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Abstract. We present two-sided estimates of moments and tails of polynomial chaoses of order at most three generated by in-
dependent symmetric random variables with log-concave tails as well as for chaoses of arbitrary order generated by independent
symmetric exponential variables. The estimates involve only deterministic quantities and are optimal up to constants depending
only on the order of the chaos variable.

Résumé. Nous établissons un encadrement des moments et des queues d’un chaos polynomial d’ordre au plus trois engendré par
des variables aléatoires indépendantes symétriques a queues log-concaves et pour des chaos d’ordre quelconque engendrés par des
variables aléatoires indépendantes symétriques exponentielles. Ces estimations ne font intervenir que des quantités déterministes
et sont optimales a des constantes pres qui ne dépendent que de 1’ordre du chaos.
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1. Introduction

A (homogeneous) polynomial chaos of order d is a random variable defined as

n

Z aiy,ig Xiy - Xiygs (1)
i1yenig=1
where X1, ..., X, is a sequence of independent real random variables and (a;,,....i;)1<iy,....i;<n 1S @ d-indexed sym-
metric array of real numbers, satisfying a;, . ;, =0 whenever there exists k # [ such that iy = i;.

Random variables of this type appear in many branches of modern probability, e.g. as approximations of multiple
stochastic integrals, elements of Fourier expansions in harmonic analysis on the discrete cube (when the underlying
variables X;’s are independent Rademachers), in subgraph counting problems for random graphs (in this case X;’s
are zero—one random variables) or in statistical physics.

Chaoses of order one are just linear combinations of independent random variables and their behavior is well-
understood. Chaoses of higher orders behave in a more complex way as the summands in (1) are no longer inde-
pendent. Nevertheless, due to their simple algebraic structure, many counterparts of classical results for sums of
independent random variables are available. Among well known results there are Khinchine type inequalities and tail
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bounds involving the variance (see e.g. [4,11,19] or Chapter 3 of [7]). There are also two-sided inequalities in terms
of expectations of suprema of empirical processes, which themselves are in general difficult to estimate (see [3,5] for
Gaussian chaoses and [1,18] for the general case of chaoses generated by variables with log-concave tails).

In several cases, under additional assumptions on the distribution of X;’s, even more precise results are known,
which give two sided estimates on moments of polynomial chaoses in terms of deterministic quantities involving only
the coefficients g;, . ;, (the estimates are accurate up to a constant depending only on ). Examples include Gaussian
chaoses of arbitrary order [15], chaoses generated by nonnegative random variables with log-concave tails [16] and
chaoses of order at most two, generated by symmetric random variables with log-concave tails ([10] for d = 1 and
[14] for d =2).

The aim of this paper is to provide some extensions of these results. In particular we provide two-sided estimates
for moments of chaoses of order three generated by symmetric random variables with log-concave tails (Theorems
3.1 and 3.2) and for chaoses of arbitrary order, generated by symmetric exponential variables (Theorem 3.4).

Before we formulate precisely our main results let us recall the notion of decoupled chaos and decoupling inequal-
ities. A decoupled chaos of order d is a random variable of the form

Z aj, ..., iXm'll"'Xli,y (2)

where (a;,....i)1<iy....ij<n 15 @ d-indexed array of real numbers and Xll., i=1,...,n,1=1,...,d, are independent
random variables.

One can easily see that each decoupled chaos can be represented in the form (1) with a modified matrix and for
suitably larger n. However it turns out that for the purpose of estimating tails or moments of chaoses it is enough to con-
sider decoupled chaoses. More precisely, we have the following important result due to de la Pefia and Montgomery-
Smith [8].

Theorem 1.1. Let (a;,...i))1<i\,....iq<n be a symmetric d-indexed array such that a;, .. ;, = 0 whenever there exists

k # 1 such that i =1ij. Let X1, ..., X, be independent random variables and (Xl-j)lfif,,, j=1,...,d, beindependent
copies of the sequence (X;)1<i<n. Then for all t >0,
= f)

Lﬂ”( zLdt) §1P><

n

. . d
§ : iy...ig Xy o X,

n

E Qiy,...iqg Xiy - Xiy

i1,..,ig=1

—

where Ly € (0, 00) depends only on d. In particular, for all p > 1,

n

.yl d
Z iy,..ig Xiy - X,

n

§ aiy,....ig Xiy - Xiy

i1yeeig=1

n

. . 1 d
Z Qiy,....iq Xi| e Xid

i1yeeig=1

=

p p

where Ly depends only on d.

If we are not interested in the values of numerical constants, the above theorem reduces estimation of tails and
moments of general chaoses of order d to decoupled chaoses. The importance of this result stems from the fact that
the latter can be treated conditionally as chaoses of smaller order, which allows for induction with respect to d.
Since the reduction is straightforward, in the sequel when formulating our results we will restrict our attention to the
decoupled case.

Let us finish the introduction by remarking that two-sided bounds on moments of chaoses of the form (1) can be
used to give two-sided estimates for more general random variables, i.e. tetrahedral polynomials in X1, ..., X4, e.g. to
polynomials in which every variable appears in a power at most 1. This is thanks to the following simple observation,
which to our best knowledge has remained unnoticed.
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Proposition 1.2. For j =0,1,...,d let (ai]1 i~)1<i1w-,i/<n be a j-indexed symmetric array of real numbers (or
LY A 7=

more generally elements of some normed space), such that ai]1 i} = Oifix =i forsomel <k <l <j(for j=0

we have just a single number a%). Let X1, ..., X, be independent mean zero random variables. Then there exists a

constant Lg € (0, 00), depending only on d, such that for all p > 1,

S Y a e

J=0iy,...i;=1

d

2

j=0

n

§ J .
ai],.‘.,inll l/

il,‘..,i/‘=1

<Ld

p p

Note that a reverse inequality boils down just to the triangle inequality in L, and so the above proposition imme-
diately gives two-sided estimates of moments of tetrahedral polynomials from estimates for homogeneous chaoses.
Since the details are straightforward we will not state explicitly the results which can be obtained from the inequal-
ities we present. The easy (given general results on decoupling) but notationally involved proof of Proposition 1.2 is
deferred to the Appendix.

The organization of the article is as follows. After introducing the necessary notation (Section 2) we state our main
results (Section 3) and devote the rest of the paper to their quite involved proof. In the course of the proof we provide
entropy estimates for special kinds of metrics on subsets of certain product sets (Section 5.2) as well as bounds on
empirical processes indexed by such sets (Sections 6 and 7 where we also provide some partition theorems). We
believe that these results may be of independent interest. In Section 8 we conclude the proof of our result for chaoses
of order three and in Section 9 we give a proof of estimates for chaoses of arbitrary order generated by exponential
variables.

2. Definitions and notation

Let (X )1<,<n 1<j<d be a matrix of independent symmetric random variables with logarithmically concave tails, i.e.

Si=n, l=j=

such that the functions Ni] :[0, 00) — [0, o] defined by
N/ (1) = —InP(|X]| > 1)

are convex. We assume that r.v.’s are normalized in such a way that

inf{r > 0: N/ (1) > 1} =1. 3)
We set
2
" t for || <1,
P 0 {Nl/(|t|) for || > 1.

Remark. When working with d = 1 we will suppress the upper index j and write simply X; or N;.

Recall that the pth moment of a real random variable X is defined as || X I|§ =E|X|P.
For a sequence (x;); of real numbers (sometimes multiindexed) we will denote x> = ,/>"; )cl.2 and ||x||; =

Zi [x;i].

Forie{l,...,n}¥ and I C{1,...,d} we write i; = (it)kei. By P; we will denote the family of all partitions of
{1, ..., d} into nonempty, pairwise disjoint subsets. For J = {1, ..., Iy} € P4, p > 2 and a multiindexed matrix (a;)
we define

N
ol = T o Sl o SR, ) =218 @
s1€ly,...,sk€l) i lSI

Remark. When I; is a singleton, i.e. I} = {5}, then for any fixed value of the index iy, , ||(xill i ll2 = Ifo B
1 Si
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In particular for d = 3 we have

IA

||(aljk)||{123}p_sup{zal]k-xljk ZN1< llezjk> Sp}
ijk i J.k
+Sup{2aljkxljk Z < X; k) P}
ijk ik
+Sup{2az/kx1/k Z < X; k) = }7
ijk i,j
”(at]k)”{l 2)(3},p SUP{Zaz/kXUYk ZN < / 2]) =p Z e) < p}
ijk k
sl g zzv;( /z })=r X800 =0}
ijk k

and
[ |, 0101, = sup{Zal,kx,yﬂk ZN x) < p, ZNZ(y]) < p. ZNk (z1) < p}
ijk

By B and B we will denote respectively the standard £} and £} balls, e.g. Bf ={x e R": |x||; <1} and B} =
{x eR": |lx[l2 <1}

Throughout the article we will write Ly, L to denote constants depending only on d and universal constants re-
spectively. In all cases the values of a constant may differ at each occurence.

By A ~; B we mean that there exists a constant Ly € (0, 00), such that L;lB <A<LyB.

We will also denote X/ = (X/)1<;<, and write E; for the expectation with respect to X/ .

