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A THEORY OF STOCHASTIC INTEGRATION FOR
BOND MARKETS

BY M. DE DONNO AND M. PRATELLI

Università di Pisa

We introduce a theory of stochastic integration with respect to a family
of semimartingales depending on a continuous parameter, as a mathematical
background to the theory of bond markets. We apply our results to the prob-
lem of super-replication and utility maximization from terminal wealth in a
bond market. Finally, we compare our approach to those already existing in
literature.

1. Introduction. In the models for the bond market it is usually assumed
that a continuum of basic securities is available to the investor. This gives rise
to the problem of what exactly should be meant by the word “portfolio” in this set-
ting. For this reason, Björk, Di Masi, Kabanov and Runggaldier [4] modeled the
zero coupon bonds price process as a stochastic process with values in the space
C([0,∞)) of continuous functions on the time interval [0,∞). Then, they con-
structed a stochastic integral with respect to such a process, where the integrand
process (i.e., the mathematical representation of a self-financing strategy) takes
values in the dual of C([0,∞)), that is, the set of Radon measures on [0,∞).
In this way, they define a notion of “infinite-dimensional” portfolio as a portfo-
lio based on a measure-valued strategy and a contingent claim is called attainable
when its value coincides with the final value of a measure-valued portfolio. This
approach has, however, some drawbacks. For instance, if one wishes to extend the
results on completeness from the stock market, one discovers that the uniqueness
of the martingale probability is not equivalent to completeness in the usual sense,
but to a weaker condition, called approximate completeness: every (sufficiently in-
tegrable) contingent claim can be approximated by a sequence of attainable claims,
but it may not be attainable. We suggested a different approach in [10], by making
use of a theory on stochastic integration with respect to cylindrical locally square
integrable martingales, developed by Mikulevicius and Rozovskii [20, 21]: there,
we showed that measure-valued processes are not sufficient to describe all finan-
cial portfolios. Nevertheless, this type of approach is limited to the martingale case,
which means that it is necessary to work under an equivalent martingale measure,
whereas there are some questions, such as super-replication or utility maximiza-
tion, which need to be posed under the original measure.
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The aim of this paper is to introduce a theory of stochastic integration with
respect to a family of semimartingales indexed by a continuous parameter x ∈ I

(where I is a locally compact subset of R) and to characterize the class of inte-
grands. We start from defining as simple integrands the linear combination of Dirac
measures, so that the integral depends only on a finite number of semimartingales.
Going to the limit (in a properly chosen topology), we define the class of general-
ized integrands, which turns out to be predictable processes with values on the set
of not necessarily bounded functionals on R

I .
This approach, which, in our opinion, is the most natural from a mathematical

point of view, makes sense also from the financial point of view. Indeed, the simple
integrands are the mathematical representation of real portfolios, which are based
on a finite number of bonds: it is then natural to take as generalized portfolios the
limit of real portfolios.

We introduce our definitions in Section 2, where we show that the integral is
well defined. Moreover, we provide an infinite-dimensional analog of a result due
to Mémin [18]: the limit of stochastic integrals (for the semimartingale topology)
is still a stochastic integral. This section is the extension to the continuous case of
the results obtained in [11], concerning the stochastic integration with respect to a
sequence of semimartingales.

In Section 3 we study the problems of super-replication and utility maximiza-
tion in the bond market. We adapt the results of Delbaen and Schachermayer [12]
and Kramkov and Schachermayer [17] by making use of the theory developed in
Section 2. We remark that these results cannot be obtained if we consider only
measure-valued strategies, as it was observed by Pham [22].

In Section 4 we compare our theory with other approaches existing in literature,
which are also based on infinite-dimensional stochastic integration. At first we
concentrate on the Hilbert space approach, according to which the family of bond
price processes is seen as a process with values in a Hilbert space of functions,
instead of a family of semimartingales dependent on a parameter. In particular, we
analyze the recent paper by Carmona and Tehranchi [6].

Then, we discuss connections with the paper by Björk, Di Masi, Kabanov and
Runggaldier [4]: in particular, we show that the stochastic integral constructed in
that paper can be seen as a particular case of our definition of generalized integral.

