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RISK MEASURING UNDER MODEL UNCERTAINTY

BY JOCELYNE BION-NADAL AND MAGALI KERVAREC

Ecole Polytechnique and Université d’Evry Val d’Essonne

The framework of this paper is that of risk measuring under uncertainty
which is when no reference probability measure is given. To every regular
convex risk measure on Cb(�), we associate a unique equivalence class of
probability measures on Borel sets, characterizing the riskless nonpositive
elements of Cb(�). We prove that the convex risk measure has a dual repre-
sentation with a countable set of probability measures absolutely continuous
with respect to a certain probability measure in this class. To get these results
we study the topological properties of the dual of the Banach space L1(c)

associated to a capacity c.
As application, we obtain that every G-expectation E has a represen-

tation with a countable set of probability measures absolutely continuous
with respect to a probability measure P such that P(|f |) = 0 if and only
iff E(|f |) = 0. We also apply our results to the case of uncertain volatility.

1. Introduction. The purpose of this paper is to introduce a very general
framework enabling the study of risk measures and dynamic risk measures in a
context of model uncertainty, which is when no reference probability measure is
given.

In order to quantify the risk in finance, Artzner et al. [1] have introduced the
notion of coherent (i.e., sublinear) risk measure in the context of finite probability
spaces. This notion has been extended to general probability spaces [12] and then
to the convex case [21] and [22]. The notion of conditional risk measure has been
considered in [6] and [17]. Dynamic risk measures have then been studied in many
papers, among them [7, 8, 11, 13, 25, 30]. For the particular case of dynamic
risk measures on a Brownian filtration, one can cite [3, 14, 26]. Notice that in all
these papers on dynamic risk measures, a reference probability space is fixed. This
framework is rich enough to study models with stochastic volatility or models with
jumps, but not to deal with model uncertainty.

What does uncertainty mean? Usually in mathematical finance, in order to com-
pute the risk or the price associated to financial assets, one assumes that a reference
family of liquid assets is given and that the dynamics of these reference assets is
known. However, in a context of model uncertainty, the dynamics of the liquid
reference assets is only assumed to belong to a certain class of models. A simple

Received April 2010; revised December 2010.
MSC2010 subject classifications. Primary 46A20, 91B30; secondary 46E05.
Key words and phrases. Risk measure, duality theory, uncertainty, capacity.

213

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/11-AAP766
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


214 J. BION-NADAL AND M. KERVAREC

example is given, within the Brownian framework, by a class of models with un-
certain volatility. That is, one considers a family of possible models of the form
dXσ

t = btX
σ
t dt + σtX

σ
t dWt where σt is allowed to vary inside an interval [σ,σ ].

When σ describes the set of predictable processes varying inside this interval, the
laws of the processes Xt

σ are not all absolutely continuous with respect to some
probability measure. Avellaneda, Levy and Paras [2], Denis and Martini [16] and
Denis, Hu and Peng [15] have considered the problem of pricing for this family
of models. Only a few papers study convex risk measures in a context of uncer-
tainty. Föllmer and Schied [21] have studied static risk measures defined on the
vector space of all bounded measurable maps. This has been extended by Bion-
Nadal to the conditional case in [6]. Kervarec [24] has studied static risk measures
when model uncertainty is specified by a nondominated weakly compact set of
probability measures.

In this paper, motivated by the general context of model uncertainty, we study
regular convex risk measures defined on Cb(�), the set of continuous bounded
functions on a Polish space �. Regularity is here equivalent to continuity with
respect to a certain capacity c. Considering the completion L1(c) of Cb(�) with
respect to the capacity c, this means that we study convex risk measures on the Ba-
nach space L1(c). Our main result is that for every regular convex risk measure on
Cb(�), there is a unique equivalence class of probability measures characterizing
the riskless nonpositive elements of Cb(�) and that the convex risk measure has
a dual representation with a countable set of probability measures all absolutely
continuous with respect to a certain probability measure belonging to this equiva-
lence class. The tools of the proof are the capacities, topological properties of the
dual of the Banach space L1(c) associated to a capacity c and convex duality for
locally convex spaces.

The paper is organized as follows. First, in Section 2 we study the topological
properties of the dual of L1(c). We prove that the nonnegative part of the dual ball
of L1(c) is metric compact for the weak* topology σ(L1(c)∗,L1(c)).

Section 3 deals with convex risk measures on L1(c). We prove that they satisfy
the representation formula

ρ(X) = sup
Q∈P ′

(
EQ[−X] − α(Q)

)
,(1.1)

where P ′ is a set of probability measures belonging to the dual of L1(c). There are
two important results in this section. The first one is the characterization of convex
risk measures on L1(c) admitting a representation of the form (1.1) having a com-
pact set P ′ of probability measures [for the weak* topology σ(L1(c)∗,L1(c))]. In
this case, the supremum in (1.1) is a maximum. Moreover, making use of the topo-
logical results of Section 2, we prove that every convex risk measure on L1(c) has
a dual representation of the form (1.1) with a countable set of probability measures.

In Section 4 we assume that the capacity is defined on Cb(�) by cp,P (f ) =
supP∈P EP (|f |p)1/p for some weakly relatively compact set P of probability
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measures. We prove that the capacity cp,P is equal to the capacity cp,Q defined
using a certain countable subset Q of P . We introduce a new equivalence re-
lation on the set of nonnegative measures belonging to the dual of L1(cp,P ).
When P is a singleton, it coincides with the usual equivalence relation on non-
negative measures. The main result of Section 4 is the existence of an equiva-
lence class of probability measures characterizing the null elements of L1(cp,P )+,
that is, P belongs to this equivalence class if and only if for all f in L1(cp,P ),
(EP (|f |) = 0) ⇐⇒ (cp,P (|f |) = 0).

Section 5 deals with uniformly regular convex risk measures on Cb(�). We
prove that every such risk measure on Cb(�) extends into a convex risk measure
on L1(c) for a certain capacity c associated to a weakly compact set P of proba-
bility measures: c(f ) = supP∈P EP (f ). Therefore, we can make use of the results
obtained in Sections 4 and 3 in order to get the main result of the paper in The-
orem 5.1: to every uniformly regular convex risk measure ρ on Cb(�), one can
associate a unique equivalence class of probability measures defined on the Borel
sets, called cρ -class, characterizing the nonpositive elements of Cb(�) with risk 0.
The convex risk measure has then a dual representation with a countable set of
probability measures all absolutely continuous with respect to a certain probabil-
ity measure belonging to this cρ -class.

Section 6 deals with two examples. The first one is G-expectations introduced
by Peng [27]. The capacity associated to a G-expectation E is c(f ) = E(|f |).
As application of our results, we obtain that there is a unique equivalence class
of probability measures characterizing the nonnegative elements f of Cb(�) such
that E(f ) = 0. The G-expectation E has then a representation in terms of a count-
able set of probability measures all absolutely continuous with respect to a certain
probability measure belonging to this class

E(X) = sup
n∈N

EQn(X).(1.2)

The second example, for which all our results apply, is the case where model un-
certainty is characterized by a relatively weakly compact set of probability mea-
sures P .

2. Topological properties of the dual space of L1(c).

2.1. The ordered space L1(c). Let � be a metrizable and separable space. One
classical example, furthermore a Polish space, is � = C0([0,∞[,R

d) endowed
with the topology of uniform convergence on compact subspaces. B(�) denotes
the Borel σ -algebra on �. Denote M(�) the set of all bounded signed measures
on (�, B(�)) and M+(�) the subset of nonnegative finite measures.

In the following, L denotes a linear vector subspace of Cb(�) containing the
constants, generating the topology of � and which is a vector lattice. Recall the
following definition of a capacity.
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DEFINITION 2.1. A capacity on L is a semi-norm c defined on L satisfying
the following properties:

(1) monotonicity: ∀, f, g ∈ L such that |f | ≤ |g|, c(f ) ≤ c(g);
(2) regularity along sequences: for every sequence fn ∈ L decreasing to 0,

inf c(fn) = 0.