3. Main results

Theorem 3.1. Forany d > 1 and p > 2 we have

Theorem 3.2. Ford <3 and p > 2,

1 d
ZaiXil - X,
i

= - LY @l b (5)
JeP;

<La Y J@ly,. ©)

P JePy

Remark 1. Let Xl-j = cgij, where gij are i.id. N'(0,1) rv)s and 1 < ¢ < 10/9 is a constant for which the normaliza-
tion (3) holds. Then t*/L < N (t) < Lt*> and for J = {1\, ..., It} € P4, p > 2

k/2

N
[y, ~a P[] ;-

where

k
H(ai)”J:sup{Zainil[]: Hx H2<1 1<i<k @)
=1
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Theorems 3.1 and 3.2 (for arbitrary d) in this case were established in [15].

A standard application of the Paley—Zygmund inequality (see e.g. Corollary 3.3.2 of [7]) and the fact that pth
and 2 pth moments of chaoses generated by random variables with log-concave tails are comparable up to constants
depending only on the order of the chaos yield the following corollary (for details see the proof of Corollary 1 in [15]).

Corollary 3.3. Ford <3 andt >0,

ie*f/Ld < IP’(
Lg

> 3 @l ) <Lgeha,

JePy

We are not able to show Theorem 3.2 for d > 3 in the general case. However we know that it holds for exponential
random variables.

Theorem 3.4. Ile.j (t) =t foralli, j andt > 0, then for any d > 1 and p > 2 the estimate (6) holds.

4. Proof of Theorem 3.1

We will proceed by induction with respect to d. The case d = 1 was proved in [10]. Let us therefore assume that the
theorem holds for all positive integers smaller than d > 1.

Note that since we allow the constants to depend on d, it is enough to show that the left-hand side of (5) is minorized
by each of the summands on the right-hand side.

For any J ={I1, ..., It} € P4, with k > 2, the induction assumption applied conditionally on (Xf)jE]l gives

Z | 1_[ N N\ 1/p
ot = (| (2all), 1, )0 ) ®
= = Taan U ige Il 7\

rely

where N = (N/)1<i<n,jers-

Let us fix arbitrary sy € Iy, ..., sx € Ix. We have
w|(ze1x), [,,,,,)
aj Xr) )
l,ell i LI\Un).p
k P
>Ey, (sup{ Z(Zal 1_[ X! )Hx iy | ZN,-ZW(H (xilz,)iI,\(s,) l,)<p.2<i< k})
llc i rely [=2 isl
> sup:Eh Z(Za. H Xr ) l_[xu : ZN{” (” (xilu)i”\{sl) |2) =p.2=l= k}
llr rel; isl

: Z zA[ ”( 11,)11,\(vl)

(Sup{
#11

where the last inequality follows from another application of the induction assumption, this time to a chaos of order
#11. Since the indices s1, ..., s run over sets of cardinality not exceeding d, the above estimate together with (8)
imply that

Z%H%
i

P
Iz)sp,lslsk}) :
lq]

d

1 N
> — gy .
Czqlaly,
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The case k = 1 requires a different approach. Again it is enough to show that foreach/ € {1, ...,d},
| 4 1 Ny , 1/2
‘ Yax) x| = L_dsup{zaixi; szi,((zxi) ) < p}_
i i

Consider any x; such that Zi, Nlll ((Ziw xi2)1/2) < p. By the symmetry of Xll. we have

p p
1 d 1 k
i p i ipe kA
p
1 k
e ZXUE{”C Zainxik
il i(l)z‘ k;ﬁl
1 ; 5 1/2)p
= | x ()
d i i{”zr
1 2 12 ol b
> Lelsun{S(Xa2) e X e < )
d i i(”r i
1 1/2 1/21p
2 2
- 7 2(Xd) (T)
d' i Nige i)
1 p
zZ -7 Zam .
Lyl4

where the first inequality follows from Jensen’s inequality, the second one from hypercontractivity of chaoses gener-
ated by log-concave random variables combined with the contraction principle and the third one from the induction
assumption.

5. Preliminary facts
In this section we present the basic notation and tools to be used in the proof of our main results.

5.1. Some additional notation

1. By yn,: we Will denote the distribution of tG,,, where G,, = (g1, ..., gn) is the standard Gaussian vector in R". Let
also G, = (g’l, ..., &) be independent copies of G,.
2. By v, ; we will denote the distribution of ¢&,, where &, = (£1, ..., &) is a random vector in R” with independent

coordinates distributed according to the symmetric exponential distribution with parameter 1. Thus v, ; has the
density

1 n
vy (x) = 20) ™" exp(—; > |xi|) dx.
i=1

We also put £ = (&1, ..., &) for i.i.d. copies of &,.
Let us note that Eéiz =2.
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3. For any norm o on R"1""¢ =R" @ --- ® R"¢ (which we will identify with the space of d-indexed matrices, i.e.

X1Q - Qxg = (]_[j?=1 xlt//_)lfil,__,idf,,, where x; = (x]/, .., x)), let py be the distance on R™ x - - - x R (which

we will identify with R"1F+74)_defined by
Pa(X,Y) =(x1 @ Qx4 — y1 ® -+ ® ya),

where X = (x1,...,X4),Yy=1,.--, Yd)-
For x € R"1 174 and r > 0 let B, (X, r) be the closed ball in the metric p, with center x and radius .
4. Now, for T C R™ x ... x R™ ¢ > (, define

d
UACHED IS > wl(a),

k=1 IC{l,..d}#I=k
where for I C {1,...,d},

WIT(a) = sup]E(x((l—[xli ngkA)

xel kel kel /i id)

5. Similarly, for > 0, T C R™ x --- x R"™ we put

d
Vi)=Y 1 > v/ (@,

k=1 IC{l,..d}: #I=k

where

VIT(oz) = supEa((Hxikk n’g{;) )
xeT k¢l kel i1seensld

6. Fors,t >0, 7T CcR" x ... x R", we define

d
T . #1 #J ;T
Uj(a.s.1):= ) Dl 77 (%)
k=1 1,Jc{l,...d},
#(IUD)=k,INJ =2

where

Ufj(a) ::supEa(( H xingﬁnfﬁ)

xeT ke(IUJ) kel  keJ 11’--~vid>

Remark. Let us notice that Ug’l(a) = VIT (a), whereas UIT’g (@) = WIT (o).

The quantity WIT was defined in [15], where it played an important role in the analysis of moments of Gaussian
chaoses. The quantities VIT and UIT ; will play an analogous role for chaoses generated by general random variables
with logarithmically concave tails (!as will become clear in the next section, they will allow us to bound the covering
numbers for more general sets than those which were important in the Gaussian case).

5.2. Entropy estimates

In this section we present some general entropy estimates which will be crucial for bounding suprema of stochastic
processes in the proof of Theorem 3.2.

The first lemma we will need is a reformulation of Lemma 1 in [15]. The original statement from [15] is slightly
weaker however the proof given therein justifies the version presented below.
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Lemma 5.1. For any norms a1, on R", y € Bé’ and t > 0,
Ve (x: @i (x —y) <4Ee(Gp), i =1,2) > %6_1/0’2).

Lemma 5.2. For any norms aj,az on R", y €aB} andt > 0,
vn,,(x: a;i(x —y) <4tBa; (&), i = 1,2) > %efa/’.

Proof. Let
K :={x eR": a;(x) <4Eai (&), a2(x) < 41Eaz(Ey)}.
By Chebyshev’s inequality,
1= v, (K) <P(a1(t&) > 4Ba (1)) + P(a2(tEy) > 4Bar (1€,)) < 1/2.

We get for any y € aBY,

n

n
vy +K)=020)™" /K exp(—; Z |x; + y,'|> dx > exp(—; Z |y,~|> /Kdv,,,,(x)
i=1 i=1
> exp(—a/ 1 (K) = 3 exp(—a).

Finally, notice that if x € y 4+ K, then «; (x — y) < 4tEw; (E,), i =1, 2.

Before we formulate the next lemma, let us define w, 5 ; (Where s, ¢ > 0) as the convolution of y;, ¢ and vy, ;.
Lemma 5.3. For any norms a1, on R", anya >0,y € Bg + aB{’ and s, t > 0, let

K ={x: ai(x — y) <4sEa(Gp) + 41Bat (£,), a2(x) < 4sEaz(Gy) + 4Eaz (&) + aa(0)}.

Then

s (K) = Lo 1/@57)=alt
4

Proof. We have y =y + y; for some y| € B}, y» € aB}. Define
Ki={x eR" aj(x — y1) <4sEe;(G,),i = 1,2},
Ky ={x eR": aj(x — y2) <41Ea; (). i =1,2}.