We point out that generalized strategies in the bond market models are an ide-
alization, impossible to achieve in the real word: they can only be approximated
by real portfolios. However, in some circumstances, the language of generalized
integrands allows a simpler analysis of the problem and a better understanding of
the real bond market: for instance, in the problem of utility maximization we can
give an explicit form of the optimal (idealized) solution by using generalized in-
tegrands, while the optimal solution might not exist if we consider only portfolios
based on a finite number of assets.



STOCHASTIC INTEGRATION FOR BOND MARKETS 2775

2. Definitions and general results. Let (�,F , (Ft )0≤t≤T ,P) be a filtered
probability space, which satisfies the usual hypotheses. Let S(P) be the space
of real-valued semimartingales. We consider S(P) equipped with the topology
introduced by Emery [15]: S(P) is a complete metric space. It is worth it to
recall that S(P) is invariant with respect to a change to an equivalent probabil-
ity measure. We denote by ‖ · ‖S(P) the quasinorm introduced by Mémin ([18],
Section II), which induces the Emery topology on the set of semimartingales.
Moreover, we denote by M2(P) the Banach space of square integrable martin-
gales with the norm ‖M‖M2 = ‖MT ‖L2(P). Finally, A(P) is the Banach space of
predictable processes with finite variation, whose variation is integrable, with the
norm ‖B‖A = ‖V (B)T ‖L1(P) (with the notation of Mémin [18], V (B) denotes the
variation of B). Many of our results rely on Theorem II.3 of [18]:

Let Sn be a Cauchy sequence in S(P); there exist a probability measure P
∗,

equivalent to P, such that dP
∗/dP is bounded and a subsequence (still denoted

by Sn) such that Sn = Mn + Bn, where Mn is a Cauchy sequence in M2(P∗) and
Bn is a Cauchy sequence in A(P∗).

With the notation introduced by Mémin [18], we will say that Sn converges in
M2 ⊕A(P∗). Since this result holds only for processes defined on a finite horizon,
we limit our study to the case of processes defined on a finite time set [0, T ].
However, we point out that the choice of a finite time interval is not restrictive:
indeed, all the results can be extended to the time interval [0,+∞[ by localization.

Let S = (Sx)x∈I be a family of semimartingales, where I is a locally compact
subset of R; in fact, it can be replaced with any locally compact separable metric
space. The infinite-dimensional semimartingale S can be seen as a mapping from
a metric space to the space of semimartingales, endowed with the Emery topology.
We make the following assumption:

ASSUMPTION 2.1. The mapping S : I → S(P) defined by S(x) = Sx is con-
tinuous.

Our goal is to give a good definition of a stochastic integral with respect to the
infinite-dimensional semimartingale S. Most of the definitions and results in this
section will be an extension, to the “continuous” case, of the definitions and results
given in [11] for the case of a sequence of semimartingales.

In [11], we called negligible [with respect to a sequence of semimartingales
(Xi)i≥1] a predictable set C ⊂ � × [0, T ] such that

∫
hdXi = h · Xi = 0, for

every i and for every bounded predictable process h, which is zero on the comple-
ment of C. We also proved that there exists an increasing predictable process A,
such that a set is negligible (according to the above definition) if and only if it is
negligible with respect to the measure dPdA. In the present setting we introduce
the following definition:
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DEFINITION 2.1. Let {xn}n≥1 be a countable dense subset in I : we will call
negligible [with respect to the family (Sx)x∈I ] a predictable set C which is negli-
gible with respect to the sequence (Sxn)n≥1.

The next lemma shows that this notion is well defined, in the sense that it does
not depend on the choice of the dense subset.

LEMMA 2.1. For a predictable set C, the following conditions are equiva-
lent:

(i) C is negligible with respect to the sequence of semimartingales (Sxn)n≥1
(where {xn}n≥1 is a countable dense subset in I ).

(ii) For every x ∈ I , for every bounded predictable process h which is zero on
the complement of C, we have that (h · Sx) = 0.

PROOF. It is trivial that (ii) implies (i). Assume then that (i) holds. Condition
(ii) is obvious if x belongs to the dense set considered in (i); otherwise, it follows
from Assumption 2.1. In details, fix x /∈ {xn}n≥1 and let h be a predictable process
such that |h(ω, t)| ≤ M for all (ω, t) and h(ω, t) = 0 for (ω, t) /∈ C.

