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OPTIMAL PRICING USING ONLINE AUCTION EXPERIMENTS:
A PÓLYA TREE APPROACH

BY EDWARD I. GEORGE AND SAM K. HUI

University of Pennsylvania and New York University

We show how a retailer can estimate the optimal price of a new product
using observed transaction prices from online second-price auction experi-
ments. For this purpose we propose a Bayesian Pólya tree approach which,
given the limited nature of the data, requires a specially tailored implemen-
tation. Avoiding the need for a priori parametric assumptions, the Pólya tree
approach allows for flexible inference of the valuation distribution, leading
to more robust estimation of optimal price than competing parametric ap-
proaches. In collaboration with an online jewelry retailer, we illustrate how
our methodology can be combined with managerial prior knowledge to esti-
mate the profit maximizing price of a new jewelry product.

1. Introduction. As internet auctions become increasingly popular, the
modeling of auction data is capturing the attention of marketing researchers
[Chakravarti et al. (2002)]. For instance, Park and Bradlow (2005) developed an
integrated model to capture the “whether, who, when, and how much” of bidding
behavior; Yao and Mela (2008) proposed a structural model to describe the buyer
and seller behavior in internet auctions and compute model-based estimates of fee
elasticity. Bradlow and Park (2007) used a generalized record-breaking model to
predict observed bids and bid times in internet auctions.

In this article we turn to the use of internet auctions to estimate the profit-
maximizing price of a new product. Toward that end, we utilize second-price auc-
tion experiments to learn about the consumer valuation distribution of a popu-
lation of potential consumers of the focal product, a distribution that we denote
throughout by F . By valuation here we mean the maximum price that a consumer
would be willing to pay for the product.1 Thus, F captures the demand curve, and
can readily be used to estimate the optimal profit-maximizing price. While a vari-
ety of methods, for example, direct elicitation/contingent valuation [Mitchell and
Carson (1989)], indirect survey methods [Breidert (2006)] and conjoint analysis
[Green and Srinivasan (1978)], can also be used for demand estimation, analysis
of second-price internet auctions can provide a useful complementary approach to
validate demand estimates with online field data.
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1This valuation is also called the consumer’s reservation price in the economics literature.
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In the literature on demand estimation using auctions, researchers typically im-
pose specific parametric specifications on consumer valuation distributions [e.g.,
Chan, Kadiyali and Park (2007), Park and Bradlow (2005), Yao and Mela (2008)].
However, in the setting where a retailer tries to set an optimal price for a new prod-
uct, it seems unlikely that retailers would have precise knowledge about the ap-
propriate parametric form for F . Furthermore, the limited nature of available data
from second-price auction experiments makes it particularly difficult to verify the
validity of standard parametric assumptions (e.g., Gaussian, gamma). As will be
seen in Section 4, if the standard parametric assumptions are invalid, estimation of
the optimal price will be biased, leading to lower profits for the retailer.

To cope with this problem, we propose a specially tailored Bayesian nonpara-
metric approach [Dey, Müller and Sinha (1998)] based on the highly flexible Pólya
tree distribution [Ferguson (1974), Lavine (1992, 1994)] to infer F from second-
price auctions. By avoiding the need to impose a more limited parametric form,
this flexibility is well suited for learning about consumer valuation for a new prod-
uct, in particular, for estimating the profit maximizing price.

Our approach can be outlined as follows. For a new product, a series of nonover-
lapping, second-price internet auction experiments are conducted. For each such
auction we obtain, using third-party software, the total number of bidders (who
may or may not place a bid)2 and the final transaction price. As discussed in Sec-
tion 2, we treat internet auctions using an IPV (Independent Private Value) auction
framework [Vickrey (1961)], an assumption that is widely used in the literature
[e.g., Hou and Rego (2007), Houser and Wooders (2006), Rasmusen (2006), Song
(2004)]. Under the IPV framework, together with reasonable assumptions (dis-
cussed later), the final transaction price of each auction can be considered as equal
to the second-highest valuation among the bidders, plus a small increment.3 Thus,
each auction provides us with the second highest order statistic of an i.i.d. sample
of known size (the total number of bidders) from the consumer valuation distri-
bution F .4 We then use our proposed approach to formulate and update a Pólya

2As discussed in Section 2, we treat someone who visits the auctioned product but does not place
a bid as an unobserved bidder whose maximum valuation is below the winning bid.

3The transaction price is the second-highest bid plus a very small increment ($0.01). In this paper,
we subtract the small increment from the transaction price to obtain the second-highest bid (and
hence the second-highest valuation); see, for example, Song (2004).

4Throughout this paper we restrict attention to multiple auctions where it can be assumed that there
is no dependence across auctions. We believe this assumption is reasonable (as discussed in more
detail in Section 5) when the auctions are nonoverlapping [which minimizes information spillover
across auctions, e.g., Bapna et al. (2009), Haruvy et al. (2008), Jank and Zhang (2011)], and when
the coming auctions are not pre-announced before the end of the current auction [which minimizes
the opportunity for bidders to engage in forward-looking behavior, e.g., Zeithammer (2006)]. In
our particular application, we consider auctions of jewelry products that are heavily differentiated
(products from one retailer are unlikely to be available at competitors), further reducing potential
dependence across auctions. As an empirical check, we examined the autocorrelations of the time
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tree distribution based on these observed second highest order statistics, thereby
obtaining the posterior distribution of F .

Updating a Pólya tree distribution using only a set of second highest order
statistics presents an interesting implementation challenge. To tackle this problem,
which to the best of our knowledge has not been addressed in the literature, we
have devised a structured partition scheme that allows for posterior computation
using an inexpensive data augmented Gibbs sampling algorithm that is similar in
spirit to the approach in Paddock (2002).

The remainder of this paper is organized as follows. In Section 2 we discuss the
mechanism of online second-price auctions, present our assumptions, and argue
that the observed transaction price can be considered as the second highest order
statistic of a sample of known size from the valuation distribution. In Section 3 we
review the essentials of the Bayesian Pólya tree approach, and propose a specially
tailored formulation and updating scheme that can be used to draw inference about
a consumer valuation distribution F using second-price auction data. In Section 4
we present numerical simulations to illustrate the performance of the proposed
method. We then set forth an empirical application of our model in Section 5 to
estimate the valuation distribution and then derive the optimal pricing of a new
jewelry product using actual auction data together with elicited expert managerial
prior information. Finally, Section 6 concludes with discussion and directions for
future research.

2. Second-price auction data. In this section we discuss the features of the
ascending, second-price online auction considered in this paper, and argue that the
winning bids of such auctions can be used to estimate the valuation distribution
of potential consumers of the auctioned product. Through an example, Section 2.1
reviews the mechanism of the second-price online auction. In Section 2.2 we argue
that, under suitable assumptions, the winning bid of each auction can be considered
as the second highest order statistic of a sample (of size equal to the total number
of observed and unobserved bidders) drawn from the valuation distribution.