For x =x1 +xp, where x; € K, j =1,2,

ai(x —y) So1(x1 —y1) +a1(x2 — y2) <4sEai(Gp) + 41Ea; (En)
and similarly

a(x) oa(x —y) +a2(y) <4sEar(Gy) + 4Bz (&) + a2(y),

therefore K1 4+ K> C K. We thus have
1 N
st (K) 2 s, (K1 4 K2) 2 s (K1)vn s (K2) = e /@) =aft,

where in the last inequality we used Lemmas 5.1 and 5.2.
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Lemma 5.4. Foranys,t >0,a=(ai,...,aq) € (0,00)? andx € (B5' +a1B}") x -+ x (B5? + aqB}") we have

_ | _
/Ln1+~~+nd,s,t(Ba(X’ UéX}((X,4S,4t))) 24 dexp<_§ds 2 - ”a”lt 1>'

C))

Proof. We will proceed by induction on d. For d = 1, inequality (9) follows by Lemma 5.3. Now suppose that (9)

holds for d — 1. We will show that it is also satisfied for d. Let us first notice that

<®x _®y><a (2 = y4) + <®x _®y>

where ! and ay are norms on R"¢ and R"!""4-1 respectively, defined by

d—1
al(z):=a<®xi®z) and ay(2) =a(z®y).

i=1
Then
sEa' (Gy) + 1Ba (&) =sUY) 5 (@) +1US (@)
Moreover if we put 7 (x) = ..., xd_l) and define a norm ozf, , on R" by the formula
o2, () = U @y, 5.0)

then

sEa?,(Gy) + 1Ea? () + a2, (x9) = > MU @ - [sUf @+ U, @)

1,Jc{l,...d}
1UJ#@,IN] =2

Notice also that by the induction assumption we have for any z € R",

d—1
Hnyttng 1,8, (y e R (®x o ® Y ) = a‘” 4t (Z))

>4 exp(—(d = Ds /2= (a1 + - +ag-)r ™).

Finally let
AX) = {y e RM T, al(xd — yd) < 4sJEa1(Gnd) +4tIEoz1(8nd),

ais,‘tt (yd) = 4SEO[4%S,4Z (Gnd) + 4tEaZs,4t (g"d) + aézts,4t (xd) ’

d—1 d—1
&yd (®xi - ®yi) = a‘%s,4t (yd)}'
i=1

i=1

(10)

Y

12)

13)

By (10)—(12) we get A(x) C By (X, Ud{X} (e, 4s,4t)) and therefore by (13), Lemma 5.3 and Fubini’s theorem we get

/"Lﬂ]+“'+l’ld,s,l (Ba (X’ Ulix} (av 45, 4t)))
= Nn1+~~+nd,s,t(A(X))
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>4 exp(—(d —Ds /2= (a1 +--+ag-)t"") -4 exp(—s?/2—aat™")
=479 exp(—ds™2/2— [lallit™"). O
Corollary 5.5. Forany T C (By' +a1B}") x -+ x (B +agB{") and s, € (0, 1],
N(T, po, UJ (@, 5, 1)) < exp(Lds™ + Lllalli¢7").
Proof. Obviously U dT (0, 8,1) > Supger Ud{X} (a, s, t). Therefore by Lemma 5.4 we have for any x € T,
Ly +otng st (Ba (X, Uj (o, 4s,41))) > 4™ exp(—ds™2/2 — a1t 71). (14)

Suppose that there exist Xi, ..., Xy € T such that for i # j, pa(xi,X;) > UX (e, s,1) > 2UT (, 5/2,1/2). Then the
sets By (x;, U} (a, 5/2,1/2)) are disjoint, so by (14) we obtain N < 4% exp(32ds—2 + 8]|al|;t~!). Hence

N(T. pa. U (e, 5,1)) <49 exp(32ds™ + 8llallir™") < exp(34ds ™2 + 8allit™"). O
We will also need the following standard lemma, whose proof we provide for the sake of completeness.
Lemma 5.6. For any n and any norm o on R", Ea(G,) < 3Ex(&,).

Proof. Let g and £ be respectively standard Gaussian and symmetric exponential random variables. For r > 0 we
have P(jg| > 1) <e~"*/2 and P(|£| > t) = e~". Thus for t > 2 we have P(|g| > 1) < P(|£| > ).

Consider now G, = (g1,---,8&n)> En = (&1, - .., &,). Define moreover independent random variables X1, ..., X,
distributed as |g|1{j¢|>2;. Since forall 1 > 0, P(X; > t) <IP(|§;| > t) we can assume that X;’s, g;’s and §;’s are defined
on the same probability space together with a sequence €1, ..., &, of independent Rademacher variables, in such a

way that for all i, X; < |&;| pointwise, g;’s, &’s, &;’s are independent and X;’s are independent of ¢;’s. We can write

Ex(G,) = Eoc(&:] lg1l, ..., 8n|gn|)
<Ea(e1lgi1{g1=2 - - -+ €nl8n 1 Nyign1=2y) + Ear(e11811 11,2} - - - » €nlgn L1 >2})
<2Ea(er,...,&n) +Ea(e1 X1, ...,e,Xn)

< 2Bca(e1Beléil, .-, enBelénl) + Ear(e1l€1l .. £nlénl)
S 3Ea(§]9 e 75}1)9

where in the second and third inequality we used (conditionally) the contraction principle. ]
Corollary 5.5 together with Lemma 5.6 yield
Corollary 5.7. Forany T C (B +aB})? and anyt € (0,1],
N(T, pa, V] (e, 1)) < exp(Lat ™2 + Lgar™").

We would like to remark that by applying Corollary 5.5 with #;a; instead of a; and letting #; tend to O or infinity we
can obtain similar results for Cartesian products of the form X;izl K; where K; is either B} or a; BY . Such results can
be also obtained directly by following the proof of Corollary 5.5 and using Lemmas 5.1 and 5.2 instead of Lemma 5.3.
We will need such entropy estimates only for d = 1 and K = aBY. This case, described in the next corollary, follows
just from Lemma 5.2.

Corollary 5.8. Foranya>0,T CaBj andt € (0,1],

N(T, pa, tEa(E)) < 2exp(8ar™").
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5.3. Concentration of measure for linear combinations of independent random variables with log-concave tails

Similarly as in [15], the proof of our main results will rely on induction with respect to d, the order of the chaos
variable. The base of the induction, i.e. the case d = 1 was obtained in [10] by Gluskin and Kwapien and later extended
in [13] to linear combinations of independent symmetric random variables with log-concave tails with vector-valued
coefficients. Below we present the more general vector-valued version, together with some of its rather standard
consequences, which provide the toolbox to be used in the proof. All the lemmas below contain the special case of
Gaussian variables and reduce in this case to standard facts about the concentration and integrability for suprema of
Gaussian processes.

In the rest of this section we will use the assumptions and notation introduced in Section 2 specialized to the case

of d = 1. In particular we will suppress upper indices (see the remark after the definition of the functions ](7’,1' ).

Lemma 5.9 (Theorem 1 in [13]). For any bounded set T C R" and all p > 2 we have

n n
Ztixi < |[sup Ztixi
i=1

i=1 teT |

n
ZtiX,»

i=1

sup
teT

sup
teT

n n
—i—sup{Zt,x,-: teT,x ERn,ZNi(X,’) §p} <L

i=1 i=1

1
L
1

p p

Thus, for any u > 0,
n

P(i‘? 2

i=1

i X;

n
> L|: sup ZtiXi
i=1

teT |

n n
+sup{2t,~xi: teT,x ER",Z[\A/,'(X,') fu}]) <e ™.

1 i=1 i=1

Remark. Using the notation of Section 2, we can write
n n
sup{ani: teT.xeR" > Ni(x) < p} =sup Y} ,.
i=1 i=1 ter

which shows that the above lemma is indeed a strengthening of the case d = 1 of Theorems 3.1 and 3.2.

Lemma 5.10. Consider arbitrary sets Ty, ..., T, CR" and let T = U;"Zl T;. Then

n n n n
EsupZtiXi < L(maxE supZtin- +sup{2(ri —s))xii t,seT,x eR", Z]\?,-(x,-) < logm}>.

nz _
el ;4 I=m i€l i=1 i=1

Proof. For m =1 the theorem is obvious, so we will assume that m > 2. Let us fix arbitrary s € T. Since EX; =0,
we have

> = s)Xi.

i=1

n n
EsupZt,'Xi = [E max sup Z(ti —5;)X; < Emax sup

el ;2 J=mier; im J=mteT;

Let A=sup{d /(1 —s)xi: t€ T,x e R", 3", Ni(x;) < logm} and note that by the convexity of N; and the
definition of I\A/i, forany u > 1,

Ni(x/u) < Ni(x)/u, (15)

which implies that for u > 1,

n n
sup{ ¥ "(ti —si)xi: t € T, x €R", Y Ni(xi) §2ulogm} <2uA.
i=1

i=1
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Thus by Lemma 5.9 and the union bound, for any u > 1,

Z(n —s)Xi

i=1

n

Z(tl —si)Xi

i=1
A).

To finish the proof of the lemma it is therefore sufficient to show that for all j <m,

Z(t,—sl)X <L<EsupZI,X +A> (16)

i=1 IET/l 1

> L max E sup

+LuA) < mefZMIOgm
J teT;

P <max sup

JEM teT;

_2u

which by integration by parts gives

Z(tt si) X

i=1

> 6 —s)Xi| +
i=1

E sup

teT

<L (max E sup

JEm o teT;

E sup

teT;

Let us choose any z € T;. We have

n
E sup Z(r, —5i)X;| <Esup Z(ti —zZ)Xi|+E ; — si) Xi
teT; i=1 teT;
n n 1/2
<Esup Z(ti —z)Xi| + L(Z(Zi - Si)z)
teTjli— i=1
n
<Esup|Y (4 —z)Xi|+ LA, a7
IET]' i=1

where in the first inequality we used the fact that variances of X;’s are bounded by a universal constants, whereas in
the second one, the estimate (Y1, (z; — s,-)z)j/2 =sup{dl_ (zi — spui: Y u? < 1} < (log2)~1/?A for m > 2,
which is an easy consequence of the fact that N; (u) = u?> for |u| < 1.

