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THE DENSITY OF THE ISE AND LOCAL LIMIT LAWS FOR
EMBEDDED TREES

BY MIREILLE BOUSQUET-MÉLOU1 AND SVANTE JANSON

CNRS, Université Bordeaux 1 and Uppsala University

It has been known for a few years that the occupation measure of several
models of embedded trees converges, after a suitable normalization, to the
random measure called ISE (integrated SuperBrownian excursion). Here, we
prove a local version of this result: ISE has a (random) Hölder continuous
density, and the vertical profile of embedded trees converges to this density,
at least for some such trees.

As a consequence, we derive a formula for the distribution of the density
of ISE at a given point. This follows from earlier results by Bousquet-Mélou
on convergence of the vertical profile at a fixed point.

We also provide a recurrence relation defining the moments of the (ran-
dom) moments of ISE.

1. Introduction. We consider some families of random labeled trees; the la-
bels will be integers (positive or negative). Our main case is binary trees, in which
each node has a right and/or a left child, or no child at all (Figure 1). The label
of a node is the difference between the number of right steps and the number of
left steps occurring in the path from the root to the node. In particular, the root has
label 0, and the labels of two adjacent nodes differ by ±1. Note that the label of
each node is simply its abscissa, if we draw the tree in the plane in such a way that
the right [left] child of a node lies one unit to the right [left] of its parent. We call
this the natural labeling of a binary tree.

Given a labeled tree T , let X(j ;T ) be the number of nodes in T with label j ;
the sequence (X(j ;T ))∞j=−∞ is the vertical profile of the tree (Figure 1).

Let Tn be a random binary tree with n nodes with the uniform distribution,
and let Xn(j) := X(j ;Tn) be its vertical profile. It was shown by Marckert [23],
Theorem 5, that the (random) distribution of the labels in the tree converges, after
appropriate normalization, to the ISE (integrated superBrownian excursion) intro-
duced by Aldous [4]; see also [7]. The ISE is a random probability measure; to
emphasize this, we will usually write it as µISE. (Actually, the result in [23] is
stated for complete binary trees, i.e., binary trees where each node has either 0
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FIG. 1. A binary tree having vertical profile [2,2,4;2,1,1].

or 2 children, but the result transfers immediately by considering internal nodes
only; see at the end of Section 8 for details.) Marckert’s result can be stated as fol-
lows, where γ := 2−1/4, �(v) denotes the label of v, and δx is the Dirac measure
at x,

1

n

∞∑
j=−∞

Xn(j)δγn−1/4j = 1

n

∑
v∈Tn

δγ n−1/4�(v)

d−→ µISE, n → ∞,(1.1)

with convergence in the space of probability measures on R. For complete binary
trees, the result is the same, except that now γ = 1 (and n has to be odd).

Our first main result is a local version of (1.1), showing that the vertical profile
of random binary trees, properly normalized, converges to the density fISE of µISE;
see Section 3 for details. Our second result consists of a recurrence relation that
characterizes the joint law of the moments of the ISE.

REMARK 1.1. Different normalizations of µISE are used in the literature. We
use the normalization of [4], also used by, for example, [23]. The normalization in
[7, 24] differs by a scale factor 21/4.

Our local limit result actually holds for other families of labeled (or embedded)
trees too. Indeed, the random measure µISE arises naturally as a limit for embed-
ded trees in the following way [4]. Let Tn be a random conditioned Galton–Watson
tree with n nodes, that is, a random tree obtained as the family tree of a Galton–
Watson process conditioned on a given total population of n. (See, e.g., [2, 9] for
details, and recall that this includes, e.g., binary trees, complete binary trees, plane
trees and labeled (=Cayley) trees. These random trees are also known as simply
generated trees.) The Galton–Watson process is defined using an offspring distri-
bution; let ξ denote a random variable with this distribution. We assume, as usual,
Eξ = 1 (the Galton–Watson process is critical) and 0 < σ 2

ξ := Var ξ < ∞. Assign
i.i.d. random variables ηe to the edges of Tn. We regard ηe as the displacement
from one endpoint of the edge e to the other, in the direction from parent to child;
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this gives a labeling of the nodes such that the root has label 0 and each other node
v has label �(v) := �(v′) + ηvv′ , where v′ is the parent of v. For the purposes of
this paper, we assume ηe to be integer valued. We further assume Eηe = 0 and
0 < σ 2

η := Varηe < ∞. Define X and Xn as was done above for binary trees with

their natural labeling. Then (1.1) holds, with γ := σ−1
η σ

1/2
ξ [4]; see also [17].

We conjecture that a local version of (1.1) holds in this generality, provided ηe

is not supported on a subgroup dZ of the integers with d ≥ 2, but we will only
prove this for two special cases, namely random plane trees with ηe uniformly
distributed on either {±1} or {−1,0,1}; see Theorem 3.6.

We state in Section 2 some properties of the (random) density function fISE,
in particular, that it exists. The proofs are given in Section 6 after some prelim-
inaries on the Brownian snake and the Brownian CRT (continuum random tree)
in Section 5. Our results on the local limit law are stated in Section 3 and proved
in Sections 7–10. Some further computations of (mixed) moments of the density
fISE(λ) are given in Section 11. Our results on moments of µISE are stated in
Section 4 and proved in Section 12.

All unspecified limits below are as n → ∞. We will use C and c with vari-
ous subscripts to denote various positive constants, not depending on n or other
variables; for constants depending on a parameter we use C(a) and so on.

2. The density of the ISE. It is no surprise that the random measure µISE is
absolutely continuous; the following theorem may well be known to experts, but
we have not found an explicit reference. (Related results for super-Brownian mo-
tion have been given by [19, 26, 30]. It seems to be possible but nontrivial to derive
the existence of a density for ISE from these results.) We give a proof in Section 6.

THEOREM 2.1. ISE has a Hölder continuous density. In other words, there ex-
ists a continuous stochastic process fISE(x), −∞ < x < ∞, such that dµISE(x) =
fISE(x) dx. Moreover, the random function fISE(x) has a.s. the following proper-
ties:

(i) fISE has compact support: sup{|x| :fISE(x) �= 0} < ∞;
(ii) fISE is Hölder(α)-continuous for every α < 1;

(iii) fISE has a derivative f ′
ISE(x) a.e. and in the distribution sense, and f ′

ISE ∈
Lp(dx) for every p with 2 ≤ p < ∞.

Of course, the support of fISE is random; (i) says that there exists a random
M < ∞ such that fISE(x) = 0 for |x| > M , but no deterministic M will do.

REMARK 2.2. More precisely, the proof in Section 6 shows that fISE belongs
to the generalized Sobolev space L2,α for any α < 3/2. Loosely speaking, fISE
thus has “α derivatives in L2” for every real α < 3/2.
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Parts (ii) and (iii) of Theorem 2.1 come close to showing that fISE has a contin-
uous derivative, but we have not been able to prove it. Indeed, it seems likely that
the (fractional) derivatives in L2 asserted by Remark 2.2 are continuous. Hence,
we make the following conjecture.

CONJECTURE 2.3. The density fISE has a.s. a continuous derivative, but not
a second derivative.

The marginal distributions of fISE, that is, the distributions of fISE(λ) for
fixed λ, will be described in Corollaries 3.3 and 3.4. Moments and mixed moments
of fISE(λ) will be computed in Section 11.

3. Local limit results. Our main result is the following local limit result for
naturally embedded random binary trees, conjectured in [7].

We let X̄n(x) denote the function obtained by extending Xn(j) to arbitrary real
arguments by linear interpolation; thus, X̄n(j) = Xn(j) for every integer j , and
X̄n is linear on each interval [j, j + 1].

C0(R) denotes, as usual, the Banach space of continuous functions on R that
tend to 0 at ±∞. We equip C0(R) with the usual uniform topology defined by the
supremum norm.

Recall that we have defined the constant γ as 2−1/4 for binary trees and 1 for
complete binary trees.

THEOREM 3.1. Consider random binary trees or random complete binary
trees with their natural labeling. Then, as n → ∞,

1

n
γ −1n1/4X̄n(γ

−1n1/4x)
d−→ fISE(x),(3.1)

in the space C0(R) with the usual uniform topology. Equivalently,

n−3/4X̄n(n
1/4x)

d−→ γfISE(γ x).(3.2)

Note that the functions on the left-hand sides of (3.1) and (3.2) are density
functions, that is, nonnegative functions with integral 1. Proofs will be given in
Sections 7–10.

COROLLARY 3.2. For random binary trees or random complete binary trees
with their natural labeling, if n → ∞ and jn/n1/4 → x, where −∞ < x < ∞,

then n−3/4Xn(jn)
d−→ γfISE(γ x).

It follows by combining this with results in [7] that the marginal distributions
of fISE are as conjectured there.
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COROLLARY 3.3. For every real x, the distribution of fISE(x) is given by the
moment generating function, with a real or complex,

EeafISE(x) = L(2−1/4|x|,2−1/4a), |a| < 22+1/43−1/2,

where

L(x, a) := 1 + 48

i
√

π

∫



A(a/v3)e−2xv

(1 + A(a/v3)e−2xv)2 v5ev4
dv, x ≥ 0,

A(y) ≡ A is the unique solution of

A = y

24

(1 + A)3

1 − A

satisfying A(0) = 0, and the integral is taken over


 = {1 − te−iπ/4, t ∈ (−∞,0]} ∪ {1 + teiπ/4, t ∈ [0,∞)}.
In particular, the density at x = 0 has a simple law. (See again [7].)

COROLLARY 3.4. fISE(0) has the same distribution as 21/43−1T −1/2, where
T is a positive 2/3-stable variable with Laplace transform Ee−tT = e−t2/3

.
Hence, fISE(0) has the moments

EfISE(0)r = 2r/43−r 
(3r/4 + 1)


(r/2 + 1)
, −4/3 < r < ∞.

As said in the Introduction, we conjecture that the local limit results hold also for
conditioned Galton–Watson trees with random labelings defined by i.i.d. random
increments ηe along the edges; a precise formulation is as follows. Recall that the
span of ηe is the largest integer d ≥ 1 such that ηe a.s. is a multiple of d .

CONJECTURE 3.5. Consider a random conditioned Galton–Watson tree Tn

with a random labeling defined as above by integer valued random variables
ηe with mean 0, finite variance σ 2

η > 0 and span 1. Then, the conclusions

(3.1) and (3.2) of Theorem 3.1 hold, with γ := σ−1
η σ

1/2
ξ .

If this conjecture holds, the conclusion of Corollary 3.2 holds too.
As said in the Introduction, we can prove the conjecture in two special cases,

both considered in [7].

THEOREM 3.6. Conjecture 3.5 holds if Tn is a random plane tree and ηe is
uniformly chosen at random from {±1} or from {−1,0,1}.

