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Abstract. We present two-sided estimates of moments and tails of polynomial chaoses of order at most three generated by in-
dependent symmetric random variables with log-concave tails as well as for chaoses of arbitrary order generated by independent
symmetric exponential variables. The estimates involve only deterministic quantities and are optimal up to constants depending
only on the order of the chaos variable.

Résumé. Nous établissons un encadrement des moments et des queues d’un chaos polynomial d’ordre au plus trois engendré par
des variables aléatoires indépendantes symétriques à queues log-concaves et pour des chaos d’ordre quelconque engendrés par des
variables aléatoires indépendantes symétriques exponentielles. Ces estimations ne font intervenir que des quantités déterministes
et sont optimales à des constantes près qui ne dépendent que de l’ordre du chaos.
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1. Introduction

A (homogeneous) polynomial chaos of order d is a random variable defined as

n∑
i1,...,id=1

ai1,...,id Xi1 · · ·Xid , (1)

where X1, . . . ,Xn is a sequence of independent real random variables and (ai1,...,id )1≤i1,...,id≤n is a d-indexed sym-
metric array of real numbers, satisfying ai1,...,id = 0 whenever there exists k �= l such that ik = il .

Random variables of this type appear in many branches of modern probability, e.g. as approximations of multiple
stochastic integrals, elements of Fourier expansions in harmonic analysis on the discrete cube (when the underlying
variables Xi ’s are independent Rademachers), in subgraph counting problems for random graphs (in this case Xi ’s
are zero–one random variables) or in statistical physics.

Chaoses of order one are just linear combinations of independent random variables and their behavior is well-
understood. Chaoses of higher orders behave in a more complex way as the summands in (1) are no longer inde-
pendent. Nevertheless, due to their simple algebraic structure, many counterparts of classical results for sums of
independent random variables are available. Among well known results there are Khinchine type inequalities and tail
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bounds involving the variance (see e.g. [4,11,19] or Chapter 3 of [7]). There are also two-sided inequalities in terms
of expectations of suprema of empirical processes, which themselves are in general difficult to estimate (see [3,5] for
Gaussian chaoses and [1,18] for the general case of chaoses generated by variables with log-concave tails).

In several cases, under additional assumptions on the distribution of Xi ’s, even more precise results are known,
which give two sided estimates on moments of polynomial chaoses in terms of deterministic quantities involving only
the coefficients ai1,...,id (the estimates are accurate up to a constant depending only on d). Examples include Gaussian
chaoses of arbitrary order [15], chaoses generated by nonnegative random variables with log-concave tails [16] and
chaoses of order at most two, generated by symmetric random variables with log-concave tails ([10] for d = 1 and
[14] for d = 2).

The aim of this paper is to provide some extensions of these results. In particular we provide two-sided estimates
for moments of chaoses of order three generated by symmetric random variables with log-concave tails (Theorems
3.1 and 3.2) and for chaoses of arbitrary order, generated by symmetric exponential variables (Theorem 3.4).

Before we formulate precisely our main results let us recall the notion of decoupled chaos and decoupling inequal-
ities. A decoupled chaos of order d is a random variable of the form

n∑
i1,...,id=1

ai1,...,id X
1
i1

· · ·Xd
id

, (2)

where (ai1,...,id )1≤i1,...,id≤n is a d-indexed array of real numbers and Xl
i , i = 1, . . . , n, l = 1, . . . , d , are independent

random variables.
One can easily see that each decoupled chaos can be represented in the form (1) with a modified matrix and for

suitably larger n. However it turns out that for the purpose of estimating tails or moments of chaoses it is enough to con-
sider decoupled chaoses. More precisely, we have the following important result due to de la Peña and Montgomery-
Smith [8].

Theorem 1.1. Let (ai1,...,id )1≤i1,...,id≤n be a symmetric d-indexed array such that ai1,...,id = 0 whenever there exists

k �= l such that ik = il . Let X1, . . . ,Xn be independent random variables and (X
j
i )1≤i≤n, j = 1, . . . , d , be independent

copies of the sequence (Xi)1≤i≤n. Then for all t ≥ 0,

L−1
d P

(∣∣∣∣∣
n∑

i1,...,id=1

ai1,...,id X
1
i1

· · ·Xd
id

∣∣∣∣∣ ≥ Ldt

)
≤ P

(∣∣∣∣∣
n∑

i1,...,id=1

ai1,...,id Xi1 · · ·Xid

∣∣∣∣∣ ≥ t

)

≤ LdP

(∣∣∣∣∣
n∑

i1,...,id=1

ai1,...,id X
1
i1

· · ·Xd
id

∣∣∣∣∣ ≥ L−1
d t

)
,

where Ld ∈ (0,∞) depends only on d . In particular, for all p ≥ 1,

L̃−1
d

∥∥∥∥∥
n∑

i1,...,id=1

ai1,...,id X
1
i1

· · ·Xd
id

∥∥∥∥∥
p

≤
∥∥∥∥∥

n∑
i1,...,id=1

ai1,...,id Xi1 · · ·Xid

∥∥∥∥∥
p

≤ L̃d

∥∥∥∥∥
n∑

i1,...,id=1

ai1,...,id X
1
i1

· · ·Xd
id

∥∥∥∥∥
p

,

where L̃d depends only on d .

If we are not interested in the values of numerical constants, the above theorem reduces estimation of tails and
moments of general chaoses of order d to decoupled chaoses. The importance of this result stems from the fact that
the latter can be treated conditionally as chaoses of smaller order, which allows for induction with respect to d .
Since the reduction is straightforward, in the sequel when formulating our results we will restrict our attention to the
decoupled case.

Let us finish the introduction by remarking that two-sided bounds on moments of chaoses of the form (1) can be
used to give two-sided estimates for more general random variables, i.e. tetrahedral polynomials in X1, . . . ,Xd , e.g. to
polynomials in which every variable appears in a power at most 1. This is thanks to the following simple observation,
which to our best knowledge has remained unnoticed.
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Proposition 1.2. For j = 0,1, . . . , d let (a
j
i1,...,ij

)1≤i1,...,ij ≤n be a j -indexed symmetric array of real numbers (or

more generally elements of some normed space), such that a
j
i1,...,ij

= 0 if ik = il for some 1 ≤ k < l ≤ j (for j = 0

we have just a single number a0
∅). Let X1, . . . ,Xn be independent mean zero random variables. Then there exists a

constant Ld ∈ (0,∞), depending only on d , such that for all p ≥ 1,

d∑
j=0

∥∥∥∥∥
n∑

i1,...,ij =1

a
j
i1,...,ij

Xi1 · · ·Xij

∥∥∥∥∥
p

≤ Ld

∥∥∥∥∥
d∑

j=0

n∑
i1,...,ij =1

a
j
i1,...,ij

Xi1 · · ·Xij

∥∥∥∥∥
p

.

Note that a reverse inequality boils down just to the triangle inequality in Lp and so the above proposition imme-
diately gives two-sided estimates of moments of tetrahedral polynomials from estimates for homogeneous chaoses.
Since the details are straightforward we will not state explicitly the results which can be obtained from the inequal-
ities we present. The easy (given general results on decoupling) but notationally involved proof of Proposition 1.2 is
deferred to the Appendix.

The organization of the article is as follows. After introducing the necessary notation (Section 2) we state our main
results (Section 3) and devote the rest of the paper to their quite involved proof. In the course of the proof we provide
entropy estimates for special kinds of metrics on subsets of certain product sets (Section 5.2) as well as bounds on
empirical processes indexed by such sets (Sections 6 and 7 where we also provide some partition theorems). We
believe that these results may be of independent interest. In Section 8 we conclude the proof of our result for chaoses
of order three and in Section 9 we give a proof of estimates for chaoses of arbitrary order generated by exponential
variables.

2. Definitions and notation

Let (X
j
i )1≤i≤n,1≤j≤d be a matrix of independent symmetric random variables with logarithmically concave tails, i.e.

such that the functions N
j
i : [0,∞) → [0,∞] defined by

N
j
i (t) = − ln P

(∣∣Xj
i

∣∣ ≥ t
)

are convex. We assume that r.v.’s are normalized in such a way that

inf
{
t ≥ 0: N

j
i (t) ≥ 1

} = 1. (3)

We set

N̂
j
i (t) =

{
t2 for |t | ≤ 1,
N

j
i

(|t |) for |t | > 1.

Remark. When working with d = 1 we will suppress the upper index j and write simply Xi or Ni .

Recall that the pth moment of a real random variable X is defined as ‖X‖p
p = E|X|p .

For a sequence (xi)i of real numbers (sometimes multiindexed) we will denote ‖x‖2 =
√∑

i x
2
i and ‖x‖1 =∑

i |xi |.
For i ∈ {1, . . . , n}d and I ⊂ {1, . . . , d} we write iI = (ik)k∈I . By Pd we will denote the family of all partitions of

{1, . . . , d} into nonempty, pairwise disjoint subsets. For J = {I1, . . . , Ik} ∈ Pd , p ≥ 2 and a multiindexed matrix (ai)

we define

∥∥(ai)
∥∥N

J ,p
=

∑
s1∈I1,...,sk∈Ik

sup

{∑
i

ai

k∏
l=1

xl
iIl

:
∑
isl

N̂
sl
isl

(∥∥(
xl

iIl

)
iIl\{sl }

∥∥
2

) ≤ p,1 ≤ l ≤ k

}
. (4)

Remark. When Il is a singleton, i.e. Il = {sl}, then for any fixed value of the index isl , ‖(xl
iIl

)iIl\{sl }‖2 = |xl
isl

|.
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In particular for d = 3 we have

∥∥(aijk)
∥∥N

{1,2,3},p = sup

{∑
ijk

aijkxijk:
∑

i

N̂1
i

(√∑
j,k

x2
ijk

)
≤ p

}

+ sup

{∑
ijk

aijkxijk:
∑
j

N̂2
j

(√∑
i,k

x2
ijk

)
≤ p

}

+ sup

{∑
ijk

aijkxijk:
∑

k

N̂3
k

(√∑
i,j

x2
ijk

)
≤ p

}
,

∥∥(aijk)
∥∥N

{1,2}{3},p = sup

{∑
ijk

aijkxij yk:
∑

i

N̂1
i

(√∑
j

x2
ij

)
≤ p,

∑
k

N̂3
k (yk) ≤ p

}

+ sup

{∑
ijk

aijkxij yk:
∑
j

N̂2
j

(√∑
i

x2
ij

)
≤ p,

∑
k

N̂3
k (yk) ≤ p

}

and ∥∥(aijk)
∥∥N

{1}{2}{3},p = sup

{∑
ijk

aijkxiyj zk:
∑

i

N̂1
i (xi) ≤ p,

∑
j

N̂2
j (yj ) ≤ p,

∑
k

N̂3
k (zk) ≤ p

}
.

By Bn
1 and Bn

2 we will denote respectively the standard �n
1 and �n

2 balls, e.g. Bn
1 = {x ∈ Rn: ‖x‖1 ≤ 1} and Bn

2 =
{x ∈ Rn: ‖x‖2 ≤ 1}.

Throughout the article we will write Ld,L to denote constants depending only on d and universal constants re-
spectively. In all cases the values of a constant may differ at each occurence.

By A ∼d B we mean that there exists a constant Ld ∈ (0,∞), such that L−1
d B ≤ A ≤ LdB .

We will also denote Xj = (X
j
i )1≤i≤n and write Ej for the expectation with respect to Xj .

3. Main results

Theorem 3.1. For any d ≥ 1 and p ≥ 2 we have∥∥∥∥∑
i

aiX
1
i1

· · ·Xd
id

∥∥∥∥
p

≥ 1

Ld

∑
J ∈Pd

∥∥(ai)
∥∥N

J ,p
. (5)

Theorem 3.2. For d ≤ 3 and p ≥ 2,∥∥∥∥∑
i

aiX
1
i1

· · ·Xd
id

∥∥∥∥
p

≤ Ld

∑
J ∈Pd

∥∥(ai)
∥∥N

J ,p
. (6)

Remark 1. Let X
j
i = cg

j
i , where g

j
i are i.i.d. N (0,1) r.v.’s and 1 < c < 10/9 is a constant for which the normaliza-

tion (3) holds. Then t2/L ≤ N̂
j
i (t) ≤ Lt2 and for J = {I1, . . . , Ik} ∈ Pd , p ≥ 2∥∥(ai)

∥∥N
J ,p

∼d pk/2
∥∥(ai)

∥∥
J ,

where

∥∥(ai)
∥∥

J = sup

{∑
i

ai

k∏
l=1

xl
iIl

:
∥∥xl

iIl

∥∥
2 ≤ 1,1 ≤ l ≤ k

}
. (7)
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Theorems 3.1 and 3.2 (for arbitrary d) in this case were established in [15].

A standard application of the Paley–Zygmund inequality (see e.g. Corollary 3.3.2 of [7]) and the fact that pth
and 2pth moments of chaoses generated by random variables with log-concave tails are comparable up to constants
depending only on the order of the chaos yield the following corollary (for details see the proof of Corollary 1 in [15]).