Let us now notice that
Z(tl zi)Xi| = Emax| sup Z(tl zi)X; | ,sup Z(t, zi) Xi
teT; \ + teT; _

i=1
< Esup (Z(t, z,)X) + E sup (Z(t, z,)X)
+ —

teT; teT; i=1

=2 sup (Z(t, z2i) X; )
+

teT; i=1

E sup

1€T;

=2 sup Z(r, z)Xi,

teT; i—1

where in the second equality we used the symmetry of X;’s and in the last one the fact that z € T;.
The above inequality together with (17) proves (16) and ends the proof of the lemma. (]

Let us finish this section with a version of Lemma 5.10 in the special case of Gaussian variables. It improves on
the inequality of Lemma 5.10, as it asserts that the constant in front of max; Esup, eT; >, xigi may be taken to be
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equal to one. This result is again pretty standard and its proof can be found e.g. in [15] (see Lemma 3 therein). It is
analogous to the argument presented above, but instead of Lemma 5.9 it uses the Gaussian concentration inequality.

Lemma 5.11. Let gy, ..., g, be independent standard Gaussian variables and let T = U'/": 1 T;j CR". Then

1/2
EsupZtlg, <maXIE sup Ztlg, + L+/logm sup (Z(Sl —1) ) .

xeTl 1 = teT; i=1 s,teT

6. Suprema of some Gaussian processes

The main result of this section is Proposition 6.1 below, which is a strengthening of Theorem 3 of [13] in the special
case d = 3. Before stating the proposition we need some additional definitions.
For a triple indexed matrix A = (a;jx) and a set T C R" x R", let us define

2\ 1/2
AA(T)=sup{(Z<Za,~jk<xiy,-—m,o) ) : (x,y),(i,i)eT}
k ij
and

s [(E(Ee) ) (B(2)) ]

(x,y)eT

Proposition 6.1. For any p > 2 and any set T C (By + /pBY) x (By + /pB}),

12
E sup Zaukxzy/gk<L[~/_AA(T)+sz (A)"‘_(Z“uk) }

(x,y)eT ijk \/ﬁ ijk

Before we pass to the proof of Proposition 6.1 we will prove its counterpart for double-indexed matrices. This
simpler result will be used in the proof of Proposition 6.1. Recall the notation introduced in (7), according to which

Il - ll{1,2; is the Hilbert—Schmidt norm of a matrix (i.e. for B = (b;;), | Bll{1,2} = ZU blzj)
Lemma 6.2. For any matrix B = (b;}); j<p,a>1and T C aBy,

1/2 1/2
E sup Z bijxigj < La 2 IBI{{% (1Bl A A5(T))' + La'2Ap(T) < L(IBll1.2y +ads(T)).

XETU 1

where Ag(T) = sup, ver (Y51 (7o) bij(xi — x>,

Proof. Let us consider the process Z, = Zf’ j=1 bjjx;g; and the associated metric

dz(x,x") = 1Zx — Zylla = (Z(Zbu x)) )2)1/2.

j=1

We have Ap(T) = diamy, T. Since E(Y_/_; (3", bii€))'/? < V/2||Bllj1,2;, by Corollary 5.8, we have for ¢ €
(O, 11,

N(T.dz,tl|Bll,2) <exp(Lat™),
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so for & < || Bll{1,2},
N(T.dz,e) <exp(L||Bllj1,2yae™").

By Dudley’s bound (see [9] or e.g. Corollary 5.1.6 in [7]) we have

Ap(T)
EsupZ, <L V91ogN(T,dz,¢e)de
xeT 0
I Bll1,2iAAB(T) Ap(T)
§L/ a1/2||B||{11/22}s_1/2d8+L/ a'’?de
0 ’ | Bll{1,2)AAB(T)

1/2 1/2
= La'P|BI %) (1Blln2y A Ap(T)"? + La' 2 Ap(T).
The second estimate of the lemma follows from the inequality 2. /xy < a~'/2x +a'/?y. |

Lemma 6.3. For any matrix B = (b;}); j<n,any T C B} + ./pBf and p > 1,

n
Esup Y bijxig; < L(IBlln.2y +v/PAs(T)),

xeTi,j:l

where Ap is as in Lemma 6.2.

Proof. Since E(Y_/_; (3., bij€/)?)"/? < V2||Bl|(1.2, by Corollary 5.8 (with a = \/p and ¢ = 1/(2/2p)) there
exist sets K; C \/pB},i=1,..., N <exp(Lp), such that

N
VrBi =K

i=1
and
Ap(K) < p~ 2Bl (18)

By Lemma 5.11 we have

Esuprijxigszmax sup Zbijxigj
xeT =N xeTn(B;+K) 7;

§r_naxE sup Zbijxigj+L\/10gNAB(T)
=N yeTn(BI+K:) T

< max(]E sup Zbijxigj +E sup Zb,'jxigj) + L/pAp(T)
i<N xeBy 5 xekK; 7

< IBllg.2y + L(I1Bll.2) + /PAB(K)) + L/PAs(T), 19)

where in the last inequality we used Lemma 6.2 and the fact that

2
E sup Y bijxigj =E Z(Zbijgj> =< IBll1.2)-
J

n
X€BY ij i

Inequalities (18) and (19) imply the lemma. O
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. . . 2 .
For a triple indexed matrix A = (a;jx)i,j k. let @4 be a norm on R"", given by

2\ 172
WA(Z)=<Z<Zaiijij>> .
ko Vi

To simplify the notation we will write p4 for py, . Note that

pa(Ge1. v, (2, 32)) = (B K (x1,31) — Xeazon) D) s

where

X(ry) = D GijkXi¥; k-
ijk

We will also need a norm on R” x R” defined by
2 1/2 2\ 1/2
aa((x, )= (Z(Z%k?ﬁ) ) + (Z(Z“iikyf> > :
jkoN i ik > j

The corresponding distance on R"” x R” will be denoted by p4.
We will use the following consequences of Corollary 5.7.

Corollary 6.4. Forany p > 1,any set T C (By + /pB}) x (B} + /pB) and any t € (0, 1],
N(T, pa, *All2,3 + 155 (A)) <exp(Lt™>+ Ly/pt™").

Proof. It is enough to notice that

2\ 172 2\ 172
v{{z}m)=E(Z(Zai,»ks,»‘é}) ) < (EZ<ZaUks}s}) ) =2[|All0.2.3),
k ij k

ij

whereas
2\ 1/2 2\ 172
vien +vhao = s 5(X(Lanen) )+ s 5(S(Sas) )
(x,»)eT k ij (x,y)eT k ij
2\ 172 2 172
<+2 sup <Z<Zaijkxi)> ++2 sup <Z(Zazjk)’j>>
(x,y)eT jk i (x,y)eT ik j

<2v2sT(A).
The statement of the corollary follows now from Corollary 5.7 applied with d = 2.
Corollary 6.5. Forany p > 1,any set T C (By + ,/pB}) x (B + /pBY) and any t € (0, 1],
N(T, pa, tllAllj1,2,3)) <exp(Lt ™2+ Ly/pt™").
Proof. Let (£', £2) be a standard exponential random vector with values in R” x R" = R2", We have
Ea (€', £%) <2V2l|All,2.3,
hence the corollary follows from Corollary 5.7 with d = 1 and the fact that

(B3 +/PBY) x (B +/PB) C V2B}" +2/pB}". (20)
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To simplify the formulation of the next lemmas let us denote

FA(T) E sup Zzaljkxlngk

(x,y)eT kK ij

Lemma 6.6. For p > 1 let (x,y) € (By + /pB}) x (By + /pBY) and let T C (By + /pB}) x (By + /PBY}).
Then, for any | > 0, there exists a decomposition

N
T=J7n
=l

with N < exp(L2% p), such that for all | < N,

F{(G,y)+T;) < FS(T) + Laa((x, y)) @21
and

Aa() <27 p AT (A + 27 pT N Al 2.3y (22)

Proof. We apply Corollary 6.4 with t = 27/=1p~1/2_ which gives us a partition of T into N < exp(L2%p) sets,
satisfying the required diameter bound (22). Let Bl = (b ©)s B? = (bZk) where

1 2
by = E AijkYjs b = E @;jkXi-
j i
We have

A(D(Tre)) =(S(2rhe) )

<A (Somn) ) (5 (Swn) )
=V2a4((x, y)).

therefore (taking into account (20)) by Corollary 5.7 (withd =1, a = ,/p and t = 1/(L./p)), there exists a partition
of T into at most e sets S; such that for all /,

o [(S(Sti=) ) " (S0 ) ] Jpmaen

. . .. . . . .. . 21
We can intersect this partition with the previous one to obtain a partition of T into at most e ? sets T}, such
that (22) holds and the above inequality is satisfied with 7; instead of ;.
Let 71, m be the projections from R2" = R" x R" onto the first and the second n coordinates respectively and note
that

Api (11(T)) + A (m2(T1))

2 172 172
<2 sup [(Z(th}k(xt{_xt{/)> ) (Z(Zbﬂc Vi =¥j) ) ) :|
&y, (", y"eT; k i

1

< 2 aa(x.y) (23)
_ﬁA’Y~
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By the equality E ), ;; aijixiy;jgk =0 we get for any /,