For these two cases, σ 2
ξ = 2 and Varηe = 1 and 2/3; hence, γ = 21/4 and γ =

2−1/431/2, respectively.
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REMARK 3.7. It follows from the proof of Theorem 3.1 in Section 7 that
to prove Conjecture 3.5 in further cases, it suffices to prove the estimate in
Lemma 7.3.

4. The moments of ISE. Let Tn be a random binary tree with n nodes, and
let µn be the following (random) probability distribution:

µn = 1

n

∑
v∈Tn

δ(2n)−1/4�(v).(4.1)

As recalled in the Introduction, µn converges to µISE. The ith moment of µn,
denoted mi,n, is itself a random variable:

mi,n = 1

n

∑
v∈Tn

(2n)−i/4�(v)i = 2−i/4n−1−i/4
∑
v∈Tn

�(v)i .

We shall prove that the sequence m1,n,m2,n, . . . converges in distribution to the se-
quence m1,m2, . . . of moments of ISE, and compute the joint moments of the mi :

E(m
p1
1 m

p2
2 · · ·mpr

r ),

for all (fixed) values of p1,p2, . . . , pr . The moments of the mi , being the moments
of the moments (of µISE), should probably be called the grand-moments of µISE.
Note that the grand-moments of a random probability measure, provided they do
not grow too quickly, determine the distribution of the sequence of moments of the
measure, and thus, the distribution of the random measure.

In order to state our result, we introduce some notation. A partition λ of an
integer k is a nondecreasing sequence (λ1, . . . , λp) of positive integers summing
to k. The value k is called the weight of λ, also denoted k = |λ|. For instance,
λ = (1,1,3,4) is a partition of k = 9. The λi are called the parts of λ. We shall also
use extended partitions, in which the positivity condition on the parts is relaxed by
simply requiring that λi is nonnegative. Hence, λ = (0,0,1,1,3,4) is an extended
partition of 9. The union σ ∪ τ of two extended partitions σ = (σ1, . . . , σp) and
τ = (τ1, . . . , τq) is obtained by reordering the sequence (σ1, . . . , σp, τ1, . . . , τq).
For any p-tuple (σ1, . . . , σp) of nonnegative integers, we denote by σ̄ the extended
partition obtained by reordering the σi . Given two p-tuples σ and λ, we write
σ ≤ λ if σi ≤ λi for 1 ≤ i ≤ p.

We shall denote

m
p1
1,nm

p2
2,n · · ·mpr

r,n := mλ,n and m
p1
1 m

p2
2 · · ·mpr

r := mλ,(4.2)

where λ = 1p12p2 · · · is the partition having p1 parts equal to 1, p2 parts equal to
2 and so on. The value of E(mλ) will be expressed in terms of a rational num-
ber cλ, which we actually define for any extended partition λ = (λ1, . . . , λp). The
definition works by induction on p + |λ| as follows:

• c∅ = −2,
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• cλ = 0 if |λ| is odd,
• cλ = (p + |λ|/4 − 3/2)cλ′ if λ1 = 0, with λ′ = (λ2, . . . , λp),
• if λ1 > 0 and |λ| is even,

cλ = 1
4

∑
∅ �=I�[p]

cλI
cλJ

+ ∑
σ≤λ,|σ |=|λ|−2

(
λ

σ

)
cσ̄ ,(4.3)

where [p] := {1,2, . . . , p}, J = [p] \ I , λI = (λi1, λi2, . . . , λir ) if
I = {i1, . . . , ir} with 1 ≤ i1 < · · · < ir ≤ p, the second sum runs over all non-
negative p-tuples σ (not necessarily partitions) satisfying the two required con-
ditions, and

(λ
σ

) = ∏p
i=1

(λi

σi

)
. [Trivially, (4.3) holds for |λ| odd too.]

THEOREM 4.1. As n → ∞, the moments m1,n,m2,n, . . . of the occupation
measure of binary trees converge jointly in distribution to the moments m1,m2, . . .

of ISE. The convergence of moments holds as well, and for all partitions λ, the
joint λ-moment of the random variables mi,n, defined by (4.2), satisfies

E(mλ,n) = E(mλ) = 0 if |λ| is odd,

and otherwise,

E(mλ,n) → E(mλ) = 2−|λ|/4cλ
(1/2)


(p + |λ|/4 − 1/2)
,(4.4)

where the number cλ is defined just above.

The vanishing of E(mλ,n), when |λ| is odd, is a straightforward consequence of
the symmetry of Tn. The proof is given in Section 12.

EXAMPLE 4.2 (The average moments of ISE). When λ has a single part, equal
to 2k for k ≥ 1, the above recurrence relation gives c(2k) = k(2k − 1)c(2k−2), to-
gether with the initial condition c(0) = (1 − 3/2)c∅ = 1. Hence, the mean of the
2kth moment of the random probability µn satisfies

E(m2k,n) → E(m2k) = (2k)!
(1/2)

23k/2
((k + 1)/2)
.(4.5)

EXAMPLE 4.3 (The moments of the average of ISE). Let m1,n denote the mean
of µn. Then E(m

p
1,n) = E(m

p
1 ) = 0 if p is odd, while

E(m2k
1,n) → E(m2k

1 ) = ak
(1/2)

2k/2
((5k − 1)/2)
,

where a0 = −2 and for k > 0,

4ak =
k−1∑
i=1

(
2k

2i

)
aiak−i + k(2k − 1)(5k − 4)(5k − 6)ak−1.
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Indeed, ak = cλ, where λ = 12k , and the recurrence relation (4.3) translates into
the above recursive definition of ak . Note that each 2k-tuple σ occurring in (4.3)
contains 2 coefficients equal to zero, so that we also use the part of the definition
of cλ that deals with the case λ1 = 0. This value of E(m2k

1 ) was already obtained
in [16].

EXAMPLE 4.4 (The first two moments of ISE). Let us finally work out the joint
distribution of m1 and m2. We have E(m2k+1

1,n m�
2,n) = E(m2k+1

1 m�
2) = 0, and

E(m2k
1,nm

�
2,n) → E(m2k

1 m�
2) = ak,�
(1/2)

2(k+�)/2
((5k + 3� − 1)/2)
,

where a0,0 = −2 and the ak,� are determined by induction on k + �:

ak,� = 1
4

∑
(0,0)<(i,j)<(k,�)

(
2k

2i

)(
�

j

)
ai,j ak−i,�−j + 2�(� − 1)ak+1,�−2

+ 1
4k(2k − 1)(5k + 3� − 4)(5k + 3� − 6)ak−1,�

+ 1
2(4k + 1)�(5k + 3� − 4)ak,�−1.

Here, ak,� = cλ with λ = 12k2�. In the right-hand side of the equation, the
second (resp. third, fourth) term corresponds to the case σ̄ = 12k+22�−2 (resp.
σ̄ = 0212k−22�, σ̄ = 012k2�−1). The last case occurs both when we replace a part
of λ equal to 2 by a zero part, and when we decrease by 1 a part equal to 1 and
a part equal to 2. Of course, this generalizes Example 4.3 (which corresponds to
� = 0).

It seems likely that Theorem 4.1 extends to randomly labeled conditioned
Galton–Watson trees as in Conjecture 3.5, at least under some moment conditions
on ξ and ηe, where the measure µn is defined by the left-hand side of (1.1) and, as
usual, γ := σ−1

η σ
1/2
ξ . We show this for the special case in Theorem 3.6.

THEOREM 4.5. If Tn is a random plane tree and ηe is uniformly chosen at
random from {±1} or from {−1,0,1}, then the conclusions of Theorem 4.1 hold,
where the measure µn is defined by (1.1), with γ = 21/4 and γ = 2−1/431/2, re-
spectively.

To conclude this section, we want to underline briefly a similarity between the
density of ISE and the local time of the (normalized) Brownian excursion. In fact,
Theorem 2.1 shows that the vertical profile of a random binary tree converges,
after suitable rescaling, to the density of the ISE. Similarly, as shown by Drmota
and Gittenberger [10], the horizontal profile converges to the local time of the
Brownian excursion.
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We can develop this analogy to grand-moments as follows. Consider again the
random binary tree Tn. Let d(v) denote the depth (the distance from the root) of
vertex v and define the probability measure

νn := 1

n

∑
v∈Tn

δ2−3/2n−1/2d(v),(4.6)

describing the horizontal profile, that is, the distribution of the depths (after rescal-
ing). It is known, as an immediate consequence of Aldous [2, 3], that as n → ∞,

νn
d−→ νEXC, where the random probability measure νEXC is the occupation mea-

sure of the Brownian excursion, and thus, has the local time of the Brownian ex-
cursion as density.

The similarity with the vertical profile and ISE is obvious, and we adopt below
the same notation as before (mi,n,mλ,n, etc.) for the moments of νn and νEXC.
In particular, now mi := ∫

xi dνEXC(x) = ∫ 1
0 e(t)i dt , where e(t) is a Brownian

excursion. Then a result similar to Theorem 4.1 holds:

THEOREM 4.6. As n → ∞, the moments m1,n,m2,n, . . . of the horizontal pro-
file (depth distribution) measure νn converge jointly in distribution to the moments
m1,m2, . . . of νEXC. The convergence of moments holds as well, and for all parti-
tions λ, the joint λ-moment of the random variables mi,n, defined by (4.2), satisfies

E(mλ,n) → E(mλ) = 2−3|λ|/2dλ
(1/2)


(p + |λ|/2 − 1/2)
,(4.7)

where the number dλ is defined by the following:

• d∅ = −2,
• dλ = (p + |λ|/2 − 3/2) dλ′ if λ1 = 0, with λ′ = (λ2, . . . , λp),
• if λ1 > 0,

dλ = 1
4

∑
∅ �=I�[p]

dλI
dλJ

+ ∑
σ≤λ,|σ |=|λ|−1

(
λ

σ

)
dσ̄ ,(4.8)

with the same notation as in (4.3).

The proof is very similar to the proof of Theorem 4.1, but simpler. Note that the
binomial coefficient

(λ
σ

)
is simply equal to one of the λi . The proof is sketched at

the end of Section 12.
The grand-moments in (4.7) have been computed by a different method by

Richard [27]; a special case (moments of m1 and m2) is given by Nguyen [25],
and the moments of the Brownian excursion area m1 were found already by
Louchard [22]; see also [11] and [15]. The grand-moments in (4.7), as well as
the grand-moments in (4.4) above, can also be derived by the method of [15], Sec-
tion 5, and [16], which is related to the method used here but phrased in different
terms. (Presumably, the method of [27] too applies to (4.4) as well.)
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Again, the same result holds for random plane trees as well, provided we change
the scale factor 2−3/2 in (4.6) to 2−1/2.