2.1. Ascending second-price auctions. Ascending, second-price auctions are
the most common form of internet auctions. In such auctions, the person with
the highest bid wins the item but pays the price of the second-highest bid, plus a
small increment (e.g., $0.01). In the auction application we consider, an automatic
“proxy bidding” system is used. Under this system, each user can, at any time, put
in his/her maximum bid, and the system will automatically increase his/her bid
if another bidder puts in a larger bid that is still below the stated maximum bid.
For concreteness, let us illustrate this proxy bidding system with a hypothetical
example.

series of final prices (with and without adjusting for number of bidders) and found no autocorrelation
coefficients to be significant.
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Suppose bidders A, B, C are bidding on a certain item. Bidder A is willing to
pay $3 for the item; bidders B and C are willing to pay $5 and $10 for the item,
respectively. The starting price of the item is $0.01.

Suppose A enters the auction first, and bids $3. The “current bid” will stay
at $0.01, and A is the current leader. Next, B bids $5. Now, the “current bid” is
increased to $3.01 (i.e., A’s highest bid, plus a small increment), and B becomes
the current leader. Finally, C bids $10. The current bid is now increased to $5.01,
and C is the current leader. Assuming that no more bids are received, C is the
winner of the auction, and pays the final transaction price of $5.01, which is equal
to the amount of the second-highest bid (B’s), plus a small increment. Note that
the highest bid of $10 (C’s bid) is always unobserved.

In the above example, all bidders are observed: they all placed a bid during the
auction. This is not true in general. In most cases, some of the bidders are unob-
served, that is, the number of observed bids is generally smaller than the number
of bidders. This is because if a bidder’s willingness to pay is smaller than the “cur-
rent bid” (at the time when the bidder intends to place a bid), he will not be able
to place a bid. Thus, whether a bidder is observed or not depends on the timing
on which the bidders place their bids. For instance, take the same set of bidders
in the last example (A: $3; B: $5; C: $10), but assume that they place their bids
in the order B → C → A. In this case, when A enters, he is unable to place a bid
because the current price ($5.01) is already higher than his valuation of the prod-
uct ($3). Thus, A does not bid, and is thus unobserved. Due to the presence of
unobserved bidder(s), the number of bids (in this example, two) is smaller than the
total number of bidders (in this example, three).

Thus, the sequence of bids alone does not tell us the exact number of bidders in
the auction, as some bidders may be unobserved. This issue of unobserved bidders
creates identification problems [e.g., Song (2004)]. To avoid this problem, it is
necessary to use an external source of information to record the total number of
unique bidders who accessed the auction, whether or not he/she placed a bid. In
our empirical application in Section 5, the jewelry retailer accomplished this by
using third-party tracking software.5 Thus, throughout this paper, we assume that
the total number of bidders in each auction is known.

In this paper we focus on internet auctions that can be suitably modeled with an
independent private value (IPV) auction framework [Vickrey (1961)] as described
in Section 2.2 below. The IPV framework is a common assumption made in the
applied econometrics literature to model internet auctions [e.g., Hou and Rego
(2007), Houser and Wooders (2006), Rasmusen (2006), Song (2004)]. In our em-
pirical application in Section 5, we learned from the jeweler that most consumers

5The tracking software records the total number of unique IPs that have accessed our auction. The
assumption here is that the number of unique IPs is equal to the number of unique bidders. This may
not be true if the same person uses two different computers to view our product page; this limitation
can be resolved in the future if one can track the unique userIDs instead of the IPs.
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purchase jewelry from internet auctions for their own consumption, and rarely for
resale. Thus, an IPV framework seems appropriate (albeit empirically unverifi-
able6) there—different consumers value jewelry products differently because of
their idiosyncratic preferences.

It is important to note at this point, however, that an IPV assumption may not
be appropriate in other applications. The IPV assumption will be violated, for in-
stance, if bidders’ valuations are influenced by the other bids seen during the auc-
tion, or if bidders are trying to figure out the market value of the auction product
(perhaps with resale in mind) [Klemperer (1999)]. In such situations, the infer-
ence about F made by our proposed methodology (which explicitly assumes IPV
auctions) may be questionable, and the results should be viewed with caution.

2.2. Transaction price and second highest order statistics. According to eco-
nomic theory [Vickrey (1961)], in a second-price auction, the dominant strategy
for each consumer is to place a bid that is equal to his/her valuation of the product
(i.e., the highest price he/she is willing to pay for the item). Thus, we make the
following assumption:

ASSUMPTION I. Each bidder will try to place a bid equal to his/her valuation
of the product at some time before the end of the auction if the current price has
not yet exceeded his/her valuation (in which case he/she will not place a bid).

Note that the only assumption made about bidder behavior is that each bidder
will try to bid his/her valuation before the end of the auction; beyond that, no
assumptions are made about a bidder’s visitation and bidding behavior during the
auction. Specifically, the assumption does not preclude bidders with multiple visits
and/or multiple bids. It allows for the possibility that a bidder may not want to bid
on her first visit, but wait till almost the end of the auction to place such a bid
[i.e., “sniping” or last minute bidding; e.g., Roth and Ockenfels (2002)]. Or, that
she may want to place a smaller bid on her first visit, followed by a bid equal
to her valuation by the end of the auction, if the current price is still lower than
her valuation [e.g., multiple bidding behavior, Ockenfels and Roth (2006)]. All of
these (and other behaviors) are allowed under Assumption I.

Under Assumption I, the observed final transaction price can be considered as
equal to the second-highest valuation (plus a small increment) of all the bidders
regardless of the bidder’s order of arrival.7 This is because the bidders with the
first and second-highest valuations will always bid, that is, the current price is
never higher than their valuations before they bid, regardless of the order by which
other bidders place their bids [Song (2004)].

6See, for example, Boatwright, Borle and Kadane (2010), Laffont and Vuong (1996).
7We assume that there will always be two or more bidders, which is the case for our empirical

application.
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Similar to the previous literature on auction demand estimation [e.g., Adams
(2007), Baldwin, Marshall and Richard (1997), Canals-Cerda and Pearcy (2010),
Song (2004)], the following further two assumptions about the sample of bidders
in each auction allow us to use the observed transaction prices to make inference
about F :

ASSUMPTION II. The set of bidders (observed or unobserved) in an auction
is an i.i.d. sample from the population of all potential consumers of the auctioned
product.

ASSUMPTION III. The set of (mostly unobserved) latent product valuations
for each of these bidders is an i.i.d. sample drawn from the valuation distribution F .

With the addition of these assumptions, the final transaction price minus the
small increment can thus be treated as the second largest order statistic of an i.i.d.
sample from F . By conducting a set of identical, independent auction experiments,
we can therefore collect a set of second highest order statistics and associated
sample sizes (i.e., the total number of bidders, observed or unobserved, in each
auction) from a set of i.i.d. samples from F . In Section 3 we describe how such
data can be used to draw inference about F .