FO(e, )+ T) < FST)+E sup Y aijpxiFjge+E sup Y aijukiyjg

(X, )T ijk (X, 9e ijk
2\ 1/2 2\ 1/2
< e+ ((D(Sann) )+ (S(Zann) )
jkoN i ik N j

+/PAgi (m1(T) + /P Ap: (ﬂz(Tl))>
< F§(T) + Laa((x, ),

where in the second inequality we used the assumption T C (Bj + ./pBY}) x (B} + ,/pB}) and Lemma 6.3 (applied
to matrices B!, B%) and in the last inequality the estimate (23). O

Lemma 6.7. Let p > 1 and let S be a finite subset of (By +/pBY) x (B3 + /pBY) of cardinality at least 2, such that
S§—8C (By+./PBY) x(By +./pBY). Then, for any | > 0, there exist finite sets S; C (By +./pB}) x (B3 +./pB}),
and points (x;,y;) € Si,i=1,..., N, such that
(i) 2< N <exp(L2%p),
() S=UN (i, y) +8), S — S CS— S, #S; <#S —1,
(i) Aa(S) <272 p~ I All2,3),

(V) 53 (4) <27 p~12 All 23,
(V) Fg((xiyi) + 8) < FZ(S) + Ls3 (A).
Proof. Corollary 6.5, applied with =27/~ p=1/2 gives us a decomposition

Ny
S=|J(Gi.y) + ).
i=1
where N1 < exp(L22lp), (xi,yi) € S and szTi (A) < Z_Ip_1/2||A||{1,2,3}. Since #S > 2 we can assume that N1 > 2. We
can also assume that the sets (x;, y;) 4+ 7; are pairwise disjoint and nonempty, which implies that #7; <#S — 1.

Since T; C S — (x;, yi) C (B} + /PB}) x (B} + /pB{), by Lemma 6.6, it can be further decomposed into the
union

with Ny < exp(LZZZp), where for all j,

Aa(Ty) <277 p V26 (A + 2722 p ANl 23 < 272 p Al 2.3)
and such that

F§((xi.yi) + Tij) < F§ (Tij) + Lsy (A).

Notice that N = N1 N, < exp(L2% p), moreover T;; — T;; C S — S and S2Tij (A) <53 (A) <27 p~ 2 Al 2.3
Since #T;; < #T; <#S§ — 1, to get the covering S; it is enough to renumerate the sets 7;;. O

We are now ready to prove Proposition 6.1.
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Proof of Proposition 6.1. Define the numbers A;, A~l, [>0,as
Ag=AaT),  Ag=s3(A)
and
Ar=2>"p Al 2.3, Ar=2""Tp7 2| All0 2.3
Assume first that T C %[(Bg +/PBY) x (B} + /pB})] and define for r,/ € N,
cr(r,1) = sup{F{(S): S C (B} + /PB}) x (BS + /PB}).
S—SCT —T#S<r Ax(S) < A, s5(A) < A}
We have cr(1,1) = 0. Moreover
cr(r,0) > sup{ F$ (S): S C T, #S <r}. (24)

Notice now, that for any § satisfying the constraints from the definition of c7(r, /), by Lemma 6.7, we can find a
decomposotion § = va=1 ((xi, yi) + Si), satisfying (i)—(v). Thus

F(8) = max FZ (i, ) + i) + Ly/log N 44(S)
< miax FAG S+ Lsg(A) + LZIﬁAl
<cr(r—1,1+ 1)+ LA+ L2 /pA.

Taking the supremum yields
cr(nl)<cr(r—1,14+1)+ LA + L2 /pA,

which gives

o
cr(r.0) <er(Lr =)+ LY (A +2'/pa)
=0

< L(VPAAT) + 5T (A) +2p7 2| Allj1 2,3).-

To finish the proof it is now enough to notice that for T C (Bj + /pBy) x (B} +./pB}),

FE(T) =4 sup C(l/z)T(r, 0).
r>1 O

Remark. Note that the only place in the above argument where the quantities A (T) and szT (A) appear is the first
step of the induction, when we pass from | = 0 to | = 1. All the other steps contribute just proper multiples of || All(1,2,3)
which are upper bounds on the parameters A 4(S) and sf (A) of the set S considered there.

7. The partition theorem

In this section we present partition results which will allow us to pass from the bounds on expectations of suprema of
Gaussian processes developed so far to empirical processes involving general random variables with bounded fourth
moments (in particular all random variables with log-concave tails).



Tail and moment estimates for polynomial chaoses 1121

Lemma 7.1. Let o and @ be two norms on R™ and R>" respectively. For any p > 1 and T C (By + /pB}) X
(B} + /pBYT) we can find a decomposition T = Ull\;l(Tl ~+ (x7, y1)) with N <exp(Lp), (x1, y1) € T such that for any
(x,y), (X, ) €T,

1
ax®y—i®7) < —Ea(£' ® &)
p
and

ax,y) < %E&(&l,gz).

Proof. Let

M:=Ea(£'®&?) and M:=Ea(£', ).
Define norm g on R?" by

B((x.y)) =Ea(x ® %) + Ea (€' ® y).

By Corollary 5.7 withd =1,a = ,/pand t = p~1/2/2 we can find a decomposition T = Ul]\]:"l S; in such a way that
No <exp(Lp) and

1 1 ~
ﬂ(x_ivy_j})<_M’ &(x_ivy_y)S_M

R VP

for any (x, y), (¥, y) € S;. Let us choose any (x7, y;) € S;, put 5’1 = 8; — (x7, y1) and notice that

S <oz L> = LM + L sup B((x,y) < lM
2 | % = ,y) < .
2/p) 4p 2JP (¢ pes, p

We have S; C 2(By + ﬁB?)z, hence again by Corollary 5.7 with r = p~1/2/2 we can decompose S; = U,ICVLI Ti k
with Ny <exp(Lp) anda(x ® y — X ® y) < %M for all (x, y), (X, ) € Ty «. O

Theorem 7.2. Forany p > 1 and T C (B} + /pB}) x (By + /pBY}) we can find a decomposition T = UZN=1 (T; +
(x1, y1)) with N < exp(Lp), (x;, y1) € T such that for any zy,

L 1/4 1/4
E sup Zaijkxi)’jzkgkfﬁ(zaizjk22> <Za,2,k> :

CET g ijk ijk

Proof. Let
2\ 1/2
az(x):= (Z Zt (Zdiijij) )
k ij

and

1/2

2\ 12 2
& (x, y) = (Z z%(Zaum) ) + (Zzi(zaw/‘) )
ik i ik j

Notice that by the Schwarz inequality

1/4 1/4
az(x)s<2a?jkz2) B(x), &z(x,ws(Za?,kzz‘) Blx. y), (25)

ijk ijk



1122 R. Adamczak and R. Latata

where

B(x) = (Z i aiijij)4>1/ !

2
k Zij ijk
and
VA 1/4
3 ) (O aijixi)? /4 (X aijkyj)
Blx,y) = (Z = + Z - .
Jjk i 7ijk ik JVijk
Notice that (since the 4th and 2nd moments of chaoses generated by exponential variables are comparable) we have
1/4 74
BA(e @ %) = (B 067)* < L( i)
ijk
and
3 3 1/4 1/4
B 67) = (B5'(e €)' < 1Lt )
ijk

Hence by Lemma 7.1 we may decompose T = Ufi] (f} + (x7, 1)) with N <exp(Lp), (x;, y1) € T in such a way
that for any (x, y), (X, §) € T,

o 1 1/4 3 1 1/4
ﬂ(x®y—x®y)s—<za?jk> and ﬂ(x,y)i—(zazzjk) :
P\ vr ijk
The assertion follows by Proposition 6.1 and (25). (]

Corollary 7.3. Let Zy, ..., Zy be independent mean zero random variables. For any p > 1 and T C (B + ,/pBY) x
(B} +/pBY) there exists a decomposition T = UlgN((xl» yi)+T1), where N <exp(Lp), (x;, y1) € T and for everyl,

L 1/4 14
E sup Y aijuxiy;Zi < —(Zaizjk) E(Z“izijZ‘)
(x,y)eT; ijk ﬁ ijk ijk

L
< —||A||{1,2,3}mkax | Zill4-

v

Proof. It is enough to take the decomposition given by Theorem 7.2 and notice that by classical symmetrization
inequalities and comparison of Gaussian and Rademacher averages, we have

E sup Zaijkxiyjzk <2E sup Zaijkxiyjzksk <~2rE sup Zaijkxiyjzkgk’
CSOE e (e 7k CETE g

where e (resp. gi) are sequences of i.i.d. Rademacher (resp. standard Gaussian) random variables, independent of
the sequence Zj. (]

8. Proof of Theorem 3.2

The case d = 1 of the theorem has been proved in [10], whereas the case d = 2 in [14], thus it remains to prove the
case d =3.
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To simplify the notation we will write X;, Y;, Z; instead of X l.ll , X 122 X 13; respectively. Applying the theorem in the
(already known) case of chaoses of order two, conditionally on Z;’s yields
)
{1}2}.p

p
§L1’<IEI<H (Zaijkzk> > +E<H (Zaukzk>
k {1.2}.p ij
where N/ = (N ')t<n Jj=<2-

Using the definition (4) of the norms || - ||{1 20 p and || - || 1} (2),p ONE can express

N
|(enze) |, = |[(Fewz)
i ijli{L,2 % j

ij {132}, p
in terms of suprema of empirical processes. Lemma 5.9 then yields

E Za,'ij,'YjZk
ijk

N/

ZaiijinZk
ijk

§L<EH <Xk:aijkzk) "‘EH (Za,,ka):

We are therefore left with the problem of estimation of the expectations on the right-hand side of the above in-
equality. This will be achieved in Lemmas 8.2 and 8.6 below.