Corollary 3.3. For d ≤ 3 and t > 0,

1

Ld

e−t/Ld ≤ P

(∣∣∣∣∑
i

aiX
1
i1

· · ·Xd
id

∣∣∣∣ ≥
∑

J ∈Pd

∥∥(ai)
∥∥N

J ,t

)
≤ Lde−tLd .

We are not able to show Theorem 3.2 for d > 3 in the general case. However we know that it holds for exponential
random variables.

Theorem 3.4. If N
j
i (t) = t for all i, j and t > 0, then for any d ≥ 1 and p ≥ 2 the estimate (6) holds.

4. Proof of Theorem 3.1

We will proceed by induction with respect to d . The case d = 1 was proved in [10]. Let us therefore assume that the
theorem holds for all positive integers smaller than d > 1.

Note that since we allow the constants to depend on d , it is enough to show that the left-hand side of (5) is minorized
by each of the summands on the right-hand side.

For any J = {I1, . . . , Ik} ∈ Pd , with k ≥ 2, the induction assumption applied conditionally on (Xj )j∈I1 gives∥∥∥∥∑
i

aiX
1
i1

· · ·Xd
id

∥∥∥∥
p

≥ 1

Ld−#I1

(
EI1

(∥∥∥∥(∑
iI1

ai

∏
r∈I1

Xr
ir

)
iIc

1

∥∥∥∥N ′

J \{I1},p

)p)1/p

, (8)

where N ′ = (N
j
i )1≤i≤n,j∈I c

1
.

Let us fix arbitrary s1 ∈ I1, . . . , sk ∈ Ik . We have

EI1

(∥∥∥∥(∑
iI1

ai

∏
r∈I1

Xr
ir

)
iIc

1

∥∥∥∥N ′

J \{I1},p

)p

≥ EI1

(
sup

{∣∣∣∣∣∑
iIc

1

(∑
iI1

ai

∏
r∈I1

Xr
ir

) k∏
l=2

xl
iIl

∣∣∣∣∣: ∑
isl

N̂ l
isl

(∥∥(
xl

iIl

)
iIl\{sl }

∥∥
2

) ≤ p,2 ≤ l ≤ k

})p

≥ sup

{
EI1

∣∣∣∣∣∑
iIc

1

(∑
iI1

ai

∏
r∈I1

Xr
ir

) k∏
l=2

xl
iIl

∣∣∣∣∣
p

:
∑
isl

N̂ l
isl

(∥∥(
xl

iIl

)
iIl\{sl }

∥∥
2

) ≤ p,2 ≤ l ≤ k

}

≥ 1

L
p
#I1

(
sup

{∣∣∣∣∣∑
i

ai

k∏
l=1

xl
iIl

∣∣∣∣∣: ∑
isl

N̂ l
isl

(∥∥(
xl

iIl

)
iIl\{sl }

∥∥
2

) ≤ p,1 ≤ l ≤ k

})p

,

where the last inequality follows from another application of the induction assumption, this time to a chaos of order
#I1. Since the indices s1, . . . , sd run over sets of cardinality not exceeding d , the above estimate together with (8)
imply that∥∥∥∥∑

i

aiX
1
i1

· · ·Xd
id

∥∥∥∥
p

≥ 1

Ld

‖ai‖N
J ,p.
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The case k = 1 requires a different approach. Again it is enough to show that for each l ∈ {1, . . . , d},∥∥∥∥∑
i

aiX
1
i1

· · ·Xd
id

∥∥∥∥
p

≥ 1

Ld

sup

{∑
i

aixi:
∑
il

N̂ l
il

((∑
i{l}c

x2
i

)1/2)
≤ p

}
.

Consider any xi such that
∑

il
N̂ l

il
((

∑
i{l}c x2

i )1/2) ≤ p. By the symmetry of Xl
i we have

∥∥∥∥∑
i

aiX
1
i1

· · ·Xd
id

∥∥∥∥p

p

= ElE{l}c
∣∣∣∣∑

il

Xl
il

∣∣∣∣∑
i{l}c

ai

∏
k �=l

Xk
ik

∣∣∣∣∣∣∣∣p

≥ El

∣∣∣∣∑
il

Xl
il
E{l}c

∣∣∣∣∑
i{l}c

ai

∏
k �=l

Xk
ik

∣∣∣∣∣∣∣∣p

≥ 1

L
p
d

El

∣∣∣∣∑
il

Xl
il

(∑
i{l}c

a2
i

)1/2∣∣∣∣p

≥ 1

L
p
d

∣∣∣∣sup

{∑
il

(∑
i{l}c

a2
i

)1/2

αil :
∑
il

N̂ l
il
(αil ) ≤ p

}∣∣∣∣p

≥ 1

L
p
d

∣∣∣∣∑
il

(∑
i{l}c

a2
i

)1/2(∑
i{l}c

x2
i

)1/2∣∣∣∣p

≥ 1

L
p
d

∣∣∣∣∑
i

aixi

∣∣∣∣p,

where the first inequality follows from Jensen’s inequality, the second one from hypercontractivity of chaoses gener-
ated by log-concave random variables combined with the contraction principle and the third one from the induction
assumption.

5. Preliminary facts

In this section we present the basic notation and tools to be used in the proof of our main results.

5.1. Some additional notation

1. By γn,t we will denote the distribution of tGn, where Gn = (g1, . . . , gn) is the standard Gaussian vector in Rn. Let
also Gi

n = (gi
1, . . . , g

i
n) be independent copies of Gn.

2. By νn,t we will denote the distribution of t En, where En = (ξ1, . . . , ξn) is a random vector in Rn with independent
coordinates distributed according to the symmetric exponential distribution with parameter 1. Thus νn,t has the
density

dνn,t (x) = (2t)−n exp

(
−1

t

n∑
i=1

|xi |
)

dx.

We also put E i
n = (ξ i

1, . . . , ξ
i
n) for i.i.d. copies of En.

Let us note that Eξ2
i = 2.
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3. For any norm α on Rn1···nd = Rn1 ⊗ · · · ⊗ Rnd (which we will identify with the space of d-indexed matrices, i.e.
x1 ⊗· · ·⊗xd = (

∏d
j=1 x

j
ij
)1≤i1,...,id≤n, where xj = (x

j

1 , . . . , x
j
n)), let ρα be the distance on Rn1 ×· · ·×Rnd (which

we will identify with Rn1+···+nd ), defined by

ρα(x,y) = α(x1 ⊗ · · · ⊗ xd − y1 ⊗ · · · ⊗ yd),

where x = (x1, . . . , xd),y = (y1, . . . , yd).
For x ∈ Rn1+···+nd and r ≥ 0 let Bα(x, r) be the closed ball in the metric ρα with center x and radius r .

4. Now, for T ⊂ Rn1 × · · · × Rnd , t > 0, define

WT
d (α, t) =

d∑
k=1

tk
∑

I⊂{1,...,d},#I=k

WT
I (α),

where for I ⊂ {1, . . . , d},

WT
I (α) = sup

x∈T

Eα

((∏
k /∈I

xk
ik

∏
k∈I

gk
ik

)
i1,...,id

)
.

5. Similarly, for t > 0, T ⊂ Rn1 × · · · × Rnd we put

V T
d (α, t) :=

d∑
k=1

tk
∑

I⊂{1,...,d}: #I=k

V T
I (α),

where

V T
I (α) := sup

x∈T

Eα

((∏
k /∈I

xk
ik

∏
k∈I

ξ k
ik

)
i1,...,id

)
.

6. For s, t > 0, T ⊂ Rn1 × · · · × Rnd , we define

UT
d (α, s, t) :=

d∑
k=1

∑
I,J⊂{1,...,d},

#(I∪J )=k,I∩J=∅

s#I t#J UT
I,J (α),

where

UT
I,J (α) := sup

x∈T

Eα

(( ∏
k /∈(I∪J )

xk
ik

∏
k∈I

gk
ik

∏
k∈J

ξk
ik

)
i1,...,id

)
.

Remark. Let us notice that UT
∅,I (α) = V T

I (α), whereas UT
I,∅(α) = WT

I (α).

The quantity WT
I was defined in [15], where it played an important role in the analysis of moments of Gaussian

chaoses. The quantities V T
I and UT

I,J will play an analogous role for chaoses generated by general random variables
with logarithmically concave tails (as will become clear in the next section, they will allow us to bound the covering
numbers for more general sets than those which were important in the Gaussian case).

5.2. Entropy estimates

In this section we present some general entropy estimates which will be crucial for bounding suprema of stochastic
processes in the proof of Theorem 3.2.

The first lemma we will need is a reformulation of Lemma 1 in [15]. The original statement from [15] is slightly
weaker however the proof given therein justifies the version presented below.
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Lemma 5.1. For any norms α1, α2 on Rn, y ∈ Bn
2 and t > 0,

γn,t

(
x: αi(x − y) ≤ 4tEαi(Gn), i = 1,2

) ≥ 1

2
e−1/(2t2).

Lemma 5.2. For any norms α1, α2 on Rn, y ∈ aBn
1 and t > 0,

νn,t

(
x: αi(x − y) ≤ 4tEαi(En), i = 1,2

) ≥ 1

2
e−a/t .

Proof. Let

K := {
x ∈ Rn: α1(x) ≤ 4tEα1(En),α2(x) ≤ 4tEα2(En)

}
.

By Chebyshev’s inequality,

1 − νn,t (K) ≤ P
(
α1(t En) > 4Eα1(t En)

) + P
(
α2(t En) > 4Eα2(t En)

)
< 1/2.

We get for any y ∈ aBn
1 ,

νn,t (y + K) = (2t)−n

∫
K

exp

(
−1

t

n∑
i=1

|xi + yi |
)

dx ≥ exp

(
−1

t

n∑
i=1

|yi |
)∫

K

dνn,t (x)

≥ exp(−a/t)νn,t (K) ≥ 1

2
exp(−a/t).

Finally, notice that if x ∈ y + K , then αi(x − y) ≤ 4tEαi(En), i = 1,2. �

Before we formulate the next lemma, let us define μn,s,t (where s, t > 0) as the convolution of γn,s and νn,t .

Lemma 5.3. For any norms α1, α2 on Rn, any a > 0, y ∈ Bn
2 + aBn

1 and s, t > 0, let

K = {
x: α1(x − y) ≤ 4sEα1(Gn) + 4tEα1(En),α2(x) ≤ 4sEα2(Gn) + 4tEα2(En) + α2(y)

}
.

Then

μn,s,t (K) ≥ 1

4
e−1/(2s2)−a/t .

Proof. We have y = y1 + y2 for some y1 ∈ Bn
2 , y2 ∈ aBn

1 . Define

K1 = {
x ∈ Rn: αi(x − y1) ≤ 4sEαi(Gn), i = 1,2

}
,

K2 = {
x ∈ Rn: αi(x − y2) ≤ 4tEαi(En), i = 1,2

}
.

For x = x1 + x2, where xj ∈ Kj , j = 1,2,

α1(x − y) ≤ α1(x1 − y1) + α1(x2 − y2) ≤ 4sEα1(Gn) + 4tEα1(En)

and similarly

α2(x) ≤ α2(x − y) + α2(y) ≤ 4sEα2(Gn) + 4tEα2(En) + α2(y),

therefore K1 + K2 ⊂ K . We thus have

μn,s,t (K) ≥ μn,s,t (K1 + K2) ≥ γn,s(K1)νn,t (K2) ≥ 1

4
e−1/(2s2)−a/t ,

where in the last inequality we used Lemmas 5.1 and 5.2. �
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Lemma 5.4. For any s, t > 0, a = (a1, . . . , ad) ∈ (0,∞)d and x ∈ (B
n1
2 + a1B

n1
1 ) × · · · × (B

nd

2 + adB
nd

1 ) we have

μn1+···+nd ,s,t

(
Bα

(
x,U

{x}
d (α,4s,4t)

)) ≥ 4−d exp

(
−1

2
ds−2 − ‖a‖1t

−1
)

. (9)

Proof. We will proceed by induction on d . For d = 1, inequality (9) follows by Lemma 5.3. Now suppose that (9)
holds for d − 1. We will show that it is also satisfied for d . Let us first notice that

α

(
d⊗

i=1

xi −
d⊗

i=1

yi

)
≤ α1(xd − yd

) + αyd

(
d−1⊗
i=1

xi −
d−1⊗
i=1

yi

)
, (10)

where α1 and αy are norms on Rnd and Rn1···nd−1 respectively, defined by

α1(z) := α

(
d−1⊗
i=1

xi ⊗ z

)
and αy(z) := α(z ⊗ y).