Let us conclude this section with a brief discussion of why we only consider the
final transaction price, but not the entire sequence of “current prices” for inference
about F . Unlike the final transaction price, the sequence of current intermediate
prices is dependent on the order by which bidders submit their bids. Thus, the sec-
ond highest current price, for instance, is not equal to the third highest valuation
in general. To see this, consider the following example with four bidders with the
following valuations: (A: $3, B: $5, C: $10, D: $15). Suppose the bidders place
their bids in the order of A → C → D → B. Here, the final transaction price is
$10.01, which is equal to the second-highest valuation ($10) plus a small incre-
ment. The second highest current price ($3.01), however, does not correspond to
the third highest valuation ($5), because bidder B is unable to bid. Thus, absent
strong assumptions on the process of bid submissions, the sequence of “current
prices” provides only limited information about F . Fortunately, as will be seen in
Section 4, restricting attention to only the second-highest final bids lead to reason-
ably accurate inference about the profit-maximizing price.

3. Methodology for inference about F . This section describes our proposed
Pólya tree approach to inferring the valuation distribution F from the second high-
est order statistics obtained by second-price auctions as described in Section 2.
We begin by defining notation in Section 3.1, and then briefly describe, in Sec-
tion 3.2, a general alternative parametric approach that we use as a benchmark for
later comparisons in Sections 4 and 5. In Section 3.3 we present our nonparametric
Pólya tree approach and its implementation in detail.
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3.1. The set of second highest order statistics. Throughout this article, we use
the following notation to denote the auction data. Let yij be the valuation of the
j th bidder (j = 1, . . . ,Ni) in the ith auction (i = 1, . . . ,M). Without loss of gen-
erality, we rearrange the consumer indexes so that yiNi

< · · · < yi2 < yi1. Of these
valuations, as described above, we assume that only yi1 and yi2 correspond to ac-
tual bids, and that of these only yi2 is observed. Thus, for each auction, we observe
only the second highest valuation yi2 and the total number of bidders Ni (observed
and unobserved) who viewed the auction. For convenience, in our later develop-
ment and again without loss of generality, we further rearrange the auction indices
so that yM2 < · · · < y22 < y12. The essential statistical challenge here is to draw
inference about F based only on this set of second highest order statistics.

3.2. A parametric Bayesian approach to infer F . If an appropriate parametric
form for F could be specified, for example, the family of gamma distributions or
the family of truncated-normal distributions, then implementation of the following
parametric Bayes approach would be straightforward. Letting θ denote the index
of the specified family, the likelihood of θ given the observed second-price auction
data would be directly obtained as the product of the order statistic yi2 densities,
namely,

M∏
i=1

p(yi2|Ni, θ) =
M∏
i=1

Ni(Ni − 1)[1 − �(yi2|θ)][�(yi2|θ)]Ni−2ψ(yi2|θ),(1)

where �(·) and ψ(·) here denote the CDF and PDF of the parametric form, re-
spectively [Casella and Berger (2001)]. The posterior distribution for θ could then
be obtained by using the likelihood, implicit in (1), to update a prior distribution
for θ . When simple analytical posterior forms were unavailable, Markov chain
Monte Carlo posterior calculation could be used to sample θ from the posterior
[Robert and Casella (2004)].

Despite its clear appeal and straightforward implementation, the performance
of such a parametric approach will rely heavily on the appropriateness of the as-
sumed parametric family, as will be seen in Section 4. This could be especially
problematic in a new product setting where prior information would be unavail-
able for guiding such a selection, and where data consisting of only second highest
order statistics would offer little guidance for validating any such selection. To
avoid the possible misspecification of a parametric family, we propose an alterna-
tive Bayesian Pólya tree approach below. As will be seen, this Pólya tree approach
completely avoids the use of (1).

3.3. A nonparametric Bayesian Pólya tree approach. Our proposed nonpara-
metric Bayesian approach for inference about F is based on Pólya tree distribution
representations [Ferguson (1974), Lavine (1992, 1994)], which we briefly review
below in Section 3.3.1. In Section 3.3.2 we then propose a suitably tailored Pólya
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tree prior formulation for second-price auction data. In Section 3.3.3 we describe
a fast computational procedure for posterior updating of this formulation, and in
Section 3.3.4 describe how inferential statistics based on this output can be ob-
tained.

3.3.1. Overview of the Pólya tree approach. Here we provide a brief review
of the Pólya tree model. For more details, including theoretical results and sta-
tistical properties, readers may refer to Ferguson (1974), Lavine (1992, 1994),
Mauldin, Sudderth and Williams (1992), Muliere and Walker (1997) and Walker
et al. (1999).

A Pólya tree distribution is a probability distribution on probability measures,
which can be seen as a generalization of the widely used Dirichlet processes.
A Pólya tree distribution with parameters � and A, denoted PT(�,A), is deter-
mined by a nested binary recursive partition � = (B0,B1,B00,B01, . . .) of the
range of F , together with a set of hyperparameters A = (α0, α1, α00, α01, . . .) that
govern the allocation of random probabilities to each set of the partition �. In-
dexing the sets by ε = ε1 · · · εm, where εi = 0 or 1, a Pólya tree distribution as-
signs random conditional probabilities to the sets such that (i) p(Bε0|Bε) = Cε0
where each Cε0 ∼ Be(αε0, αε1) is a beta random variable, (ii) p(Bε1|Bε) = Cε1 =
1 − Cε0, and (iii) the Cε0’s are all independent. Thus, under a Pólya tree distribu-
tion PT(�,A), the probability of any set Bε ∈ � is the random probability

P(Bε1···εm |A) =
m∏

i=1

Cε1···εi
.(2)

Now suppose we regard PT(�,A) as a prior distribution for our unknown F , that
is, suppose we treat F as if it were a realization of (2) from PT(�,A). An appeal-
ing feature of this formulation is that, given data from F , the posterior on F is then
also a Pólya tree distribution, which can be obtained by a straightforward update
of the hyperparameters. More precisely, given an observation x from F , the hyper-
parameters A = (α0, α1, α00, α01, . . .) of the Pólya tree posterior on F are updated
by

αε|x =
{

αε + 1, if x ∈ Bε,
αε, otherwise.

(3)

Note that (2) also illustrates how the hyperparameters A = (α0, α1, α00, α01, . . .)

control the “strength” of the Pólya tree prior. The larger the α’s, the less the influ-
ence of an observation on the underlying beta distribution update.

Going further, it turns out that PT(�,A) can also be efficiently updated with
only the partial information that x ∈ Bε but not whether x ∈ Bε0 or x ∈ Bε1
[Muliere and Walker (1997)]. In such cases, it suffices to update αε to αε + 1 but
leave αε0 and αε1 unchanged, so that in effect we only need update the hyperpa-
rameters up to the known resolution of the data. In the next subsection we describe
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a partition formulation for � that will allow us to exploit this feature when updat-
ing a Pólya tree prior on F with the partial information supplied by second-price
auction data.