Let us first state a simple lemma which will be used repeatedly in the sequel. It is an almost immediate consequence
of the inequality (15), therefore we will skip its proof.

p

NI

1A 53, + AN 30, ,,) (26)

{1.2}.p ij {12}, p

Lemma 8.1. If J is a partition of {1,2,3} and #7J =r, then forany t > 1, ”A”Jz <t" ||A||

Lemma 8.2. Let N/ = (Nl-j),-fn,jfz. Then for any p > 2,

#| (),

ij {12}, p

Nl

N N
L(||A||{1,2,3},p + ||A||{1,2}{3},p)-

Before we prove the above lemma let us state the following well-known auxiliary result, whose proof we provide
for completeness.

Lemma 8.3. Forany p>2andanya; >a > --->a, >0,

n n 1/2
sup{Zaiti: > <pnl < 1} > %(Zai +ﬁ< > a}) ) 27)
i=l1 i=l1

i<p p<izn

Proof. Denote the left-hand side of (27) by M. By choosing t; = 1 fori < p and t; =0 for i > p we see that
M > Ziip a;.

Now if \/pa|p+1) < (Zi>p aiz)l/z, then M > (p Zi>pai2)1/2 (as ‘witnessed’ by the sequence 1; =0 for i < p
and 1; = p'/2q; (Zl> ?)’1/2 for i > p). Otherwise, by monotonicity of a;, we get M > Ziip a; > |plajp+1) >
2_1\/ﬁ(zl>p 12)1/2 which ends the proof. O

Proof of Lemma 8.2. By symmetry it is enough to prove that

1/2
Esup{Za,,kzkx,, ZN‘ ((Zx?,-) ) < p} < LAY 2.3 + 1AIY 2y3).)- (28)
J

ijk
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Moreover, we may and will assume that > ik a ik is decreasing in i.
Let us first notice that

TSP SRS 30 3 TS SOEIN IR

ijk
12
=sup{2ti<2a?jk> :Zt,-zsza,ltilfl,lsisn}
i jk i
1/2 ) 1/2
(Z(Zauk) +ﬁ(ZZaijk) ) (29)
i<p i>p jk

where the first inequality follows from the definition of the norm || - ||€\1[ 23)p and the inequality Nil (t)= 12 for [t <1,
whereas the last one from Lemma 8.3.
LetA,={teR": ), Nl.] (t;) < p} and note that

Esup{Za,ijkx,] ZN1<<zj:xi2j)]/2> Sp} =Esup{zi:ti Zj:(;aiijk)z: e A,,}.

ijk
Define

Ay ={re A, |n <1},

A2 ={teAp: Vieniz1 Vii€ (2'p. 2" p]= (i =00r |t = 1)},
Ay ={reAp t;=0fori <2p.Vienyz1Viie (2 p. 2" p]= (1<t <P ort; =0)}

and form =1, 2, 3,

2
S ::Esup{Zti Z(Zai./ka) ite A'I’}}
i i Nk

Since A, C A }, + A?, + A?, (where + stands for the Minkowski sum of sets), we have

172
Esup{Za,ijkx,j ZN1(<Z)612]> )Sp} <Si+S+S;. (30)
j

ijk

Step 1. For |t] <1, N} (t) =12, s0

2
S =]Esup{2ti Z(Zazjkzk> Y i =pVilil < 1}
i i Nk i

EEZ Z(Zaijkzk) "‘E*/—(ZZ(Z"U"Zk) )1/2

i<p J k i>p j

<(D(Se) - A(E ) )

i<p i>p jk
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where in the second inequality we used the fact that EZ2 < L for all k. By (29) this implies that

n —

S1 < LIAIN 5.3, - 31)

Step 2. We will now estimate S,. To this end let us note that since for r > 1, I\Ali1 (t) > |t|, for every ¢ € A2 , the set
I1(t) =suppt = {i <n: t; # 0}, satisfies

#1() <3p and Viewz1 #(1(0) N (2'p, 2% p]) < p/ 1.
Let us denote the family of subsets of {1, ..., n} satisfying the above conditions by Z. We have

/P
wes (2 (7)) =3

121 Ns=p/13 121

For each I € Z let By = conv{t ¢ R": suppr C 1, ), Z\A/l.1 (t;) < p}. Then

2
S < ]ETPSIX sup Xi:h‘ Z(;aijkzk> .

teBy j

For each I € Z, the set By admits a 1/2-net M (with respect to the semi-norm induced by B;) of cardinality at
most 5%/ < 537 By standard approximation arguments we have

aup 2(;aijkzk>2§2 awp Y Z(;al.jkzkf.

teB; 7 teM; i
Therefore
2
Sy <2E  sup Zti Z(Zaijkzk>»
telUrez Mi j k

which by Lemma 5.10 is up to a universal constant majorized by

2 2
sup ZtiE Z(Zaijkzk> + sup sup Zti Z(Zaiik”‘)
k k

teUrez Mi I teUrez Mir: Y, N3 (r)<Lp j
) N N N
<L sup Dot [l HIAIY 2.2 < LUAIY 2.3 + 1AIG 2),3).Lp)-
tedp jk

Since for ¢t > 1, ||A||{\1/12}’{3},tp < t2||A||{\1/’2}’{3}’p, the above inequality implies that

Sy < L(IAIN 53y, + 1AIN 5y 43.0)- (32)

Step 3. For |t] > 1, N} (t) > t, s0

2
S3SZESUP{ Z i Z(Zaijkzk)3Z|ti|fp’|ti|§l3}
PNk i

=1 2 p<i<2+ip j

Y i )E max Y Z(;aﬁkzk)z

[ Dl+1 3
1C@p2* pl#<[p/ 115 j
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<L min(?, p)[p/P1E max (Z <Z <Xk: aje Zk>2> 2) 1/4

1C@p, 2+ pl#I<[p/ 13

>1 iel j
2\ 2\ 1/4
< Lz<pz>3/4E( 3 (z(zaijkzk) ) )
I>1 Ap<i<2itip ~ j ok
2\ 2\ 1/4
< Lz<pz>3/4( 3 E(z(zai,-kzk) ) )
>1 2 p<i<2i+lp J k
2\ 1/4
SLZ(pl)3/4( > (Za?jk)) :
>1 2p<i<2itip * jk

where in the last inequality we used the comparison of the 4th and the second moment of norms of linear combinations
of independent random variables With log-concave tails.

Now, denote B = /3", , >, a; / .« and notice that by the assumption on monotonicity of Y ;; a? > We have for
i>p

2 Bz
Z“z‘jkfi_
jk

Therefore, we have

B+ \4 1
SaSLZ(P1)3/4<Z (,-_p)z) <LB) (ph** Gy = LVPB.

[>1 i>2lp >1

which by (29) implies that

Ss < LIAIY 55 - (33)
Inequalities (30)—(33) imply (28) and conclude the proof of the lemma. O

We will also need the following lemma, proven in [14] (Corollary 3, therein). We would like to remark in passing
that the approach in [14] was different that in the present article and that the tools developed in the previous sections
could be used to give another proof of this lemma (in the spirit of the argument we provide below for Lemma 8.6). It
seems a little bit more natural since Lemmas 8.2 and 8.6 play in the proof of Theorem 3.2 for d = 3 a role analogous
to the role played by Lemma 8.4 in the proof of its counterpart for d = 2.

Lemma 8.4 (Corollary 3 in [14]). Consider any matrix A = (a;j)ij<n and let N1 = (Nil)isn, N = (Nij)ign,jsz.
Then, for any p > 2,

#|(Sem)

Lemma 8.5. Let N/ = (Nij)ig,,,jfg. Then

(g

k<p

N

N N
" L(||A||{1,2},,n+ ”A”{l}{2},p)'
P

N N
= LIAGy233),p

LjH{IH2Lp
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Proof. Consider the norm on RL?! given by

I,z = H (Za;‘ijk)} _
LJ

k<p

Nl

{1{2}.p

and let K be the unit ball of the dual norm || - ||.. Let M be a 1/2 netin K (with respect to || - ||.) of cardinality not
larger than 317 (M exists by standard volumetric arguments). Then for all z € RLPJ,

lzll <2 sup Y " urzk.
uEMkfp

Thus
< 2[E sup Zuka,

| (o)
i.j {112} p ueM —p

k<p "

which by Lemma 5.10 does not exceed

Lsup{Zukzk: ueM—M,Z]\Allg(zk)gp}

k<p k<p

<Lsupilizll: Y N3 <pt=LIAIY, 23,
{1H2H3}p

k<p 0
Lemma 8.6. Let N/ = (Nl.j),-fn’jfz. Then for any p > 2,
N
iz,
k ij {12}, p
< LAWY 53, + 1AIY 23y, + 1A 031, + 1A 0131.0)- (34)
Proof. Let us first notice that it’s enough to prove the formally weaker estimate
G
EH (Xk:aljkz}()u 15L2)p
< L(VPIAl123 + 1A 0.3 + 1A 131 + 1A 21).0)- (35)

Indeed, suppose that the above inequality holds for all triple-indexed matrices, and assume additionaly (without
loss of generality) that ), j aizj i decreases in k. We have

N/

(g

ij 1{1}.{2},p ij 1{1}.{2}p k>p ij 1{1}.{2}, p

| (on) [, <7 (Eenn)
k k<p

By Lemma 8.5 we have

(o)
i

i=p ).