The semi-norm c is extended as in [20], Section 2, to all real functions defined
on �,

∀f l.s.c. f ≥ 0 c(f ) = sup{c(φ)|0 ≤ φ ≤ f,φ ∈ L},(2.1)

∀g c(g) = inf{c(f )|f ≥ |g|, f l.s.c.},(2.2)

where l.s.c. means lower semi-continuous. L1(c) denotes the closure of L in the
set {g|c(g) < ∞}. From Proposition 10 of [20], L1(c) contains Cb(�). Let L1(c)

be the quotient of L1(c) by the c null elements. It is a Banach space. The following
result shows that c(1A) can be expressed as the limit of a monotone sequence c(fn)

for continuous functions fn with limit 1A, as soon as A is either an open subset or
a closed subset of �.

PROPOSITION 2.1. Let V be an open subset of �. There is an increasing
sequence of nonnegative continuous functions hn on � such that 1V = limn→∞ hn

and c(1V ) = limn→∞ c(hn).
Let F be a closed subset of �. There is a decreasing sequence of continuous

functions gn ≤ 1 on � such that 1F = limn→∞ gn and c(1F ) = limn→∞ c(gn).

PROOF. 1V is a nonnegative bounded l.s.c. function. Thus, it is the limit of
an increasing sequence of nonnegative continuous functions fn. On the other
hand, from definition of c(1V ) [equation (2.1)], there is a sequence of continu-
ous functions gn ≤ 1V such that c(1V ) = lim c(gn). Let h1 = g1 and for every n,
hn+1 = sup(hn, fn, gn). hn is an increasing sequence of continuous functions with
limit 1V and such that c(1V ) = lim c(hn).

Let F be a closed subset of �. By definition of the capacity, c(1F ) =
inf{ψ l.s.c.,1F ≤ψ} c(ψ). The infimum of two l.s.c. functions is also l.s.c., thus
there is a decreasing sequence ψn greater or equal to 1F such that c(1F ) =
lim c(ψn). Thus, there is a strictly increasing sequence k(n) such that for all n,
c(ψk(n)) ≤ c(1F ) + 1

n2 . Let εn > 0 such that ( 1
1−εn

)(c(1F ) + 1
n2 ) ≤ c(1F ) + 1

n
.

Let Vn = {x|ψk(n)(x) > 1 − εn} ∩ {x ∈ �;dist(x,F ) < 1
n
}. As ψk(n) is l.s.c., Vn

is an open set; furthermore, F = ⋂
n∈N∗ Vn. For every n, there is a continuous

function fn such that F ≺ fn ≺ Vn. One can thus construct a decreasing se-
quence of continuous functions gn such that 1F ≤ gn ≤ 1Vn . Thus the sequence
gn is decreasing to 1F . As c(1Vn) ≤ 1

1−εn
c(ψk(n)) ≤ c(1F ) + 1

n
, it follows that

c(1F ) ≤ c(gn) ≤ c(1F ) + 1
n

. �
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Further definitions and results on capacities are recalled in the Appendix. We
refer also to [20].

Partial order on L1(c).

DEFINITION 2.2. Let X ∈ L1(c). We say that X ≥ 0 if there is a sequence
(fn)n∈N, fn ∈ L, fn ≥ 0 such that for every g ∈ L1(c) of class X, limn→∞ c(g −
fn) = 0.

LEMMA 2.1. Let X,Y ∈ L1(c). If X ≥ 0 and Y ≥ 0, then X + Y ≥ 0.
If there is in the class of X a nonnegative function f , then X ≥ 0.
Let X ∈ L1(c); |X| ∈ L1(c). Furthermore, X ≥ 0 if and only if X = |X| in

L1(c).

PROOF. The first part of the lemma is trivial. The second point follows from
the inequality

c(|f | − |fn|) ≤ c(f − fn).(2.3)

Thus, as f = |f |, c(f − |fn|) ≤ c(f − fn). One can deduce from (2.3) that for
all X ∈ L1(c), |X| ∈ L1(c). From point 2, |X| − X ≥ 0. Thanks to (2.3) and the
inequality c(|f | − f ) ≤ c(|f | − fn) + c(f − fn), it follows that X ≥ 0 if and only
if X = |X| in L1(c). �

PROPOSITION 2.2. The relation X ≤ Y defined by Y −X ≥ 0 defines a partial
order on L1(c).

PROOF. (1) Reflexivity is trivial; take fn = 0 for all n.
(2) Antisymmetry. Let X ≥ Y and Y ≥ X. Let h be in the class of X−Y . By def-

inition, there are two sequences fn and gn of nonnegative functions in L such that
limn→∞ c(fn −h) = 0 and limn→∞ c(gn +h) = 0. It follows that limn→∞ c(fn +
gn) = 0. As 0 ≤ |fn − gn| ≤ fn + gn, it follows that limn→∞ c(|fn − gn|) = 0.
However, limn→∞ c(fn − gn − 2h) = 0. Thus, X − Y , the class of h is equal to 0.

(3) Transitivity follows from the first part of Lemma 2.1. �

2.2. Topological properties of the nonnegative part of the unit ball of L1(c)∗.
For the definition of a Prokhorov capacity, see the Appendix.

PROPOSITION 2.3. Let c be a Prokhorov capacity on a metrizable and sepa-
rable space �. Every continuous linear form L on L1(c) admits a representation,

L(f ) =
∫

f dμ ∀f ∈ L1(c),(2.4)

where μ is a regular bounded signed measure defined on a σ -algebra containing
the Borel σ -algebra of �.

If L is a nonnegative linear form, the regular measure μ is nonnegative finite.
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Following [5], a bounded signed measure μ is called regular if for all Borel
set A, for all ε > 0, there is a closed set F and an open set G such that F ⊂ A ⊂ G

and |μ|(G − F) < ε.
Notice that in [20], the existence of a bounded measure μ satisfying (2.4) is

proved. However, the statement of Proposition 11 of [20] does not give information
on the σ algebra on which the measure μ is defined. Therefore, we have to go
inside the proof.

PROOF OF PROPOSITION 2.3. A metrizable space is completely regular and c

is a Prokhorov capacity so Proposition 11 of [20] gives the existence of a measure
μ satisfying (2.4). We want to now prove that μ is defined on the Borel σ algebra.
As in the proof of Proposition 11 of [20], let Z be a compactification of � and c′
the capacity defined on Z by c′(g) = c(g|�). As c is a Prokhorov capacity, from
Proposition 11 of [20], c′(1Z−�) = 0 and L1(c) = L1(c′).

As Z is a compact space, it follows from Theorem 3 of [19] that every nonneg-
ative linear form on L1(c′) can be represented by a nonnegative measure obtained
from the Riesz representation theorem applied to C(Z). Therefore, this measure is
defined on a σ -algebra containing the Borel sets of Z. From Theorem 6 of [19]
every continuous linear form on L1(c) is the difference of two nonnegative linear
forms, thus, the bounded measure μ satisfying (2.4) is defined on a σ -algebra B
containing the Borel σ -algebra of Z.

We want to prove that μ is defined on the Borel σ -algebra of �. μ is defined on
the σ -algebra F obtained by completion of B with the μ-null sets. Notice that from
Theorem 3 of [19], every c′-negligible set [i.e., c′(1A) = 0] is also μ-negligible.
This is, in particular, the case for Z − � which is therefore, μ-measurable. Every
open set V of � can be written V = U ∩ � for some open set U of Z. Therefore,
V belongs to F . It follows that the measure μ defined on F is thus defined on
the Borel σ -algebra of �. As � is a metric space and μ is defined on the Borel
σ -algebra of �, μ is regular from Theorem 1.1 of [5]. �

Recall that the weak topology on M+(�), the set of nonnegative finite measures
on (�, B(�)), is the coarsest topology for which the mappings

μ ∈ M+(�) →
∫

f dμ

are continuous for every given f in Cb(�).

PROPOSITION 2.4. Let c be a Prokhorov capacity on a metrizable separable
space. The set of nonnegative linear forms on the Banach space L1(c) is a subset
of M+(�). The weak* topology [i.e., the σ(L1(c)∗,L1(c)) topology] on the non-
negative part K+ of the unit ball of L1(c)∗ coincides with the restriction to K+ of
the weak topology on M+(�).
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PROOF. From Proposition 2.3, every nonnegative linear form on L1(c) be-
longs to M+(�). Let μ ∈ K+. As Cb(�) is dense in the Banach space L1(c), the
open sets

Vf1,f2,...,fn,ε(μ) = {
ν ∈ K+|∀i ∈ {1, . . . , n}, |μ(fi) − ν(fi)| < ε

}

with fi ∈ Cb(�) form a basis of neighborhoods of μ in K+ for the weak* topology.
Thus, the weak* topology on K+ coincides with the weak topology. �

PROPOSITION 2.5. Let c be a Prokhorov capacity on a metrizable separa-
ble space �. The set K+ is compact metrizable for the weak* topology [i.e., the
σ(L1(c)∗,L1(c)) topology] as well as for the weak topology.