Then

sEα1(Gn) + tEα1(En) = sU
{x}
{d},∅(α) + tU

{x}
∅,{d}(α). (11)

Moreover if we put π(x) = (x1, . . . , xd−1) and define a norm α2
s,t on Rnd by the formula

α2
s,t (y) := U

{π(x)}
d−1 (αy, s, t)

then

sEα2
s,t (Gn) + tEα2

s,t (En) + α2
s,t

(
xd

) =
∑

I,J⊂{1,...,d}
I∪J �=∅,I∩J=∅

s#I t#J U
{x}
I,J (α, t) − [

sU
{x}
{d},∅(α) + tU

{x}
∅,{d}(α)

]
. (12)

Notice also that by the induction assumption we have for any z ∈ Rnd ,

μn1+···+nd−1,s,t

(
y ∈ Rn1+···+nd−1 : αz

(
d−1⊗
i=1

xi −
d−1⊗
i=1

yi

)
≤ α2

4s,4t (z)

)

≥ 41−d exp
(−(d − 1)s−2/2 − (a1 + · · · + ad−1)t

−1). (13)

Finally let

A(x) :=
{

y ∈ Rn1+···+nd : α1(xd − yd
) ≤ 4sEα1(Gnd

) + 4tEα1(End
),

α2
4s,4t

(
yd

) ≤ 4sEα2
4s,4t (Gnd

) + 4tEα2
4s,4t (End

) + α2
4s,4t

(
xd

)
,

αyd

(
d−1⊗
i=1

xi −
d−1⊗
i=1

yi

)
≤ α2

4s,4t

(
yd

)}
.

By (10)–(12) we get A(x) ⊂ Bα(x,U
{x}
d (α,4s,4t)) and therefore by (13), Lemma 5.3 and Fubini’s theorem we get

μn1+···+nd ,s,t

(
Bα

(
x,U

{x}
d (α,4s,4t)

))
≥ μn1+···+nd ,s,t

(
A(x)

)
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≥ 41−d exp
(−(d − 1)s−2/2 − (a1 + · · · + ad−1)t

−1) · 4−1 exp
(−s−2/2 − ad t−1)

= 4−d exp
(−ds−2/2 − ‖a‖1t

−1). �

Corollary 5.5. For any T ⊂ (B
n1
2 + a1B

n1
1 ) × · · · × (B

nd

2 + adB
nd

1 ) and s, t ∈ (0,1],
N

(
T ,ρα,UT

d (α, s, t)
) ≤ exp

(
Lds−2 + L‖a‖1t

−1).
Proof. Obviously UT

d (α, s, t) ≥ supx∈T U
{x}
d (α, s, t). Therefore by Lemma 5.4 we have for any x ∈ T ,

μn1+···+nd ,s,t

(
Bα

(
x,UT

d (α,4s,4t)
)) ≥ 4−d exp

(−ds−2/2 − ‖a‖1t
−1). (14)

Suppose that there exist x1, . . . ,xN ∈ T such that for i �= j , ρα(xi ,xj ) > UT
d (α, s, t) ≥ 2UT

d (α, s/2, t/2). Then the

sets Bα(xi ,U
T
d (α, s/2, t/2)) are disjoint, so by (14) we obtain N ≤ 4d exp(32ds−2 + 8‖a‖1t

−1). Hence

N
(
T ,ρα,UT

d,I (α, s, t)
) ≤ 4d exp

(
32ds−2 + 8‖a‖1t

−1) ≤ exp
(
34ds−2 + 8‖a‖1t

−1). �

We will also need the following standard lemma, whose proof we provide for the sake of completeness.

Lemma 5.6. For any n and any norm α on Rn, Eα(Gn) ≤ 3Eα(En).

Proof. Let g and ξ be respectively standard Gaussian and symmetric exponential random variables. For t ≥ 0 we
have P(|g| ≥ t) ≤ e−t2/2 and P(|ξ | ≥ t) = e−t . Thus for t ≥ 2 we have P(|g| ≥ t) ≤ P(|ξ | ≥ t).

Consider now Gn = (g1, . . . , gn), En = (ξ1, . . . , ξn). Define moreover independent random variables X1, . . . ,Xn

distributed as |g|1{|g|>2}. Since for all t ≥ 0, P(Xi ≥ t) ≤ P(|ξi | ≥ t) we can assume that Xi ’s, gi ’s and ξi ’s are defined
on the same probability space together with a sequence ε1, . . . , εn of independent Rademacher variables, in such a
way that for all i, Xi ≤ |ξi | pointwise, gi ’s, ξi ’s, εi ’s are independent and Xi ’s are independent of εi ’s. We can write

Eα(Gn) = Eα
(
ε1|g1|, . . . , εn|gn|

)
≤ Eα

(
ε1|g1|1{|g1|≤2}, . . . , εn|gn|1{|gn|≤2}

) + Eα
(
ε1|g1|1{|g1|>2}, . . . , εn|gn|1{|gn|>2}

)
≤ 2Eα(ε1, . . . , εn) + Eα(ε1X1, . . . , εnXn)

≤ 2Eεα
(
ε1Eξ |ξ1|, . . . , εnEξ |ξn|

) + Eα
(
ε1|ξ1|, . . . , εn|ξn|

)
≤ 3Eα(ξ1, . . . , ξn),

where in the second and third inequality we used (conditionally) the contraction principle. �

Corollary 5.5 together with Lemma 5.6 yield

Corollary 5.7. For any T ⊂ (Bn
2 + aBn

1 )d and any t ∈ (0,1],
N

(
T ,ρα,V T

d (α, t)
) ≤ exp

(
Ldt−2 + Ldat−1).

We would like to remark that by applying Corollary 5.5 with tiai instead of ai and letting ti tend to 0 or infinity we
can obtain similar results for Cartesian products of the form×d

i=1 Ki where Ki is either Bn
2 or aiB

n
1 . Such results can

be also obtained directly by following the proof of Corollary 5.5 and using Lemmas 5.1 and 5.2 instead of Lemma 5.3.
We will need such entropy estimates only for d = 1 and K = aBn

1 . This case, described in the next corollary, follows
just from Lemma 5.2.

Corollary 5.8. For any a > 0, T ⊂ aBn
1 and t ∈ (0,1],

N
(
T ,ρα, tEα(E )

) ≤ 2 exp
(
8at−1).



Tail and moment estimates for polynomial chaoses 1113

5.3. Concentration of measure for linear combinations of independent random variables with log-concave tails

Similarly as in [15], the proof of our main results will rely on induction with respect to d , the order of the chaos
variable. The base of the induction, i.e. the case d = 1 was obtained in [10] by Gluskin and Kwapień and later extended
in [13] to linear combinations of independent symmetric random variables with log-concave tails with vector-valued
coefficients. Below we present the more general vector-valued version, together with some of its rather standard
consequences, which provide the toolbox to be used in the proof. All the lemmas below contain the special case of
Gaussian variables and reduce in this case to standard facts about the concentration and integrability for suprema of
Gaussian processes.

In the rest of this section we will use the assumptions and notation introduced in Section 2 specialized to the case
of d = 1. In particular we will suppress upper indices (see the remark after the definition of the functions N̂

j
i ).

Lemma 5.9 (Theorem 1 in [13]). For any bounded set T ⊂ Rn and all p ≥ 2 we have

1

L

∥∥∥∥∥sup
t∈T

∣∣∣∣∣
n∑

i=1

tiXi

∣∣∣∣∣
∥∥∥∥∥

p

≤
∥∥∥∥∥sup

t∈T

∣∣∣∣∣
n∑

i=1

tiXi

∣∣∣∣∣
∥∥∥∥∥

1

+ sup

{
n∑

i=1

tixi : t ∈ T ,x ∈ Rn,

n∑
i=1

N̂i(xi) ≤ p

}
≤ L

∥∥∥∥∥sup
t∈T

∣∣∣∣∣
n∑

i=1

tiXi

∣∣∣∣∣
∥∥∥∥∥

p

.

Thus, for any u > 0,

P

(
sup
t∈T

∣∣∣∣∣
n∑

i=1

tiXi

∣∣∣∣∣ ≥ L

[∥∥∥∥∥sup
t∈T

∣∣∣∣∣
n∑

i=1

tiXi

∣∣∣∣∣
∥∥∥∥∥

1

+ sup

{
n∑

i=1

tixi : t ∈ T ,x ∈ Rn,

n∑
i=1

N̂i(xi) ≤ u

}])
≤ e−u.

Remark. Using the notation of Section 2, we can write

sup

{
n∑

i=1

tixi : t ∈ T ,x ∈ Rn,

n∑
i=1

N̂i(xi) ≤ p

}
= sup

t∈T

‖t‖N{1},p,

which shows that the above lemma is indeed a strengthening of the case d = 1 of Theorems 3.1 and 3.2.

Lemma 5.10. Consider arbitrary sets T1, . . . , Tm ⊂ Rn and let T = ⋃m
j=1 Tj . Then

E sup
t∈T

n∑
i=1

tiXi ≤ L

(
max
j≤m

E sup
t∈Tj

n∑
i=1

tiXi + sup

{
n∑

i=1

(ti − si)xi : t, s ∈ T ,x ∈ Rn,

n∑
i=1

N̂i(xi) ≤ logm

})
.

Proof. For m = 1 the theorem is obvious, so we will assume that m ≥ 2. Let us fix arbitrary s ∈ T . Since EXi = 0,
we have

E sup
t∈T

n∑
i=1

tiXi = E max
j≤m

sup
t∈Tj

n∑
i=1

(ti − si)Xi ≤ E max
j≤m

sup
t∈Tj

∣∣∣∣∣
n∑

i=1

(ti − si)Xi

∣∣∣∣∣.
Let A = sup{∑n

i=1(ti − si)xi : t ∈ T ,x ∈ Rn,
∑n

i=1 N̂i(xi) ≤ logm} and note that by the convexity of Ni and the
definition of N̂i , for any u ≥ 1,

N̂i(x/u) ≤ N̂i(x)/u, (15)

which implies that for u ≥ 1,

sup

{
n∑

i=1

(ti − si)xi : t ∈ T ,x ∈ Rn,

n∑
i=1

N̂i(xi) ≤ 2u logm

}
≤ 2uA.
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Thus by Lemma 5.9 and the union bound, for any u ≥ 1,

P

(
max
j≤m

sup
t∈Tj

∣∣∣∣∣
n∑

i=1

(ti − si)Xi

∣∣∣∣∣ ≥ Lmax
j

E sup
t∈Tj

∣∣∣∣∣
n∑

i=1

(ti − si)Xi

∣∣∣∣∣ + LuA

)
≤ me−2u logm ≤ 1

2u
,

which by integration by parts gives

E sup
t∈T

∣∣∣∣∣
n∑

i=1

(ti − si)Xi

∣∣∣∣∣ ≤ L

(
max
j≤m

E sup
t∈Tj

∣∣∣∣∣
n∑

i=1

(ti − si)Xi

∣∣∣∣∣ + A

)
.

To finish the proof of the lemma it is therefore sufficient to show that for all j ≤ m,

E sup
t∈Tj

∣∣∣∣∣
n∑

i=1

(ti − si)Xi

∣∣∣∣∣ ≤ L

(
E sup

t∈Tj

n∑
i=1

tiXi + A

)
. (16)

Let us choose any z ∈ Tj . We have

E sup
t∈Tj

∣∣∣∣∣
n∑

i=1

(ti − si)Xi

∣∣∣∣∣ ≤ E sup
t∈Tj

∣∣∣∣∣
n∑

i=1

(ti − zi)Xi

∣∣∣∣∣ + E

∣∣∣∣∣
n∑

i=1

(zi − si)Xi

∣∣∣∣∣
≤ E sup

t∈Tj

∣∣∣∣∣
n∑

i=1

(ti − zi)Xi

∣∣∣∣∣ + L

(
n∑

i=1

(zi − si)
2

)1/2

≤ E sup
t∈Tj

∣∣∣∣∣
n∑

i=1

(ti − zi)Xi

∣∣∣∣∣ + LA, (17)

where in the first inequality we used the fact that variances of Xi ’s are bounded by a universal constants, whereas in
the second one, the estimate (

∑n
i=1(zi − si)

2)1/2 = sup{∑n
i=1(zi − si)ui :

∑n
i=1 u2

i ≤ 1} ≤ (log 2)−1/2A for m ≥ 2,

which is an easy consequence of the fact that N̂i(u) = u2 for |u| ≤ 1.
Let us now notice that

E sup
t∈Tj

∣∣∣∣∣
n∑

i=1

(ti − zi)Xi

∣∣∣∣∣ = E max

(
sup
t∈Tj

(
n∑

i=1

(ti − zi)Xi

)
+
, sup
t∈Tj

(
n∑

i=1

(ti − zi)Xi

)
−

)

≤ E sup
t∈Tj

(
n∑

i=1

(ti − zi)Xi

)
+

+ E sup
t∈Tj

(
n∑

i=1

(ti − zi)Xi

)
−

= 2E sup
t∈Tj

(
n∑

i=1

(ti − zi)Xi

)
+

= 2E sup
t∈Tj

n∑
i=1

(ti − zi)Xi,

where in the second equality we used the symmetry of Xi ’s and in the last one the fact that z ∈ Tj .
The above inequality together with (17) proves (16) and ends the proof of the lemma. �

Let us finish this section with a version of Lemma 5.10 in the special case of Gaussian variables. It improves on
the inequality of Lemma 5.10, as it asserts that the constant in front of maxj E supx∈Tj

∑n
i=1 xigi may be taken to be
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equal to one. This result is again pretty standard and its proof can be found e.g. in [15] (see Lemma 3 therein). It is
analogous to the argument presented above, but instead of Lemma 5.9 it uses the Gaussian concentration inequality.