REMARK 4.7. A Dyck path of length 2n is a 1-dimensional walk starting and
ending at 0, taking steps in {−1,+1}, and never reaching a negative position. There
is a well-known correspondence between plane trees with n+ 1 vertices and Dyck
paths of length 2n, where the Dyck path gives the depths of the vertices along the
depth-first walk on the tree. It follows easily that Theorem 4.6 holds for moments
of a uniformly chosen random Dyck path wn of length 2n too defined by

mk,n := 1

2n

2n∑
i=1

(2n)−k/2wn(i)
k;

this has previously been shown by Richard [27].

REMARK 4.8. It is possible to use our methods to obtain results on grand-
moments of the vertical and horizontal occupation measures together, and thus on
the joint distribution of the vertical and horizontal profile, and also on the asymp-
totic distribution of the pair of labels (�(v), d(v)). We leave this to the reader.

5. The Brownian snake and CRT.

5.1. The Brownian snake. We begin by recalling the definition of the Brown-
ian snake; see Le Gall [20], Chapter IV, or Le Gall and Weill [21] for further
details; see also [16], Section 4.1. Let ζ , the lifetime, be ζ := 2Bex, where Bex is
a Brownian excursion on [0,1]. (In general, the lifetime ζ might be any (locally)
Hölder continuous nonnegative stochastic process on some interval I ; in other con-
texts, ζ is often taken to be reflected Brownian motion on [0,∞) [20].) Let, for
s, t ∈ [0,1],

m(s, t; ζ ) := min{ζ(u) :u ∈ [s, t]} when s ≤ t ,

and m(s, t; ζ ) := m(t, s; ζ ) when s > t . The Brownian snake with lifetime ζ then
can be defined as the continuous stochastic process W(s, t) on [0,1]×[0,∞) such
that, conditioned on ζ , W is Gaussian with mean 0 and covariances

Cov
(
W(s1, t1)W(s2, t2)|ζ ) = min

(
t1, t2,m(s1, s2; ζ )

)
.

We have defined the Brownian snake as a random field with two parameters, but
we are really only interested in the specialization �W(s) := W(s, ζ(s)), s ∈ [0,1];
this stochastic process is called the head of the Brownian snake. (In fact, it is eas-
ily seen that the pair (ζ, �W) determines W ; see further [24].) Conditioned on ζ ,
�W is a Gaussian process on [0,1] with mean 0 and covariances E( �W(s) �W(t)|ζ ) =
m(s, t; ζ ). Consequently, still conditioned on ζ , �W(s) − �W(t) has a normal distri-
bution with mean 0 and variance

Var
( �W(s) − �W(t)|ζ ) = σ 2(s, t; ζ ) := ζ(s) + ζ(t) − 2m(s, t; ζ ).(5.1)
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The random probability measure µISE can be defined as the occupation mea-
sure of the process �W ; see [20, 21] and the next subsection. Hence, fISE is the
occupation density of �W , also called its local time.

5.2. Brownian CRT. The Brownian CRT (continuum random tree) was intro-
duced by Aldous [1–3] as a natural limit of rescaled finite random trees. It is a
random compact metric space that is a topological tree in the sense that every pair
of points x, y are connected by a unique path (homeomorphic to [0,1]), and that
path has length d(x, y). We let here and later d denote the metric. The Brownian
CRT is further equipped with a probability measure ν, which gives a meaning to
“a random node” in the CRT.

One of Aldous’s characterizations of the Brownian CRT [2–4] uses the distri-
bution of the shape and edge lengths of the spanning subtree Rk spanned by the
root o and k independent random nodes X1, . . . ,Xk in the tree. (Here k is an ar-
bitrary positive integer.) Then, a.s., the subtree Rk admits the root and X1, . . . ,Xk

as leaves, and has exactly k − 1 internal nodes, all of of degree 3; the leaves are
labeled but not the internal nodes. If we ignore the edge lengths (which are positive
real numbers), there are (2k − 3)!! = 1 · 3 · 5 · · · (2k − 3) possible “shapes” of Rk ;
for each shape, we number the 2k −1 edges in some order. Letting T ∗

2k be the finite
set of shapes, Rk can thus be described by a shape t̂ ∈ T ∗

2k and the edge lengths
x1, . . . , x2k−1 > 0, and for the Brownian CRT, Rk has density [3], Lemma 21,

f (t̂;x1, . . . , x2k−1) = se−s2/2, s =
2k−1∑
i=1

xi.(5.2)

Aldous ([3], Corollary 22) also gives a construction of the Brownian CRT in
terms of a (normalized) Brownian excursion Bex. Let ζ = 2Bex. Then Aldous
shows that there exists a function ζ̃ mapping [0,1] onto the Brownian CRT, with
the Lebesgue measure mapped to ν and [cf. (5.1)]

d
(
ζ̃ (s), ζ̃ (t)

) = ζ(s) + ζ(t) − 2m(s, t; ζ ) = σ 2(s, t; ζ ).(5.3)

Indeed, the Brownian CRT can be defined as the quotient space of [0,1] with the
semi-metric σ 2(s, t; ζ ), identifying points of distance 0; see [21].

The function ζ̃ is not injective, but if ζ̃ (s) = ζ̃ (t), and thus, σ 2(s, t; ζ ) = 0,
then ζ(s) = ζ(t) = m(s, t; ζ ), which implies �W(s) = �W(t). Hence, we can define
a continuous random function W̃ on the Brownian CRT by W̃ (ζ̃ (s)) = �W(s); con-
ditioned on the CRT, the W̃ (x) are jointly Gaussian with mean 0 and, by (5.1)
and (5.3), Var(W̃ (x) − W̃ (y)) = d(x, y). Thus, W̃ is the random mapping of the
Brownian CRT into R considered by Aldous [4]; Aldous defines ISE as the mea-
sure on R that ν is mapped to by W̃ . This is clearly the same as the measure that
�W maps Lebesgue measure on [0,1] to, that is, the occupation measure of �W as
claimed above.
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6. Existence of the density: Proof of Theorem 2.1. Although Theorem 2.1
follows easily from Theorem 3.1 and its proof, we find it interesting to give a
different, self-contained proof. We use the standard Fourier method (see, e.g., [13]
and the references there) together with Aldous’ theory of the Brownian CRT [2, 3].
We define the Fourier transform µ̂ of a finite measure µ by µ̂(t) := ∫

eitx dµ(x).

LEMMA 6.1. If 0 ≤ α < 3/2, then

E
∫ ∞
−∞

(|t |α|µ̂ISE(t)|)2
dt < ∞.

PROOF. Since µISE is the occupation measure of �W , the head of the Brownian
snake, its Fourier transform can be expressed as

µ̂ISE(t) :=
∫ ∞
−∞

eitx dµISE(x) =
∫ 1

0
eit �W(s) ds.

Consequently, |µ̂ISE(t)|2 = ∫ 1
0

∫ 1
0 eit ( �W(s)− �W(u)) ds du. Conditioned on ζ , �W(s) −

�W(u) is by (5.1) a Gaussian random variable with mean 0 and variance σ 2(s, u; ζ ).
Hence,

E
(|µ̂ISE(t)|2|ζ ) =

∫ 1

0

∫ 1

0
E

(
eit ( �W(u)− �W(s))|ζ )

ds du

=
∫ 1

0

∫ 1

0
e−t2σ 2(s,u;ζ )/2 ds du

and thus, letting U1 and U2 be independent uniform random variables on [0,1],

E|µ̂ISE(t)|2 = E
∫ 1

0

∫ 1

0
e−t2σ 2(s,u;ζ )/2 ds du = Ee−t2σ 2(U1,U2;ζ )/2.(6.1)

Let ζ̃ be as in Section 5.2. Then Xi := ζ̃ (Ui), i = 1,2, are two independent
random nodes in the Brownian CRT, and (5.3) shows that (6.1) can be written

E|µ̂ISE(t)|2 = Ee−t2 d(X1,X2)/2.(6.2)

For α ≥ 0, we thus have, letting y = t2,

E
∫ ∞

0

(
tα|µ̂ISE(t)|)2

dt = E
∫ ∞

0
t2αe−t2 d(X1,X2)/2 dt

= E
∫ ∞

0

1
2yα−1/2e−y d(X1,X2)/2 dy

(6.3)
= E1

2

(
d(X1,X2)/2

)−α−1/2

(α + 1/2)

= C1(α)Ed(X1,X2)
−α−1/2.
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From (5.2) (with k = 2), or by the invariance of the CRT under random re-
rooting, follows the symmetry d(X1,X2)

d= d(X1, o). Moreover, by the same for-
mula (5.2) with k = 1, d(X1, o) has a Rayleigh distribution with density xe−x2/2.
Hence,

Ed(X1,X2)
−α−1/2 = Ed(X1, o)−α−1/2

=
∫ ∞

0
x−α−1/2xe−x2/2 dx < ∞,

when α < 3/2, and the result follows from (6.3) and the symmetry of |µ̂ISE|. �

By Lemma 6.1, if 0 ≤ α < 3/2, then
∫ ∞
−∞(|y|α|µ̂ISE(y)|)2 dy < ∞ a.s. Tak-

ing first α = 0, we see that µ̂ISE ∈ L2(R); by Plancherel’s theorem ([28], Theo-
rem 7.9), this shows that µISE is absolutely continuous with a density fISE ∈ L2.
Note that the Fourier transform f̂ISE coincides with µ̂ISE.

For α ≥ 0, we define the (generalized) Sobolev space L2,α by

L2,α :=
{
f ∈ L2(R) :‖f ‖2

2,α :=
∫ ∞
−∞

(
(1 + |t |)α|f̂ (t)|)2

dt < ∞
}
,(6.4)

where f̂ is the Fourier transform of f . Lemma 6.1 thus shows that a.s. fISE ∈ L2,α

for every α < 3/2. (There is no problem with null sets, since it suffices to consider
rational α, say.)

Further, for 0 < α < 1, we define the Hölder space Hα as the space of bounded
continuous functions f on R such that |f (x)−f (y)| ≤ C|x −y|α for some C and
all x and y.

To show that fISE is (i.e., can be chosen) continuous with the regularity proper-
ties in Theorem 2.1, we use some general embedding properties of these spaces.

LEMMA 6.2. (i) If 0 ≤ α < 1/2 and 1/2 ≥ 1/p > 1/2 − α, then L2,α ⊂ Lp .
(ii) If 1/2 < α < 3/2, then L2,α ⊂ Hα−1/2, and the inclusion map is bounded.

(iii) If α ≥ 1 and f ∈ L2,α , then f has a derivative f ′ in distribution sense and
a.e., with f ′ ∈ L2,α−1.