Then, recalling that h · Sxn = 0 for all n because of (i), we have that

‖h · Sx‖S(P) = ‖h · Sx − h · Sxn‖S(P) ≤ M‖Sx − Sxn‖S(P).

Moreover, by Assumption 2.1, for every ε > 0, there exists nε such that ‖Sx −
Sxnε ‖S(P) < ε. Since ε can be chosen arbitrarily small, the claim follows. �

From now on, when we say that a property holds a.s., we mean that it holds on
a set whose complementary is negligible with respect to S.

In order to define a stochastic integral with respect to S, we begin by introducing
the definition of simple integrand.

DEFINITION 2.2. A simple integrand (simple strategy) is a process H of the
form

Hω,t = ∑
i≤n

hi
ω,t δxi

,(2.1)

where hi are predictable bounded processes, whereas the δxi
denote the Dirac

deltas at points xi ∈ I .

The stochastic integral of a simple integrand with respect to S is naturally de-
fined by the formula

(H · S)t =
∫ t

0
Hs dSs =

∫ t

0

∑
i≤n

hi
s dSxi

s .
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We observe that S is a process with values in E = R
I . We consider on E the

product topology. Hence, its dual space E′ is the space of finite combination of
Dirac measures on I . It is easy to recognize that a simple integrand H is a process
which takes values in E′.

We note that our class of simple integrands coincides with the class of simple
integrands introduced by Mikulevicius and Rozovskii ([20], page 142) for the case
of locally square integrable cylindrical martingales in a quasicomplete and locally
convex space E.

REMARK 2.1. If one has in mind a theory of stochastic integration for the
bond market, it might seem a more convenient choice to take as value space of
the infinite-dimensional semimartingale the set C(I ) of the continuous functions
from I to R. This is, in fact, a common approach in the existing literature (see,
e.g., [4] and Section 4 for a comparison with their results). In this case, taking as
value space of the simple integrands the dual space (C(I )′), one should consider
as simple integrands the processes with values in the set of Radon measures with
compact support, but not necessarily with finite support. This seems counterintu-
itive to us from the financial point of view, since it should be quite evident that the
simple strategies (the strategies of the real world) involve only a finite number of
assets. Moreover, also from the mathematical point of view, the pointwise continu-
ity does not imply (without any further condition) that Assumption 2.1 holds. At
the same time, this assumption seems to us the right assumption to work with.

It is clear that the set of simple integrands is too small. That is, we need more
complicated (though unrealistic) strategies, if we wish to address, at least theoreti-
cally, to questions as super-replication and utility maximization in a market where
a continuum of securities is available.

It was already seen by Métivier [19], for the case of martingales with values
in a Hilbert space K , that the integrands do not necessarily take values in K ′. In
particular, they take values in the set of unbounded functionals on K .

DEFINITION 2.3. A not-necessarily continuous (unbounded) functional on E

is a linear functional k whose domain Dom(k) is a subspace of E.
We denote by U the set of (not-necessarily continuous) functionals on E.

The space E′ is of course contained in U. Furthermore, we note that U contains
also the set of Radon measures on I , which we denote by M(I ): if µ ∈ M(I ), then
Dom(µ) ⊃ C(I ).

DEFINITION 2.4. We will say that a sequence (kn) in E′ converges to k ∈ U
if limn kn(f ) = k(f ), for all f in Dom(k).



2778 M. DE DONNO AND M. PRATELLI

Note that, for a sequence kn in E′, it always makes sense to define the limit func-
tional k = limn kn, where Dom(k) = {f ∈ E : limn→∞ kn(f ) exists} can possibly
be the trivial set {0} (see also Remark 1 in [11]).

Since we wish to consider U-valued processes, we introduce a notion of (weak)
predictability.

DEFINITION 2.5. A process H with values in U is (weakly) predictable if for
every element f of E, the process H(f )1{f ∈Dom(H)} is predictable.

LEMMA 2.2. Let (Hn) be a sequence of simple integrands which converges
to a U-valued process H. Then H is weakly predictable.