PROOF. Prove first that K+ is metrizable for the weak* topology. From Propo-
sition 2.4, the weak* topology on K+ coincides with the restriction to K+ of the
weak topology on M+(�). As � is metrizable and separable, M+(�) is also
metrizable and separable for the weak topology from [10], Section 5. Thus, K+ is
metrizable for the weak* topology.

From the Banach–Alaoglu theorem ([18], Theorem V 4.2), the closed unit ball
of the dual space of a Banach space is always compact for the weak* topology. As
K+ is a closed subset of this unit ball for the weak* topology, it is also compact.
This proves the result for the weak* topology. From Proposition 2.4, K+ is also
metrizable compact for the weak topology. �

COROLLARY 2.1. Assume that � is a Polish space. For every capacity c on �,
the set K+ is compact metrizable for the weak* topology.

PROOF. From [20] (see also the Appendix), every capacity on a Polish space
is a Prokhorov capacity and thus the result follows from Proposition 2.5. �

In the particular case of a compact metrizable space, we obtain the following
stronger result.

PROPOSITION 2.6. Let � be a metrizable compact space. Let c be a capacity
on �. Then the Banach space L1(c) is separable and the unit ball of L1(c)∗ is
metrizable compact for the weak* topology.

PROOF. As � is a metrizable compact space, C(�) is separable from Theo-
rem 1, Section 3, of [9]. Thus, for every capacity c on �, L1(c) is also separable.
Then from [18], Theorem V 51, the unit ball of L1(c)∗ (and not only its nonnega-
tive part) is metrizable compact for the weak* topology. �
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3. Representation of a convex risk measure on L1(c). In this section, c

denotes a Prokhorov capacity on a metrizable separable space �. Recall that a
partial order has been defined on L1(c) in Section 2.1. We can define convex risk
measures in the usual way as follows.

DEFINITION 3.1. Let ρ :L1(c) → R.

• ρ is monotonic if ρ(X) ≥ ρ(Y ) for every X,Y ∈ L1(c), such that X ≤ Y .
• ρ is convex if for every X,Y ∈ L1(c), for every 0 ≤ λ ≤ 1, ρ(λX + (1 − λ)Y ≤

λρ(X) + (1 − λ)ρ(Y ).
• ρ is translation invariant if ρ(X+a) = ρ(X)−a for every X ∈ L1(c) and a ∈ R.
• ρ is a convex risk measure if it satisfies all these conditions.

3.1. Representation for convex risk measures. Duality results for risk mea-
sures are well known in other settings. A duality result was first proved in the case
of risk measures on L∞ spaces assuming, furthermore, continuity from below. Du-
ality results are based on the Fenchel–Legendre duality, generalized to the context
of locally convex topological spaces by Rockafellar [29]. This is the generalized
version that we need here. No additional hypothesis is needed in order to prove the
dual representation result. The important and new discussion will be developed in
Section 3.2 using the topological results proved in Section 2.2.

THEOREM 3.1. Let ρ be a convex risk measure on L1(c). Then, ρ is continu-
ous and admits a representation of the form

∀X ∈ L1(c) ρ(X) = sup
Q∈P ′

(
EQ[−X] − α(Q)

)
,(3.1)

where

α(Q) = sup
X∈L1(c)

(
EQ[−X] − ρ(X)

)
.(3.2)

P ′ is the set of probability measures on (�, B(�)) belonging to L1(c)∗.

PROOF. The continuity of ρ follows from Theorem 1 of [4].
We call α the function on L1(c)� defined by

∀μ ∈ L1(c)� α(μ) = sup
X∈L1(c)

(
μ(X) − ρ(X)

)
.

As the dual of L1(c)∗ (with the weak* topology) is L1(c), the locally convex topo-
logical spaces L1(c) and L1(c)∗ are paired in the sense of [29]. ρ is continuous;
we can thus apply Theorem 5 in Rockafellar [29]. We get the following equality:

∀X ∈ L1(c) ρ(X) = sup
μ∈L1(c)�

(
μ(X) − α(μ)

)
.
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In the supremum above, we can obviously restrict to the elements μ of L1(c)� such
that α(μ) < +∞.

Let μ0 ∈ L1(c)� such that α(μ0) < +∞, we first prove that −μ0 is a positive
linear form. Let X ∈ L1(c) such that X ≥ 0. For all λ > 0, using the monotonicity
of ρ, ρ(λX) ≤ ρ(0), which implies that

λμ0(X) − α(μ0) ≤ ρ(0).

ρ(0) and α(μ0) are finite and the above inequality is satisfied for all λ > 0, thus,
μ0(X) ≤ 0.

From Proposition 2.3, −μ0 is represented by a finite nonnegative measure de-
fined on (�, B(�)). Thanks to the translation invariance of ρ, for all λ ∈ R,
ρ(λ) = ρ(0) − λ, which means that

ρ(0) = λ + sup
μ∈L1(c)�

(
λμ(1) − α(μ)

) ≥ λ
(
1 + μ0(1)

) − α(μ0).

We conclude as above that 1 + μ0(1) = 0. Thus, −μ0 is a probability measure on
(�, B(�)) and −μ0 ∈ L1(c)∗. �

3.2. Risk measures represented by a weakly relatively compact set of probabil-
ity measures. In this section we want to characterize risk measures ρ on L1(c)

admitting a dual representation with a relatively compact set of probability mea-
sures for the weak* topology.

DEFINITION 3.2. A convex risk measure ρ on L1(c) is normalized if
ρ(0) = 0.

PROPOSITION 3.1. Let ρ :L1(c) → R be a normalized convex risk measure.
The following conditions are equivalent:

(1) ρ is majorized by a sublinear risk measure;
(2) ∀X ∈ L1(c), supλ>0

ρ(λX)
λ

< ∞;
(3) there exits K > 0 such that ∀X ∈ L1(c), |ρ(X)| ≤ Kc(X);
(4) ρ is represented by a set Q of probability measures in L1(c)∗ relatively

compact for the weak* topology, that is,

∀X ∈ L1(c) ρ(X) = sup
Q∈Q

(
EQ[−X] − α(Q)

)
.(3.3)

Before giving the proof of the proposition, we prove the following lemma.

LEMMA 3.1. Let Q be a set of probability measures on (�, B(�)) such
that Q ⊂ L1(c)∗. Assume that Q is relatively compact for the weak* topology
σ(L1(c)∗,L1(c)). Then Q is contained in some closed ball of L1(c)∗ and the
weak* closure of Q is also compact for the weak topology.
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PROOF. Denote Q the closure of Q for the weak* topology. Q is compact.
Let X ∈ L1(c). The map Q → EQ(X) is continuous for the weak* topology, thus,
supQ∈Q |EQ(X)| < ∞. From Banach–Steinhauss theorem (cf. [31]) it follows that

Q is contained in some closed ball of L1(c)∗ and thus in the nonnegative part of
this closed ball. From Proposition 2.4, Q is weakly compact. �

We can now give the proof of Proposition 3.1.

PROOF OF PROPOSITION 3.1. Consider the dual representation of ρ given
by (3.1). Denote Q = {Q ∈ P ′|α(Q) < ∞}. Then

∀X ∈ L1(c) ρ(X) = sup
Q∈Q

(
EQ(−X) − α(Q)

)
.(3.4)

(1) implies (2). Let ρ1 be a sublinear risk measure majorizing ρ. Then for every
λ ∈ R

+∗ , ρ(λX) ≤ λρ1(X). Thus, supλ>0
ρ(λX)

λ
≤ ρ1(X) and (2) is proved.