Lemma 5.11. Let g1, . . . , gn be independent standard Gaussian variables and let T = ⋃m
j=1 Tj ⊂ Rn. Then

E sup
x∈T

n∑
i=1

tigi ≤ max
j≤m

E sup
t∈Tj

n∑
i=1

tigi + L
√

logm sup
s,t∈T

(
n∑

i=1

(si − ti )
2

)1/2

.

6. Suprema of some Gaussian processes

The main result of this section is Proposition 6.1 below, which is a strengthening of Theorem 3 of [13] in the special
case d = 3. Before stating the proposition we need some additional definitions.

For a triple indexed matrix A = (aijk) and a set T ⊂ Rn × Rn, let us define

ΔA(T ) = sup

{(∑
k

(∑
ij

aijk(xiyj − x̃i ỹj )

)2)1/2

: (x, y), (x̃, ỹ) ∈ T

}

and

sT
2 (A) = sup

(x,y)∈T

[(∑
jk

(∑
i

aijkxi

)2)1/2

+
(∑

ik

(∑
j

aijkyj

)2)1/2]
.

Proposition 6.1. For any p ≥ 2 and any set T ⊂ (Bn
2 + √

pBn
1 ) × (Bn

2 + √
pBn

1 ),

E sup
(x,y)∈T

∑
ijk

aijkxiyjgk ≤ L

[√
pΔA(T ) + sT

2 (A) + 1√
p

(∑
ijk

a2
ijk

)1/2]
.

Before we pass to the proof of Proposition 6.1 we will prove its counterpart for double-indexed matrices. This
simpler result will be used in the proof of Proposition 6.1. Recall the notation introduced in (7), according to which

‖ · ‖{1,2} is the Hilbert–Schmidt norm of a matrix (i.e. for B = (bij ), ‖B‖{1,2} =
√∑

ij b2
ij ).

Lemma 6.2. For any matrix B = (bij )i,j≤n, a ≥ 1 and T ⊂ aBn
1 ,

E sup
x∈T

n∑
ij=1

bij xigj ≤ La1/2‖B‖1/2
{1,2}

(‖B‖{1,2} ∧ ΔB(T )
)1/2 + La1/2ΔB(T ) ≤ L

(‖B‖{1,2} + aΔB(T )
)
,

where ΔB(T ) = supx,x′∈T (
∑n

j=1(
∑n

i=1 bij (xi − x′
i ))

2)1/2.

Proof. Let us consider the process Zx = ∑n
i,j=1 bij xigj and the associated metric

dZ

(
x, x′) = ‖Zx − Zx′ ‖2 =

(
n∑

j=1

(
n∑

i=1

bij

(
xi − x′

i

))2)1/2

.

We have ΔB(T ) = diamdZ
T . Since E(

∑n
i=1(

∑n
j=1 bij ξj )

2)1/2 ≤ √
2‖B‖{1,2}, by Corollary 5.8, we have for t ∈

(0,1],
N

(
T ,dZ, t‖B‖{1,2}

) ≤ exp
(
Lat−1),
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so for ε ≤ ‖B‖{1,2},

N(T ,dZ, ε) ≤ exp
(
L‖B‖{1,2}aε−1).

By Dudley’s bound (see [9] or e.g. Corollary 5.1.6 in [7]) we have

E sup
x∈T

Zx ≤ L

∫ ΔB(T )

0

√
logN(T ,dZ, ε)dε

≤ L

∫ ‖B‖{1,2}∧ΔB(T )

0
a1/2‖B‖1/2

{1,2}ε
−1/2 dε + L

∫ ΔB(T )

‖B‖{1,2}∧ΔB(T )

a1/2 dε

= La1/2‖B‖1/2
{1,2}

(‖B‖{1,2} ∧ ΔB(T )
)1/2 + La1/2ΔB(T ).

The second estimate of the lemma follows from the inequality 2
√

xy ≤ a−1/2x + a1/2y. �

Lemma 6.3. For any matrix B = (bij )i,j≤n, any T ⊂ Bn
2 + √

pBn
1 and p ≥ 1,

E sup
x∈T

n∑
i,j=1

bij xigj ≤ L
(‖B‖{1,2} + √

pΔB(T )
)
,

where ΔB is as in Lemma 6.2.

Proof. Since E(
∑n

i=1(
∑n

j=1 bij ξj )
2)1/2 ≤ √

2‖B‖{1,2}, by Corollary 5.8 (with a = √
p and t = 1/(2

√
2p)) there

exist sets Ki ⊂ √
pBn

1 , i = 1, . . . ,N ≤ exp(Lp), such that

√
pBn

1 =
N⋃

i=1

Ki

and

ΔB(Ki) ≤ p−1/2‖B‖{1,2}. (18)

By Lemma 5.11 we have

E sup
x∈T

∑
ij

bij xigj = E max
i≤N

sup
x∈T ∩(Bn

2 +Ki)

∑
ij

bij xigj

≤ max
i≤N

E sup
x∈T ∩(Bn

2 +Ki)

∑
ij

bij xigj + L
√

logNΔB(T )

≤ max
i≤N

(
E sup

x∈Bn
2

∑
ij

bij xigj + E sup
x∈Ki

∑
ij

bij xigj

)
+ L

√
pΔB(T )

≤ ‖B‖{1,2} + L
(‖B‖{1,2} + √

pΔB(Ki)
) + L

√
pΔB(T ), (19)

where in the last inequality we used Lemma 6.2 and the fact that

E sup
x∈Bn

2

∑
ij

bij xigj = E

√√√√∑
i

(∑
j

bij gj

)2

≤ ‖B‖{1,2}.

Inequalities (18) and (19) imply the lemma. �
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For a triple indexed matrix A = (aijk)i,j,k , let αA be a norm on Rn2
, given by

αA(z) =
(∑

k

(∑
i,j

aijkzij

)2)1/2

.

To simplify the notation we will write ρA for ραA
. Note that

ρA

(
(x1, y1), (x2, y2)

) = (
E(X(x1,y1) − X(x2,y2))

2)1/2
,

where

X(x,y) =
∑
ijk

aijkxiyj gk.

We will also need a norm on Rn × Rn defined by

α̃A

(
(x, y)

) =
(∑

jk

(∑
i

aijkxi

)2)1/2

+
(∑

ik

(∑
j

aijkyj

)2)1/2

.

The corresponding distance on Rn × Rn will be denoted by ρ̃A.
We will use the following consequences of Corollary 5.7.

Corollary 6.4. For any p ≥ 1, any set T ⊂ (Bn
2 + √

pBn
1 ) × (Bn

2 + √
pBn

1 ) and any t ∈ (0,1],
N

(
T ,ρA, t2‖A‖{1,2,3} + tsT

2 (A)
) ≤ exp

(
Lt−2 + L

√
pt−1).

Proof. It is enough to notice that

V T{1,2}(αA) = E

(∑
k

(∑
ij

aijkξ
1
i ξ2

j

)2)1/2

≤
(

E
∑

k

(∑
ij

aijkξ
1
i ξ2

j

)2)1/2

= 2‖A‖{1,2,3},

whereas

V T{1}(αA) + V T{2}(αA) = sup
(x,y)∈T

E

(∑
k

(∑
ij

aijkξiyj

)2)1/2

+ sup
(x,y)∈T

E

(∑
k

(∑
ij

aijkxiξj

)2)1/2

≤ √
2 sup

(x,y)∈T

(∑
jk

(∑
i

aijkxi

)2)1/2

+ √
2 sup

(x,y)∈T

(∑
ik

(∑
j

aijkyj

)2)1/2

≤ 2
√

2sT
2 (A).

The statement of the corollary follows now from Corollary 5.7 applied with d = 2. �

Corollary 6.5. For any p ≥ 1, any set T ⊂ (Bn
2 + √

pBn
1 ) × (Bn

2 + √
pBn

1 ) and any t ∈ (0,1],
N

(
T , ρ̃A, t‖A‖{1,2,3}

) ≤ exp
(
Lt−2 + L

√
pt−1).

Proof. Let (E 1, E 2) be a standard exponential random vector with values in Rn × Rn = R2n. We have

Eα̃
(

E 1, E 2) ≤ 2
√

2‖A‖{1,2,3},

hence the corollary follows from Corollary 5.7 with d = 1 and the fact that(
Bn

2 + √
pBn

1

) × (
Bn

2 + √
pBn

1

) ⊂ √
2B2n

2 + 2
√

pB2n
1 . (20)

�
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To simplify the formulation of the next lemmas let us denote

FG
A (T ) = E sup

(x,y)∈T

∑
k

∑
ij

aijkxiyjgk.

Lemma 6.6. For p ≥ 1 let (x, y) ∈ (Bn
2 + √

pBn
1 ) × (Bn

2 + √
pBn

1 ) and let T ⊂ (Bn
2 + √

pBn
1 ) × (Bn

2 + √
pBn

1 ).
Then, for any l ≥ 0, there exists a decomposition

T =
N⋃
i=l

Tl

with N ≤ exp(L22lp), such that for all l ≤ N ,

FG
A

(
(x, y) + Tl

) ≤ FG
A (Tl) + Lα̃A

(
(x, y)

)
(21)

and

ΔA(Tl) ≤ 2−lp−1/2sT
2 (A) + 2−2lp−1‖A‖{1,2,3}. (22)

Proof. We apply Corollary 6.4 with t = 2−l−1p−1/2, which gives us a partition of T into N ≤ exp(L22lp) sets,
satisfying the required diameter bound (22). Let B1 = (b1

ik), B2 = (b2
jk) where

b1
ik =

∑
j

aijkyj , b2
jk =

∑
i

aijkxi .

We have

E

(∑
k

(∑
i

b1
ikξi

)2)1/2

+ E

(∑
k

(∑
j

b2
jkξj

)2)1/2

≤ √
2

(∑
ik

(∑
j

aijkyj

)2)1/2

+ √
2

(∑
jk

(∑
i

aijkxi

)2)1/2

= √
2α̃A

(
(x, y)

)
,

therefore (taking into account (20)) by Corollary 5.7 (with d = 1, a = √
p and t = 1/(L

√
p)), there exists a partition

of T into at most eLp sets Sl such that for all l,

sup
(x′,y′),(x′′,y′′)∈Sl

[(∑
k

(∑
i

b1
ik

(
x′
i − x′′

i

))2)1/2

+
(∑

k

(∑
j

b2
jk

(
y′
j − y′′

j

))2)1/2]
≤ 1√

p
α̃A

(
(x, y)

)
.

We can intersect this partition with the previous one to obtain a partition of T into at most eL22lp sets Tl , such
that (22) holds and the above inequality is satisfied with Tl instead of Sl .

Let π1,π2 be the projections from R2n = Rn ×Rn onto the first and the second n coordinates respectively and note
that

ΔB1

(
π1(Tl)

) + ΔB2

(
π2(Tl)

)
≤ 2 sup

(x′,y′),(x′′,y′′)∈Tl

[(∑
k

(∑
i

b1
ik

(
x′
i − x′′

i

))2)1/2

+
(∑

k

(∑
j

b2
jk

(
y′
j − y′′

j

))2)1/2]

≤ 2√
p

α̃A

(
(x, y)

)
. (23)
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By the equality E
∑

ijk aijkxiyjgk = 0 we get for any l,

FG
A

(
(x, y) + Tl

) ≤ FG
A (Tl) + E sup

(x̃,ỹ)∈Tl

∑
ijk

aijkxi ỹj gk + E sup
(x̃,ỹ)∈Tl

∑
ijk

aijkx̃iyj gk

≤ FG
A (Tl) + L

((∑
jk

(∑
i

aijkxi

)2)1/2

+
(∑

ik

(∑
j

aijkyj

)2)1/2

+ √
pΔB1

(
π1(Tl)

) + √
pΔB2

(
π2(Tl)

))
≤ FG

A (Tl) + Lα̃A

(
(x, y)

)
,

where in the second inequality we used the assumption T ⊂ (Bn
2 + √

pBn
1 ) × (Bn

2 + √
pBn

1 ) and Lemma 6.3 (applied
to matrices B1,B2) and in the last inequality the estimate (23). �

Lemma 6.7. Let p ≥ 1 and let S be a finite subset of (Bn
2 +√

pBn
1 )× (Bn

2 +√
pBn

1 ) of cardinality at least 2, such that
S−S ⊂ (Bn

2 +√
pBn

1 )×(Bn
2 +√

pBn
1 ). Then, for any l ≥ 0, there exist finite sets Si ⊂ (Bn

2 +√
pBn

1 )×(Bn
2 +√

pBn
1 ),

and points (xi, yi) ∈ Si , i = 1, . . . ,N , such that

(i) 2 ≤ N ≤ exp(L22lp),
(ii) S = ⋃N

i=1((xi, yi) + Si), Si − Si ⊂ S − S, #Si ≤ #S − 1,
(iii) ΔA(Si) ≤ 2−2lp−1‖A‖{1,2,3},
(iv) s

Si

2 (A) ≤ 2−lp−1/2‖A‖{1,2,3},
(v) FG

A ((xi, yi) + Si) ≤ FG
A (Si) + LsS

2 (A).