PROOF. Let f ∈ E. The set {f ∈ Dom(H)} = {(ω, t) : limn Hn
ω,t (f ) exists} is

predictable, since each Hn is predictable. Hence, the process H(f )1{f ∈Dom(H)} is
pointwise limit of the sequence of predictable processes Hn(f )1{f ∈Dom(H)}, and
as a consequence, is predictable as well. �

We introduce as in [11], Definition 2, the notion of generalized integrand as the
limit, in an appropriate sense, of simple integrands. This definition is analogous
to (and, in fact, inspired by) the notion of integrable function with respect to a
vector-valued measure (see, e.g., [13], Section IV.10.7).

DEFINITION 2.6. Let H be a U-valued process. We say that H is integrable
with respect to S if there exists a sequence (Hn) of simple integrands such that:

(i) Hn converges to H, a.s.;
(ii) (Hn · S) converges to a semimartingale Y in S(P).

We call H a generalized integrand and define
∫

HdS = H · S = Y .
We denote by L(S,U) the set of generalized integrands.

We remark that, in Definition 2.6, we do not give any condition on measurabil-
ity, contrarily to what is done in the classical definition of stochastic integral. The
reason is that a measurability property is implicit in (i), thanks to Lemma 2.2.

It is clear that Definition 2.6 makes sense only provided that the limit semi-
martingale does not depend on the approximating sequence.

PROPOSITION 2.3. The semimartingale Y of Definition 2.6 is well defined,
that is, if (Hn) and (Gn) are sequences of simple integrands both converging to
H and such that both (Hn · S) and (Gn · S) are Cauchy sequences in S(P), then
(Hn · S) and (Gn · S) converge to the same limit.
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PROOF. We can reduce to the case of a sequence of semimartingales. Indeed,
since Hn and Gn are simple integrands, they will have the form

Hn = ∑
i≤j (n)

hn,iδxn
i
, Gn = ∑

i≤k(n)

gn,iδyn
i
.

Therefore, if we denote by I ∗ the set
⋃

n≥1({xn
1 , . . . , xn

j (n)} ∪ {yn
1 , . . . , yn

k(n)}), we
recognize that we have to deal with a stochastic integral with respect to the se-
quence of semimartingales (Sx)x∈I∗ . Then, by Proposition 1 in [11], the limit is
unique and the stochastic integral is well defined. �

In a similar way, using Theorem 3 in [11], we can prove the following result
which extends a result due to Mémin ([18], Corollary III.4) for the case of finite-
dimensional semimartingales:

THEOREM 2.4. Let (Hn) be a sequence of generalized integrands such that
(Hn · S) is a Cauchy sequence in S(P). Then, there exists a generalized integrand
H such that limn→∞ Hn · S = H · S.

The mapping L(S,U) → S(P) defined by H 
→ H ·S is well defined, linear and
invariant with respect to a change to an equivalent probability measure. However,
besides these nice properties, there are some drawbacks. First of all, the integral is
not linear in S: there may exist two infinite-dimensional semimartingales S1 and S2

and a U-valued process H such that H in L(S1,U) ∩ L(S2,U), but H /∈ L(S1 +
S2,U). The reason is that the integral depends on the approximating sequences and
the same generalized integrand can admit two different approximating sequences
according to the integrator semimartingale. Moreover, the integral is not stable for
small perturbations of the semimartingale S, as we shall show in Example 2.2.
Finally, we cannot provide an extension of an important result which was proved
by Ansel and Stricker ([2], Corollary 3.5) for the case of a finite number of local
martingales. On the contrary, we can find a counterexample, that is,

there exist a family of local martingales M = (Mx)x∈I and a sequence of simple
integrands (Hn) such that the sequence of integrals (Hn · M) converges to an
integral (H · M) which is bounded from below, but is not a local martingale.

This phenomenon was already observed by De Donno and Pratelli [11], Exam-
ple 2 (which in turn is inspired to an example of Emery [15], page 496), for the
case of a sequence of semimartingales. We can modify that example to obtain one
for the “continuous” case.