(2) implies (3). For every X ∈ L1(c), denote βX = supλ>0
ρ(λX)

λ
. From the dual

representation (3.4), applied with λX for every λ > 0, it follows that ∀Q ∈ Q,
EQ(−X) ≤ βX and thus, supQ∈Q EQ(−X) ≤ βX < ∞ for every X ∈ L1(c). With
X = −|Y |, we get that

∀Y ∈ L1(c) sup
Q∈Q

|EQ(Y )| < ∞.(3.5)

L1(c) is a Banach space and from Theorem 3.1, every EQ is a continuous linear
form on L1(c). Denote ‖EQ‖ its norm. From Banach–Steinhauss theorem, equa-
tion (3.5) implies the existence of K > 0 such that supQ∈Q ‖EQ‖ ≤ K . Notice that
from the normalization condition [ρ(0) = 0], it follows from (3.2) that for every Q,
α(Q) ≥ 0. Thus, from the representation (3.4), for every X ∈ L1(c),

ρ(X) ≤ Kc(X).(3.6)

From the convexity, the monotonicity of ρ and ρ(0) = 0, it follows that

−ρ(X) ≤ ρ(−X) ≤ ρ(−|X|) ≤ Kc(−|X|) = Kc(X).(3.7)

Thus, from (3.6) and (3.7), for every X ∈ L1(c),

|ρ(X)| ≤ Kc(X).

This proves (3).
(3) implies (4). From the representation of ρ, equation (3.4) applied with −λ|X|

for every λ > 0, it follows from hypothesis (3) that for every Q ∈ Q ‖EQ‖ ≤ K .
This means that Q is contained in a closed ball of the dual of L1(c). Every such
closed ball is compact for the weak* topology (Banach–Alaoglu theorem). Thus,
Q is relatively compact for the weak* topology.

(4) implies (1). ρ is represented by a set of probability measures Q ⊂ L1(c)∗
relatively compact for the weak* topology. From Lemma 3.1, Q is contained in
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some closed ball of L1(c)∗. Define ρ1 by ρ1(X) = supQ∈Q EQ(−X). As Q is
bounded, ρ1(X) is finite for every X in L1(c). It is easy to verify that ρ1 is a
sublinear risk measure and that ρ is majorized by ρ1. �

THEOREM 3.2. Let ρ be a convex risk measure on L1(c). Assume that ρ is
represented by

ρ(X) = sup
Q∈Q

(
EQ(−X) − α(Q)

)
,

where Q is a set of probability measures in L1(c)∗ relatively compact for the weak*
topology. Let Q be the closure of Q for the weak* topology. Then Q is metrizable
compact both for the weak* topology and the weak topology.

For every X ∈ L1(c), there is a probability measure QX ∈ Q such that

ρ(X) = EQX
(−X) − α(QX).(3.8)

PROOF. From Lemma 3.1, Q is contained in a closed ball of L1(c)∗ and is
compact both for the weak and the weak* topology. From Proposition 2.5 it is
metrizable compact. Let X ∈ L1(c). Let Qn be a sequence of elements in Q such
that for every n,

ρ(X) − 1

n
< EQn(−X) − α(Qn) ≤ ρ(X).(3.9)

As Q is metrizable compact for the weak* topology, there is a subsequence Qφ(n)

converging to Q̃ ∈ Q, satisfying the inequality

E
Q̃

(−X) − 1

n
< EQφ(n)

(−X) < E
Q̃

(−X) + 1

n
.(3.10)

From inequality (3.9), applied with Qφ(n), inequality (3.10) and the inequality
φ(n) ≥ n, it follows that

E
Q̃

(−X) − ρ(X) − 1

n
< α

(
Qφ(n)

)
< E

Q̃
(−X) − ρ(X) + 2

n
.(3.11)

Let Y ∈ L1(c). Let ε > 0. There is N(Y) such that for every n > N(Y ), E
Q̃

(−Y) <

EQφ(n)
(−Y) + ε. N(Y) can be chosen such that N(Y) ≥ 1

ε
. Then for n ≥ N(Y),

E
Q̃

(−Y) − ρ(Y ) ≤ α
(
Qφ(n)

) + ε

≤ E
Q̃

(−X) − ρ(X) + 2

n
+ ε(3.12)

≤ E
Q̃

(−X) − ρ(X) + 3ε.

As the inequality is satisfied for every Y and every ε > 0, it follows that

α(Q̃) = sup
Y∈L1(c)

(
E

Q̃
(−Y) − ρ(Y )

) ≤ E
Q̃

(−X) − ρ(X)
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and thus,

ρ(X) = E
Q̃

(−X) − α(Q̃). �

PROPOSITION 3.2. Let ρ be a normalized convex risk measure on L1(c) ma-
jorized by a sublinear risk measure. There is a countable set {Rn,n ∈ N} of prob-
ability measures belonging to L1(c)∗ which is relatively compact for the weak*
topology of L1(c)∗ and also for the weak topology and such that

∀X ∈ L1(c) ρ(X) = sup
n∈N

(
ERn[−X] − α(Rn)

)
,(3.13)

where

α(R) = sup
X∈L1(c)

(
ER[−X] − ρ(X)

)
.(3.14)

PROOF. From Proposition 3.1, there is a set Q of probability measures in
L1(c)∗, relatively compact for the weak* topology, such that equation (3.3) is sat-
isfied. From Lemma 3.1, Q is contained in mK+, the nonnegative part of a certain
closed ball of L1(c)∗. From Proposition 2.6, mK+, is metrizable compact for the
weak* topology. There is thus a countable dense set (Qn)n∈N in mK+. Denote d a
distance on mK+ defining the weak* topology. For every Q ∈ mK+, let B(Q, r) =
{R ∈ mK+|d(Q,R) ≤ r}. The set B(Q, r) is compact for the weak* topology. The
penalty α defined on L1(c)∗ by (3.14) is l.s.c. thus, for every n ∈ N and k ∈ N

∗,

there is Rn,k in B(Qn,
1
2k ) such that α(Rn,k) = min{α(Q),Q ∈ B(Qn,

1
2k )}.

Let X ∈ L1(c). From Theorem 3.2, there is QX ∈ Q such that ρ(X) =
EQX

(−X) − α(QX). For all ε > 0, there is η > 0 such that ∀Q ∈ B(QX,η),
|EQX

(−X) − EQ(−X)| < ε. Let k be such that 1
2k−1 < η. Let n be such that

QX ∈ B(Qn,
1
2k ) then ERn,k

(−X)−α(Rn,k) > ρ(X)−ε. It follows that {Rn,k, n ∈
N, k ∈ N

∗} is a countable set weakly relatively compact (as it is contained in mK+)
satisfying the required condition. �

THEOREM 3.3. Every convex risk measure on L1(c) can be represented by a
countable set of probability measures {Rn,n ∈ N} belonging to L1(c)∗.

∀X ∈ L1(c) ρ(X) = sup
n∈N

(
ERn(−X) − α(Rn)

)
,(3.15)

where α(R) is given by (3.14).

PROOF. From Theorem 3.1, ρ has a dual representation given by (3.1). De-
note then ρm(X) = supQ∈mK+(EQ(−X) − α(Q)). Even if ρm is not necessarily
normalized, all the arguments of the proof of Proposition 3.2 apply as mK+ is
metrizable compact for the weak* topology and α is l.s.c. Thus, ρm has a repre-
sentation with a countable set of probability measures. As ρ = supm∈N ρm, this
gives the result. �
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4. Equivalence class of probability measures associated to a nondominated
set of probability measures. Let � be a metrizable and separable space. In this
section we study a capacity defined from a weakly relatively compact set of prob-
ability measures P possibly nondominated.

DEFINITION 4.1. Let P be a weakly relatively compact set of probability
measures on (�, B(�)). Let 1 ≤ p < ∞. The capacity cp,P is defined on Cb(�)

by

cp,P (f ) = sup
P∈P

EP (|f |p)1/p(4.1)

and extended to every function on � as explained in Section 2.1, equations (2.1)
and (2.2).

Notice that as P is a weakly relatively compact set of probability measures,
cp,P is a capacity (see Proposition I.3 of [24] or the Appendix). The Banach space
associated to the capacity cp,P is denoted L1(cp,P ). When there is no ambiguity
on the set P we simply write cp for cp,P .