The last essential ingredient for the specification of a Pólya model PT(�,A) is
the choice of a base measure H over the range of F , which may be considered as
a prior estimate of F . For a given partition �, PT(�,A) can then be centered at
H by choosing A via

αε = γmH(Bε),(4)

where γm > 0 is a preselected function of the level8 (depth) m ≡ m(ε) of the
partition indexed by ε [Muliere and Walker (1997)]. By using γm that increase
with m, the influence of the data via (3) can be lessened for the deeper levels
of the partition, thereby stabilizing the posterior at those levels. Indeed, for the
choice γm = km2, F ∼ PT(�,A) will be absolutely continuous with probability
one, whereas when γm ≡ γ is constant for all m,PT(�,A) reduces to a discrete
Dirichlet process [Ferguson (1974), Lavine (1992, 1994)].

3.3.2. Formulating a Pólya tree prior for second highest bid auction data.
The formulation of a Pólya tree prior PT(�0,A0) requires the specifications of
a recursive partition �0 = (B0,B1,B00,B01, . . .) and a set of hyperparameters
A0 = (α0, α1, α00, α01, . . .) associated with the sets of the partition. Let us now
consider suitable formulations of �0 and A0 for the second-price auction data
setup.

We begin with the specification of �0, the recursive partition of the range of
F that for our application is [0,∞). For observed second highest bid auction data
yM2 < · · · < y22 < y12, we propose the left-telescoping partition hierarchy (B1 >

B01 > · · ·) with cut points at the observed yi2’s, namely,

B0 = (0, y12); B1 = [y12,∞);
B00 = (0, y22); B01 = [y22, y12);

(5)
...

...

B00...0 = (0, yM2); B00...1 = [
yM2, y(M−1)2

)
,

depicted graphically in Figure 1. We have formulated this partition to facilitate pos-
terior incorporation of all the second-price auction information in a computation-
ally efficient manner. This information consists not only of the observed ordered
values of the second-highest valuations, yM2 < · · · < y22 < y12, but also includes
the ordering of the unobserved valuations, namely, yij < yi2 (j > 2) and yi2 < yi1
for each auction i. As will be seen in Section 3.3.3, posterior incorporation of the

8For example, the set B0100 has level m = 4.
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FIG. 1. The construction of �0 for the Pólya tree prior.

yij < yi2 (j > 2) information with this partition can be done directly through the
simple updating formula (3), and posterior incorporation of the yi2 < yi1 informa-
tion can be done with a multiple imputation scheme based on a Gibbs sampler.
The use of the left-telescoping hierarchy (5) is why imputation is only needed
for the yi2 < yi1 ordering information. As demonstrated in the Web Appendix I
[George and Hui (2011)], alternative hierarchies would require the imputation of
many more values, vastly increasing the computational burden of posterior updat-
ing.

Turning to the specification of A0 for this partition �0, we propose the use of
αε = γmH(Bε) in (4) with a base measure H over [0,∞), which reflects available
prior information. In our empirical example in Section 5.3, we illustrate the elici-
tation of such an H based on an expert’s subjective judgments. We then consider
the corresponding specification of A0 using γm = km2 with various values of k. In
the absence of prior information, a seemingly reasonable default would be to let
H be a uniform distribution over [0, y∗], where y∗ is the maximum possible valu-
ation of the new product.9 For this H,H(Bε) would be proportional to the length
of Bε , when Bε is bounded. Alternatively, the choice of a proper distribution H

with support [0,∞) would avoid the need to specify such a y∗ while still ensuring
that αε = γmH(Bε) in (4) would be finite for any Bε .

3.3.3. Updating the Pólya tree prior given second-price auction data. Letting
D denote our second-price auction data, we are now ready to describe how our
Pólya tree prior PT(�0,A0), with �0 in (5), can be conveniently updated to obtain
the posterior Pólya tree distribution PT(�0,A0|D) for F . Recall that under the as-
sumptions discussed in Section 2.2, each of the M second-price auctions is associ-
ated with an i.i.d. sample of Ni latent valuations yiNi

< · · · < yi2 < yi1 from F . Of

9We recommend and hence assume that y∗ has been chosen large enough to be well beyond what
anyone would conceivably pay for the product.
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these, we only observe the second highest order statistics yM2 < · · · < y22 < y12
from each sample. The following update of PT(�0,A0), based on just this infor-
mation, is accomplished by exploiting the particular form of �0.

To begin with, the observed second highest bids yM2 < · · · < y22 < y12 by def-
inition satisfy yi2 ∈ [yi2, y(i−1)2) = B00. . . 0︸ ︷︷ ︸

i−1

1, so that, for i ≥ 2,

yi2 ∈ B00. . . 0︸ ︷︷ ︸
i−1

1 ∈ B00. . . 0︸ ︷︷ ︸
i−1

∈ · · · ∈ B0,(6)

a consequence of the nesting of the sets in �0. Next, although we do not ob-
serve yi3, . . . , yiNi

, we do know that yi2 > yi3 > · · · > yiNi
, so that yi3, . . . , yiNi

∈
(0, yi2) = B00. . . 0︸ ︷︷ ︸

i

and, again because of the nesting in �0,

yiNi
, yi(Ni−1), . . . , yi3 ∈ B00. . . 0︸ ︷︷ ︸

i

∈ B00. . . 0︸ ︷︷ ︸
i−1

∈ · · · ∈ B0.(7)

Thus, to update the Pólya tree prior for all but the maximum valuations y11, y21,

. . . , yM1, we simply increment the A0 hyperparameter values via (3) as follows.
For each auction i, we count one value yi2 in each of B0,B00, . . . ,B00. . . 0︸ ︷︷ ︸

i−1

,B00. . . 0︸ ︷︷ ︸
i−1

1

and (Ni − 2) values in each of B0,B00, . . . ,B00. . . 0︸ ︷︷ ︸
i

.

Beyond the updating above, the only values left to consider are the max-
imum valuations y11, y21, . . . , yM1. Except for y11, which must be located in
[y12,∞) = B1, there is uncertainty about the Bε location of these maximum val-
ues. For instance, consider y21; as shown in Figure 1, given that y21 > y22 by def-
inition, we know that y21 must be located in either B01 or B1, but we do not know
which one. What we do know is that each yi1 is located in some Bε where the
binary index ε consists of (k − 1) 0’s followed by a single 1 for some k = 1, . . . , i.
To incorporate this partial information about the location of y11, y21, . . . , yM1 into
the posterior update of F , we propose a Gibbs sampler similar to the algorithm
proposed by Paddock (2002).

For i = 1, . . . ,M , let zi ∈ {1, . . . , i} where zi = k ⇒ yi1 ∈ B00. . . 0︸ ︷︷ ︸
k−1

1 indicates

the partition membership of yi1. Thus, the remaining uncertainty about the update
of A0 concerns only the unknown values of Z = (z1, z2, . . . , zM). Indeed, together
with the membership information in (6) and (7), the values of Z, if known, would
yield the complete membership information indicated in Table 1. This information
would then enable a complete update of A0 via (3), which would in turn let us
simulate a draw of C�, the set of Cε0’s corresponding to the partition �.