Proof. Corollary 6.5, applied with t = 2−l−1p−1/2, gives us a decomposition

S =
N1⋃
i=1

(
(xi, yi) + Ti

)
,

where N1 ≤ exp(L22lp), (xi, yi) ∈ S and s
Ti

2 (A) ≤ 2−lp−1/2‖A‖{1,2,3}. Since #S ≥ 2 we can assume that N1 ≥ 2. We
can also assume that the sets (xi, yi) + Ti are pairwise disjoint and nonempty, which implies that #Ti ≤ #S − 1.

Since Ti ⊂ S − (xi, yi) ⊂ (Bn
2 + √

pBn
1 ) × (Bn

2 + √
pBn

1 ), by Lemma 6.6, it can be further decomposed into the
union

Ti =
N2⋃
j=1

Tij

with N2 ≤ exp(L22lp), where for all j ,

ΔA(Tij ) ≤ 2−l−1p−1/2s
Ti

2 (A) + 2−2l−2p−1‖A‖{1,2,3} ≤ 2−2lp−1‖A‖{1,2,3}

and such that

FG
A

(
(xi, yi) + Tij

) ≤ FG
A (Tij ) + LsS

2 (A).

Notice that N = N1N2 ≤ exp(L22lp), moreover Tij − Tij ⊂ S − S and s
Tij

2 (A) ≤ s
Ti

2 (A) ≤ 2−lp−1/2‖A‖{1,2,3}.
Since #Tij ≤ #Ti ≤ #S − 1, to get the covering Si it is enough to renumerate the sets Tij . �

We are now ready to prove Proposition 6.1.
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Proof of Proposition 6.1. Define the numbers Δl, Δ̃l , l ≥ 0, as

Δ0 = ΔA(T ), Δ̃0 = sT
2 (A)

and

Δl = 22−2lp−1‖A‖{1,2,3}, Δ̃l = 21−lp−1/2‖A‖{1,2,3}.

Assume first that T ⊂ 1
2 [(Bn

2 + √
pBn

1 ) × (Bn
2 + √

pBn
1 )] and define for r, l ∈ N,

cT (r, l) = sup
{
FG

A (S): S ⊂ (
Bn

2 + √
pBn

1

) × (
Bn

2 + √
pBn

1

)
,

S − S ⊂ T − T ,#S ≤ r,ΔA(S) ≤ Δl, s
S
2 (A) ≤ Δ̃l

}
.

We have cT (1, l) = 0. Moreover

cT (r,0) ≥ sup
{
FG

A (S): S ⊂ T ,#S ≤ r
}
. (24)

Notice now, that for any S satisfying the constraints from the definition of cT (r, l), by Lemma 6.7, we can find a
decomposotion S = ⋃N

i=1((xi, yi) + Si), satisfying (i)–(v). Thus

FG
A (S) ≤ max

i
FG

A

(
(xi, yi) + Si

) + L
√

logNΔA(S)

≤ max
i

FG
A (Si) + LsS

2 (A) + L2l√pΔl

≤ cT (r − 1, l + 1) + LΔ̃l + L2l√pΔl.

Taking the supremum yields

cT (r, l) ≤ cT (r − 1, l + 1) + LΔ̃l + L2l√pΔl,

which gives

cT (r,0) ≤ cT (1, r − 1) + L

∞∑
l=0

(
Δ̃l + 2l√pΔl

)
≤ L

(√
pΔA(T ) + sT

2 (A) + 2p−1/2‖A‖{1,2,3}
)
.

To finish the proof it is now enough to notice that for T ⊂ (Bn
2 + √

pBn
1 ) × (Bn

2 + √
pBn

1 ),

FG
A (T ) = 4 sup

r≥1
c(1/2)T (r,0). �

Remark. Note that the only place in the above argument where the quantities ΔA(T ) and sT
2 (A) appear is the first

step of the induction, when we pass from l = 0 to l = 1. All the other steps contribute just proper multiples of ‖A‖{1,2,3}
which are upper bounds on the parameters ΔA(S) and sS

2 (A) of the set S considered there.

7. The partition theorem

In this section we present partition results which will allow us to pass from the bounds on expectations of suprema of
Gaussian processes developed so far to empirical processes involving general random variables with bounded fourth
moments (in particular all random variables with log-concave tails).
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Lemma 7.1. Let α and α̃ be two norms on Rn2
and R2n respectively. For any p ≥ 1 and T ⊂ (Bn

2 + √
pBn

1 ) ×
(Bn

2 +√
pBn

1 ) we can find a decomposition T = ⋃N
l=1(Tl + (xl, yl)) with N ≤ exp(Lp), (xl, yl) ∈ T such that for any

(x, y), (x̃, ỹ) ∈ Tl

α(x ⊗ y − x̃ ⊗ ỹ) ≤ 1

p
Eα

(
E 1 ⊗ E 2)

and

α̃(x, y) ≤ 1√
p

Eα̃
(

E 1, E 2).
Proof. Let

M := Eα
(

E 1 ⊗ E 2) and M̃ := Eα̃
(

E 1, E 2).
Define norm β on R2n by

β
(
(x, y)

) = Eα
(
x ⊗ E 2) + Eα

(
E 1 ⊗ y

)
.

By Corollary 5.7 with d = 1, a = √
p and t = p−1/2/2 we can find a decomposition T = ⋃N0

l=1 Sl in such a way that
N0 ≤ exp(Lp) and

β(x − x̃, y − ỹ) ≤ 1√
p

M, α̃(x − x̃, y − ỹ) ≤ 1√
p

M̃

for any (x, y), (x̃, ỹ) ∈ Sl . Let us choose any (xl, yl) ∈ Sl , put S̃l = Sl − (xl, yl) and notice that

V
S̃l

2

(
α,

1

2
√

p

)
= 1

4p
M + 1

2
√

p
sup

(x,y)∈S̃l

β
(
(x, y)

) ≤ 1

p
M.

We have S̃l ⊂ 2(Bn
2 + √

pBn
1 )2, hence again by Corollary 5.7 with t = p−1/2/2 we can decompose S̃l = ⋃Nl

k=1 Tl,k

with Nl ≤ exp(Lp) and α(x ⊗ y − x̃ ⊗ ỹ) ≤ 1
p
M for all (x, y), (x̃, ỹ) ∈ Tl,k . �

Theorem 7.2. For any p ≥ 1 and T ⊂ (Bn
2 + √

pBn
1 ) × (Bn

2 + √
pBn

1 ) we can find a decomposition T = ⋃N
l=1(Tl +

(xl, yl)) with N ≤ exp(Lp), (xl, yl) ∈ T such that for any zk ,

E sup
(x,y)∈Tl

∑
ijk

aijkxiyj zkgk ≤ L√
p

(∑
ijk

a2
ijkz

4
k

)1/4(∑
ijk

a2
ijk

)1/4

.

Proof. Let

αz(x) :=
(∑

k

z2
k

(∑
ij

aijkxij

)2)1/2

and

α̃z(x, y) :=
(∑

j,k

z2
k

(∑
i

aijkxi

)2)1/2

+
(∑

i,k

z2
k

(∑
j

aijkyj

)2)1/2

.

Notice that by the Schwarz inequality

αz(x) ≤
(∑

ijk

a2
ijkz

4
k

)1/4

β(x), α̃z(x, y) ≤
(∑

ijk

a2
ijkz

4
k

)1/4

β̃(x, y), (25)
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where

β(x) :=
(∑

k

(
∑

ij aijkxij )
4∑

ij a2
ijk

)1/4

and

β̃(x, y) :=
(∑

j,k

(
∑

i aijkxi)
4∑

i a
2
ijk

)1/4

+
(∑

i,k

(
∑

j aijkyj )
4∑

j a2
ijk

)1/4

.

Notice that (since the 4th and 2nd moments of chaoses generated by exponential variables are comparable) we have

Eβ
(

E 1 ⊗ E 2) ≤ (
Eβ4(E 1 ⊗ E 2))1/4 ≤ L

(∑
ijk

a2
ijk

)1/4

and

Eβ̃
(

E 1, E 2) ≤ (
Eβ̃4(E 1, E 2))1/4 ≤ L

(∑
ijk

a2
ijk

)1/4

.

Hence by Lemma 7.1 we may decompose T = ⋃N
l=1(T̃l + (xl, yl)) with N ≤ exp(Lp), (xl, yl) ∈ T in such a way

that for any (x, y), (x̃, ỹ) ∈ T̃l ,

β(x ⊗ y − x̃ ⊗ ỹ) ≤ 1

p

(∑
ijk

a2
ijk

)1/4

and β̃(x, y) ≤ 1√
p

(∑
ijk

a2
ijk

)1/4

.

The assertion follows by Proposition 6.1 and (25). �

Corollary 7.3. Let Z1, . . . ,Zn be independent mean zero random variables. For any p ≥ 1 and T ⊂ (Bn
2 +√

pBn
1 )×

(Bn
2 +√

pBn
1 ) there exists a decomposition T = ⋃

l≤N((xl, yl)+Tl), where N ≤ exp(Lp), (xl, yl) ∈ T and for every l,

E sup
(x,y)∈Tl

∑
ijk

aijkxiyjZk ≤ L√
p

(∑
ijk

a2
ijk

)1/4

E

(∑
ijk

a2
ijkZ

4
k

)1/4

≤ L√
p

‖A‖{1,2,3} max
k

‖Zk‖4.

Proof. It is enough to take the decomposition given by Theorem 7.2 and notice that by classical symmetrization
inequalities and comparison of Gaussian and Rademacher averages, we have

E sup
(x,y)∈Tl

∑
ijk

aijkxiyjZk ≤ 2E sup
(x,y)∈Tl

∑
ijk

aijkxiyjZkεk ≤ √
2πE sup

(x,y)∈Tl

∑
ijk

aijkxiyjZkgk,

where εk (resp. gk) are sequences of i.i.d. Rademacher (resp. standard Gaussian) random variables, independent of
the sequence Zk . �

8. Proof of Theorem 3.2

The case d = 1 of the theorem has been proved in [10], whereas the case d = 2 in [14], thus it remains to prove the
case d = 3.
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To simplify the notation we will write Xi,Yj ,Zk instead of X1
i1
,X2

i2
,X3

i3
respectively. Applying the theorem in the

(already known) case of chaoses of order two, conditionally on Zk’s yields

E

∣∣∣∣∑
ijk

aijkXiYjZk

∣∣∣∣p ≤ Lp

(
E

(∥∥∥∥(∑
k

aijkZk

)
ij

∥∥∥∥N ′

{1,2},p

)p

+ E

(∥∥∥∥(∑
k

aijkZk

)
ij

∥∥∥∥N ′

{1}{2},p

)p)
,

where N ′ = (N
j
i )i≤n,j≤2.

Using the definition (4) of the norms ‖ · ‖N ′
{1,2},p and ‖ · ‖N ′

{1},{2},p one can express∥∥∥∥(∑
k

aijkZk

)
ij

∥∥∥∥N ′

{1,2},p
and

∥∥∥∥(∑
k

aijkZk

)
ij

∥∥∥∥N ′

{1}{2},p

in terms of suprema of empirical processes. Lemma 5.9 then yields∥∥∥∥∑
ijk

aijkXiYjZk

∥∥∥∥
p

≤ L

(
E

∥∥∥∥(∑
k

aijkZk

)
ij

∥∥∥∥N ′

{1,2},p
+ E

∥∥∥∥(∑
k

aijkZk

)
ij

∥∥∥∥N ′

{1}{2},p
+ ‖A‖N{1,2}{3},p + ‖A‖N{1}{2}{3},p

)
. (26)

We are therefore left with the problem of estimation of the expectations on the right-hand side of the above in-
equality. This will be achieved in Lemmas 8.2 and 8.6 below.

Let us first state a simple lemma which will be used repeatedly in the sequel. It is an almost immediate consequence
of the inequality (15), therefore we will skip its proof.

Lemma 8.1. If J is a partition of {1,2,3} and #J = r , then for any t ≥ 1, ‖A‖N
J ,tp

≤ t r‖A‖N
J ,p

.

Lemma 8.2. Let N ′ = (N
j
i )i≤n,j≤2. Then for any p ≥ 2,

E

∥∥∥∥(∑
k

aijkZk

)
ij

∥∥∥∥N ′

{1,2},p
≤ L

(‖A‖N{1,2,3},p + ‖A‖N{1,2}{3},p
)
.

Before we prove the above lemma let us state the following well-known auxiliary result, whose proof we provide
for completeness.

Lemma 8.3. For any p ≥ 2 and any a1 ≥ a2 ≥ · · · ≥ an ≥ 0,

sup

{
n∑

i=1

aiti :
n∑

i=1

t2
i ≤ p, |ti | ≤ 1

}
≥ 1

3

(∑
i≤p

ai + √
p

( ∑
p<i≤n

a2
i

)1/2)
. (27)

Proof. Denote the left-hand side of (27) by M . By choosing ti = 1 for i ≤ p and ti = 0 for i > p we see that
M ≥ ∑

i≤p ai .