When P = {μ0}, L1(cp,{μ0}) = L1(�, B(�),μ0). A nonnegative measure μ on
(�, B(�)) belongs to the (usual) equivalence class of the probability measure μ0
if and only if ∀A ∈ B(�),μ(A) = 0 ⇐⇒ μ0(A) = 0.

Equivalently, for μ in the dual of L1(�, B(�),μ0),

μ ∼ μ0 ⇐⇒
[
∀X ∈ L1(�, B(�),μ0)+,X = 0 ⇐⇒

∫
X dμ = 0

]
.

We address the following question: when P is weakly relatively compact, can one
associate a probability measure P to L1(cp,P ) characterizing the null elements
in the cone L1(cp,P )+, that is, such that ∀X ∈ L1(cp,P )+,X = 0 ⇐⇒ EP (X) =∫

X dP = 0? If yes, can one define a natural equivalence relation so that one gets a
unique equivalence class of such probability measures? Notice that when P is not
finite, characteristic functions of Borelian sets are not all in L1(cp,P ).

4.1. Properties of the capacity.

LEMMA 4.1. For all X in L1(cp,P ), cp,P (X) = supQ∈P EQ(|X|p)1/p .

PROOF. Denote cp = cp,P . For all f,g in Cb(�), for all Q ∈ P ,
∣∣EQ(|f |p)1/p − EQ(|g|p)1/p

∣∣ ≤ EQ(|f − g|p)1/p ≤ cp(|f − g|).
As Cb(�) is dense in L1(cp) for the cp norm, it follows that for every X ∈ L1(cp),
g ∈ Cb(�) and Q ∈ P ,∣∣EQ(|X|p)1/p − EQ(|g|p)1/p

∣∣ ≤ cp(|X − g|).(4.2)
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From (4.2) it follows that

EQ(|X|p)1/p ≤ cp(X) ∀Q ∈ P .(4.3)

For every X ∈ L1(cp), for every ε > 0 there is g ∈ Cb(�) such that

cp(X − g) ≤ ε.(4.4)

From Definition 4.1, there is Q0 ∈ P such that

cp(g) ≤ EQ0(|g|p)1/p + ε.(4.5)

As cp(X) ≤ cp(g) + ε, it follows from (4.2), (4.4) and (4.5) that cp(X) ≤
supQ∈P EQ(|X|p)1/p . The result follows from (4.3). �

THEOREM 4.1. Assume that � is a Polish space. There is a countable subset
Q of P , Q = {Pn,n ∈ N}, such that for every X ∈ L1(cp,P ), for every p ∈ [1,∞[,

cp,P (X) = sup
n∈N

(EPn(|X|p))1/p.(4.6)

The capacities cp,P and cp,Q defined on Cb(�) by (4.1) and extended to real func-
tions using formulas (2.1) and (2.2) are equal. The associated Banach spaces are
equal: L1(cp,P ) = L1(cp,Q).

PROOF. From the previous lemma, applied with p = 1, it follows that the set
P is contained in K+, the nonnegative part of the unit ball of the dual of L1(c1,P ).
� is a Polish space, so from Corollary 2.1, K+ is metrizable compact for the weak*
topology. Thus P , the closure of P for the weak* topology, is metrizable compact.
There is then in P a countable set (Pn)n∈N dense in P for the weak* topology.
It follows that for every X ∈ L1(c1,P ), supQ∈P EQ(|X|) = supn∈N EPn(|X|). The
equation (4.6) follows for every p ≥ 1 for every X ∈ Cb(�).

The two capacities

cp,P (f ) = sup
P∈P

EP (|f |p)1/p and cp,Q = sup
Q∈Q

EQ(|f |p)1/p

coincide on Cb(�). By definition of the extension of a capacity to the set of all
functions on �, these extensions are the same. Therefore, L1(cp,P ) = L1(cp,Q).

�

In the following proposition we study possible extensions of (4.1).

PROPOSITION 4.1. Let cp = cp,P . For every nonnegative bounded lower
semi-continuous map g,

cp(g) = sup
Q∈P

EQ(gp)1/p.(4.7)

For every Borelian map f ,

sup
Q∈P

EQ(|f |p)1/p ≤ cp(f ).(4.8)
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PROOF. The proof of the first part of Proposition 2.1, which was given for
the characteristic function of an open set, applies without any change to every
nonnegative bounded l.s.c. function g. Thus, there is an increasing sequence of
continuous functions hn with limit g and such that cp(g) = lim cp(hn). As g is
bounded, cp(g) is finite. Let ε > 0. There is n such that cp(g) − ε ≤ cp(hn) ≤
cp(g). By definition of cp on Cb(�), there is Qn in P such that cp(hn) − ε ≤
EQn(h

p
n)1/p ≤ cp(hn). Thus,

EQn(g
p)1/p ≥ cp(g) − 2ε.(4.9)

On the other hand, for all Q in P , EQ(h
p
n)1/p ≤ cp(hn) ≤ cp(g). From the mono-

tone convergence theorem it follows that

∀Q ∈ P EQ(gp)1/p ≤ cp(g).(4.10)

Thus, from (4.9) and (4.10) we get that

cp(g) = sup
Q∈P

EQ(gp)1/p.(4.11)

Let f be a Borelian map. If cp(f ) = +∞, the result is trivial. Assume that
cp(f ) < ∞. Let ε > 0. By definition of cp(f ), equation (2.2), there is g

l.s.c., g ≥ |f | such that cp(g) < cp(f ) + ε. As g is l.s.c., we already know
that supQ∈P EQ(|g|p)1/p = cp(g). As f is Borel measurable, for all Q ∈ P ,
EQ(|f |p)1/p is defined. As g ≥ |f | it follows that EQ(|f |p)1/p ≤ cp(f )+ ε. This
inequality is true for every ε and every Q ∈ P . This proves the announced result
for every f Borel measurable. �

REMARK 1. For every open subset V of �, 1V is lower semi-continuous,
so from Proposition 4.1, cp(1V ) = supQ∈P Q(V )1/p . However, there are Borelian
subsets of � for which the equality cp(1A) = supQ∈P Q(A)1/p is not satisfied.

For example, let � = [0,1]. Let xn ∈ ]0,1[ be a sequence converging to 0. Let
A = [0,1] − {xn,n ∈ N}. Let Qn = δxn . Let P = {Qn,n ∈ N}. P is weakly rela-
tively compact. Let f l.s.c. such that 1A ≤ f ≤ 1. For every η > 0, V = {x|f (x) >

1 − η} is an open set containing A. As 0 ∈ A, there is ε > 0 such that [0, ε[ ⊂ V .
So there is N ∈ N such that xn ∈ V ∀n ≥ N . So EQn(f

p) = (f (xn))
p > (1 − η)p .

From (4.7), 1 ≥ cp(f ) = supn∈N(EQn(f
p))1/p > 1 − η for every η > 0. Thus,

cp(f ) = 1. It follows that cp(1A) = 1. On the other hand, Qn(1A) = 0 for all
n ∈ N. Therefore, supQ∈P Q(A)1/p = 0. This gives a counterexample.

4.2. Canonical equivalence class of nonnegative measures associated to cp .
In all this section, we assume that � is a Polish space. We denote cp the capacity
defined on Cb(�) by cp(f ) = supQ∈P EQ(|f |p)1/p .

DEFINITION 4.2. M+(cp) is the set of nonnegative finite measures on
(�, B(�)) defining an element of L1(cp)∗.



228 J. BION-NADAL AND M. KERVAREC

In the following, we identify an element μ of M+(cp) with its associated linear
form on L1(cp).

REMARK 2. A nonnegative finite measure μ on (�, B(�)) belongs to
M+(cp) if and only if there is a constant K > 0 such that ∀f ∈ Cb(�), |μ(f )| ≤
Kcp(f ). It follows easily that every element in the weak closure of the convex
hull of P defines an element of M+(cp).

DEFINITION 4.3. Define on M+(cp) the relation Rcp by

μRcpν ⇐⇒ {X ∈ L1(cp),X ≥ 0|μ(X) = 0}
(4.12)

= {X ∈ L1(cp),X ≥ 0|ν(X) = 0}.
The following lemma is trivial.

LEMMA 4.2. Rcp defines an equivalence relation on M+(cp).

DEFINITION 4.4. Let μ ∈ M+(cp). The cp-class of μ is the equivalence class
of μ for the equivalence relation Rcp .

