence, RI.
MR2514781

http://www.ams.org/mathscinet-getitem?mr=2760897
http://www.ams.org/mathscinet-getitem?mr=1825933
http://www.ams.org/mathscinet-getitem?mr=2782201
http://www.ams.org/mathscinet-getitem?mr=1715324
http://www.ams.org/mathscinet-getitem?mr=2489158
http://www.ams.org/mathscinet-getitem?mr=2514781
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[13] ERDŐS, L., KNOWLES, A., YAU, H. T. and YIN, J. (2012). Spectral statistics of Erdős–Rényi
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