Now if
√

pa�p+1� ≤ (
∑

i>p a2
i )

1/2, then M ≥ (p
∑

i>p a2
i )

1/2 (as ‘witnessed’ by the sequence ti = 0 for i ≤ p

and ti = p1/2ai(
∑

i>p a2
i )

−1/2 for i > p). Otherwise, by monotonicity of ai , we get M ≥ ∑
i≤p ai ≥ �p�a�p+1� ≥

2−1√p(
∑

i>p a2
i )

1/2, which ends the proof. �

Proof of Lemma 8.2. By symmetry it is enough to prove that

E sup

{∑
ijk

aijkZkxij :
∑

i

N̂1
i

((∑
j

x2
ij

)1/2)
≤ p

}
≤ L

(‖A‖N{1,2,3},p + ‖A‖N{1,2}{3},p
)
. (28)
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Moreover, we may and will assume that
∑

jk a2
ijk is decreasing in i.

Let us first notice that

‖A‖N{1,2,3},p ≥ sup

{∑
ijk

aijkxijk:
∑

i

∑
jk

x2
ijk ≤ p,

∑
jk

x2
ijk ≤ 1,1 ≤ i ≤ n

}

= sup

{∑
i

ti

(∑
jk

a2
ijk

)1/2

:
∑

i

t2
i ≤ p, |ti | ≤ 1,1 ≤ i ≤ n

}

≥ 1

L

(∑
i≤p

(∑
jk

a2
ijk

)1/2

+ √
p

(∑
i>p

∑
jk

a2
ijk

)1/2)
, (29)

where the first inequality follows from the definition of the norm ‖ · ‖N{1,2,3},p and the inequality N1
i (t) = t2 for |t | ≤ 1,

whereas the last one from Lemma 8.3.
Let Ap = {t ∈ Rn:

∑
i N̂

1
i (ti ) ≤ p} and note that

E sup

{∑
ijk

aijkZkxij :
∑

i

N̂1
i

((∑
j

x2
ij

)1/2)
≤ p

}
= E sup

{∑
i

ti

√√√√∑
j

(∑
k

aijkZk

)2

: t ∈ Ap

}
.

Define

A1
p = {

t ∈ Ap: |ti | ≤ 1
}
,

A2
p = {

t ∈ Ap: ∀l∈N,l≥1 ∀i i ∈ (
2lp,2l+1p

] ⇒ (
ti = 0 or |ti | ≥ l3)},

A3
p = {

t ∈ Ap: ti = 0 for i ≤ 2p,∀l∈N,l≥1 ∀i i ∈ (
2lp,2l+1p

] ⇒ (
1 ≤ |ti | ≤ l3 or ti = 0

)}
and for m = 1,2,3,

Sm := E sup

{∑
i

ti

√√√√∑
j

(∑
k

aijkZk

)2

: t ∈ Am
p

}
.

Since Ap ⊂ A1
p + A2

p + A3
p (where + stands for the Minkowski sum of sets), we have

E sup

{∑
ijk

aijkZkxij :
∑

i

N̂1
i

((∑
j

x2
ij

)1/2)
≤ p

}
≤ S1 + S2 + S3. (30)

Step 1. For |t | ≤ 1, N̂1
i (t) = t2, so

S1 = E sup

{∑
i

ti

√√√√∑
j

(∑
k

aijkZk

)2

:
∑

i

t2
i ≤ p ∀i |ti | ≤ 1

}

≤ E
∑
i≤p

√√√√∑
j

(∑
k

aijkZk

)2

+ E
√

p

(∑
i>p

∑
j

(∑
k

aijkZk

)2)1/2

≤ L

(∑
i≤p

(∑
jk

a2
ijk

)1/2

+ √
p

(∑
i>p

∑
jk

a2
ijk

)1/2)
,
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where in the second inequality we used the fact that EZ2
n ≤ L for all k. By (29) this implies that

S1 ≤ L‖A‖N{1,2,3},p. (31)

Step 2. We will now estimate S2. To this end let us note that since for t ≥ 1, N̂1
i (t) ≥ |t |, for every t ∈ A2

p , the set
I (t) = supp t = {i ≤ n: ti �= 0}, satisfies

#I (t) ≤ 3p and ∀l∈N,l≥1 #
(
I (t) ∩ (

2lp,2l+1p
]) ≤ p/l3.

Let us denote the family of subsets of {1, . . . , n} satisfying the above conditions by I . We have

#I ≤ 22p
∏
l≥1

( ∑
s≤p/l3

(
2lp

s

))
≤ 22p

∏
l≥1

(
e2lp

p/l3

)p/l3

≤ Lp.

For each I ∈ I let BI = conv{t ∈ Rn: supp t ⊂ I,
∑

i N̂
1
i (ti ) ≤ p}. Then

S2 ≤ E max
I∈I

sup
t∈BI

∑
i

ti

√√√√∑
j

(∑
k

aijkZk

)2

.

For each I ∈ I , the set BI admits a 1/2-net MI (with respect to the semi-norm induced by BI ) of cardinality at
most 5#I ≤ 53p . By standard approximation arguments we have

sup
t∈BI

∑
i

ti

√√√√∑
j

(∑
k

aijkZk

)2

≤ 2 sup
t∈MI

∑
i

ti

√√√√∑
j

(∑
k

aijkZk

)2

.

Therefore

S2 ≤ 2E sup
t∈⋃

I∈I MI

∑
i

ti

√√√√∑
j

(∑
k

aijkZk

)2

,

which by Lemma 5.10 is up to a universal constant majorized by

sup
t∈⋃

I∈I MI

∑
i

tiE

√√√√∑
j

(∑
k

aijkZk

)2

+ sup
t∈⋃

I∈I MI

sup
r:

∑
k N̂3

k (rk)≤Lp

∑
i

ti

√√√√∑
j

(∑
k

aijkrk

)2

≤ L sup
t∈Ap

∑
i

ti

√∑
jk

a2
ijk + ‖A‖N{1,2},{3},Lp ≤ L

(‖A‖N{1,2,3},p + ‖A‖N{1,2},{3},Lp

)
.

Since for t ≥ 1, ‖A‖N{1,2},{3},tp ≤ t2‖A‖N{1,2},{3},p , the above inequality implies that

S2 ≤ L
(‖A‖N{1,2,3},p + ‖A‖N{1,2},{3},p

)
. (32)

Step 3. For |t | ≥ 1, N̂1
i (t) ≥ t , so

S3 ≤
∑
l≥1

E sup

{ ∑
2lp<i≤2l+1p

ti

√√√√∑
j

(∑
k

aijkZk

)2

:
∑

i

|ti | ≤ p, |ti | ≤ l3
}

≤ L
∑
l≥1

min
(
l3,p

)
E max

I⊂(2lp,2l+1p],#I≤�p/l3�

∑
i∈I

√√√√∑
j

(∑
k

aijkZk

)2
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≤ L
∑
l≥1

min
(
l3,p

)⌈
p/l3⌉3/4

E max
I⊂(2lp,2l+1p],#I≤�p/l3�

(∑
i∈I

(∑
j

(∑
k

aijkZk

)2)2)1/4

≤ L
∑
l≥1

(pl)3/4E

( ∑
2lp<i≤2l+1p

(∑
j

(∑
k

aijkZk

)2)2)1/4

≤ L
∑
l≥1

(pl)3/4
( ∑

2lp<i≤2l+1p

E

(∑
j

(∑
k

aijkZk

)2)2)1/4

≤ L
∑
l≥1

(pl)3/4
( ∑

2lp<i≤2l+1p

(∑
jk

a2
ijk

)2)1/4

,

where in the last inequality we used the comparison of the 4th and the second moment of norms of linear combinations
of independent random variables with log-concave tails.

Now, denote B =
√∑

i>p

∑
ij a2

ijk and notice that by the assumption on monotonicity of
∑

jk a2
ijk , we have for

i > p

∑
jk

a2
ijk ≤ B2

i − p
.

Therefore, we have

S3 ≤ L
∑
l≥1

(pl)3/4
( ∑

i>2lp

B4

(i − p)2

)1/4

≤ LB
∑
l≥1

(pl)3/4 1

(2lp)1/4
≤ L

√
pB,

which by (29) implies that

S3 ≤ L‖A‖N{1,2,3},p. (33)

Inequalities (30)–(33) imply (28) and conclude the proof of the lemma. �

We will also need the following lemma, proven in [14] (Corollary 3, therein). We would like to remark in passing
that the approach in [14] was different that in the present article and that the tools developed in the previous sections
could be used to give another proof of this lemma (in the spirit of the argument we provide below for Lemma 8.6). It
seems a little bit more natural since Lemmas 8.2 and 8.6 play in the proof of Theorem 3.2 for d = 3 a role analogous
to the role played by Lemma 8.4 in the proof of its counterpart for d = 2.

Lemma 8.4 (Corollary 3 in [14]). Consider any matrix A = (aij )ij≤n and let N1 = (N1
i )i≤n, N ′ = (N

j
i )i≤n,j≤2.

Then, for any p ≥ 2,

E

∥∥∥∥(∑
j

aijYj

)∥∥∥∥N1

{1},p
≤ L

(‖A‖N ′
{1,2},p + ‖A‖N ′

{1}{2},p
)
.

Lemma 8.5. Let N ′ = (N
j
i )i≤n,j≤2. Then

E

∥∥∥∥(∑
k≤p

aijkZk

)
i,j

∥∥∥∥N ′

{1}{2},p
≤ L‖A‖N{1}{2}{3},p.
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Proof. Consider the norm on R�p� given by

∥∥(z1, . . . , zk)
∥∥ =

∥∥∥∥(∑
k≤p

aijkzk

)
i,j

∥∥∥∥N ′

{1}{2},p

and let K be the unit ball of the dual norm ‖ · ‖∗. Let M be a 1/2 net in K (with respect to ‖ · ‖∗) of cardinality not
larger than 3�p� (M exists by standard volumetric arguments). Then for all z ∈ R�p�,

‖z‖ ≤ 2 sup
u∈M

∑
k≤p

ukzk.

Thus

E

∥∥∥∥(∑
k≤p

aijkZk

)
i,j

∥∥∥∥N ′

{1}{2},p
≤ 2E sup

u∈M

∑
k≤p

ukZk,

which by Lemma 5.10 does not exceed

L sup

{∑
k≤p

ukzk: u ∈ M − M,
∑
k≤p

N̂3
k (zk) ≤ p

}

≤ L sup

{
‖z‖:

∑
k≤p

N̂3
k (zk) ≤ p

}
= L‖A‖N{1}{2}{3},p.

�

Lemma 8.6. Let N ′ = (N
j
i )i≤n,j≤2. Then for any p ≥ 2,

E

∥∥∥∥(∑
k

aijkZk

)
ij

∥∥∥∥N ′

{1}{2},p

≤ L
(‖A‖N{1,2,3},p + ‖A‖N{1}{2,3},p + ‖A‖N{2}{1,3},p + ‖A‖N{1}{2}{3},p

)
. (34)

Proof. Let us first notice that it’s enough to prove the formally weaker estimate

E

∥∥∥∥(∑
k

aijkZk

)
ij

∥∥∥∥N ′

{1},{2},p

≤ L
(√

p‖A‖{1,2,3} + ‖A‖N{1}{2,3},p + ‖A‖N{2}{1,3},p + ‖A‖N{1}{2}{3},p
)
. (35)

Indeed, suppose that the above inequality holds for all triple-indexed matrices, and assume additionaly (without
loss of generality) that

∑
ij a2

ijk decreases in k. We have

E

∥∥∥∥(∑
k

aijkZk

)
ij

∥∥∥∥N ′

{1},{2},p
≤ E

∥∥∥∥(∑
k≤p

aijkZk

)
ij

∥∥∥∥N ′

{1},{2},p
+ E

∥∥∥∥(∑
k>p

aijkZk

)
ij

∥∥∥∥N ′

{1},{2},p
.

By Lemma 8.5 we have

E

∥∥∥∥(∑
k≤p

aijkZk

)
ij

∥∥∥∥N ′

{1}{2},p
≤ L‖A‖N{1}{2}{3},p.
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Moreover, by our assumption (35),

E

∥∥∥∥(∑
k>p

aijkZk

)
ij

∥∥∥∥N ′

{1}{2},p
≤ L

√
p

(∑
k>p

∑
ij

a2
ijk

)1/2

+
∑

J ∈P3,J �={{1,2,3}}
J �={{1,2},{3}}

‖A‖N
J ,p.

Monotonicity of
∑

ij a2
ijk and Lemma 8.3 imply that

√
p

(∑
k>p

∑
ij

a2
ijk

)1/2

≤ L sup

{∑
k

tk

√∑
ij

a2
ijk:

∑
k

t2
k ≤ p, |tk| ≤ 1

}
≤ L‖A‖N{1,2,3},p,

which together with the previous three inequalities proves (34).
We will now prove (35). To this end let us denote

A
j
p =

{
t ∈ Rn:

n∑
i=1

N̂
j
i (ti ) ≤ p

}
, j = 1,2,3.