These observations provide the basis for the following Gibbs sampler updating
scheme. First, we simulate C� from P(C�|A0,D,Z), where each Cε0|A0,D,Z ∼
Be(αD,Z

ε0 , α
D,Z
ε1 ) is drawn independently based on the (D,Z)-updated values
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TABLE 1
The number of observations in each partition, given zi ’s

Partition Count Partition Count

B0
∑M

i=1(Ni − 1) + ∑M
i=1 I {zi ≥ 2} − 1 B1

∑M
i=1 I {zi = 1} + 1

B00
∑M

i=2(Ni − 1) + ∑M
i=1 I {zi ≥ 3} − 1 B01

∑M
i=1 I {zi = 2} + 1

B00. . . 0︸ ︷︷ ︸
k

∑M
i=k(Ni − 1) + ∑M

i=1 I {zi ≥ k + 1} − 1 B00. . . 0︸ ︷︷ ︸
k−1

1
∑M

i=1 I {zi = k} + 1

B00. . . 0︸ ︷︷ ︸
M

(NM − 1) − 1 B00. . . 0︸ ︷︷ ︸
M−1

1
∑M

i=1 I {zi = M} + 1

of A0, namely, (α
D,Z
ε0 , α

D,Z
ε1 ). Second, conditionally on C�, the entries of Z are

conditionally independent.10 Thus, we simulate the unknown values of Z from
P(Z|C�) which are given by

P(zi = 1|C�) = P(yi1 ∈ B1|C�) = ciC1,

P (zi = 2|C�) = P(yi1 ∈ B01|C�) = ciC1C01,
(8)

...

P (zi = i|C�) = P(yi1 ∈ B00. . . 0︸ ︷︷ ︸
i−1

1|C�) = ciC1C01 · · ·C00. . . 0︸ ︷︷ ︸
i−1

1,

where ci denotes the normalizing constant such that the above probabilities sum up
to 1. This follows directly from (2) and the fact that normalization is needed to ac-
count for the membership restrictions on yi1, because our auction data is sorted. By
iteratively simulating from P(C�|A0,D,Z) followed by P(Z|C�) in this manner,
this Gibbs sampler can be used to simulate a sequence of C� that is converging in
distribution to P(C�|A0,D), the posterior of C� under PT(�0,A0|D).

3.3.4. Inference about F . It follows from (2) that under each realization of C�

from the Pólya tree posterior PT(�0,A0|D), the probability of a set Bε1···εm ∈ �0

is given by

P(Bε1···εm |A0,D) =
m∏

i=1

Cε1···εi
.(9)

10This follows immediately from the fact that conditionally on the realization of C�, the probabili-
ties for the Pólya tree, the M largest bids for each of the samples, y11, y21, . . . , yM1, are conditionally
independent.
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For the purpose of estimating these probabilities, and hence F , a natural estimate
in this context is the posterior expectation of (9), namely,

E[P(Bε1···εm |A0,D)] = E

[
m∏

i=1

Cε1···εi
|A0,D

]
,(10)

which we can in turn estimate as follows. Based on a sequence of T draws from
the sequence of C� from the Gibbs sampler (ignoring s burn-in iterations), we es-
timate (10) by the Rao-Blackwellized version of 1

T

∑t=s+T
t=s

∏m
i=1 C

(t)
ε1···εi , namely,

1

T

t=s+T∑
t=s

E

(
m∏

i=1

C(t)
ε1···εi

|A0,D,Z(t)

)
= 1

T

t=s+T∑
t=s

m∏
i=1

α
(t)
ε1···εi

α
(t)
ε1···εi−10 + α

(t)
ε1···εi−11

,(11)

where α
(t)
ε1···εi is the updated value of αε1···εi

in A0 based on D and Z(t). This is our
posterior estimate of F . The uncertainty of (11) as an estimate of (10), due to the
unknown values of Z = (z1, z2, . . . , zM), can be summarized by suitable quantiles
of the T values of

∏m
i=1[α(t)

ε1···εi /(α
(t)
ε1···εi−10 + α

(t)
ε1···εi−11)] appearing in (10). Fi-

nally, the uncertainty of (11) as an estimate of (9) can be summarized by suitable
quantiles of the corresponding T values of

∏m
i=1 C

(t)
ε1···εi from the Gibbs sequence.

4. Simulation study. In this section we compare the performance of our pro-
posed Pólya tree method with Bayesian parametric approaches for estimating
profit-maximizing prices. We consider parametric approaches based on the gamma
and truncated-normal distributions, two parametric distributions commonly used
in marketing research. For the posterior calculation with these parametric meth-
ods, we used a random-walk Metropolis–Hasting algorithm [Robert and Casella
(2004)]. We also study the relationship between sample size and the accuracy of
the estimators.

4.1. Data simulation. We conducted three sets of simulation experiments,
each using data simulated from a different functional form for the underlying valu-
ation distribution F . For the data from each F , we applied our Pólya tree approach
and the two parametric Bayesian approaches, all using relatively noninfluential
priors, to compute the profit-maximizing price and the corresponding expected
profit. For the Pólya tree prior PT(�0,A0) with partition �0 in (5), we set the
hyperparameters A0 using αε = km2H(Bε) with H uniform on [0, y∗]11 as dis-
cussed in Section 3.3.2, with m = m(ε) denoting the level (depth) of Bε , and with
k set to a small but positive number δ(= e−20) in order to limit the αε’s to being
weakly informative. For the gamma(a, b) and truncated-normal(μ,σ 2) approaches

11We set y∗ = $20 here to conform to the bound considered in our empirical application in Sec-
tion 5.3.
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we used the diffuse priors a, b ∼ truncated-normal(0,1002), μ ∼ N(0,1002) and
σ ∼ truncated-normal(0,1002).

We evaluate the performance of each method by the expected profit generated
from their estimated profit-maximizing price. First, their profit maximizing price is
obtained by maximizing an estimated expected (per-bidder) profit function based
on the estimate F̂ of F ,

x̂ = arg max
x

π̂(x) = arg max
x

(
1 − F̂ (x)

)
(x − c).

Their corresponding expected (per-bidder) profit is then obtained by plugging x̂

into the actual (“true”) profit function:

π(x̂) = (
1 − F(x̂)

)
(x̂ − c).

In each case, the per-unit cost c is taken to be $5.2 (the actual per-unit cost for
the application in Section 5). Note that the (per-bidder) profit function is defined
by multiplying the proportion of bidders who have a valuation higher than price x

[i.e., 1 − F(x)] and the profit for each sale (x − c).
The density functions corresponding to the three underlying F distributions we

used are shown in Figure 2. For the first set of simulations, the underlying F is
a gamma distribution with shape parameter 0.32 and rate parameter 0.26 (val-
ues chosen to replicate features of the actual data in our empirical application

FIG. 2. “True” underlying valuation distributions used in the simulation studies. Solid
line: gamma(0.32,0.26); broken line: equally weighted mixture of gamma(0.32,0.26) and
truncated-normal(5.0,1.0); dotted line: uniform(2.3,6.3).
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in Section 5). For the second set of simulations, the underlying F is an equally
weighted mixture of the gamma(0.32,0.26) and truncated-normal(5.0,1.0) dis-
tributions. From a managerial perspective, this corresponds to a market with two
distinct consumer segments with different average valuations. From a statistical
perspective, this corresponds to a bimodal distribution for which both of our pa-
rameter approaches are misspecified. For the third set of simulations, the underly-
ing F is uniform(2.3,6.3) (centered near the average observed transaction prices
in our empirical application). This is similar to the distribution used in Jank and
Zhang (2011).