This lemma is well known: (i) and (ii) are special cases of the Sobolev (or
Besov) embedding theorem; see, for example, [5], Theorem 6.5.1, or [29], Chap-
ter V; indeed, we may also take 1/p = 1/2 − α in (i). However, since the proof of
the general embedding theorem is quite technical, we give a simple proof of this
special case.

PROOF OF LEMMA 6.2. (i) We may assume p > 2 since the case p = 2 is
trivial. Define p′ ∈ (1,2) by 1/p′ = 1 − 1/p. If f ∈ L2,α , Hölder’s inequality
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yields ∫ ∞
−∞

|f̂ |p′ ≤
(∫ ∞

−∞
(
(1 + |t |)αp′ |f̂ (t)|p′)2/p′

dt

)p′/2

×
(∫ ∞

−∞
(
(1 + |t |)−αp′)2/(2−p′)

dt

)1−p′/2

= ‖f ‖p′
2,α

(∫ ∞
−∞

(1 + |t |)−2αp′/(2−p′) dt

)1−p′/2

< ∞,

since it is easy to check that 2αp′ > 2 − p′ when 1/p > 1/2 − α. Consequently,

f̂ ∈ Lp′
, which by the Hausdorff–Young inequality yields ˆ̂

f ∈ Lp . By the inver-
sion theorem for the Fourier transform (defined for tempered distributions, say),
this yields f ∈ Lp .

(ii) First, by Hölder’s (Cauchy–Schwarz’s) inequality,∫ ∞
−∞

|f̂ | ≤
(∫ ∞

−∞
(
(1 + |t |)α|f̂ (t)|)2

dt

)1/2(∫ ∞
−∞

(1 + |t |)−2α dt

)1/2

< ∞,

since 2α > 1. Hence, f has an absolutely integrable Fourier transform, which
shows that f is a continuous bounded function given by the inversion formula
f (x) = (2π)−1 ∫

e−ixt f̂ (t) dt . Hence, for any x and h > 0, using Hölder’s in-
equality again,

|f (x + h) − f (x)| = 1

2π

∣∣∣∣ ∫ ∞
−∞

(
e−i(x+h)t − e−ixt )f̂ (t) dt

∣∣∣∣
≤

(∫ ∞
−∞

|eiht − 1|2|t |−2α dt

)1/2(∫ ∞
−∞

|t |2α|f̂ (t)|2 dt

)1/2

≤
(
h2α−1

∫ ∞
−∞

|eiu − 1|2|u|−2α du

)1/2

‖f ‖2,α

≤ C2(α)‖f ‖2,αhα−1/2.

(iii) We have f̂ ′(t) = −it f̂ , with f ′ taken as a distribution. Since f ∈ L2,α ,
this shows that f̂ ′ ∈ L2 and thus, f ′ ∈ L2 by Plancherel’s theorem. Consequently,
by elementary distribution theory, the derivative exists a.e., and equals the distrib-
utional derivative f ′. Further, from the definition (6.4), f ′ ∈ L2,α−1. �

Since, as remarked above, Lemma 6.1 shows that a.s. fISE ∈ L2,α for every
α < 3/2, Theorem 2.1(ii) follows by Lemma 6.2(ii), while Theorem 2.1(iii) fol-
lows by Lemma 6.2(iii) and (i) (applied to f ′

ISE).
Finally, Theorem 2.1(i) follows because µISE has compact support, namely the

image of the compact set [0,1] by the continuous function �W .
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7. Local limit law for the density: Proof of Theorem 3.1. The proof is based
on the known convergence (1.1) of random measures. To obtain the stronger result
in Theorem 3.1 on convergence of densities, we use a compactness argument as
follows. We begin with a measure-theoretic lemma. Recall that a Polish space is a
space with a topology that can be defined by a complete separable metric. For gen-
eralities on convergence of random elements of metric spaces (equipped with their
Borel σ -fields), see, for example, [6] or [18]. In particular, recall that a sequence
(Wn) of random variables in a metric space S is tight if, for every ε > 0, there ex-
ists a compact subset K ⊆ S such that P(Wn ∈ K) > 1 − ε for every n; in a Polish
space, this is equivalent to relative compactness (of the corresponding distribu-
tions) by Prohorov’s theorem ([6], Theorems 6.1 and 6.2 and [18], Theorem 16.3).
Recall further that “convergence in distribution” really means convergence of the
corresponding distributions, but it is often convenient to talk about random vari-
ables instead of their distributions.

LEMMA 7.1. Let S1 and S2 be two Polish spaces, and let φ : S1 → S2 be an
injective continuous map. If (Wn) is a tight sequence of random elements of S1

such that φ(Wn)
d−→ Z in S2 for some random Z ∈ S2, then Wn

d−→ W in S1 for

some W with φ(W)
d= Z.

PROOF. By Prohorov’s theorem, each subsequence of (Wn) has a subsequence
that converges in distribution to some limit. Let W ′ and W ′′ be limits in distribution
of two such subsequences Wn′

i
and Wn′′

i
. Since φ is continuous, φ(Wn′

i
)

d−→ φ(W ′)
and φ(Wn′′

i
)

d−→ φ(W ′′). Hence, φ(W ′) d= Z
d= φ(W ′′).

Let K be a compact subset of S1. Then φ(K) ⊆ S2 is compact, and thus mea-
surable, and, using the injectivity of φ,

P(W ′ ∈ K) = P
(
φ(W ′) ∈ φ(K)

) = P
(
φ(W ′′) ∈ φ(K)

) = P(W ′′ ∈ K).

Since a probability measure on a Polish space is determined by its values on com-

pact sets (see, e.g., [8], Proposition 8.1.10), it follows that W ′ d= W ′′.
In other words, there is a unique distribution of the subsequence limits. Thus,

if W is one such limit, then every subsequence of (Wn) has a subsequence that

converges in distribution to W ; this is equivalent to Wn
d−→ W . �

Let Yn denote the random probability measure on the left-hand side of (1.1),
let νh be the probability measure with the triangular density function h−1(1 −
|x|/h)+, and let Ȳn be the convolution Yn ∗ νγn−1/4 . Note that Ȳn has the density

gn(x) := n−1γ −1n1/4X̄n(γ
−1n1/4x) ∈ C0(R). Since Yn

d−→ µISE by (1.1), and

νγn−1/4
p−→ δ0, it follows easily that Ȳn

d−→ µISE too.
Let S1 := {f ∈ C0(R) :f ≥ 0}, with the uniform topology inherited from C0(R),

let S2 be the space of locally finite measures on R with the vague topology (see
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e.g., [18], Appendix A2), and let φ map a function f to the corresponding mea-
sure f dx, that is, φ(f ) is the measure with density f . Then S1 is a closed subset
of the separable Banach space C0(R), and is thus Polish, and so is S2 by [18],
Theorem A2.3. Further, φ is continuous and injective.

Take Wn := gn in Lemma 7.1. We have just shown that φ(gn) = Ȳn
d−→ µISE

in the space of probability measures on R and thus also in the larger space S2. If
we can show that the sequence gn is tight in S1, or, equivalently, in C0(R), then
Lemma 7.1 shows that gn

d−→ g for some random function g ∈ C0(R), which
further equals (in distribution) the density fISE of µISE; hence, the conclusion of
Theorem 3.1 follows. It thus remains only to prove the following lemma.

LEMMA 7.2. The sequence gn(x) := n−1γ −1n1/4X̄n(γ
−1n1/4x),

n = 1,2, . . . , is tight in C0(R).

The central estimate in the proof of Lemma 7.2, and thus of Theorem 3.1, is the
following, which will be proved in Section 8. For a sequence x(j), we define its
Fourier transform by x̂(u) := ∑

j x(j)eiju; this equals the Fourier transform of the
measure

∑
j x(j)δj on R.

LEMMA 7.3. There exists a constant C1 such that, for all n ≥ 1 and u ∈
[−π,π ],

E|n−1X̂n(u)|2 ≤ C1

1 + nu4 .(7.1)

We can now prove Lemma 7.2 as follows. We have Ŷn(y) = n−1X̂n(γ n−1/4y).
Consequently, Ŷn is a periodic function with period 2πγ −1n1/4, and Lemma 7.3
translates to

E|Ŷn(y)|2 ≤ C1

1 + γ 4y4 , |y| ≤ γ −1n1/4π.(7.2)

Further,

ĝn(y) = ̂̄
Yn(y) = Ŷn(y)̂νγ n−1/4(y).(7.3)

LEMMA 7.4. Suppose that 0 ≤ a < 3. Then there exists a constant C(a) such
that if h > 0 and f is a function with period 2π/h, then∫ ∞

−∞
|y|a|f (y)|2 |̂νh(y)|2 dy ≤ C(a)

∫ π/h

−π/h
|y|a|f (y)|2 dy.

PROOF. By the change of variables y �→ h−1y, we may assume h = 1. Then
ν̂1(y) = (sin(y/2)/(y/2))2. Hence, for k �= 0 and |y| ≤ π ,

|̂ν1(y + 2kπ)| = sin2(y/2)

(kπ + y/2)2 ≤ y2

k2
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and ∫ (2k+1)π

(2k−1)π
|y|a|f (y)|2 |̂ν1(y)|2 dy ≤ (3π |k|)a

∫ π

−π
|f (y)|2 y4

k4 dy

≤ C1(a)|k|a−4
∫ π

−π
|y|a|f (y)|2 dy.

For the case k = 0, we use instead the estimate |̂ν1(y)| ≤ 1. The result follows by
summing over all k. �

Let h := γ n−1/4. Then, by Lemma 7.4, (7.3) and (7.2), for any fixed a with
0 ≤ a < 3,

E
∫ ∞
−∞

|y|a|ĝn(y)|2 dy ≤ C(a)E
∫ π/h

−π/h
|y|a|Ŷn(y)|2 dy

= C(a)

∫ π/h

−π/h
|y|aE|Ŷn(y)|2 dy

≤ C2(a)

∫ ∞
−∞

|y|a
1 + γ 4y4 dy ≤ C3(a).

We have proved the following, taking a = 2α.

LEMMA 7.5. If 0 ≤ α < 3/2, then E‖gn‖2
2,α ≤ C(α), for some C(α) not de-

pending on n.

Next, fix β ∈ (0,1), and let α = β + 1/2 < 3/2. For A,M > 0, let KM,A be the
set of all functions f in C0(R) such that f (x) = 0 for |x| ≥ M and ‖f ‖2,α ≤ A. By
Lemma 6.2(ii), the functions in KM,A are all Hölderb-continuous with uniformly
bounded norm; they thus form an equicontinuous family. We may regard KM,A as
a subset of C[−M,M], the space of continuous functions on the compact interval
[−M,M], and it follows by the Arzela–Ascoli theorem ([28], A5) that KM,A is
a relatively compact subset of C[−M,M], and thus of C0(R) too. (Note that the
functions in KM,A all vanish at ±M .)