EXAMPLE 2.1. Let Mi be the square integrable martingale defined as follows:

Mi
t = t ∧ Ti

i2 − 1{t≥Ti},
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where (Ti)i≥1 is a sequence of independent random variables, such that Ti is
exponentially distributed with E[Ti] = i2. The filtration (Ft )t≤T is the small-
est filtration such that Ti are stopping times and the usual conditions are sat-
isfied. Note that the sequence Mi converges to 0 in M2(P) (as i → ∞), since
E[(Mi

T )2] = E[i−2(T ∧ Ti)] = 1 − exp(−T/i2).
We take I = [0,1]: for xi = 1 − i−1, we define a local martingale by Mxi = Mi

and by linear interpolation, we extend the mapping x 
→ Mx to the whole [0,1]
(we set M1 = 0): this mapping clearly satisfies Assumption 2.1. We take as simple
integrands the processes

Hn = 1

n

∑
i≤n

i2δxi
,

so that the integral is

Hn · M = 1

n

∑
i≤n

i2Mi.

The sequence (Hn · M) is a Cauchy sequence in S(P) and converges to the in-
creasing process At = t . Indeed, consider the sequence of stopping times Sk =
infm≥k Tm. Using the Borel–Cantelli lemma, it can be proved that Sk tends to
infinity (as k → ∞). In particular, the sequence Sk ∧ T converges to T sta-
tionarily, namely, Sk ≡ T definitely, P-a.s. So, for fixed ε, there exists some k

such that P(Sk ≤ T ) < ε. On the stochastic interval [[0, Sk ∧ T ]], the martin-
gale Nm = m2Mm coincides with the process A, for m ≥ k. Then, if we stop the
processes Hn · M at time Sk , we have that, for n > k,

(Hn · M)Sk = (N1 + · · · + Nk)Sk

n
+ (n − k)

n
(t ∧ Sk).

It is not difficult to check that the sequence (Hn · M)Sk converges to t ∧ Sk as n

tends to ∞: as a consequence, (Hn · M) converges to At in S(P).
Moreover, the sequence (Hn) converges (as n → ∞) to the generalized inte-

grand defined by

H(f ) = lim
n→∞

1

n

∑
i≤n

i2δxi
(f ) = lim

n→∞
1

n

∑
i≤n

i2f (xi).

So, we have found a generalized integrand H, such that the integral (H · M)t =
t ≥ 0, but it is not a local martingale.

EXAMPLE 2.2. Let (Mx)x∈[0,1] and (xi)i≥1 be defined as in Example 2.1.
For every k ∈ N, we set Mk,x = Mx if x ≤ xk (hence, Mk,xi = Mi for i ≤ k) and
Mk,x = 0 if x ≥ xk+1. Then we extend Mk,x by linear interpolation between xk

and xk+1. We observe that Mk = (Mk,x)0≤x≤1 is a “small perturbation” of M:
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indeed, for x ≤ xk , we have that ‖Mk,x − Mx‖M2(P) = 0, and few calculations
show that, for x > xk ,

‖Mk,x − Mx‖2
M2(P)

≤ 1 − e−T/k2

(since E[(Mk
T )2] = 1−exp(−T/k2)). We take Hn as above: for n > k, the integral

of Hn with respect to the family Mk = (Mk,x)0≤x≤1 is given by

Hn · Mk = 1

n

∑
i≤k

i2Mi.

Hence, H · Mk = limn Hn · Mk = 0 for all k, whereas H · M = A.

3. Utility maximization in the bond market. We consider a model of a bond
market based on a family of semimartingales P = (P (·, T ))T ≤T ∗ ; the random vari-
able P(t, T ) represents the price at time t of a zero coupon bond (ZCB) maturing
at time T ≥ t . We remark that T ∗ can possibly be ∞: in this case, P is defined on
the open interval [0,∞). For all the basic definitions and assumptions on models
of bond markets, we mainly refer to Chapter 15 of the book of Björk [3]. In partic-
ular, we make the following (usual) assumptions to guarantee that the bond market
is sufficiently rich and regular.

ASSUMPTION 3.1. (1) There exists a (frictionless) market for the ZCB for all
maturities T ≤ T ∗.

(2) For each fixed t , the bond price P(t, T ) is differentiable with respect to T .
(3) P(t, T ) > 0 and P(T ,T ) = 1 for all t ≤ T ≤ T ∗.

We recall that the instantaneous forward rate at T , contracted at time t , is de-
fined as

f (t, T ) = −∂P (t, T )

∂T
;

the short rate is defined by r(t) = f (t, t). The process Bt = exp(
∫ t

0 rs ds) is the
bank account and it is a strictly positive continuous process. We take this asset as
a numéraire and denote by P (t, T ) the discounted bond prices P(t, T )/B(t).