From each of these three F ’s, we simulated three data sets containing M =
1,000,100 and 16 auctions (the number of auctions in our empirical application).
Varying the sample size here sheds light on the relationship between the sample
size and the precision of the optimal-price and expected profit estimates. For each
auction, we simulated the number of bidders from a Poisson distribution with mean
18.5 (the average number of bidders in our empirical application).12 We then drew
the bidders’ valuations from F , keeping only the second highest. To account for
sample-to-sample variation, we repeated the M = 1,000 case 10 times, and the
M = 100 and M = 16 cases 100 times, reporting the standard errors along with
the mean.

4.2. Simulation results. A key feature of our Pólya tree approach is robust es-
timation of the profit-maximizing price in the sense that, compared to parametric
methods, it is less sensitive to a misspecified form for the consumer valuation dis-
tribution F . Although we would not expect it to perform as well as a correctly
prespecified parametric method, we would like it to perform better than an incor-
rectly prespecified parametric method. Such performance is precisely borne out
by our first simulation where the true F was a gamma distribution. As shown
in Table 2(a), the best performance was obtained by the gamma parametric ap-
proach, for which the estimated profit-maximizing price was closest to the true
value, leading to the highest expected profit. As expected, the Pólya tree approach
performed slightly worse than the “correctly specified” gamma parametric method
but substantially better than the “incorrectly specified” truncated-normal distribu-
tion method.

Turning to the second simulation in Table 2(b), where the true F was an
equally-weighted mixture of gamma and truncated-normal distributions, the Pólya
tree method performed best in every case except one, where the size of auctions
M = 16 was small and the truncated-normal approach performed slightly better.
Finally, for the third simulation in Table 2(c), when the true F was a uniform dis-
tribution, the Pólya tree method clearly outperformed both parametric approaches,

12We repeated this entire simulation using a Poisson distribution with mean 37 and found the per-
formance of our Pólya tree approach to be even better with this larger average number of bidders.
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TABLE 2
Simulation results. The standard errors are shown in brackets

Pólya tree Gamma Truncated-normal

Profit Profit Profit
Price ($0.01/bidder) Price ($0.01/bidder) Price ($0.01/bidder)

(a) For gamma(0.32,0.27) distribution

M = 1,000 8.45 6.25 8.38 6.36 6.57 4.92
(0.22) (0.04) (0.02) (0.00) (0.01) (0.01)

M = 100 9.13 5.72 8.29 6.33 6.54 4.86
(0.23) (0.10) (0.03) (0.00) (0.01) (0.01)

M = 16 8.77 5.45 8.18 6.16 6.54 4.83
(0.23) (0.11) (0.08) (0.02) (0.02) (0.03)

(b) For equally weighted mixture between gamma(0.32,0.27) and truncated-normal(5.0,1.0)

M = 1,000 5.97 8.05 6.45 6.94 6.15 7.89
(0.02) (0.01) (0.01) (0.03) (0.02) (0.04)

M = 100 6.20 7.85 6.40 7.12 6.16 7.79
(0.13) (0.09) (0.01) (0.03) (0.02) (0.04)

M = 16 6.49 7.16 6.41 7.04 6.29 7.19
(0.15) (0.15) (0.02) (0.06) (0.04) (0.12)

(c) For uniform(2.3,6.3) distribution

M = 1,000 5.77 7.53 6.31 0.13 5.68 7.43
(0.01) (0.01) (0.01) (0.08) (0.00) (0.01)

M = 100 5.76 7.43 6.22 2.09 5.68 7.39
(0.01) (0.02) (0.00) (0.09) (0.00) (0.01)

M = 16 5.78 7.14 6.26 1.61 5.76 6.94
(0.01) (0.06) (0.01) (0.17) (0.03) (0.16)

a situation where the performance of the gamma approach was particularly bad.
Taken together, the three simulations illustrate how, in contrast to the robustness
of the Pólya tree approach, the parametric approaches can perform poorly when
the parametric form is misspecified.

Table 3(a)–(c) summarizes the results in Table 2(a)–(c) by comparing the per-
centage profit loss (compared to the profit under optimal price), for each method,
across the different values of M . As can be seen in Table 3(a)–(c), the perfor-
mance of the Pólya tree method is more robust compared to other methods, in the
sense that it offers the best worst-case performance, a minimax kind of appeal. By
avoiding the need for a prespecified functional form, the Pólya tree method avoids
the potentially poor performance due to misspecfication (e.g., using the paramet-
ric gamma method in the third simulation). Finally, with respect to sample size
and estimation accuracy, we note that the estimation accuracy of all the methods
deteriorates with smaller sample sizes M . The results in Tables 2 and 3 further
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TABLE 3
Performance of each method (PT, gamma, truncated-normal) compared

to the profit under optimal price

Pólya tree Gamma Trunc-normal

(a) M = 1,000

True: gamma −1.7% 0.0% −22.6%
True: mixture −0.4% −14.1% −2.4%
True: uniform −0.4% −98.3% −1.7%

(b) M = 100

True: gamma −10.1% −0.5% −23.6%
True: mixture −2.8% −11.9% −3.6%
True: uniform −1.7% −72.4% −2.2%

(c) M = 16

True: gamma −14.3% −3.1% −24.1%
True: mixture −11.4% −12.9% −11.0%
True: uniform −5.6% −78.7% −8.2%

suggest that if the number of auctions M is very small (16), it may be helpful to
introduce managerial knowledge through a prior distribution on the valuation dis-
tribution. For that purpose, the Pólya tree approach offers the flexibility of being
able to incorporate prior knowledge by centering the Pólya tree prior around any
base measure H , whereas for parametric methods, prior knowledge is restricted to
prior distributions over the parameters of a particular form.

5. Empirical application. In this section we apply our method to estimate
the profit-maximizing price of a new jewelry product based on actual data ob-
tained from second-price auction experiments. In Section 5.1 we describe the ex-
periments and provide an overview of the data. In Section 5.2 we apply and com-
pare our Pólya tree approach with parametric approaches based on the gamma and
truncated-normal distributions. In Section 5.3 we take a step further to illustrate
the incorporation into our estimation procedure of a manager’s elicited prior be-
liefs about the consumer valuation distribution.