Let ε > 0. It follows from Lemma 7.5 that there exists A such that P(‖gn‖2,α >

A) ≤ ε/2 for every n. Moreover, Marckert ([23], Theorem 5) also showed that

n−1/4 sup{|j | :Xn(j) �= 0} = n−1/4 sup{|�(v)| :v ∈ Tn} d−→ W(7.4)

for some random variable W . It follows from (7.4) that there exists M such that

P
(
gn(x) �= 0 for some x with |x| > M

)
= P

(
Xn(j) �= 0 for some j with |j | > γ −1n1/4M − 1

)
< ε/2.

Consequently, P(gn ∈ KM,A) > 1 − ε for every n, which shows that the sequence
(gn) is tight. This completes the proof of Lemma 7.2, and thus of Theorem 3.1,
except for the proof of Lemma 7.3.
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REMARK 7.6. A more concrete alternative to the compactness argument
(Lemma 7.1) used above is to define regularizations of functions f on R by
f (h)(x) := h−1 ∫ x+h

x f for h > 0. Note that f
(h)
ISE(x) = h−1µISE[x, x + h]. For

each fixed h > 0, the version of (3.1) with both left- and right-hand side regular-
ized holds since the corresponding distribution functions converge. We may then
let h → 0, using the Hölder estimate obtained by Lemmas 7.5 and 6.2 together
with [6], Theorem 4.2.

8. Proof of Lemma 7.3. It remains to prove Lemma 7.3. We consider first the
case of random binary trees with the natural labeling. We introduce the sequence
of generating functions

Fk(t, x1, . . . , xk) := ∑
T ∈T

t |T |
k∏

i=1

(∑
v∈T

x
�(v)
i

)
,(8.1)

where T is the family of all (possibly empty) binary trees and |T | is the
number of nodes in T . Thus, Fk is a power series in t , with coefficients in
Z[x1, . . . , xk,1/x1, . . . ,1/xk], the ring of Laurent polynomials in the xi with in-
teger coefficients. For k = 0, the product in the definition of F0 reduces to 1, so
that F0 is simply the generating function of binary trees. In what follows, we often
denote x = (x1, . . . , xk) and Fk(x) = Fk(t, x1, . . . , xk). Moreover, for any subset
I of [k] := {1,2, . . . , k}, we denote xI = (xi1, xi2, . . . , xip) if I = {i1, . . . , ip} with
i1 < · · · < ip .

PROPOSITION 8.1. The series Fk can be determined by induction on k ≥ 0
using

Fk(x) = 1[k=0] + t
∑
(I,J )

(∏
i∈I

x̄i

)(∏
j∈J

xj

)
F|I |(xI )F|J |(xJ ),(8.2)

where the sum runs over all ordered pairs (I, J ) of subsets of [k] such that
I ∩ J = ∅, and x̄i = 1/xi . In particular,

F0 = 1 − √
1 − 4t

2t
(8.3)

and each Fk(x) admits a rational expression in F0 and the xi .

PROOF. The equation satisfied by F0 reads F0 = 1 + tF 2
0 and is of course

very classical: it is obtained by splitting a binary tree into its left and right sub-
trees. Note that the empty binary tree does not contribute to Fk when k > 0. Then,
every nonempty binary tree is formed of a root with a left subtree T1 and a right
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subtree T2. Hence, for k ≥ 1,

Fk(x) = ∑
T1,T2

t1+|T1|+|T2|
k∏

i=1

(
1 + ∑

v∈T1

x
�(v)−1
i + ∑

v∈T2

x
�(v)+1
i

)

= ∑
T1,T2

t1+|T1|+|T2| ∑
(I,J )

∏
i∈I

( ∑
v∈T1

x
�(v)−1
i

) ∏
j∈J

( ∑
v∈T2

x
�(v)+1
j

)
,

where the sets I and J are as in the statement of the proposition. The result follows
upon exchanging the two sums. �

Actually, for the proof of Lemma 7.3, we need only a special case of F2. The
above proposition gives a simple explicit expression of F2(t, x, y) in terms of F0
(and x and y) or, equivalently, in terms of the generating function B = F0 − 1 of
nonempty binary trees:

B = B(t) = 1 − 2t − √
1 − 4t

2t
.(8.4)

COROLLARY 8.2. For any real u,

F2(t, e
iu, e−iu) = B(1 + B)(1 + 2B − B2)

(1 − B)(1 + B − 2B cosu)2 .(8.5)

PROOF. The cases k = 1 and k = 2 of the previous proposition give

F1(x) = tF 2
0 + t (x + x̄)F0F1(x)

and

F2(x, y) = tF 2
0 + t (x + x̄)F0F1(x) + t (y + ȳ)F0F1(y)

+ t (x̄y + xȳ)F1(x)F1(y) + t (xy + x̄ȳ)F0F2(x, y).

Using F0 = 1 + B and t = B/(1 + B)2, this gives

F1(x) = B(1 + B)

1 + B(1 − x − x̄)
,

F2(x, y) = B(1 + B)(1 + 2B + B2(1 − xy − x̄ȳ))

(1 + B(1 − x − x̄))(1 + B(1 − y − ȳ))(1 + B(1 − xy − x̄ȳ))
.

Specializing to x = 1/y = eiu provides the result. �

By definition,

X̂n(u) = ∑
j

X(j ;Tn)e
iju = ∑

v∈Tn

ei�(v)u.(8.6)
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Hence, if Tn := {T ∈ T : |T | = n} is the family of binary trees of size n,

E|X̂n(u)|2 = |Tn|−1
∑

T ∈Tn

∣∣∣∣∣ ∑
v∈T

ei�(v)u

∣∣∣∣∣
2

and

F2(t, e
iu, e−iu) =

∞∑
n=1

tn|Tn|E|X̂n(u)|2.(8.7)

Let [tn]F(t) denote the coefficient of tn in a power series F(t). Since |Tn| =
[tn]B(t) = 1

n+1

(2n
n

) ∼ π−1/2n−3/24n, (7.1) is equivalent to

[tn]F2(t, e
iu, e−iu) ≤ C24n n1/2

1 + nu4 , |u| ≤ π.(8.8)

We will prove this using complex analysis. We begin by studying B .

LEMMA 8.3. B = B(t) is a bounded analytic function of t in the domain D :=
C \ [1/4,+∞). Moreover, for t ∈ ∂D = [1/4,+∞), B has continuous boundary
values B+(t) and B−(t) from the upper and lower side. B(t) (extended by B+ or
B−) is real if and only if t ∈ (−∞,1/4]; on this interval B(t) is strictly increasing
from −1 to B(1/4) = 1.

PROOF. The first assertions are immediate from (8.4). Next, if B(t) is real,
then so is t = B/(1+B)2. It follows further from (8.4) that B(t) is real for t ≤ 1/4,
but B±(t) is not real for t > 1/4. The formula t = B/(1 + B)2 shows further that
B = −1 is impossible, and that B = 1 if and only if t = 1/4. Since B(t) → −1 as
t → −∞, it follows by continuity that −1 < B(t) < 1 for t < 1/4. For such t , we
have dB/dt = (dt/dB)−1 = (1 + B)3/(1 − B) > 0, which completes the proof.

�

Let us for simplicity write Fu(t) := F2(t, e
iu, e−iu).

We first observe that, for any real u, Fu(t) is an analytic function of t in the
domain D ′ := D \ (−∞,−3/4]. Indeed, by Corollary 8.2 and Lemma 8.3, Fu(t)

is meromorphic in D with poles when 1 − B = 0 or 1 + B − 2B cosu = 0. In
the first case, B = 1 and thus, t = B(1 + B)−2 = 1/4, which is outside D . In the
second case, B = 1/(2 cosu − 1). Since 2 cosu − 1 ∈ [−3,1], this means that B

is real and either B ≥ 1 or B ≤ −1/3. By Lemma 8.3, B ≥ 1 is impossible in D ,
while B ≤ −1/3 implies t = B(1 + B)−2 ≤ −3/4.

At this stage, we can apply, for any fixed value of u, the standard results of
singularity analysis [12]. For u = 0, we find

[tn]Fu(t) = 4nn1/2
√

π

(
1 + O(1/n)

)
,
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while, for u �= 0,

[tn]Fu(t) = 1

2(1 − cosu)2

4nn−1/2
√

π

(
1 + O(1/n)

)
.

These results are certainly compatible with the desired bound (8.8), but, as we
need a uniform bound, valid for all u, we have to resort to the basic principles of
singularity analysis.

By the Cauchy integral formula,

[tn]Fu(t) = 1

2π i

∫



Fu(t)
dt

tn+1(8.9)

for any contour 
 in D ′ that loops once around 0. We assume n > 4 and choose a
contour 
 = 
(n) that depends on n: 
(n) := 
1 ∪ 
+ ∪ 
2 ∪ 
−, where 
1 is the
circle |t −1/4| = 1/n in negative direction, 
+ and 
− are both the interval [1/4+
1/n,1/2], taken in opposite directions and using the boundary values B+ and B−,
respectively, and 
2 is the circle |t | = 1/2 in positive direction. (For convenience,
we have pushed the contour to include part of the boundary of D ′; the reader who
prefers staying strictly inside D ′ may replace 
± by line segments close to the real
axis.)

Next we estimate |Fu(t)| on 
(n).

LEMMA 8.4. For all t ∈ 
(n) and u ∈ [−π,π ],

|Fu(t)| ≤ C3
n3/2

1 + nu4 .(8.10)

PROOF. We claim that, for t ∈ 
(n),

|1 − B(t)| ≥ c1n
−1/2,(8.11)

|1 + B(t) − 2 cosuB(t)| ≥ c2 max(n−1/2,1 − cosu).(8.12)

The result then follows from (8.5) and 1 − cosu ≥ c3u
2.

In fact, (8.11) is the special case u = 0 of (8.12), so it suffices to prove the latter.
Since B(t) vanishes only for t = 0, compactness shows that |B(t)| ≥ c4 > 0 for
t ∈ 
 ⊂ {t : 1

20 ≤ |t | ≤ 1
2}. Hence, it is enough to prove

|B(t)−1 + 1 − 2 cosu| ≥ c5 max(n−1/2,1 − cosu).(8.13)

Indeed,

B(t)−1 + 1 − 2 cosu = 1 − 2t + √
1 − 4t

2t
+ 1 − 2 cosu

(8.14)

= 1 − 4t + √
1 − 4t

2t
+ 2(1 − cosu).