As Björk, Di Masi, Kabanov and Runggaldier [4], we need to work with
processes defined for all t ∈ [0, T ∗], while, by definition, the bond price P(t, T )

is given only for t ≤ T . We then use the same trick of Björk, Di Masi, Kabanov
and Runggaldier ([4], page 149), assuming that after maturity the bond is automat-
ically transferred into the bank account. In mathematical terms, this amounts to set
P(t, T ) = exp(

∫ t
T rs ds) = B(t)/B(T ) for t > T .

Since we want to exclude arbitrage possibilites, we make the following assump-
tion:
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ASSUMPTION 3.2. There exists an equivalent probability measure P
∗ under

which the process (P (t, T ))t≤T ∗ is a local martingale for every T (P∗ is known as
an equivalent martingale measure).

We denote by Me the (nonempty) set of all the equivalent martingale measures.
In order to apply the theory developed in Section 2, we need the families

P = (P (t, T ))0≤t,T ≤T ∗ and P = (P (t, T ))0≤t,T ≤T ∗ to satisfy Assumption 2.1. We
remark that this is not a consequence of Assumption 3.1. At the same time, all the
models for the bond market studied in literature satisfies Assumption 2.1. Hence,
it is not restrictive to assume that this condition holds.

With the notation of Section 2, we should rather write P T
t or P

T

t , the latter
being semimartingales indexed by a continuous parameter T ∈ [0, T ∗]. Then, the
theory developed in the previous section establishes exactly which are the gener-
alized integrands (hence, the self-financing strategies) with respect to the infinite-

dimensional process P = (P
T
)T ≤T ∗ .

DEFINITION 3.1. A generalized self-financing portfolio strategy is a pair π =
(V0,H), where V0 is a real number and H is a generalized integrand for P. The
discounted portfolio value process is given by

V
π

t = V0 + H · P.

At this point, a short discussion is necessary on the “financial” meaning of a self-
financing generalized strategy. Indeed, it is not so clear as in the finite-dimensional
case either which is the relationship between a discounted and nondiscounted port-
folio value or which is the investment in the bank account.

Let V be the discounted value of a generalized self-financing portfolio, gen-
erated by the generalized strategy H. Without loss of generality, we can assume
V0 = 0. By definition of H, there exists a sequence Hn of simple strategies
Hn such that the corresponding sequence of discounted self-financing portfolios
V n = Hn · P converges to V in the semimartingale topology (hence, in prob-
ability and, up to a subsequence, a.s.). If we denote by ϕn the investment in
the bank account for each of these finite-dimensional portfolios, we know that
V n = ϕn + Hn(P) [in nondiscounted terms: Vn = ϕnB + Hn(P)], which entails
ϕn = Hn · P − Hn(P). It follows that limn ϕn exists finite (i.e., we can specify the
amount invested in the bank account for the generalized strategy) if and only if P
belongs to the domain of H [or, equivalently, P ∈ Dom(H)]. In particular, we note
that if H is a measure-valued process, the above condition is always fulfilled, since
P takes values in C(I ).

However, we must remember that H is, in any case, a theoretical strategy: it is
a mathematical representation of the limit of self-financing simple strategies, the
strategies of the real world, each of which has a well-determined amount invested
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in a bank account. Hence, an investor knows that he can buy a real portfolio which
approximates the “optimal” strategy, without possibly achieving it.

Our purpose is to extend the results of De Donno, Guasoni and Pratelli [9]
(related to the problems of super-replication and utility maximization in large fi-
nancial markets, i.e., when a sequence of basic assets is considered) to the case of
a bond market model. Some proofs will be omitted or outlined when they are only
slight modifications of the proofs given by De Donno, Guasoni and Pratelli [9].

We recall that, when S is a d-dimensional semimartingale, which models the
evolution of the prices of d securities, a predictable d-dimensional process H is
called a (self-financing) x-admissible strategy (according to the terminology of
Delbaen and Schachermayer [12]) if it is S-integrable and (H · S)t ≥ −x. An
important consequence of this definition is that, if S is a local martingale, H · S is
still a local martingale (by Corollary 3.5 of [2]) and this property is fundamental
to study the utility maximization problem.