N/

N
= LAl @263y,
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Moreover, by our assumption (35),

N’ 1/2
B (Sana) [ civn(XXa) + X,
k>p i 2)p k>p ij JePs, TA(1,231}

J#A({1,2),(3))

2
ijk

1/2
ﬁ(Z Za?jk) < Lsup{sz D oaius Y =plul < 1} < LIAI 3.
k ij k

k>p ij

Monotonicity of ), ja;7 and Lemma 8.3 imply that

which together with the previous three inequalities proves (34).
We will now prove (35). To this end let us denote

n
Al = {teR": Zﬁt/(ti)fp}, j=1,2,3.
i=l1

Since Nl] (t) > |t] for ¢t > 1, it is easy to see that A{, C /pBj + pB}. Hence, by Corollary 7.3 and the fact that
IEZ,‘: < L, there exists a partition

Ay x A2 = J((x".y") + 1)
I<N

with N <exp(Lp), (xl, yl) € A}, X Af,, such that

maxE sup Y aijuxiy;Ze < Ly/pllAljas). (36)
SN yen T

Now, by Lemma 5.10,

E  sup Zaiijiijk
(x,y)EA},XA% ijk

< IIIE}.\)](E sup Zaijkxiyj Zr+2 sup Zaijkxi VjZk
= e yH+T ik (x,y)eA},xA%,,zeAip ijk

<maxE  sup Y aiuniy;Zic+ LIAI ) -
=V e Tk

where in the second inequality we used the fact that Ai »C LA;.
Thus it remains to estimate maxlSNEsup(x,y)e(x/’y/”rl Zijk a;jkx;y;jZx. Denote by m1(T), m2(T') respectively

projections of 7; onto the first n and the last n coordinates and let ./\/] = (Nij )i<n, j = 1,2. We have

E sup Zaijkxiyj'zk
(el yH+T; jx

<E sup Zaijkxiyj2k+]E sup Zaijkxiyézk—l-]E sup Zaijkxfijk

(x,)ET ijk xem(T) ijk yem(T) ijk

Nz
+ ZH (Z aijky§ Zk>
jk

(2}.p

N

<LJpllAlp 23+ ZH (Z a,-,-kfok>
% j i1}, p

< LyplAln2s + LIA 0.3, + LIAKS 13y + LIAIY 03,
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where the second inequality follows from (36) and the fact that 7;(1T}) C LAY, and the third inequality from

Lemma 8.4 (applied to Z; instead of Y;, which corresponds to an appropriate permutation of the array Nij ). This
proves (35) and ends the proof of the lemma. (]

Conclusion of the proof of Theorem 3.2. By Lemmas 8.2 and 8.6, the right-hand side of (26) does not exceed
N
Z “(aijk)”‘j‘p,
JePs

which ends the proof. U

9. Proof of Theorem 3.4

In this section we restrict our attention to the special case of symmetric exponential variables and consider polynomial
chaoses of arbitrary order. For exponential variables, the function Nij (t) = t, which allows us to replace quantities
| (a3) ||Aj[ » by simpler quantities.

Proposition 9.1. Ifforalli <n, j <d, N,.j(t) =1, then for every J ={J1, ..., Jx} € Pg and every p > 2,
1 HIC+(k—H#1°)/2 i
L Z » / nlla}x“ (aii, “S(J,/)
1€eQ(J) [

N C(k—#1°
< “ (al) ”\7’17 < Ld Z p#l +(k—#1)/2 II]][Z([X” (ai)il ” ST, 1)
1€Q(7) '

where Q(J)={I C{1,...,d}: Vi<k #I° N J;) <1} and S(J, I) is the partition of I obtained from J by removing
from the sets J; all the elements of 1.

Proof. It is enough to prove that for any d > 1,

.....

Ssup{;aixi: Zm« 3 xg)m, 3 xf) SP}

i2,0id 2,.0id

.....

The proposition follows easily by an iterative application of this inequality.
To prove the above inequality it suffices to notice that

(59" 59)+1

12y ig 02,0504
= o Emin(al ) <pov 3 o7 <1]
- .
and

(VPBY)U(pB}) C {z eR™: ) min(|z.z7) < p} C /PB} + pBy.

1
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We leave the details to the reader. O

For a nonempty set I, let us denote by P; the set of all partitions of / into pairwise disjoint, nonempty sets. In
particular Py, 4y = Py, Py = {T}.
The above proposition yields the following

Corollary 9.2. [fforalli <n, j <d, Nl.j (t) =t, then for every p > 2,

LJl Z Z p#lc-i-#j/Z maX” (ai)i[ ||j
ICilL,...d} TP, e

< Z ” (Cli)“j}[’p <Ly Z Z p#ICJr#J/znilﬁx” (ai)i, ”J

JePy Ic{l,...d}JeP;

From the above corollary and Theorem 3.1 it follows that to prove Theorem 3.4 it is enough to demonstrate the
following

Proposition 9.3. If (X l] )i<n, j<d are independent symmetric exponential random variables, then for every p > 2,
1 d #ICH#T /2
‘ Zain.l ...Xid <Ly Z Z )4 T/ 11;11%)(‘|(ai)i1 HJ 37)

i p Ic{l,...d}JeP;
The proof of Proposition 9.3 will be based on induction with respect to d. It will require several additional lemmas.
Throughout the rest of this section we will assume that (X ;.’ )i<n, j<a are independent symmetric exponential random
variables.

Lemma 94. Foranyd =2,3,...,

()
id

<Ly Z p(1+#J7d)/2H(ai)”J+Ld Z p1+(1+#‘77d)/2n}ax“(ai)i{d)c
d

igge 1{1}--{d—1}

T
JePy JePq—
We will need the following technical fact.
Lemma 9.5. Let Yi(l) be independent standard symmetric exponential variables and Yi(z) = giz, Y i(3) = gi&i, where

gi, & are i.i.d. N'(0,1) variables and ¢; — i.i.d. Rademacher variables independent of Yl.(j ). Then for any normed
space E and any vectors vi, ..., v, € E the quantities

EHZU,’E,‘YZ-(D
i

are comparable up to universal multiplicative factors.

. J=123,

Proof. Since we can symmetrize all variables, and by the contraction principle and Jensen’s inequality

Z Vi€ |Y,-(j)| Z V&
i i

’

i

1
>—E
_L|
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it is enough to show that one can define copies of the variables Y. l.(j ) (which we will identify with the variables) on a
common probability space in such a way that for any j, k=1, 2, 3,

v =L(1+[7)).
This is possible by using the inverse of the distribution function, since
PYO 2 1) =,
L'l <P(y? >1) <e/?
and
Ll <P(|vP| = 1) <2772,

where in the last inequality we used the estimates P(|g;|, |g;| > +/1) < IP(|Yi(3)| >1) <P(lgi| = V1) +P(|gi| = /7).
|

The proof of Lemma 9.4 will be based on a conditional application of the following result from [15] (see [2] for a
similar approach in the context of moment inequalities for U -statistics).

Lemma 9.6 ([15], Theorem 2). For any p > 2,
ff (Sas), [, 20 2 0@l
gy H1}-td=1) TP
Proof of Lemma 9.4. Lemmas 9.5 and 9.6 give
EH (Z aiXZ,) < LEH (Z aigidgid>
iq id

<Lq Yy p"VOPE| (g ;- (38)
JePy

{1}-{d-1} {1}-{d-1}

Take J € Py of the form J = {I1 U{d}, ..., I} where {I1, ..., I} \ {&} € Py_1. We have

dasoli=2 s TeX( L ally)

||x;’,jnz<1,j=2 ,,,,, k g i Nigjuape =2

2
< @)% +E  sp Y (-1 Z(Z H)

||x{,j||zsl,j:2 ..... kg i N uape

Since ]Egl.zd = 1, standard symmetrization arguments applied to the second term on the right-hand side give

E||(a1g,d)}|j ||(a1)||7+2E o sup ZSidgiZ( > all_[x”)

” ij[,‘ ”2§1sj=2 ----- k iq iII l(]lu( He

2
<|@|%+LE  sup Zgzdgldz( > all_[x,,), (39)

Ix! a<l.j=2..k ig i Niguape  J=2

11/. —
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where in the second inequality we used again Lemma 9.5. Let now

k 2
M = max sup Z( Z ai 1_[ x{[j) = rr}axH (ai)i(d)c
d

iq i . " . .
IIXijl, lo<L.j=2,...k| ir; Nigjuape =2
J

where in the case I1 = @ we slightly abuse the notation, by identifying the set {Iy, ..., Iz} with the partition
{12, ..., It}. For fixed g;, consider functions ¢;: R — R, given by the formula

[2
S for |t| <|gi,|M,
@iy (1) {ZMgid or | = lsi|
giy,M/2 for|t| > |gi,IM.