1618 M. BOUSQUET-MÉLOU AND S. JANSON

For t ∈ 
1, this is 2
√

1 − 4t + O(1/n) + 2(1 − cosu). Since Re
√

1 − 4t ≥ 0 and
1 − cosu ≥ 0, then

|B(t)−1 + 1 − 2 cosu| ≥ ∣∣2√
1 − 4t + 2(1 − cosu)

∣∣ − O(1/n)

≥ max
{
2|√1 − 4t |,2(1 − cosu)

} − O(1/n)

= max
{
4n−1/2,2(1 − cosu)

} − O(1/n),

which yields (8.13) for t ∈ 
1.
On 
±,

√
1 − 4t is imaginary, and

∣∣ Im
(
B(t)−1 + 1 − 2 cosu

)∣∣ = |√1 − 4t |
2t

(8.15)
≥ √

4t − 1 ≥ 2n−1/2.

Moreover, if further 1 − cosu ≤ 2
√

4t − 1, (8.15) also yields
∣∣Im(B(t)−1 + 1 −

2 cosu)
∣∣ ≥ √

4t − 1 ≥ 1
2(1 − cosu). If, on the contrary, 1 − cosu > 2

√
4t − 1,

then, because 0 ≤ 4t − 1 ≤ 1 and thus, 4t − 1 ≤ √
4t − 1,∣∣Re

(
B(t)−1 + 1 − 2 cosu

)∣∣ = 2(1 − cosu) − 4t − 1

2t

≥ 2(1 − cosu) − 2(4t − 1)

≥ 1 − cosu.

In both cases, |B(t)−1 + 1 − 2 cosu| ≥ 1
2(1 − cosu), which together with (8.15)

completes the verification of (8.13) for t ∈ 
±.
Finally, for t ∈ 
2, we use compactness. We observed above that 1 + B(t)(1 −

2 cosu) = 0 is possible only for t ∈ (−∞,−3/4] ∪ {1/4} and, in particular, not
for t ∈ 
2; hence, inft∈
2,u∈[0,2π ] |B(t)−1 + 1 − 2 cosu| = c6 > 0, which implies
(8.13) for t ∈ 
2. �

By (8.9) and (8.10),

[tn]Fu(t) ≤
∫



|Fu(t)||t |−n−1|dt |
(8.16)

≤ C3
n3/2

1 + nu4

∫



|t |−n−1|dt |.

For t ∈ 
1, |t |−n−1 = O(4n), and thus,
∫

1

|t |−n−1|dt | = O(n−14n). Second,∫

± |t |−n−1|dt | ≤ ∫ 1/2

1/4 t−n−1 dt ≤ n−14n. Finally,
∫

2

|t |−n−1|dt | = O(2n). Sum-

ming these estimates, we find
∫

 |t |−n−1|dt | = O(n−14n), which together

with (8.16) completes the proof of (8.8) and thus Lemma 7.3 in the case of bi-
nary trees.
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For complete binary trees, we use the well-known equivalence between binary
and complete binary trees, where a binary tree T of order n is identified with the
internal nodes in a complete binary tree T c of order 2n+1. With this identification,
one has

X(j ;T c) =
{

X(j − 1;T ) + X(j + 1;T ), if j �= 0,

1 + X(−1;T ) + X(1;T ), otherwise.

Hence, temporarily using Xc
n instead of Xn for the complete binary trees, it

follows from (8.6) that X̂c
2n+1(u) = 1 + 2 cosuX̂n(u). Hence, the estimate in

Lemma 7.3 holds for complete binary trees too (possibly with a different constant).

9. Proof of Corollaries 3.2–3.4.

PROOF OF COROLLARY 3.2. This is immediate from (3.2) and the fact that
fn → f in C0(R) implies fn(jn/n1/4) → f (x); see, for example, [6], Theo-
rem 5.5. �

PROOF OF COROLLARY 3.3. By symmetry, fISE(x)
d= fISE(−x), so we

may suppose x ≥ 0. Then, as shown by Bousquet-Mélou ([7], §6.2.2, Con-
jecture 15 and Theorem 14), for naturally embedded random binary trees,

Xn(�xn1/4�)/n3/4 d−→ 2−1/2Y(2−1/2x) for a family of random variables Y(u),
u ≥ 0, with moment generating functions EeaY (u) = L(u,a). Combining this with

Corollary 3.2, we find 2−1/4fISE(2−1/4x)
d= 2−1/2Y(2−1/2x), x ≥ 0, and thus,

fISE(x)
d= 2−1/4Y(2−1/4|x|). (The normalization of fISE in [7] is different.) �

PROOF OF COROLLARY 3.4. By the proof of Corollary 3.3, fISE(0)
d=

2−1/4Y(0), where, by [7], Proposition 12 and Theorem 14, Y(0)
d= 21/23−1T −1/2.

The (negative) moments of T are given by the standard formula ET −s =

(3s/2 + 1)/
(s + 1), s > −2/3. �

10. Other tree models. Consider a randomly labeled conditioned Galton–
Watson tree as in Conjecture 3.5. We know that the global limit result (1.1) holds,
and the proof in Section 7 holds verbatim in this case too and shows that, to prove
Conjecture 3.5, it is sufficient to verify that the estimate of Lemma 7.3 holds. We
have not been able to do so in general, but we can show the required estimate in
the two special cases in Theorem 3.6.

We consider thus in this section the two families of labeled plane trees that
were studied in [7]. In the first family T 1, the root is labeled 0, and the labels of
two adjacent nodes differ by ±1. In the second family T 2, the latter condition is
generalized by allowing the increments along edges to be 0,±1.
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Again, we introduce a sequence of generating functions:

Fk(t, x1, . . . , xk) ≡ F(x) := ∑
T ∈T

t |T |
k∏

i=1

(∑
v∈T

x
�(v)
i

)
,(10.1)

where T is either T 1 or T 2 and |T | is the number of edges in T . The following
proposition is the counterpart, for each of the two new families, of Proposition 8.1.

PROPOSITION 10.1. For plane trees with increments ±1, the series Fk can be
determined by induction on k ≥ 0 using

Fk(x) = 1 + t
∑

I⊆[k]

(∏
i∈I

x̄i + ∏
i∈I

xi

)
F|I |(xI )F|J |(xJ ),

where J = [k] \ I and x̄i = 1/xi . For trees with increments 0,±1, the above equa-
tion becomes

Fk(x) = 1 + t
∑

I⊆[k]

(
1 + ∏

i∈I

x̄i + ∏
i∈I

xi

)
F|I |(xI )F|J |(xJ ),

with the same notation as above. In both cases, each Fk(x) admits a rational ex-
pression in F0 and the xi .

PROOF. The proof is very similar to that of Proposition 8.1. We now use the
standard recursive description of plane trees based on the deletion of the leftmost
subtree T1 of a tree T (not reduced to a single node). This leaves another plane
tree T2. Also, one has to take into account the fact that the label of the root of T1

may now take two (or three) different values (depending on the family of trees
under consideration). Finally, the tree reduced to a single node contributes 1 in
each Fk . When T = T 1 and k ≥ 0, this gives

Fk(x) = 1 + ∑
T1,T2

t1+|T1|+|T2|
k∏

i=1

( ∑
v∈T1

x
�(v)−1
i + ∑

v∈T2

x
�(v)
i

)

+ ∑
T1,T2

t1+|T1|+|T2|
k∏

i=1

( ∑
v∈T1

x
�(v)+1
i + ∑

v∈T2

x
�(v)
i

)
,

and the result follows after expanding the products, and then exchanging the sums.
�

We easily find explicit formulas for F1 and F2 from Proposition 10.1; see the
proof of Corollary 8.2. We leave the details to the reader and state only the result
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that we need, in terms of the series T = T (t) that counts labeled trees not reduced
to a single node. Depending on which tree family is studied, one has

T = T (1) := B(2t) = 1 − 4t − √
1 − 8t

4t
for T 1,

T = T (2) := B(3t) = 1 − 6t − √
1 − 12t

6t
for T 2,

where the series B(t) is defined by (8.4).

COROLLARY 10.2. For plane trees with increments ±1,

F2(t, e
iu, e−iu) = (1 + T )(1 + T 2 cos2 u)

(1 − T )(1 − T cosu)2 .(10.2)

For plane trees with increments 0,±1,

F2(t, e
iu, e−iu) = (1 + T )(9 + T 2(1 + 2 cosu)2)

(1 − T )(3 − T (1 + 2 cosu))2 .(10.3)

We may now complete the proof of Theorem 3.6 by the argument in Section 8;
we give a sketch only and leave again the details to the reader. First, the functions
F2(t/2, eiu, e−iu) (for T 1) and F2(t/3, eiu, e−iu) (for T 2) are analytic functions of
t ∈ D for every real u. Next, in analogy with Lemma 8.4, with the same contour

(n) as there, for t ∈ 
 and |u| ≤ π ,

|F2(t/2, eiu, e−iu)| ≤ C4
n3/2

1 + nu4 for T 1,

|F2(t/3, eiu, e−iu)| ≤ C5
n3/2

1 + nu4 for T 2.

Indeed, the proof is almost exactly the same; we replace the left-hand side of (8.12)
by |1 − cosuB(t)| and |3 − B(t) − 2 cosuB(t)| and, similarly, the left-hand
side (8.13) by |B(t)−1 −cosu| and |3B(t)−1 −1−2 cosu|, note the corresponding
changes in (8.15) and argue as before.

The Cauchy integral formula (8.9) then leads to [cf. (8.8)], for |u| ≤ π ,

[tn]F2(t, e
iu, e−iu) ≤ C68n n1/2

1 + nu4 for T 1,

[tn]F2(t, e
iu, e−iu) ≤ C712n n1/2

1 + nu4 for T 2.

By (8.7) and |T 1
n | = 2n[tn]B(t) ∼ π−1/2n−3/28n, |T 2

n | = 3n[tn]B(t) ∼ π−1/2 ×
n−3/212n, this yields (7.1) for these two families. [Note that we have let |T | be the
number of edges for T 1 and T 2; thus, we now should replace Xn by Xn+1 in (8.7),
but this makes no difference for (7.1).]

This completes the proof of Theorem 3.6.
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11. Moments of the density of ISE. We know by Corollary 3.3 that
fISE(λ) has a moment generating function (defined in an interval containing 0),
and thus finite moments of all orders. We next present a formula for these mo-
ments and, more generally, for mixed moments involving several values of λ. We
use a general method for occupation densities of Gaussian processes. To state the
formula, we introduce more notation.

Given ζ (which as always is 2Bex), and k points s1, . . . , sk ∈ [0,1], the random
vector ( �W(s1), . . . , �W(sk)) has a Gaussian distribution with mean 0 and covariance
matrix

�ζ ;s1,...,sk := (
m(si, sj ; ζ )

)k
i,j=1.(11.1)

We let ϕζ ;s1,...,sk denote the density function of this distribution. (We may ignore
the cases when the distribution is degenerate; if s1, . . . , sp are distinct, the distrib-
ution is nondegenerate a.s. with respect to ζ .)