We have seen in Example 2.1 that, if S is infinite-dimensional, this property
is lost. Conversely, it can be easily proved, by means of the Fatou’s lemma, that,
if Hn is a sequence of simple integrands such that Hn · S is bounded from be-
low and (Hn · S) is a Cauchy sequence in S(P), then the limit process H · S is a
supermartingale.

Therefore, in the case of a bond market model (and in analogy with De Donno,
Guasoni and Pratelli [9]), we give a new definition of admissibility which exploits
this fact:

DEFINITION 3.2. Let x > 0 : a generalized strategy H is x-admissible if there
exists an approximating sequence (Hn)n≥1 of elementary x-admissible strategies,
such that (Hn · P) → (H · P) in the semimartingale topology. We denote the set of
x-admissible generalized strategies by Ax .

We say that H is admissible if it is x-admissible for some x > 0.

This definition of admissibility allows to use the arguments based on Fatou’s
lemma, as, for instance, the Ansel and Stricker’s theorem (hence, to extend the
results by Kramkov and Schachermayer [17]): in particular, if H is admissible
according to the previous definition, then the process (H · P)t is a supermartingale
for every P

∗ ∈ Me.
In order to apply the convex duality methods to the utility maximization prob-

lem, the first step is a suitable characterization of super-replicable claims: we have
the following result, whose proof is omitted since it is essentially an adaptation of
Theorem 3.1 of [9] to the case of a bond market.

THEOREM 3.1. Let X ∈ L0+ and x > 0. The following conditions are equiva-
lent:

(1) sup
P∗∈Me

EP∗[X] ≤ x;
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(2) There exists H ∈ Ax , such that

X ≤ x + (H · P)T .

Consider a utility function U : R → R: we assume that U(x) = −∞ for x < 0,
that is, negative wealth is not allowed. Furthermore, we assume that U satisfies
the Inada (regularity) conditions: U is strictly increasing, strictly concave, contin-
uously differentiable with U ′(0) = ∞ and U ′(∞) = 0.

Let J be the directed set of finite subsets of I , ordered by inclusion. For
j = (x1, . . . , xk), we denote by H j the set of admissible integrands of the form
H = ∑

xs∈j hsδxs and by uj (x) the maximal expected utility obtained with the
bonds P(·, x1), . . . ,P (·, xk), namely,

uj (x) = sup
H∈Hj

E

[
U

(
x +

∫ T

0
Hs dPs

)]
.

It is evident that the net of functions (uj )j∈J is increasing: we pose

u∞(x) = lim
j∈J

uj (x) = sup
j∈J

uj (x).

Moreover, we define the maximal expected utility over all the admissible strate-
gies:

u(x) = sup
H∈Ax

E

[
U

(
x +

∫ T

0
Hs dPs

)]
.

We have trivially that u(x) ≥ u∞(x): we shall prove that this is, in fact, an equality.
More precisely, for every j ∈ J , we introduce the set

Cj = {X ∈ L0+ :X ≤ 1 + (H · P)T ,H ∈ H j },
in such a way that we have

uj (x) = sup
X∈Cj

E[U(xX)].(3.1)

Let Dj be the polar of Cj : we recall that the polar of a set A ⊂ L0+ is defined by

A◦ = {f ∈ L0+ : E[fg] ≤ 1 for all g ∈ A}.
It is immediate to verify that the family of sets Dj is decreasing and that D =⋂

j∈J Dj is the polar of C = ⋃
j∈J CJ .

As usual, we denote by V the convex conjugate function of U , namely,

V (y) = sup
x>0

[U(x) − xy]

for y > 0: the dual problem of (3.1) is then given by

vj (y) = inf
Y∈Dj

E[V (yY )].(3.2)
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The net of functions (vj )j∈J is increasing, so, in analogy with what we did above
with U , we can define v∞(y) = limj vj (y) and v(y) = infy∈D E[V (yY )].

The equality u(x) = u∞(x) will be obtained as a consequence of the dual equal-
ity v(y) = v∞(y) (which is easier to prove). In order to prove the latter result, we
have to extend to the case of a net of functions an important result proved by
Schachermayer [24] for the case of a sequence of functions (Lemma 3.5). This
result is in some sense a substitute of compactness in L0+.