Since N̂
j
i (t) ≥ |t | for t > 1, it is easy to see that A

j
p ⊂ √

pBn
2 + pBn

1 . Hence, by Corollary 7.3 and the fact that
EZ4

k ≤ L, there exists a partition

A1
p × A2

p =
⋃
l≤N

((
xl, yl

) + Tl

)
with N ≤ exp(Lp), (xl, yl) ∈ A1

p × A2
p , such that

max
l≤N

E sup
(x,y)∈Tl

∑
ijk

aijkxiyjZk ≤ L
√

p‖A‖{1,2,3}. (36)

Now, by Lemma 5.10,

E sup
(x,y)∈A1

p×A2
p

∑
ijk

aijkxiyjZk

≤ max
l≤N

E sup
(x,y)∈(xl ,yl )+Tl

∑
ijk

aijkxiyjZk + 2 sup
(x,y)∈A1

p×A2
p,z∈A3

Lp

∑
ijk

aijkxiyj zk

≤ max
l≤N

E sup
(x,y)∈(xl ,yl )+Tl

∑
ijk

aijkxiyjZk + L‖A‖N{1}{2}{3},p,

where in the second inequality we used the fact that A3
Lp ⊂ LA3

p .
Thus it remains to estimate maxl≤N E sup(x,y)∈(xl ,yl )+Tl

∑
ijk aijkxiyjZk . Denote by π1(T ),π2(T ) respectively

projections of Tl onto the first n and the last n coordinates and let Nj = (N
j
i )i≤n, j = 1,2. We have

E sup
(x,y)∈(xl ,yl )+Tl

∑
ijk

aijkxiyjZk

≤ E sup
(x,y)∈Tl

∑
ijk

aijkxiyjZk + E sup
x∈π1(T )

∑
ijk

aijkxiy
l
jZk + E sup

y∈π2(T )

∑
ijk

aijkx
l
i yjZk

≤ L
√

p‖A‖{1,2,3} + 2

∥∥∥∥(∑
ik

aijkx
l
iZk

)
j

∥∥∥∥N2

{2},p
+ 2

∥∥∥∥(∑
jk

aijky
l
jZk

)
i

∥∥∥∥N1

{1},p

≤ L
√

p‖A‖{1,2,3} + L‖A‖N{1}{2,3},p + L‖A‖N{2}{1,3},p + L‖A‖N{1}{2}{3},p,
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where the second inequality follows from (36) and the fact that πj (Tl) ⊂ LA
j
p , and the third inequality from

Lemma 8.4 (applied to Zk instead of Yj , which corresponds to an appropriate permutation of the array N
j
i ). This

proves (35) and ends the proof of the lemma. �

Conclusion of the proof of Theorem 3.2. By Lemmas 8.2 and 8.6, the right-hand side of (26) does not exceed∑
J ∈P3

∥∥(aijk)
∥∥N

J ,p
,

which ends the proof. �

9. Proof of Theorem 3.4

In this section we restrict our attention to the special case of symmetric exponential variables and consider polynomial
chaoses of arbitrary order. For exponential variables, the function N

j
i (t) = t , which allows us to replace quantities

‖(ai)‖N
J ,p

by simpler quantities.

Proposition 9.1. If for all i ≤ n, j ≤ d , N
j
i (t) = t , then for every J = {J1, . . . , Jk} ∈ Pd and every p ≥ 2,

L−1
d

∑
I∈Q(J )

p#I c+(k−#I c)/2 max
iIc

∥∥(ai)iI

∥∥
S(J ,I )

≤ ∥∥(ai)
∥∥N

J ,p
≤ Ld

∑
I∈Q(J )

p#I c+(k−#I c)/2 max
iIc

∥∥(ai)iI

∥∥
S(J ,I )

,

where Q(J ) = {I ⊂ {1, . . . , d}: ∀i≤k #(I c ∩ Ji) ≤ 1} and S(J , I ) is the partition of I obtained from J by removing
from the sets Ji all the elements of I c .

Proof. It is enough to prove that for any d ≥ 1,

L−1
(
p max

i1

∥∥(ai)i2,...,id

∥∥{2,...,d} + √
p
∥∥(ai)

∥∥{1,...,d}
)

≤ sup

{∑
i

aixi:
∑
i1

min

(( ∑
i2,...,id

x2
i

)1/2

,
∑

i2,...,id

x2
i

)
≤ p

}

≤ L
(
p max

i1

∥∥(ai)i2,...,id

∥∥{2,...,d} + √
p
∥∥(ai)

∥∥{1,...,d}
)
.

The proposition follows easily by an iterative application of this inequality.
To prove the above inequality it suffices to notice that{

xi:
∑
i1

min

(( ∑
i2,...,id

x2
i

)1/2

,
∑

i2,...,id

x2
i

)
≤ p

}

=
{
zi1yi:

∑
i

min
(|zi |, z2

i

) ≤ p, ∀i1

∑
i2,...,id

y2
i ≤ 1

}

and (√
pBn

2

) ∪ (
pBn

1

) ⊂
{
z ∈ Rn:

∑
i

min
(|zi |, z2

i

) ≤ p

}
⊂ √

pBn
2 + pBn

1 .
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We leave the details to the reader. �

For a nonempty set I , let us denote by PI the set of all partitions of I into pairwise disjoint, nonempty sets. In
particular P{1,...,d} = Pd , P∅ = {∅}.

The above proposition yields the following

Corollary 9.2. If for all i ≤ n, j ≤ d , N
j
i (t) = t , then for every p ≥ 2,

L−1
d

∑
I⊂{1,...,d}

∑
J ∈PI

p#I c+#J /2 max
iIc

∥∥(ai)iI

∥∥
J

≤
∑

J ∈Pd

∥∥(ai)
∥∥N

J ,p
≤ Ld

∑
I⊂{1,...,d}

∑
J ∈PI

p#I c+#J /2 max
iIc

∥∥(ai)iI

∥∥
J .

From the above corollary and Theorem 3.1 it follows that to prove Theorem 3.4 it is enough to demonstrate the
following

Proposition 9.3. If (X
j
i )i≤n,j≤d are independent symmetric exponential random variables, then for every p ≥ 2,∥∥∥∥∑

i

aiX
1
i1

· · ·Xd
id

∥∥∥∥
p

≤ Ld

∑
I⊂{1,...,d}

∑
J ∈PI

p#I c+#J /2 max
iIc

∥∥(ai)iI

∥∥
J . (37)

The proof of Proposition 9.3 will be based on induction with respect to d . It will require several additional lemmas.
Throughout the rest of this section we will assume that (X

j
i )i≤n,j≤d are independent symmetric exponential random

variables.

Lemma 9.4. For any d = 2,3, . . . ,

E

∥∥∥∥(∑
id

aiX
d
id

)
i{d}c

∥∥∥∥{1}···{d−1}

≤ Ld

∑
J ∈Pd

p(1+#J −d)/2
∥∥(ai)

∥∥
J + Ld

∑
J ∈Pd−1

p1+(1+#J −d)/2 max
id

∥∥(ai)i{d}c
∥∥

J .

We will need the following technical fact.

Lemma 9.5. Let Y
(1)
i be independent standard symmetric exponential variables and Y

(2)
i = g2

i , Y
(3)
i = gi g̃i , where

gi, g̃i are i.i.d. N (0,1) variables and εi – i.i.d. Rademacher variables independent of Y
(j)
i . Then for any normed

space E and any vectors v1, . . . , vn ∈ E the quantities

E

∥∥∥∥∑
i

viεiY
(j)
i

∥∥∥∥, j = 1,2,3,

are comparable up to universal multiplicative factors.

Proof. Since we can symmetrize all variables, and by the contraction principle and Jensen’s inequality

E

∥∥∥∥∑
i

viεi

∣∣Y (j)
i

∣∣∥∥∥∥ ≥ 1

L
E

∥∥∥∥∑
i

viεi

∥∥∥∥,
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it is enough to show that one can define copies of the variables Y
(j)
i (which we will identify with the variables) on a

common probability space in such a way that for any j, k = 1,2,3,∣∣Y (j)
i

∣∣ ≤ L
(
1 + ∣∣Y (k)

i

∣∣).
This is possible by using the inverse of the distribution function, since

P
(∣∣Y (1)

i

∣∣ ≥ t
) = e−t ,

L−1e−Lt ≤ P
(
Y

(2)
i ≥ t

) ≤ e−t/2

and

L−1e−Lt ≤ P
(∣∣Y (3)

i

∣∣ ≥ t
) ≤ 2e−t/2,

where in the last inequality we used the estimates P(|gi |, |g̃i | ≥ √
t) ≤ P(|Y (3)

i | ≥ t) ≤ P(|gi | ≥ √
t) + P(|g̃i | ≥ √

t).
�

The proof of Lemma 9.4 will be based on a conditional application of the following result from [15] (see [2] for a
similar approach in the context of moment inequalities for U -statistics).

Lemma 9.6 ([15], Theorem 2). For any p ≥ 2,

E

∥∥∥∥(∑
id

aigid

)
iId−1

∥∥∥∥{1}···{d−1}
≤ Ld

∑
J ∈Pd

p(1+#J −d)/2
∥∥(ai)

∥∥
J .

Proof of Lemma 9.4. Lemmas 9.5 and 9.6 give

E

∥∥∥∥(∑
id

aiX
d
id

)∥∥∥∥{1}···{d−1}
≤ LE

∥∥∥∥(∑
id

aigid g̃id

)∥∥∥∥{1}···{d−1}

≤ Ld

∑
J ∈Pd

p(1+#J −d)/2E
∥∥(aigid )

∥∥
J . (38)

Take J ∈ Pd of the form J = {I1 ∪ {d}, . . . , Ik} where {I1, . . . , Ik} \ {∅} ∈ Pd−1. We have

E
∥∥(aigid )

∥∥2
J = E sup

‖xj

iIj
‖2≤1,j=2,...,k

∑
id

g2
id

∑
iI1

( ∑
i(I1∪{d})c

ai

k∏
j=2

x
j

iIj

)2

≤ ∥∥(ai)
∥∥2

J + E sup
‖xj

iIj
‖2≤1,j=2,...,k

∑
id

(
g2

id
− 1

)∑
iI1

( ∑
i(I1∪{d})c

ai

k∏
j=2

x
j

iIj

)2

.

Since Eg2
id

= 1, standard symmetrization arguments applied to the second term on the right-hand side give

E
∥∥(aigid )

∥∥2
J ≤ ∥∥(ai)

∥∥2
J + 2E sup

‖xj

iIj
‖2≤1,j=2,...,k

∑
id

εid g
2
id

∑
iI1

( ∑
i(I1∪{d})c

ai

k∏
j=2

x
j

iIj

)2

≤ ∥∥(ai)
∥∥2

J + LE sup
‖xj

iIj
‖2≤1,j=2,...,k

∑
id

gid g̃id

∑
iI1

( ∑
i(I1∪{d})c

ai

k∏
j=2

x
j

iIj

)2

, (39)
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where in the second inequality we used again Lemma 9.5. Let now

M = max
id

sup
‖xj

iIj
‖2≤1,j=2,...,k

√√√√√∑
iI1

( ∑
i(I1∪{d})c

ai

k∏
j=2

x
j

iIj

)2

= max
id

∥∥(ai)i{d}c
∥∥

I1,...,Ik
,

where in the case I1 = ∅ we slightly abuse the notation, by identifying the set {I1, . . . , Ik} with the partition
{I2, . . . , Ik}. For fixed gid consider functions ϕk: R → R, given by the formula

ϕid (t) =
{

t2

2Mgid
for |t | ≤ |gid |M,

gid M/2 for |t | > |gid |M .

We have |ϕ′
id

(t)| = |t |/(|gid |M) ≤ 1 for |t | ≤ |gid |M , moreover ϕid is constant for t ≥ |gid |M , so ϕid is 1-Lipschitz.
Thus, by the contraction principle (see Corollary 3.17 in [17]),

Eg̃ sup
‖xj

iIj
‖2≤1,j=2,...,k

∣∣∣∣∣∑
id

g̃id ϕid

(
gid

(∑
iI1

( ∑
i(I1∪{d})c

ai

k∏
j=2

x
j

iIj

)2)1/2)∣∣∣∣∣
≤ 4Eg̃ sup

‖xj

iIj
‖2≤1,j=2,...,k

∣∣∣∣∣∑
id

g̃id gid

(∑
iI1

( ∑
i(I1∪{d})c

ai

k∏
j=2

x
j

iIj

)2)1/2∣∣∣∣∣, (40)

which implies that

Eg̃ sup
‖xj

iIj
‖2≤1,j=2,...,k

∣∣∣∣∣∑
id

g̃id gid

∑
iI1

( ∑
i(I1∪{d})c

ai

k∏
j=2

x
j

iIj

)2∣∣∣∣∣
≤ 8MEg̃ sup

‖xj

iIj
‖2≤1,j=2,...,k

∣∣∣∣∣∑
id

g̃id gid

(∑
iI1

( ∑
i(I1∪{d})c

ai

k∏
j=2

x
j

iIj

)2)1/2∣∣∣∣∣. (41)

Denote T =×k
j=2 BHj

, where BHj
is the unit ball of the Hilbert space

⊗
l∈Ij

Rn. For t ∈ T , t = (x
j

iIj
)kj=2 let

Xt =
∑
id

g̃id gid

(∑
iI1

( ∑
i(I1∪{d})c

ai

k∏
j=2

x
j

iIj

)2)1/2

.