5.1. Data overview. In collaboration with an online jewelry retailer, a total of
M = 16 identical, nonoverlapping, second-price auction experiments were con-
ducted on a major internet auction site from February 25, 2006 to March 20, 2006.
Each auction lasted 24 hours, starting and ending at midnight. The transaction
price of the completed auction was recorded and adjusted for the small increment
to obtain the bidders’ second highest valuation yi2. Using third-party tracking soft-
ware, the jeweler also recorded the total number of unique users who viewed each
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TABLE 4
Sorted data from the sixteen online second-price auction experiments

Ni 25 12 22 21 20 27 19 13
yi2 10.05 8.50 5.51 5.50 5.49 5.12 4.69 4.25

Ni 19 12 17 22 14 13 25 16
yi2 3.73 3.53 3.25 2.34 2.26 2.02 1.50 1.25

auction (i.e., the total number of bidders). The sorted data are shown in Table 4. To
increase the chance of observing some bidding activity in each auction, the starting
price was always set to $0.01 with free shipping. As it turned out, each auction had
at least twelve bidders, so that the second-highest bid was indeed observed in each
auction. For the jewelry product we considered, the per-unit cost c was constant
and equal to $5.20.

5.2. Posterior inference for the valuation distribution in the absence of prior
information. For the case where prior information was unavailable, we applied
the methods considered in Section 4, namely, our proposed Pólya tree method and
the gamma and truncated-normal parametric Bayesian methods with the weakly
informative prior distributions, to the auction data in Table 4. For the Pólya tree
method, we used the partition �0 in (5), given by the first two columns of Table 5.
Notice how the partition elements only split on the leftmost set at each level.

The estimates of the valuation distribution F for each method are shown in Fig-
ure 3, and the estimated profit functions (along with the estimated optimal prices
for each method) are shown in Figure 4. We see that while the overall shapes of
the valuation distributions are quite similar across all three methods, the quan-
tiles of the three distributions differ widely. For instance, the median valuation is
$0.85 for the Pólya tree method, $0.29 for the gamma method and $1.13 for the
truncated-normal method. Thus, the resulting inference of the optimal price is sim-
ilarly highly sensitive to the particular assumption made for the functional form.
The estimated optimal price using the Pólya tree method is $12.6, while the esti-
mated optimal prices from gamma and truncated-normal parametric methods are
$8.63 and $6.69, respectively.

5.3. Incorporating elicited managerial prior beliefs. As discussed early, an
appealing additional feature of the Bayesian Pólya tree method is how prior be-
liefs about F can be straightforwardly incorporated into the Pólya tree prior
PT(�0,A0). We illustrate this here with the construction of a prior that incorpo-
rates an expert’s beliefs about the valuation distribution F of potential consumers
for the auctioned jewelry product. It is worth noting that it is not clear how to in-
corporate the elicited beliefs described below into the parametric priors that we
have been discussing.
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TABLE 5
First two columns: the partition scheme �0 used in the empirical application.
The third column is used to set A0 to approximate the manager’s prior beliefs

Prior probability
Partition Interval pε = H(Bε)

B0 (0.00, 10.05) 0.901
B1 [10.05, ∞) 0.099
B00 (0.00, 8.50) 0.870
B01 [8.50, 10.05) 0.031
B000 (0.00, 5.51) 0.731
B001 [5.51, 8.50) 0.139
B0000 (0.00, 5.50) 0.730
B0001 [5.50, 5.51) 0.001
B00000 (0.00, 5.49) 0.729
B00001 [5.49, 5.50) 0.001
B000000 (0.00, 5.12) 0.707
B000001 [5.12, 5.49) 0.022
B0000000 (0.00, 4.69) 0.685
B0000001 [4.69, 5.12) 0.023
B00000000 (0.00, 4.25) 0.663
B00000001 [4.25, 4.69) 0.022
B000000000 (0.00, 3.73) 0.637
B000000001 [3.73, 4.25) 0.026
B0000000000 (0.00, 3.53) 0.627
B0000000001 [3.53, 3.73) 0.010
B00000000000 (0.00, 3.25) 0.613
B00000000001 [3.25, 3.53) 0.014
B000000000000 (0.00, 2.34) 0.534
B000000000001 [2.34, 3.25) 0.079
B0000000000000 (0.00, 2.26) 0.526
B0000000000001 [2.26, 2.34) 0.008
B00000000000000 (0.00, 2.02) 0.502
B00000000000001 [2.02, 2.26) 0.024
B000000000000000 (0.00, 1.50) 0.450
B000000000000001 [1.50, 2.02) 0.052
B0000000000000000 (0.00, 1.25) 0.425
B0000000000000001 [1.25, 1.50) 0.025

In an interview with the manager of the online jewelry retailer behind our auc-
tions, we used the following subjective CDF construction method [Berger (1985),
page 81] to elicit his prior belief about F . Asking him to imagine a hypothetical
random sample of 100 consumers, the manager was asked to state X for various Y
values in the following statement: “If the price is set at Y dollars, X (out of 100)
consumers are willing to buy the product.” Table 6 shows the set of the manager’s
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FIG. 3. Estimates of the valuation distributions F by the three different methods: Pólya tree (solid
line); gamma (broken line); truncated-normal (dotted line).

responses [i.e., (X,Y) pairs]. By joining these points with linear segments, these
responses were converted into a cdf, which we denote by H .13

Again using the partition �0 in Table 5, we proceeded to set A0 so that the
prior PT(�0,A0) approximates the manager’s prior beliefs. For this purpose, we
set αε = km2pε , the special case of αε = γmH(Bε) discussed in Section 3.3.2 with
pε = H(Bε) and m the level of Bε . This setting serves to center the prior at prior
probabilities pε = H(Bε), shown in the third column of Table 5, which match the
manager’s prior H . For k, we considered various values k = δ,10,20,50, to gauge
the effects of different levels of prior uncertainty on the posterior for F .14 Larger k

reflects a more certain prior assessment of F , yielding a posterior distribution that
is less influenced by the observed data.

For the prior PT(�0,A0) choices described above, we estimated the profit-
maximizing price. Figure 5 shows the various estimated valuation distributions
which incorporate the manager’s prior beliefs. The resulting posterior estimates
are shown for the four values of k : δ (top broken line), 10 (second broken line),
20 (third broken line), and 50 (bottom broken line), along with the manager’s prior

13Note that this elicitation method did not capture the manger’s “uncertainty” around his prior
belief. Future research may consider how to best capture this uncertainty.

14As in the simulations in Section 4, we again set δ = e−20 to be positive but small.
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FIG. 4. Estimated profit functions for the Pólya tree method (solid line), gamma (broken line);
truncated-normal (dotted line).

beliefs about F (solid line). These results provide a number of insights. First, as
can be seen in the figure, all the posterior estimates of F are above the prior H ,
suggesting that consumers here have a stochastically lower valuation of the prod-

TABLE 6
Manager’s prior beliefs about the consumer valuation distribution

. . .X (out of 100) consumers are
If the price is set at $Y. . . willing to buy the jewelry product

0.01 98
0.50 70
1.00 60
2.00 50
3.00 40
5.00 30
7.50 15

10.00 10
12.00 7
14.00 6
15.00 2
20.00 0
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FIG. 5. Posterior estimates of the consumer valuation distribution F . The solid line is the man-
ager’s prior belief; the other four lines represent, from top to bottom, the posterior estimates for the
four values k = δ,10,20,50, respectively.

uct than that suggested by the manager’s prior beliefs. Second, we observe that
with smaller values of k, as expected, the posterior estimate is more influenced by
the second-price auction data and less influenced by the prior.