Using the construction in Section 5.2 of the Brownian CRT from ζ , we can
transfer this notation to the CRT. Given ζ and k points x1, . . . , xk in the corre-
sponding CRT, the random vector (W̃ (x1), . . . , W̃ (xk)) has a Gaussian distribution
with mean 0 and covariance matrix

�ζ ;x1,...,xk
:= (

m(xi, xj ; ζ )
)k
i,j=1,(11.2)

where m(x, y; ζ ) is the length of the common part of the paths from the
root to x and y in the CRT. We let ϕζ ;x1,...,xk

denote the density function of
this distribution, and note that if xi = ζ̃ (si), i = 1, . . . , k, then m(xi, xj ; ζ ) =
m(si, sj ; ζ ) and ϕζ ;x1,...,xk

= ϕζ ;s1,...,sk .
We further let X1, . . . ,Xk denote k independent random nodes in the Brownian

CRT (with the uniform distribution ν).

THEOREM 11.1. For any real numbers λ1, . . . , λk ,

E
(
fISE(λ1) · · ·fISE(λk)

)
= E

∫ 1

0
· · ·

∫ 1

0
ϕζ ;s1,...,sk (λ1, . . . , λk) ds1 · · ·dsk(11.3)

= Eϕζ ;X1,...,Xk
(λ1, . . . , λk).

PROOF. The equality of the last two expressions follows by the construction
of the Brownian CRT and the definitions above.

We define, for λ ∈ R and h > 0,

Zh(λ) = h−1
∫ 1

0
1[ �W(s)∈[λ,λ+h]] ds = h−1µISE[λ,λ + h]

(11.4)

= h−1
∫ λ+h

λ
fISE(y) dy.
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Since fISE is continuous by Theorem 2.1, Zh(λ) → fISE(λ) a.s. as h → 0. From
this definition follows

E
(
Zh(λ1) · · ·Zh(λk)|ζ )

=
∫ 1

0
· · ·

∫ 1

0
h−kP

( �W(si) ∈ [λi, λi + h], i = 1, . . . , k|ζ )
ds1 · · ·dsk

=
∫ 1

0
· · ·

∫ 1

0
h−k

∫ λ1+h

λ1

· · ·
∫ λk+h

λk

ϕζ ;s1,...,sk (y1, . . . , yk) dy1 · · ·dyk ds1 · · ·dsk

= E
(
h−k

∫ λ1+h

λ1

· · ·
∫ λk+h

λk

ϕζ ;X1,...,Xk
(y1, . . . , yk) dy1 · · ·dyk

∣∣∣ζ)
and thus,

E
(
Zh(λ1) · · ·Zh(λk)

)
(11.5)

= Eh−k
∫ λ1+h

λ1

· · ·
∫ λk+h

λk

ϕζ ;X1,...,Xk
(y1, . . . , yk) dy1 · · ·dyk.

To obtain the conclusion, we now let h → 0; however, we have to justify taking
the limit inside the expectations on both sides. For the right-hand side, we use the
fact that a nondegenerate Gaussian distribution in Rk with mean 0 has a density
function that has its maximum at 0; hence, we can, by Lemma 11.2 below, use
dominated convergence with ϕζ ;X1,...,Xk

(0, . . . ,0) as dominating function. Since
ϕζ ;X1,...,Xk

is continuous, the right-hand side of (11.5) thus converges to the right-
hand side of (11.3).

For the left-hand side, we begin by applying Fatou’s lemma, which now shows
that the left-hand side of (11.3) is at most equal to the right-hand side. By
Lemma 11.2 below, this yields a uniform bound, Ck , say, of the left-hand side for
all λ1, . . . , λk . It follows from (11.4) that E(Zh(λ1) · · ·Zh(λk)) ≤ Ck too, for every
h > 0. If we here replace k by 2k, repeating every λi twice, we see that the ran-
dom variables Vh := Zh(λ1) · · ·Zh(λk) satisfy EV 2

h ≤ C2k . The variables Vh are
thus uniformly integrable, and from Vh → fISE(λ1) · · ·fISE(λk) as h → 0 follows
EVh → E(fISE(λ1) · · ·fISE(λk)); see, for example, [14], Theorems 5.4.2 and 5.5.2.

�

LEMMA 11.2. For every k ≥ 1, Eϕζ ;X1,...,Xk
(0, . . . ,0) < ∞.

PROOF. The subtree Rk of the Brownian CRT spanned by X1, . . . ,Xk and
the root o has k − 1 internal nodes. Let R′

k be the subtree spanned by o and the
internal nodes of Rk , and let �1, . . . , �k be the lengths of the k edges that attach
X1, . . . ,Xk to R′

k . The values of W̃ along Rk form a branching Brownian motion,
that is, W̃ is a Brownian motion along each edge of Rk and all increments are
independent. In particular, conditioned on Rk and the values of W̃ on R′

k , the
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values W̃ (X1), . . . , W̃ (Xk) at the leaves are independent Gaussian variables with
some means b1, . . . , bk and variances �1, . . . , �k . The conditional density function
is thus at most

∏k
1(2π�i)

−1/2, and thus, taking the expectation and using (5.2),

Eϕζ ;X1,...,Xk
(0, . . . ,0)

≤ E
k∏
1

(2π�i)
−1/2

= (2k − 3)!!(2π)−k/2

×
∫

· · ·
∫ k∏

1

�
−1/2
i

(2k−1∑
i=1

�i

)
e−1/2(

∑2k−1
1 �i)

2
d�1 · · ·d�2k−1

< ∞. �

Since the distribution of the covariance matrix �ζ ;X1,...,Xk
is given by (11.2)

and (5.2), it is in principle possible to write the right-hand side of (11.3) as a
multiple integral. However, the expression becomes rather complicated for higher
moments. In the simplest case λ1 = · · · = λk = 0, (11.3) reduces to EfISE(0)k =
(2π)−k/2E(det(�ζ ;X1,...,Xk

)−1/2), but even this seems difficult to compute in gen-
eral. (These moments were found by another method in Corollary 3.4.)

In the case k = 1, Theorem 11.1 yields a simple formula for the average EfISE
of the density, which equals the density of the average EµISE, that is, the density
of a random point chosen according to the random ISE. In the latter formulation,
it was found by Aldous [4].

COROLLARY 11.3. For any real λ,

EfISE(λ) = (2π)−1/2
∫ ∞

0
y1/2 exp

(
−λ2

2y
− y2

2

)
dy.

PROOF. ϕζ ;X1(λ) = (2πy)−1/2e−λ2/(2y), where y = d(X1, o), and y has the

density function ye−y2/2 by (5.2). �

Alternatively, expanding the Laplace transform of Corollary 3.3 in a gives
(see [7], Proposition 13)

EfISE(λ) = 2−1/4
√

π

∑
m≥0

(−23/4|λ|)m
m! cos

(m + 1)π

4



(
m + 3

4

)
.

Both expressions yield EfISE(0) = 2−3/4π−1/2
(3/4), as given by Corollary 3.4.
From Corollary 11.3 follows easily by integration another formula by

Aldous [4]; we leave the proof to the reader.
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COROLLARY 11.4. For every real a > −1,

E
∫ ∞
−∞

|x|a dµISE(x) = E
∫ ∞
−∞

|x|afISE(x) dx = 23a/4
√

π



(
a

2
+ 1

2

)



(
a

4
+ 1

)
.

This extends (4.5). (To see the equivalence when a = 2k, use the duplication
formula for the Gamma function twice.)

12. The grand-moments of the ISE: Proofs.

PROOF OF THEOREM 4.1. Let f be a continuous function on R. First, if f is
bounded, then µ �→ ∫

f dµ is a continuous functional on the space of probability

measures on R, and since µn
d−→ µISE in this space [see (1.1)], it follows that∫
f dµn

d−→
∫

f dµISE.(12.1)

We need to extend this to unbounded f . Thus, let fu, for u > 0, be the function
that is equal to f on [−u,u], and is constant on (−∞,−u] and on [u,∞). Since

fu is bounded, (12.1) applies to fu, that is,
∫

fu dµn
d−→ ∫

fu dµISE for every
u > 0. Moreover, let Vn := sup{|x| :x ∈ suppµn} = (2n)−1/4 sup{|�(v)| :v ∈ Tn}.
By Marckert [23], Theorem 5, Vn

d−→ V for some random variable V . Conse-
quently,

lim sup
n→∞

P
(∫

fu dµn �=
∫

f dµn

)
≤ lim sup

n→∞
P(Vn > u) ≤ P(V ≥ u),

which tends to 0 as u → ∞. Finally,
∫

fu dµISE → ∫
f dµISE as u → ∞, since

µISE has compact support. Consequently, [6], Theorem 4.2, shows that (12.1) holds
for any continuous f .

Taking f (x) = xk in (12.1), we obtain the convergence mk,n
d−→ mk of the mo-

ments asserted in Theorem 4.1. Moreover, taking f to be a linear combination of
such monomials, we see that joint convergence holds by the Cramér–Wold device
([6], Theorem 7.7).

In particular, for any partition λ, mλ,n
d−→ mλ. We will show that the expecta-

tion E(mλ,n) converges as n → ∞. Applying this to the partition λ′ where each
part in λ is repeated twice, we see that also E(m2

λ,n) = E(mλ′,n) converges. The
variables mλ,n are thus uniformly integrable, and the limit of their expectations
E(mλ,n) equals the expectation E(mλ) of their limit; see, for example, [14], Theo-
rems 5.4.2 and 5.5.2.

To complete the proof of Theorem 4.1, we thus have to show that the grand-
moments E(mλ,n) of µn converge to the limits stated in the theorem. We introduce
the nonnormalized moments of µn:

M̄i,n = ∑
v∈Tn

�(v)i = 2i/4n1+i/4mi,n,
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as well as their factorial version, which is simpler to handle via generating func-
tions:

Mi,n = ∑
v∈Tn

�(v)
(
�(v) − 1

) · · · (�(v) − i + 1
)
.

We also use the notation Mλ,n, analogous to (4.2), for a partition λ = (λ1, . . . , λp).
Then the remaining part of Theorem 4.1 easily follows from the following:

PROPOSITION 12.1. As n → ∞, the nonnormalized factorial moments of µn

satisfy

E(Mλ,n) = 
(1/2)np+|λ|/4


(p + |λ|/4 − 1/2)

(
cλ + o(1)

)
.