We have |golfd(t)| =t|/(lgi,IM) <1 for |t| <|gi,|M, moreover @;, is constant for t > |g;,|M, so ¢;, is 1-Lipschitz.
Thus, by the contraction principle (see Corollary 3.17 in [17]),

> & (gid (Z( 2 ﬁx£f>2> 1/2>

iq i Nigyuape  J=2

Eg sup

J <l1,j=
”xll_/- l2<1,j=2,....k

) (40)

s x w14

i Niguape  J=2

which implies that

E; sup

j -
I, o =1.j=2.

a5 alld,)

ia i Nguape  J=2

k 2\ 1/2
<8ME; sup Zgidgid(z< Z ai x{,j.)) :
2

||x;’,jnzsl,j=2 ,,,,, kl g i Niguape  Jj=

(41)

Denote T = Xl;zz Bp;, where By, is the unit ball of the Hilbert space ), ;R ForreT, 1= (xi]; ; )’;:2 let

i Nigyuape  J=2
Then, conditionally on g;,, (X;);er is a Gaussian process. It induces a metric on T" given by
dx(t,s) = |1 X; — Xsll2.

k

More explicitly if r = (xi/, ) =

§= (yi/,,)];=2’ then
J J

. s) = ,Xd:gi2d|:(z< 3 ai;]:[zxi./»z)l/z ~ (Z<MZ a; ]_[yi’;j>2>1/2}2

i Nigyuape iy uape J=2

flzd:giZ( > “i<jlilzxij;j—;l:[2yi’;j>)2,

ir Nig ugape
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where to get the last 1nequahty for each fixed iy we used the trlangle inequality in the space £>({1,...,n}") for
vectors aj, = 21(1 e ,]_[] zxjv and by, = Zn(, an 1]_[] 2)’1,

Now, the right-hand side above is equal to d3 (z, s) = ||X P — X, ||2, where (X;);er is a (conditionally) Gaussian
process defined as

X, = Z 8ia8iruiay Z all_[x”

iruia) iguape J=2

where t = (x )k — and (8iy, )iy, uj) 18 an array of i.i.d. standard Gaussian variables independent of g, .

Thus by the Slepian lemma we have

Egsup X; <E; sup X;.

teT teT

Moreover, since 0 € T, X¢ = 0 and the distribution of X is the same as of —X, we have

Esup|X;| = ]Emax(supX,, sup(—X,)) <Esup X; + Esup(—X;) =2sup X;.
teT teT teT teT teT teT

Thus, we have

Soa(S( 5 all4))

i Niguape  J=2

<2Bg osw ) Bw ) Sud 1_[%
ij/lj lo=<1,j=2,...ki5,ua) i utape
1+#IC—k)/2
<Lg4 Z ptH#=R/ I (@igi,) | -
ICEPd

where the last inequality follows from another application of Lemma 9.6, conditionally on g;,. Going now back to
(39) and (41), we obtain that for all ¢ € (0, 1) and all 7 = {I, U{d}, I2, ..., I}} € Py,

P(Hk*d)/zEH (@igiy) HJ

Z pUH=D2E| (aig;,) |
KePy

< pUth=dr2) (ai)”j+Ldpl+(l+#:7/_d)/28—ln}ax|| (@i)igyye
d

Sp(l+kd)/2||(ai)||j+Ld\/p(2+k—d)/2n}ax||(Cli)i{d)c 7
d

+eLy Z P(H#’C_d)/zEH (@igiy)| -
KepPy

where J' = {I1, ..., It} \ {&}. Summing the above inequalities over all 7 € P; and choosing ¢ to be a sufficiently
small number depending on d, we get

3 pUHTOLE | (@) ;< La Y pHETOR @] 4
JeP, Jekq

+Ld Z p1+(1+#j d)/2max||(al)l
JePa

Together with (38) this ends the proof of the lemma. ([
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To prove Proposition 9.3 we will also use a technical fact proved in [2] in greater generality (see Lemma 5 therein).

Lemma 9.7. For a > 0 and arbitrary nonnegative numbers r;, . ;, and p > 1 we have
p
poP Zr <Ll “d[papmaxr + Z ptp max(Z ) ]
i 1C{1.....d} R

Proof of Proposition 9.3. The argument is similar to the proof of Theorem 6 in [2] therefore we will only sketch the
main steps.

Since for p = 2 the proposition is trivial (recall that || (ai)ll(1,...ay = Q; aiz)l/z), we will assume that p > 2.

Let us first note that to prove the proposition it is enough to show that

P :
E Zaixill Loxd| <t Z Z PRI ) ZH (@i |- 42)
i

IC{l ..... d}JEP[ ilc
Indeed, for fixed I let us apply Lemma 9.7 (with p/2 instead of p, #/¢ instead of d and ry,. = ||(a)i, ||?7). We get

p/2
> M@ |5 < Lire(pr2*” (maxll @i |+ Y (p2ytriers? max(Z!l (@, HJ) )

ilzr JC]‘ l[c\_/

Note that for J C I we have Ziﬂ‘\; Il (ai)s, ”2] < Ziﬂ ai2 = [l(a)i,e ||{2 ¢y and that ptI+12 maxj, ||(aie l{se)
appears among the summands on the right-hand side of (37). Thus the above inequality with « sufficiently large
(depending only on d) implies that the right-hand side of (42) is majorized by the pth power of the right-hand side of
the inequality asserted in the proposition (we use the fact that if « depends only on d then p**/* < LZ ).

It remains to prove (42). We will proceed by induction on d. For d = 1, the proposition (which is stronger than
(42) for d = 1) is a special case of Theorem 3.2 (it also follows from the Gluskin—Kwapien estimate).

Let us thus assume that (42) holds for chaoses of order at most d — 1. We will show that then it holds for chaoses of
order d. Applying the induction assumption conditionally on (X id)i together with the Fubini theorem and Lemma 5.10
we obtain

E ZaiX‘
i
<L Z Z pPA=—1—HI+£T /2 H (Z“' )

Ic{l,...d—1} JeP;

SLZ Z Z pPUA—1—H#I+4T /2) ( H (Za‘ )

.d—1} JePy Ld—1]\I

+L5 2. ZP’“#"W/”ZH(aa)i,ll’}

1c{1,..., d} JeP; ijc

) P
By Lemma 9.4 the first sum on the right-hand side above is majorized by the second one, which proves (42). (]

Appendix
Proof of Proposition 1.2. Note that

Z Z aijl ,,,,, inil"'Xijz Z Hi1 ,,,,, id(Xila"'5Xid)a

j=0iy,..., ij=1 1<iy,...,ig<n
pairwise distinct
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where

1 K (=) ;
Hiyig(X1, -0 Xa) = — Z — Z i ooy XD 7 X

_ !
(n— ! fr

and S; denotes the set of all permutations of the set {1, ..., d} (for j =0andevery 7 € S we set a’ 2D () a%).
Note that for every m € Sy, h,-”(,),___,in(d) (Xz(1)s -+ Xn(@d)) = hiy,...iy (X1, ..., xq). Therefore by general decoupling
inequalities for U -statistics (see [6] or Theorem 3.1.1 in [7]), we have

d n
J . 1 d
La Z Z ..., l_,X’I X’/ = Z Hll ~~~~~ 'd(Xll’ ’de) ’
j=()i1 ,,,,, i_/=1 p 1<iy,..., ig<n p

pairwise distinct

The right-hand side of the above inequality is equal to

d n
J r rj
Z 2. X G XX

1<r1< <rj=diy,....ij=1 P

(we used the symmetry of the coefficients al.jl .7 ). Since (again by decoupling) forany 1 <r; <--- <r; <d,

n n
j r rj J ) .
La § : @i XX |2 § : @iy X Xl
[1yeeey ij=1 P [1yeeey ij=1 p

to finish the proof it is enough to show that

d n
Lq Z Z Z bijl,...,in;l Xlrj]

J=0l<ri<-<rj<diy,...ij=1 p

r rj
S5SNI SR A T “
j=01=<ri<--<rj=dlliy,....ij=1 P

for any coefficients b} ;.
Lyeensd

We will proceed by induction on d. For d = 0, (43) reads as L0|b | > |b |, which is obviously true. Let us thus
assume that (43) holds for all numbers smaller than d. Consider any k € {1, ..., d}. By the Fubini theorem, Jensen’s
inequality (applied to the integration with respect to (X lk )i) and the assumption that X lk has mean zero, we get

d
Z Z i bijl ..... i-Xfll"'X,'rf
J J

j:()l§r1<-~<rj§di| ..... ij=1 P
d—1 n
J r T
Z Z Z bilw-ainil -”Xij ’
J=01=<r<--<rj=diy,...ij=1 P
ri#k,=1,..., j

which by the induction assumption is greater than or equal to

d—1 n
-1 J | Tj
Ldfl Z Z Z bilwwi_iXil ...Xi_j

J=01=<r<--<r;=dlliy,....i;=1 P
r#k,l=1,....j
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Thus, since & in the above inequality is arbitrary, we get

d n
La Z Z Z bij],---»ijxirll'“xir;

j:O 1§r1<~-<r_,-§di1,...,i_,-:l p
d—1 n
J r rj
=2 2 | X XX
J=01=<r<<rj=dlliy,....ij=1 p
To finish the proof of (43) it is now enough to notice that for any norm || - ||, vectors x, y and number K > 0,
x|l < K||x + y| implies that ||x|| + ||y|| < (2K + 1)||x + y||. This ends the proof of the proposition. ([

After the completion of this paper the authors have learned that a version of Proposition 1.2 in the case of symmetric
random variables was established by S. Kwapien [12]
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