Next, we turn to estimating the profit-maximizing price for each value of k. The
profit function for each value of k, along with the estimated profit maximizing
price, is shown in Figure 6. Figure 6 offers some insights about two potential pric-
ing strategies. There are two price points (around $7.50 and $12.60), that roughly
correspond to two pricing strategies commonly used in new product pricing [e.g.,
Tellis (1986)]: (i) a “skimming” strategy that targets only a high-value consumer
segment (hence achieving very low volume, but high profit per transaction), and (ii)
a “penetration” strategy where the retailer sets the price lower in order to achiever
a higher initial penetration, but a lower profit-per-transaction. The relative effec-
tiveness of each strategy depends on the value of k, that is, the amount of weight
that the manager puts on his prior belief.

The estimated profit maximizing prices are $12.6, $7.66, $7.52 and $7.50 for
k = δ,10,20,50, respectively. We find that for k < 4, a skimming strategy is more
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FIG. 6. Estimated profit functions for the Pólya tree method after incorporating managerial prior
knowledge; k = δ (thick solid line), k = 10 (thin solid line); k = 20 (broken line); k = 50 (dotted
line).

attractive; for k > 4, a penetration strategy gives better profits. Thus, our method
allows the retailer to quantify and compare the effectiveness of skimming vs. pen-
etration strategies at any given k. Note also that somewhat counter-intuitively, a
stochastically higher valuation distribution (using larger k) here leads to a lower
optimal price. Although at each price a larger percentage of customers will buy the
product, the effect of this on profits is more pronounced at the lower prices.

As can be seen in Figure 6, it appears that by incorporating some degree of
prior managerial knowledge, the optimal price is estimated to be around $7.50.
This can be used as a starting point for pricing the new jewelry product. Based on
our recommendations, the jeweler implemented a fixed price of $7.49 when the
new jewelry product was brought into market in late 2006.

Our method allows us to not only estimate the profit-maximizing price, but also
to quantify the uncertainty for estimated profits under the optimal price, by using
the posterior sample draws from the Pólya tree. Figure 7 displays the pointwise
90% posterior intervals for the profit function when k = 20, which reflects the
degree of uncertainty for our results. For example, the estimated profit (for the
k = 20 case) at the optimal price of $7.48 is $0.14 per bidder, with a 90% posterior
interval of ($0.09, $0.18). This provides the retailer with an estimate of the range
of profit that can be obtained.
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FIG. 7. Pointwise 90% posterior intervals of the profit function (k = 20 case).

6. Discussion and future research. In this paper we have developed a non-
parametric Bayesian methodology that enables retailers to estimate the optimal
price for a new product by learning about the consumer valuation distribution from
second-price auction data. Using a flexible Pólya tree distribution to represent un-
certainty about the unknown consumer valuation distribution, we have proposed a
Pólya tree prior formulation and computational approach that allows for fast up-
dating of the hyperparameters using only second highest order statistics obtained
from a set of auctions. Through collaboration with an online jewelry retailer, we
apply our methodology to incorporate managerial prior beliefs and derive the opti-
mal price for a new jewelry product. The generality of our proposed methodology
allows for its application to many different products.

A key to the computational advantages of our setup is the use of the observed
second order statistics as the cutpoints for the prior partition �0 in (5). Although
strict Bayesian coherence is violated by the use of the data to formulate the prior
partition, it does not seem that the injected structural information is creating a par-
ticular bias.15 Nonetheless, because the Pólya tree posterior may still be influenced

15Note that we only endorse a data-dependent partition insofar as the yi2’s are used as the cutpoints.
Beyond that, further data-dependent partitions may be ill advised. To take an extreme example, sup-
pose one introduced the finer partitions B10 = [y12, y12 + δ] and B11 = [y12 + δ, y∗]. For small
enough δ, the resulting posterior would allocate an inappropriate amount of weight to the very small
interval B10.
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by �0 in addition to A0, it is important to be mindful of the impact of some of its
basic characteristics. While Pólya tree generalizations involving random partitions
[e.g., Paddock et al. (2003), Wong and Ma (2010)] would be a way to mitigate
this influence, the computational burdens of their implementation would likely be
overwhelming for the second-price auction data.

One aspect of �0 that does appear to incur some systematic bias is the assign-
ment of the yi2’s to the upper intervals (e.g., y12 ∈ B1;y22 ∈ B01, etc.) by defining
the upper intervals Bε1 in (5) to be left closed. However, the upward bias resulting
from posterior updating with this upper interval assignment is substantially smaller
than the downward bias that would result from a lower interval assignment (details
available upon request). Another alternative, left for future research, might be to
consider partial probabilistic assignments of each of the yi2’s to both intervals.

Finally, the choice of the left telescoping hierarchy does also influence the pos-
terior. As illustrated in Web Appendix I [George and Hui (2011)], this influence of
the chosen hierarchy is lessened when αε = γmH(Bε) with γm chosen very small,
so that γm is approximately constant, at least at the lower levels. However, this
strategy would be inappropriate for the scenario in Section 5.3, where we would
not want to minimize the impact of an informative managerial prior. Due to the
level dependent weighting of the prior through m2, the intervals at the deeper lev-
els have a stronger prior, resulting in a posterior that will be sensitive to the choice
of hierarchy. In future work, it may be useful to consider alternative hierarchies
that may better represent the manager’s prior beliefs and uncertainty about them.
We leave the issue of eliciting the most reasonable hierarchy and associated level-
dependent weighting function as a future research direction.

To conclude, our research adds to the recent and growing stream of literature
on the use of Bayesian nonparametric techniques in marketing [e.g., Braun et al.
(2006), Brezger and Steiner (2008), Kim, Menzefricke and Feinberg (2004, 2007),
Sood, James and Tellis (2009)]. Bayesian nonparametric techniques provide a rich
toolkit that allows modelers to avoid imposing restrictive parametric functional
forms. Braun et al. (2006) and Kim, Menzefricke and Feinberg (2004) utilize
a Dirichlet process prior to specify the heterogeneity distribution; Brezger and
Steiner (2008) and Kim, Menzefricke and Feinberg (2007) use a Bayesian spline
approach to model the price response function. In the same spirit, this paper in-
troduces the Pólya tree prior to model uncertainty about an unknown consumer
valuation distribution for the purpose of optimal price estimation. To the best of
our knowledge, this is the first marketing application to make use of a Pólya tree
distribution; we certainly hope that in the future, this flexible class of distributions
will be added to the modeler’s toolkit.

Acknowledgments. The authors are very grateful to the reviewers for their
generous insights.
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SUPPLEMENTARY MATERIAL

Web Appendix for “Optimal pricing using online auction experiments:
A Pólya tree approach” (DOI: 10.1214/11-AOAS503SUPP; .pdf). Robustness
checks for the left telescoping hierarchy and the IPV assumption can be found in
the supplemental article.
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