PROOF. Let us first relate Mλ,n to the generating functions of Proposition 8.1.
It is simple to see that

∂λFp := ∂ |λ|Fp

∂x
λ1
1 · · · ∂x

λp
p

(t,1, . . . ,1)

= ∑
T ∈T

t |T |
p∏

i=1

(∑
v∈T

�(v)
(
�(v) − 1

) · · · (�(v) − λi + 1
))

(12.2)

= ∑
n≥0

tnCnE(Mλ,n),

where Cn = (2n
n

)
/(n + 1) is the number of binary trees with n nodes, known as the

nth Catalan number. By Proposition 8.1, the series ∂λFp is a rational function of
t and

√
1 − 4t . We want to study the singularities of these series. We will prove

that, for p > 0,

∂λFp = Pλ(t) + Qλ(t)
√

1 − 4t

(1 − 4t)eλ
,(12.3)

where Pλ(t) and Qλ(t) are two Laurent polynomials in t , and

eλ = p + 1

2

⌊ |λ|
2

⌋
− 1

2
=

{
p + |λ|/4 − 1/2, if |λ| is even,

p + |λ|/4 − 3/4, if |λ| is odd.

(Note that Pλ and Qλ may be singular at t = 0, although ∂λFp is analytic there.)
From (12.3), it follows that the only possible singularity of ∂λFp is at t = 1/4, and
that, as t → 1/4,

∂λFp = cλ + o(1)

(1 − 4t)p+|λ|/4−1/2 ,
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where cλ = Pλ(1/4) when |λ| is even and cλ = 0 when |λ| is odd. We will further
show that the numbers cλ satisfy the recurrence relation (4.3). The form (12.3) and
the above singular behavior do not hold when p = 0, and should be replaced in
this case by the expression (8.3) of F0 and the singular behavior

F0 = 2 − 2
√

1 − 4t + O(1 − 4t).

Assume for the moment that we have proved (12.3). Then the standard results
of singularity analysis [12] provide

[tn]∂λFp = CnE(Mλ,n) = 4nnp+|λ|/4−3/2


(p + |λ|/4 − 1/2)

(
cλ + o(1)

)
.

Given that Cn ∼ 4nn−3/2/
(1/2), this gives the result stated in the proposition.
Note that this asymptotic behavior also holds for p = 0, with c∅ = −2.

Let us thus focus on (12.3). Our proof works by induction on p + |λ|.
• If p = 0, then λ is the empty partition, and we have worked out above the value

of F0 and its asymptotic behavior when t → 1/4.
• If p > 0 and λ1 = 0, then

∂λFp = ∑
n≥0

tnCnE(Mλ,n) = ∑
n≥0

tnCnnE(Mλ′,n) = t
∂

∂t
∂λ′Fp−1,

where λ′ = (λ2, . . . , λp). Then the form (12.3) follows by a simple calculation
from the induction hypothesis, and the fact that eλ = eλ′ + 1. (We do not give
the details.) This calculation also provides the value of cλ in terms of cλ′ . The
case p = 1 and λ = (0) has to be treated separately, since in that case λ′ = ∅
and the form (12.3) is not valid.

• If p > 0 and λ1 > 0, then all the parts of λ are positive. Let us differentiate (8.2)
λ1 times with respect to x1, then λ2 times with respect to x2, and so on, and then
set xi = 1 in the result. Since λi > 0 for all i, the terms for which I ∪ J �= [p]
do not contribute, and we are left with

∂λFp = t
∑

I⊆[p]
∂λI

(
F|I |(xI )

∏
i∈I

x̄i

)
∂λJ

(
F|J |(xJ )

∏
j∈J

xj

)
,(12.4)

where J = [p] \ I and, for any function G(t, xI ), we denote

∂λI
G = ∂ |λI |G

∂x
λi1
i1

· · · ∂x
λir

ir

(t,1, . . . ,1)

if I = {i1, . . . , ir} with i1 < . . . < ir . Now

∂λI

(
F|I |(xI )

∏
i∈I

x̄i

)
= ∑

σ≤λI

(−1)|λI |−|σ |∂σF|I |
∏
i∈I

λi !
σi ! ,
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where the sum runs over all nonnegative |I |-tuples σ = (σi)i∈I that are less than
or equal to λI . The second derivative contains fewer terms:

∂λJ

(
F|J |(xJ )

∏
j∈J

xj

)
= ∑

ε

∂λJ −εF|J |
∏
j∈J

λ
εj

j ,

where the sum runs over all |J |-tuples ε = (εj )j∈J such εj ∈ {0,1} for all j .
Let us now bravely replace the two derivatives occurring in (12.4) by their

sum-expressions given above, and (mentally) expand the product of these sums.
This gives ∂λFp as a sum over I , σ and ε. In this sum, the series ∂λFp appears
twice, namely:

(i) for I = ∅, σ = ∅ and ε = (0, . . . ,0);
(ii) for I = [p], σ = λ and ε = ∅.

The corresponding summands are the same in both cases, namely, tF0∂λFp .
Hence, (12.4) can be rewritten as

(1 − 2tF0)∂λFp = t
∑
I,σ,ε

SUMMAND,

where the sum now excludes Cases (i) and (ii). In this sum, all terms of the form
∂τFk now satisfy k + |τ | < p + |λ|, so that the induction hypothesis applies to
them. Note also that (1 − 2tF0) = √

1 − 4t , so that the previous equation really
reads

√
1 − 4t∂λFp = t

∑
I,σ,ε

SUMMAND = RHS.(12.5)

The latter observation is the key in our proof of (12.3).
In the right-hand side of the equation, let us study separately the cases where

I or J are empty.

12.1. First case: I or J is empty. The contribution of the terms for which
I = ∅ is

tF0
∑
ε �=0

∂λ−εFp

p∏
j=1

λ
εj

j .(12.6)

The contribution of the terms for which J = ∅ (i.e., I = [p]) is

tF0
∑
σ<λ

(−1)|λ|−|σ |∂σFp

p∏
i=1

λi !
σi ! .(12.7)

We observe that the terms for which |ε| = 1 in (12.6) cancel out with the terms for
which |σ | = |λ| − 1 in (12.7). (More generally, the term associated with ε, when
|ε| is odd, cancels out with the term associated with σ = λ− ε, but we do not need
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this property.) After these cancellations, all the terms ∂τFk that appear in this part
of RHS satisfy k = p and |τ | ≤ |λ| − 2. In particular, eτ ≤ eλ − 1/2 for each of
them. The induction hypothesis then guarantees that this part of RHS is of the form

RHS1 = P1(t) + Q1(t)
√

1 − 4t

(1 − 4t)eλ−1/2 ,

for two Laurent polynomials P1(t) and Q1(t). Given that we still have to divide
RHS by

√
1 − 4t to obtain the expression of ∂λFp [see (12.5)], this part of RHS is

compatible with the expected form (12.3).
Before turning our attention to the case ∅ �= I �= [p], let us work out the value

of P1(1/4), at least when |λ| is even. In RHS1, the only terms ∂τFp for which
eτ = eλ − 1/2 are those for which |τ | = |λ| − 2. That is, the terms for which
|ε| = 2 in (12.6), and the terms for which |σ | = |λ| − 2 in (12.7). As F0 → 2 when
t → 1/4, this means that

RHS1 = 1

2(1 − 4t)eλ−1/2

( ∑
1≤i<j≤p

cλ−εi,j
λiλj + ∑

σ≤λ,|σ |=|λ|−2

cσ

p∏
i=1

λi !
σi ! + o(1)

)
,

where εi,j is the p-tuple that has a one at positions i and j , and zeros elsewhere.
In the second sum, the partitions σ such that σi = λi − 2 for some i contribute
λi(λi −1), while those for which σi = λi −1 and σj = λj −1, so that σ = λ−εi,j ,
contribute λiλj , as in the first sum. A concise way of merging both sums consists
in using the notation of (4.3) and writing

RHS1 = 1

(1 − 4t)eλ−1/2

( ∑
σ≤λ,|σ |=|λ|−2

cσ

(
λ

σ

)
+ o(1)

)
,

so that the polynomial P1(t) satisfies

P1(1/4) = ∑
σ≤λ,|σ |=|λ|−2

cσ

(
λ

σ

)
,

where we recognize the second part of (4.3).

Second case: I �= ∅ and J �= ∅. In that case, the induction hypothesis (12.3)
applies both to ∂σF|I | and ∂λJ −εF|J |. Moreover,

eσ + eλJ −ε ≤ eλI
+ eλJ

= p + 1

2

⌊ |λI |
2

⌋
+ 1

2

⌊ |λJ |
2

⌋
− 1 ≤ eλ − 1

2
.(12.8)

This implies that the part of RHS for which ∅ �= I �= [p] can be written as

RHS2 = P2(t) + Q2(t)
√

1 − 4t

(1 − 4t)eλ−1/2 ,

for two Laurent polynomials P2(t) and Q2(t). Given that RHS1 has also this form,
we can conclude at last that (12.3) holds.
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Let us finally work out the value of P2(1/4), at least when |λ| is even. The only
way for the inequalities (12.8) to be equalities is to take σ = λI , ε = 0, with |λI |
and |λJ | even. Going back to (12.4), this means that the dominant contribution in
RHS2 is given by

1

4(1 − 4t)eλ−1/2

∑
∅ �=I�[p]

cλI
cλJ

.

In other words,

P2(1/4) = 1
4

∑
∅ �=I�[p]

cλI
cλJ

,

which gives the first part in (4.3). This completes the proof of Proposition 12.1 and
thus of Theorem 4.1. �

The proof of Theorem 4.5 is almost the same, using the generating functions
and recursion relations in Proposition 10.1 and replacing 1 − 4t by 1 − 8t and
1 − 12t , respectively. We omit the details.

To conclude this section, let us sketch the proof of Theorem 4.6. We define
the generating functions Fk as in (8.1), but replacing �(v) by the depth d(v).
Then (8.2) holds with x̄i replaced by xi . In particular, F0 is still given by (8.3)
and each Fk(x) admits a rational expression in F0 and the xi . We claim that then
(12.3) holds, with eλ = p + |λ|/2 − 1/2, and

∂λFp = dλ + o(1)

(1 − 4t)p+|λ|/2−1/2 .

This is proved by induction as above. Note that, after (12.4), the ∂λI
term expands

exactly as the ∂λJ
term, without (−1)|λI |−|σ | and thus without cancellation; this

ultimately explains why the exponents eλ increase faster for the horizontal profile
than for the vertical. The rest is as above.

The same applies to plane trees, with Fk defined as in (10.1) with �(v) replaced
by d(v), and the recursion relation

Fk(x) = 1 + t
∑

I⊆[k]

(∏
i∈I

xi

)
F|I |(xI )F|J |(xJ ),

where J = [k] \ I . We omit the details.
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