THEOREM 4.2. To every weakly relatively compact set P of probability mea-
sures on (�, B(�)), possibly nondominated, can be associated canonically a cp-
class of nonnegative measures on (�, B(�)) such that an element μ of M+(cp)

belongs to this class if and only if

∀X ∈ L1(cp),X ≥ 0 {μ(X) = 0} ⇐⇒ {X = 0 in L1(cp)}.
This class is referred to as the canonical cp-class.

For every set {Qn,n ∈ N} of probability measures on (�, B(�)) such that
equality (4.6) is satisfied for all X ∈ L1(cp), for αn > 0 such that

∑
n∈N αn = 1,

the probability measure
∑

n∈N αnQn belongs to the canonical cp-class.

PROOF. Let p ∈ [1,∞[. Let {Qn} be a countable set of probability measures
such that equality (4.6) is satisfied. Let Q = {Qn,n ∈ N}. Let P = ∑

n∈N αnQn.
Let X ∈ L1(cp),X ≥ 0, that is, from Lemma 2.1, X = |X|. EP (X) = 0 if and only
if EQn(|X|) = 0 for all n ∈ N.

From (4.6), it follows that for X ≥ 0, EP (X) = 0 if and only if cp(X) = 0, if
and only if X = 0 in L1(cp).

This proves that the canonical cp-class is well defined (as it is not empty) and
that

∑
n∈N αnQn belongs to the canonical cp-class. �

LEMMA 4.3. Let P be a probability measure belonging to the canonical cp-
class. Let X be an element of L1(cp). Then X ≥ 0 [for the order in L1(cp)] if and
only X ≥ 0 P a.s.
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PROOF. For every X ∈ L1(cp), |X| − X ≥ 0. From Lemma 2.1 X ≥ 0 if and
only if |X| − X = 0 in L1(cp). By definition of the canonical cp-class, this is
equivalent to |X| − X = 0 P a.s., that is, X ≥ 0 P a.s. �

REMARK 3. When P = {P }, the canonical cp-class is the restriction to
M+(cp) of the usual equivalence class of the probability measure P .

When P is a finite set, P = {P1, . . . ,Pn} the canonical cp-class is the restriction
to M+(cp) of the equivalence class (in the usual sense) of the probability measure

P =
∑

1≤i≤n Pi

n
.

Our next goal is to give a description of L1(cp)∗.

THEOREM 4.3. There is a regular probability measure P belonging to the
canonical cp-class and a countable subset D = {Ln,n ∈ N} of the set L1(cp)∗+ of
nonnegative continuous linear forms on L1(cp) such that:

• {Ln,n ∈ N} is dense in L1(cp)∗+ = M+(cp) for the weak* topology.
• Every Ln is represented by a nonnegative measure on (�, B(�)) absolutely

continuous with respect to P .

Every continuous linear form � on L1(cp) is the weak* limit of a sequence �n

where every �n is the difference of two elements of D.
Furthermore, for every X ≥ 0 in L1(cp), X = 0 iff P(X) = 0, iff Ln(X) = 0 for

all n ∈ N.

PROOF. Denote nK+ = {L ∈ L1(cp)∗,L ≥ 0 and ‖L‖ ≤ n}. From Corol-
lary 2.1, every nK+ is metrizable compact for the weak* topology. There is then
in nK+ a dense countable set Dn. Thus, D = ⋃

n∈N Dn is countable and dense in
L1(cp)∗+ for the weak* topology. Enumerate the elements of D, D = {Ln,n ∈ N}.
From Proposition 2.3, every Ln is represented by a nonnegative finite measure μn

on (�, B(�)). Let αn > 0 such that
∑

n∈N αn‖Ln‖ < ∞. Then L̃ = ∑
n∈N αnLn ∈

L1(cp)∗+. From Proposition 2.3, L̃ is represented by a nonnegative finite mea-
sure μ. Denote P the probability measure P = μ

μ(�)
. P is a probability measure

on (�, B(�)), P ∈ M+(cp). Furthermore, every μn is absolutely continuous with
respect to P and P is regular from Theorem 1.1 of [5].

We prove now that P belongs to the canonical cp-class. Every Ln belongs to
L1(cp)∗. Thus, for every X in L1(cp) such that X = 0 in L1(cp), Ln(X) = 0
and thus L̃(X) = 0. It follows that P(X) = 0. Conversely let X ≥ 0 in L1(cp)

such that P(X) = 0. It follows that L̃(X) = 0. Every Ln belongs to L1(cp)∗+ and
X ≥ 0, thus, Ln(X) ≥ 0 for all n. From the equality L̃(X) = 0, it follows that
Ln(X) = 0 ∀n ∈ N. {Ln,N ∈ N} is dense in L1(cp)∗+ for the weak* topology,
therefore, L(X) = 0 for all L ∈ L1(cp)∗+. From the representation result of con-
tinuous linear forms on L1(cp) (Proposition 2.3) and the Jordan decomposition
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of bounded signed measures on (�, B(�)), it follows that every � ∈ L1(cp)∗ is
represented by a bounded measure μ = μ+ − μ−. There is a Borelian set A such
that

∫
f dμ+ = ∫

f 1A dμ for every f ∈ Cb(�). |μ| = μ+ + μ− is defined on
(�, B(�)) and is thus regular from Theorem 1.1 of [5].

∀ε > 0,∃V open,A ⊂ V such that |μ|(1V − 1A) ≤ ε

2
.(4.13)

1V is lower semi-continuous so it is the increasing limit of a sequence of continu-
ous functions hn. From the monotone convergence theorem and equation (4.13), it
follows that

∀ε > 0,∃h ∈ Cb(�),0 ≤ h ≤ 1V such that
∫

|1A − h|d|μ| < ε.(4.14)

Thus, ∣∣∣∣
∫

f 1A dμ −
∫

f hdμ

∣∣∣∣ < ‖f ‖∞ε.(4.15)

By definition of μ,

∀f ∈ Cb(�)

∣∣∣∣
∫

f hdμ

∣∣∣∣ < ‖�‖cp(f h) ≤ ‖�‖cp(f ).(4.16)

From (4.15) and (4.16), we get | ∫ f dμ+| = | ∫ f 1A dμ| ≤ ‖�‖cp(f ). It follows
that μ+ defines an element of L1(cp)∗+. It is the same for μ−. Thus, for every
� ∈ L1(cp)∗, �(X) = 0. From Hahn–Banach theorem, it follows that X = 0 in
L1(cp). This proves that P belongs to the canonical cp-class.

We have proved that every � ∈ L1(cp)∗ can be written � = �+ − �−,
�+,�− ∈ L1(cp)∗+. The result follows then from the density of D in L1(cp)∗+.

�

The results of the previous section on convex risk measures on L1(c) can be
specified when the capacity is cp = cp,P .

PROPOSITION 4.2. Let ρ be a convex risk measure on L1(cp). There is a
probability measure Q in the canonical cp-class and a countable set {Qn,n ∈ N}
of probability measures all absolutely continuous with respect to Q such that

ρ(X) = sup
n∈N

[EQn(−X) − α(Qn)] ∀X ∈ L1(cp).(4.17)

PROOF. From Theorem 3.3, there is a countable set {Qn,n ∈ N} of probabil-
ity measures such that equation (4.17) is satisfied. From Theorem 4.2 there is a
probability measure P in the canonical cp-class. Let Q = P

2 + ∑
n∈N

Qn

2n+2 . It is
easy to verify that Q satisfies the required conditions. �
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REMARK 4. Even if the capacity cp is defined from a weakly relatively com-
pact set of probability measures, the set of probability measures {Qn,n ∈ N}
in the above dual representation (4.17) of a convex risk measure ρ on L1(cp)

is not always relatively compact for the weak* topology. From Proposition 3.3,
{Qn,n ∈ N} is relatively compact iff ρ is majorized by a sublinear risk measure.

5. Regular risk measures on Cb(�).

5.1. Regularity. Notice that in a context of uncertainty, which is when no ref-
erence probability measure is given, it is natural to consider risk measures defined
on the space Cb(�) or more generally on a lattice vector subspace of Cb(�). As in
Section 2.1, L denotes a linear vector subspace of Cb(�) containing the constants,
generating the topology of � and which is a vector lattice.