Then, conditionally on gid , (Xt )t∈T is a Gaussian process. It induces a metric on T given by

dX(t, s) = ‖Xt − Xs‖2.

More explicitly if t = (x
j

iIj
)kj=2, s = (y

j

iIj
)kj=2, then

dX(t, s)2 =
∑
id

g2
id

[(∑
iI1

( ∑
i(I1∪{d})c

ai

k∏
j=2

x
j

iIj

)2)1/2

−
(∑

iI1

( ∑
i(I1∪{d})c

ai

k∏
j=2

y
j

iIj

)2)1/2]2

≤
∑
id

g2
id

∑
iI1

( ∑
i(I1∪{d})c

ai

(
k∏

j=2

x
j

iIj
−

k∏
j=2

y
j

iIj

))2

,



Tail and moment estimates for polynomial chaoses 1133

where to get the last inequality for each fixed id we used the triangle inequality in the space �2({1, . . . , n}I1) for
vectors aiI1

= ∑
i(I1∪{d})c ai

∏k
j=2 x

j

iIj
and biI1

= ∑
i(I1∪{d})c ai

∏k
j=2 y

j

iIj
.

Now, the right-hand side above is equal to d
X̃
(t, s) = ‖X̃t − X̃s‖2, where (X̃t )t∈T is a (conditionally) Gaussian

process defined as

X̃t =
∑

iI1∪{d}
gid g̃iI1∪{d}

∑
i(I1∪{d})c

ai

k∏
j=2

x
j

iIj
,

where t = (x
j

iIj
)kj=2 and (g̃iI1∪{d})iI1∪{d} is an array of i.i.d. standard Gaussian variables independent of gid .

Thus by the Slepian lemma we have

Eg̃ sup
t∈T

Xt ≤ Eg̃ sup
t∈T

X̃t .

Moreover, since 0 ∈ T , X0 = 0 and the distribution of X is the same as of −X, we have

E sup
t∈T

|Xt | = E max
(

sup
t∈T

Xt , sup
t∈T

(−Xt)
)

≤ E sup
t∈T

Xt + E sup
t∈T

(−Xt) = 2 sup
t∈T

Xt .

Thus, we have

Eg̃ sup
‖xj

iIj
‖2≤1,j=2,...,k

∣∣∣∣∣∑
id

g̃id gid

(∑
iI1

( ∑
i(I1∪{d})c

ai

k∏
j=2

x
j

iIj

)2)1/2∣∣∣∣∣
≤ 2Eg̃ sup

‖xj

iIj
‖2≤1,j=2,...,k

∑
iI1∪{d}

g̃iI1∪{d}
∑

i(I1∪{d})c
gid ai

k∏
j=2

x
j

iIj

≤ Ld

∑
K∈Pd

p(1+#K−k)/2
∥∥(aigid )

∥∥
K,

where the last inequality follows from another application of Lemma 9.6, conditionally on gid . Going now back to
(39) and (41), we obtain that for all ε ∈ (0,1) and all J = {I1 ∪ {d}, I2, . . . , Ik} ∈ Pd ,

p(1+k−d)/2E
∥∥(aigid )

∥∥
J

≤ p(1+k−d)/2
∥∥(ai)

∥∥
J + Ld

√
p(2+k−d)/2 max

id

∥∥(ai)i{d}c
∥∥

J ′

√ ∑
K∈Pd

p(1+#K−d)/2E
∥∥(aigid )

∥∥
K

≤ p(1+k−d)/2
∥∥(ai)

∥∥
J + Ldp1+(1+#J ′−d)/2ε−1 max

id

∥∥(ai)i{d}c
∥∥

J ′ + εLd

∑
K∈Pd

p(1+#K−d)/2E
∥∥(aigid )

∥∥
K,

where J ′ = {I1, . . . , Ik} \ {∅}. Summing the above inequalities over all J ∈ Pd and choosing ε to be a sufficiently
small number depending on d , we get∑

J ∈Pd

p(1+#J −d)/2E
∥∥(aigid )

∥∥
J ≤ Ld

∑
J ∈Pd

p(1+#J −d)/2
∥∥(ai)

∥∥
J

+ Ld

∑
J ∈Pd−1

p1+(1+#J −d)/2 max
id

∥∥(ai)i{d}c
∥∥

J .

Together with (38) this ends the proof of the lemma. �
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To prove Proposition 9.3 we will also use a technical fact proved in [2] in greater generality (see Lemma 5 therein).

Lemma 9.7. For α > 0 and arbitrary nonnegative numbers ri1,...,id and p > 1 we have

pαp
∑

i

r
p

i ≤ L
p
d pαd

[
pαp max

i
r
p

i +
∑

I�{1,...,d}
p#Ip max

iI

(∑
iIc

ri

)p]
.

Proof of Proposition 9.3. The argument is similar to the proof of Theorem 6 in [2] therefore we will only sketch the
main steps.

Since for p = 2 the proposition is trivial (recall that ‖(ai)‖{1,...,d} = (
∑

i a
2
i )1/2), we will assume that p > 2.

Let us first note that to prove the proposition it is enough to show that

E

∣∣∣∣∑
i

aiX
1
i1

· · ·Xd
id

∣∣∣∣p ≤ L
p
d

∑
I⊂{1,...,d}

∑
J ∈PI

pp(#I c+#J /2)
∑
iIc

∥∥(ai)iI

∥∥p

J . (42)

Indeed, for fixed I let us apply Lemma 9.7 (with p/2 instead of p, #I c instead of d and riIc = ‖(ai)iI ‖2
J ). We get

∑
iIc

∥∥(ai)iI

∥∥p

J ≤ L
p
#I c (p/2)α#I c

(
max

iIc

∥∥(ai)iI

∥∥p

J +
∑
J�I c

(p/2)#Jp/2−αp/2 max
iJ

(∑
iIc\J

∥∥(ai)iI

∥∥2
J

)p/2)
.

Note that for J � I c we have
∑

iIc\J ‖(ai)iI ‖2
J ≤ ∑

iJc
a2

i = ‖(ai)iJc ‖2{J c} and that p#J+1/2 maxiJ ‖(ai)iJc ‖{J c}
appears among the summands on the right-hand side of (37). Thus the above inequality with α sufficiently large
(depending only on d) implies that the right-hand side of (42) is majorized by the pth power of the right-hand side of
the inequality asserted in the proposition (we use the fact that if α depends only on d then pα#I c ≤ L

p
d ).

It remains to prove (42). We will proceed by induction on d . For d = 1, the proposition (which is stronger than
(42) for d = 1) is a special case of Theorem 3.2 (it also follows from the Gluskin–Kwapień estimate).

Let us thus assume that (42) holds for chaoses of order at most d −1. We will show that then it holds for chaoses of
order d . Applying the induction assumption conditionally on (Xd

i )i together with the Fubini theorem and Lemma 5.10
we obtain

E

∣∣∣∣∑
i

aiX
1
i1

· · ·Xd
id

∣∣∣∣p

≤ L
p

d−1

∑
I⊂{1,...,d−1}

∑
J ∈PI

pp(d−1−#I+#J /2)
∑

i{1,...,d−1}\I
E

∥∥∥∥(∑
id

aiX
d
id

)
iI

∥∥∥∥p

J

≤ L
p
d

∑
I⊂{1,...,d−1}

∑
J ∈PI

pp(d−1−#I+#J /2)
∑

i{1,...,d−1}\I

(
E

∥∥∥∥(∑
id

aiX
d
id

)
iI

∥∥∥∥
J

)p

+ L
p
d

∑
I⊂{1,...,d}

∑
J ∈PI

pp(#I c+#J /2)
∑
iIc

∥∥(ai)iI

∥∥p

J .

By Lemma 9.4 the first sum on the right-hand side above is majorized by the second one, which proves (42). �

Appendix

Proof of Proposition 1.2. Note that

d∑
j=0

n∑
i1,...,ij =1

a
j
i1,...,ij

Xi1 · · ·Xij =
∑

1≤i1,...,id≤n

pairwise distinct

Hi1,...,id (Xi1, . . . ,Xid ),
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where

Hi1,...,id (x1, . . . , xd) = 1

d!
d∑

j=0

(n − d)!
(n − j)!

∑
π∈Sd

a
j
iπ(1),...,iπ(j)

xπ(1) · · ·xπ(j)

and Sd denotes the set of all permutations of the set {1, . . . , d} (for j = 0 and every π ∈ Sd we set a0
π(1),...,π(j) = a0

∅).
Note that for every π ∈ Sd , hiπ(1),...,iπ(d)

(xπ(1), . . . , xπ(d)) = hi1,...,id (x1, . . . , xd). Therefore by general decoupling
inequalities for U -statistics (see [6] or Theorem 3.1.1 in [7]), we have

Ld

∥∥∥∥∥
d∑

j=0

n∑
i1,...,ij =1

a
j
i1,...,ij

Xi1 · · ·Xij

∥∥∥∥∥
p

≥
∥∥∥∥ ∑

1≤i1,...,id≤n

pairwise distinct

Hi1,...,id

(
X1

i1
, . . . ,Xd

id

)∥∥∥∥
p

.

The right-hand side of the above inequality is equal to∥∥∥∥∥
d∑

j=0

1(
d
j

) ∑
1≤r1<···<rj ≤d

n∑
i1,...,ij =1

a
j
i1,...,ij

X
r1
i1

· · ·Xrj
ij

∥∥∥∥∥
p

(we used the symmetry of the coefficients a
j
i1,...,ij

). Since (again by decoupling) for any 1 ≤ r1 < · · · < rj ≤ d ,

Ld

∥∥∥∥∥
n∑

i1,...,ij =1

a
j
i1,...,ij

X
r1
i1

· · ·Xrj
ij

∥∥∥∥∥
p

≥
∥∥∥∥∥

n∑
i1,...,ij =1

a
j
i1,...,ij

Xi1 · · ·Xij

∥∥∥∥∥
p

,

to finish the proof it is enough to show that

Ld

∥∥∥∥∥
d∑

j=0

∑
1≤r1<···<rj ≤d

n∑
i1,...,ij =1

b
j
i1,...,ij

X
r1
i1

· · ·Xrj
ij

∥∥∥∥∥
p

≥
d∑

j=0

∑
1≤r1<···<rj ≤d

∥∥∥∥∥
n∑

i1,...,ij =1

b
j
i1,...,ij

X
r1
i1

· · ·Xrj
ij

∥∥∥∥∥
p

(43)

for any coefficients b
j
i1,...,ij

.

We will proceed by induction on d . For d = 0, (43) reads as L0|b0
∅| ≥ |b0

∅|, which is obviously true. Let us thus
assume that (43) holds for all numbers smaller than d . Consider any k ∈ {1, . . . , d}. By the Fubini theorem, Jensen’s
inequality (applied to the integration with respect to (Xk

i )i ) and the assumption that Xk
i has mean zero, we get∥∥∥∥∥

d∑
j=0

∑
1≤r1<···<rj ≤d

n∑
i1,...,ij =1

b
j
i1,...,ij

X
r1
i1

· · ·Xrj
ij

∥∥∥∥∥
p

≥
∥∥∥∥∥

d−1∑
j=0

∑
1≤r1<···<rj ≤d

rl �=k,l=1,...,j

n∑
i1,...,ij =1

b
j
i1,...,ij

X
r1
i1

· · ·Xrj
ij

∥∥∥∥∥
p

,

which by the induction assumption is greater than or equal to

L−1
d−1

d−1∑
j=0

∑
1≤r1<···<rj ≤d

rl �=k,l=1,...,j

∥∥∥∥∥
n∑

i1,...,ij =1

b
j
i1,...,ij

X
r1
i1

· · ·Xrj
ij

∥∥∥∥∥
p

.
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Thus, since k in the above inequality is arbitrary, we get

Ld

∥∥∥∥∥
d∑

j=0

∑
1≤r1<···<rj ≤d

n∑
i1,...,ij =1

b
j
i1,...,ij

X
r1
i1

· · ·Xrj
ij

∥∥∥∥∥
p

≥
d−1∑
j=0

∑
1≤r1<···<rj ≤d

∥∥∥∥∥
n∑

i1,...,ij =1

b
j
i1,...,ij

X
r1
i1

· · ·Xrj
ij

∥∥∥∥∥
p

.

To finish the proof of (43) it is now enough to notice that for any norm ‖ · ‖, vectors x, y and number K > 0,
‖x‖ ≤ K‖x + y‖ implies that ‖x‖ + ‖y‖ ≤ (2K + 1)‖x + y‖. This ends the proof of the proposition. �

After the completion of this paper the authors have learned that a version of Proposition 1.2 in the case of symmetric
random variables was established by S. Kwapień [12]
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