DEFINITION 5.1. ρ : L → R is a convex risk measure on L if it satisfies the
axioms of Definition 3.1, replacing everywhere L1(c) by L. It is normalized if
ρ(0) = 0.

A sublinear risk measure ρ on L is regular if for every decreasing sequence Xn

of elements of L with limit 0, ρ(−Xn) tends to 0. A normalized convex risk mea-
sure is uniformly regular if for all X supλ>0

ρ(λX)
λ

< ∞ and for every decreasing

sequence Xn of elements of L with limit 0, ρ(−λXn)
λ

converges to 0 uniformly in λ.

REMARK 5. For sublinear risk measures, the two notions of regularity and
uniform regularity are equivalent.

From now on in this section ρ is a normalized convex risk measure on L.

LEMMA 5.1. Assume that ρ is uniformly regular. ρmin(X) = supλ>0
ρ(λX)

λ
de-

fines a regular sublinear risk measure on L. It is the minimal sublinear risk mea-
sure on L majorizing ρ.

PROOF. The convexity, monotonicity and translation invariance of ρmin follow
easily from the same properties of ρ. The homogeneity of ρmin follows from its
definition. Thus, ρmin is a sublinear risk measure on L majorizing ρ. The regularity
of ρmin follows from the uniform regularity of ρ. For every sublinear risk measure
ρ1 majorizing ρ, for every X ∈ L, ρmin(X) ≤ ρ1(X). Thus, ρmin is minimal. �

LEMMA 5.2. For every Y in L, for every sequence λn of real numbers de-
creasing to 1, the sequence ρ(λnY ) converges to the limit ρ(Y ).

PROOF. As λn is a decreasing sequence with limit 1, one can assume that
2 > λn ≥ 1. Write λn = 1 + εn, 0 ≤ εn < 1. From the convexity of ρ and ρ(0) = 0,
it follows that

ρ
(
(1 + εn)Y

) ≥ (1 + εn)ρ(Y ),(5.1)
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(1 + εn)Y = (1 − εn)Y + εn(2Y). Using the convexity of ρ, it follows that

ρ
(
(1 + εn)Y

) ≤ (1 − εn)ρ(Y ) + εnρ(2Y).(5.2)

From (5.1) and (5.2),

(1 + εn)ρ(Y ) ≤ ρ
(
(1 + εn)Y

) ≤ (1 − εn)ρ(Y ) + εnρ(2Y).(5.3)

Passing now to the limit in inequality (5.3), it follows that the sequence ρ((1 +
εn)Y ) has a limit equal to ρ(Y ). �

Using the preceding lemma, we prove now that every normalized uniformly
regular convex risk measure can be extended into a convex risk measure on L1(c)

for some capacity c. Therefore, we will be able to apply the representation results
of Section 3.

LEMMA 5.3. Assume that ρ is uniformly regular. Denote ρ1 a regular sublin-
ear risk measure on L such that ρ ≤ ρ1.

• c(X) = ρ1(−|X|) defines a capacity on L.
• ρ1 has a unique continuous extension into a sublinear risk measure ρ1 on L1(c).
• ρ has a unique continuous extension into a normalized convex risk measure ρ

on L1(c) majorized by ρ1.

PROOF. The sublinearity, monotonicity and regularity of ρ1 imply that c is a
capacity on L. As usual, this leads to the Banach space L1(c). As ρ1 is sublinear,
for every X,Y ∈ L, ρ1(X) ≤ ρ1(Y ) + ρ1(X − Y).

Exchanging X and Y and using the monotonicity of ρ1 and the definition of c,
it follows that |ρ1(X) − ρ1(Y )| ≤ c(X − Y). Thus, ρ1 is uniformly continuous on
L for the c semi-norm. It extends uniquely into a continuous function ρ1 on L1(c).
ρ1 is a sublinear risk measure. Let εn > 0 decreasing to 0:

X = 1

1 + εn

[(1 + εn)Y ] + εn

1 + εn

[
1 + εn

εn

(X − Y)

]
.

From the convexity of ρ, the majoration of ρ by ρ1 and the homogeneity of ρ1 (cf.
ρ1 is sublinear), it follows that

ρ(X) ≤ 1

1 + εn

ρ
(
(1 + εn)Y

) + ρ1(X − Y).(5.4)

From inequality (5.4) and Lemma 5.2 applied with (1 + εn)Y , passing to the
limit, it follows then that ρ(X) − ρ(Y ) ≤ ρ1(X − Y) ≤ c(X − Y). Exchanging
X and Y , this proves the uniform continuity of ρ for the c semi-norm. ρ extends
then uniquely into a continuous function ρ on L1(c). ρ is a convex risk measure
on L1(c) majorized by ρ1. �

DEFINITION 5.2. Let ρ be a normalized uniformly regular convex risk mea-
sure on L. The capacity cρ defined as cρ(X) = ρmin(−|X|) is called the capacity
canonically associated with ρ.
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5.2. Representation of uniformly regular convex risk measures. In this section,
we assume that � is a Polish space. Taking into account the liquidity risk in a
financial market, we introduce the following definition for a riskless asset, which
means that all investment in this asset is risk-free.

DEFINITION 5.3. A nonpositive element X of Cb(�) is riskless if for all λ >

0, ρ(λX) = 0 [or equivalently for all λ > 0, ρ(λX) ≤ 0].

THEOREM 5.1. Let ρ be a normalized uniformly regular convex risk measure
on L.

Then ρ extends uniquely to Cb(�) and admits the following representation,

∀X ∈ Cb(�) ρ(X) = sup
n∈N

(
EQn(−X) − α(Qn)

)
(5.5)

for a certain weakly relatively compact set {Qn,n ∈ N} of probability measures.
Furthermore, for αn > 0 such that

∑
n∈N αn = 1, the probability measure P =∑

n∈N αnQn characterizes the riskless nonnegative elements of Cb(�), that is, X ≤
0 is riskless iff X = 0 P a.s.

For every X ∈ Cb(�) there is a probability measure QX in the weak closure of
{Qn,n ∈ N}, such that

ρ(X) = EQX
(−X) − α(QX).(5.6)

PROOF. Let cρ(X) = ρmin(−|X|) be the capacity canonically associated
with ρ (Definition 5.2). As � is a Polish space, every capacity is a Prokhorov
capacity. Denote ρ (resp., ρmin) the extensions of ρ (resp., ρmin) to L1(cρ) given
by Lemma 5.3.

As ρ is majorized by ρmin, the representation result with a countable weakly
relatively compact set Q = {Qn} follows from Proposition 3.2. We can, of course,
restrict to Qn such that α(Qn) < ∞. Then cρ(X) = supn∈N EQn(|X|), that is,
cρ = c1,Q. From Theorem 4.2 the probability measure P = ∑

n∈N αnQn belongs
to the canonical cρ -class. Let X ≤ 0 in Cb(�), X is riskless iff ρ(λX) = 0 ∀λ > 0,
iff cρ(−X) = 0, iff X = 0 P a.s. The existence of QX follows from Theorem 3.2.

�

6. Examples.

6.1. G-expectations. In this section, � = C0([0,∞[,R
d), the set of contin-

uous functions f defined on [0,∞[ with values in R
d such that f (0) = 0.

C0([0,∞[,R
d) endowed with the topology of uniform convergence on compact

spaces is a Polish space.
Peng introduced the notion of sublinear expectation and of G-expectations

[27, 28] defined on a vector lattice H of real functions containing 1 and included
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in Cb(�). For the definition of a sublinear expectation E on H we refer to [15],
Section 3. G-expectations are defined from solutions of P.D.E. in [27] and [28].
A G-expectation is up to a minus sign a sublinear risk measure.

It is proved in [15] and [23] that every G-expectation E has a representation
with respect to a weakly relatively compact set of probability measures P : E(f ) =
supP∈P EP (f ) for all f in H. E extends naturally to Cb(�),

E(f ) = sup
P∈P

EP (f ) ∀f ∈ Cb(�).(6.1)

As P is weakly relatively compact, ρ(f ) = E(−f ) is a sublinear regular risk
measure on Cb(�). Denote cE = cρ the corresponding capacity cE(X) = E(|X|)
∀X ∈ Cb(�).

Notice that, alternatively, regularity could be proved directly for G-expectations.
Theorem 5.1 would thus give the representation result [equation (6.1)].

PROPOSITION 6.1. There is a countable weakly relatively compact set
{Qn,n ∈ N} of probability measures, Qn ∈ P such that

∀X ∈ Cb(�) E(X) = sup
n∈N

EQn(X).(6.2)

Let P = ∑
n∈N∗ Qn

2n+1 . For all f ≥ 0 in Cb(�), E(f ) = 0 iff f = 0 P a.s.
For every X ∈ Cb(�), there is a probability measure QX in the weak closure of

{Qn,n ∈ N
∗}, such that E(X) = EQX

(X).

PROOF. The result follows from Theorem 5.1. �

6.2. Risk measure in context of uncertain volatility. We consider a framework
introduced in [16]. Let � = C0([0, T ],R

d) the space of continuous functions on
[0, T ] null in zero. For every t ≤ T , let �t = C0([0, t],R

d). �t is identified with
the subset of � of elements which are constant on [t, T ]. Let Bt be the σ -algebra
on � generated by the open sets of �t . Denote Bt the coordinate process. A prob-
ability measure Q on (�, B(�)) is called an orthogonal martingale measure if the
coordinate process (Bt ) is a martingale with respect to Bt under Q and if the mar-
tingales ((Bi)t )1≤i≤d are orthogonal in the sense that for all i �= j , 〈Bi,Bj 〉Qt = 0
Q a.s. 〈Bi,Bj 〉Q denotes the quadratic covariational process corresponding to Bi

and Bj , under Q and 〈B〉Q the quadratic variation of B under Q. Fix for all
i ∈ {1, . . . , d} two finite deterministic Hölder-continuous measures μi and μi on
[0, T ] and consider the set P of orthogonal martingale measures such that

∀i ∈ {1, . . . , d} dμi,t ≤ d〈Bi〉Qt ≤ dμi,t .

Kervarec has proved in [24], Lemma 1.3, that the set P is weakly relatively com-
pact. Thus, c1(f ) = supQ∈P EQ(|f |) defines a capacity on Cb(�) (see the Ap-
pendix). As in Section 4, L1(c1) denotes the corresponding Banach space contain-
ing Cb(�) as a dense subset. From Theorems 4.1 and 4.2, there is a countable set
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(Pn)n∈N, Pn ∈ P such that ∀X ∈ L1(c1), c1(X) = supn∈N EPn(|X|) and such that
P = ∑

n∈N

Pn

2n belongs to the canonical c1-class.

LEMMA 6.1. For every probability measure R defining an element of L1(c1)
∗,

∀i ∈ {1, . . . , d} dμi,t ≤ d〈Bi〉Rt ≤ dμi,t .

Notice that a probability measure R in L1(c)∗ does not necessarily belong to P
and therefore the result is not trivial.

PROOF OF LEMMA 6.1. From [16], (Bi)
2
s ∈ L1(c1) for every s, thus,∫ t

0 (Bi)s d(Bi)s can be defined as an element of L1(c1). We thus define the
quadratic variation of B in L1(c1) by

〈Bi〉c1
t = (Bi)

2
t − 2

∫ t

0
(Bi)s d(Bi)s.(6.3)

This equation is satisfied in L1(c1) thus it is satisfied R a.s. for every probabil-
ity measure R defining an element of L1(c1)

∗. Let s ≤ t . Let A = {ω|〈Bi〉c1
t −

〈Bi〉c1
s > μi[s, t]} ∪ {ω|〈Bi〉c1

t − 〈Bi〉c1
s < μi[s, t]}. By hypothesis Pn(A) = 0.

Thus, P(A) = 0. The inequality

μi[s, t] ≥ 〈Bi〉c1
t − 〈Bi〉c1

s ≥ μi[s, t](6.4)

is thus satisfied P a.s. From Lemma 4.3, inequality (6.4) is then satisfied in L1(c1)

and then also R a.s. for every probability measure defining an element of L1(c1)
∗.
�

PROPOSITION 6.2. The set P is convex metrizable compact for the weak*
topology σ(L1(c1)

∗,L1(c1)) and also for the weak topology.

PROOF. The convexity of P is obvious. Denote as in Section 2, K+ the non-
negative part of the unit ball of L1(c)∗. From the definition of c1 it follows that
P ⊂ K+. Thus, the weak* closure P of P is a subset of K+. From Lemma 6.1 it
follows that every element Q ∈ P satisfies

∀i ∈ {1, . . . , d} dμi,t ≤ d〈Bi〉Qt ≤ dμi,t.

From Corollary 2.1, K+ is metrizable compact for the weak* topology thus, for
every Q ∈ P , there is a sequence Qn,Qn ∈ P converging to Q for the weak*
topology.

From [16], |(Bi)t |k ∈ L1(c1) for k = 1 or 2, so (EQn − EQ)(|(Bi)t |k) → 0.
Passing to the limit, EQ(|(Bi)t |) ≤ c1(|(Bi)t |) and

EQ(|(Bi)t |2) ≤ c1(|(Bi)
2
t |).(6.5)
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Let g in Cb(�s). g can be identified with the element g̃ of Cb(�) defined by
g̃(x) = g(x|[0,s]). It follows from the inequality c1(Xg) ≤ ‖g‖∞c1(|X|) that ∀u ≥
s, (Bi)ug ∈ L1(c1), so ∀g ∈ Cb(�s) ∀λ ∈ R,

(EQn − EQ)
(
(Bi)u(g + λ)

) → 0.(6.6)

(Bi)t is a martingale for Qn, thus passing to the limit in (6.6), with u = t and
u = s, we obtain ∀g ∈ Cb(�s) ∀λ ∈ R,

EQ

(
(Bi)t (g + λ)

) = EQ

(
(Bi)s(g + λ)

)
.(6.7)

From (6.5), (Bi)u ∈ L2(�, Bu,Q) for u = t, s, and {g + λ,g ∈ Cb(�s), λ ∈ R} is
dense in L2(�, Bs,Q) thus, equality (6.7) is satisfied for every g ∈ L2(�, Bs,Q).
This proves that (Bi)t is a martingale for Q. A very similar proof leads to the
fact that the martingales (Bi)t and (Bj )t are mutually orthogonal for i �= j .
Thus, P is closed for the weak* topology. As P ⊂ K+, P is metrizable com-
pact for the weak* topology. The result follows from Proposition 2.4 for the weak
topology. �

For every P ∈ P let β(P ) ≥ 0. Let ρ be defined by

∀X ∈ Cb(�) ρ(X) = sup
P∈P

(
EP (−X) − β(P )

)
.(6.8)

As P is metrizable compact for the weak topology, ρ −ρ(0) is a uniformly regular
convex risk measure. Thus, Theorem 5.1 applies.

The link between the two previous examples is studied in [15]. The convex
weakly compact set characterizing the G-expectation E is in fact contained in the
set P of orthogonal martingale measures introduced in [16] and considered in
Section 6.2.

APPENDIX

Let � be a metrizable separable space and L as in Section 2 a lattice of contin-
uous bounded functions, containing constants and generating the topology of �.
We now recall some definitions and propositions proved in Section 2 of [20]. A ca-
pacity is defined as in Definition 2.1, Section 2.

DEFINITION A.1. A capacity c defined on L is regular if it satisfies the fol-
lowing:

For all decreasing net fα ∈ L converging to 0, inf c(fα) = 0.

DEFINITION A.2. A capacity c defined on L is a Prokhorov capacity if for
all ε > 0, there exists a compact set K such that c(f ) ≤ ε for all f ∈ L such that
|f | ≤ 1�\K .
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PROPOSITION A.3. If � is a Lindelöf space, then every capacity is a regular
capacity.

PROPOSITION A.4. If � is locally compact or a Polish space, then every reg-
ular capacity is a Prokhorov capacity.

REMARK 6. If � is a Polish space, then it is a Lindelöf space and thus every
capacity is a Prokhorov capacity.

PROPOSITION A.5. If P is weakly relatively compact, c defined on Cb(�) by
c(f ) = supP∈P (EP [|f |p])1/p is a capacity.

The proof follows from Dini’s theorem (see [24], Proposition I.3, for more de-
tails).
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