LEMMA 3.2. Let (Zj )j∈J be a net of positive measurable functions, and let
�j = Conv(Zh|h ≥ j) be the convex envelope of the set of functions {Zh|h ≥ j}. It
is possible to choose a net of functions (Wj )j∈J and a function W with values in
[0,+∞] in such a way that:

(1) Wj ∈ �j , for every j ;
(2) the net (Wj ) converges to W in probability.

Moreover, there exists an increasing sequence j1 ≤ j2 ≤ · · · such that W =
limn Wjn a.s.

The proof of this lemma (which is a natural extension of the proof given in [12],
Lemma A.1.1) can be found in [23]. We can now prove the following result:

LEMMA 3.3. v(y) = v∞(y), for all y > 0.

PROOF. We have evidently v(y) ≥ v∞(y) for every y > 0. Given j ∈ J , let
Yj ∈ Dj a function such that vj (y) = E[V (yYj )] (see [17] for the existence of
such Yj ). Then, we have v∞(y) = limj E[V (yYj )].

Let us consider Zj ∈ �j ⊂ Dj such that the net Zj converges to Z in probabil-
ity: Z ∈ ⋂

j Dj = D . Since V is convex, we have that supj E[V (yZj )] = v∞(y).
Let us consider the sequence (Zjn)n≥1 converging to Z a.s.: since the sequence

of negative parts V −(yZjn) is uniformly integrable (see Lemma 3.4 in [17] for
details), we have

v(y) ≤ E[V (yZ)] ≤ lim inf
n→∞ E

[
V

(
yZjn

)] = v∞(y). �

It is now easy to adapt the proofs of Lemmas 4.2 and 4.3 in [9] and we have the
following result:

PROPOSITION 3.4. u∞(x) = u(x), for all x > 0.

With these results, we can immediately give an analogous statement of the main
result of Kramkov and Schachermayer [17] (see also Theorem 4.4 of [9]) which
shows that the functions u(·) and v(·) are conjugate and, if there exists the optimal
solution X̂(x) of the primal problem (3.1), we have the representation U ′(X̂(x)) =
Ŷ (y), where y = u′(x) and Ŷ (y) is the optimal solution of the dual problem.
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REMARK 3.1. As in the finite-dimensional case, when a unique martingale
measure P

∗ does exist, the dual problem takes a very simple form, since it reduces
to v(y) = E[V (ydP

∗/dP)]. A special case of this result, together with the use of
convex duality methods in the bond market, is illustrated in [8] in the setting of a
complete bond market based on a Wiener sheet.

4. A comparison with other infinite-dimensional approaches. In literature
one can find several papers devoted to the analysis of the term structure of inter-
est rates by means of infinite-dimensional stochastic integration. We recall, among
these, Björk, Di Masi, Kabanov and Runggaldier [4], Filipovic [16], Carmona and
Tehranchi [6], Ekeland and Taflin [14] and Aihara and Bagchi [1]. All these au-
thors, except Björk, Di Masi, Kabanov and Runggaldier [4] (whose paper will
be discussed in the last part of this section), assume that the bond price process
is driven either by an infinite-dimensional Wiener process or by a cylindrical
Wiener process. Therefore, a stochastic integral with respect to such processes
is needed; expositions of the theory of stochastic integration with respect to an
infinite-dimensional (or cylindrical) Wiener process can be found, for instance,
in [7] or in [5].

The thesis of Filipovic [16] contains (Chapter 4: The HJM methodology revis-
ited) the extension, in an infinite-dimensional setting, of the conditions on the drift
in the Heath–Jarrow–Morton model; Carmona and Tehranchi [6] and Aihara and
Bagchi [1] consider the question of hedging portfolios for interest rate contingent
claims, whereas Ekeland and Taflin [14] study the problem of utility maximiza-
tion in a bond market. These are essentially the same topics which we analyzed in
Section 3, with a different approach.

All these works have in common the fact that the zero coupon bond price
process P(t, ·) [or the forward rate process f (t, ·)] is modeled as a stochastic
process with values in a Hilbert space H (usually, H is an appropriate weighted
Sobolev space), contained in the set of continuous functions on [0, T ∗] (or, possi-
bly, [0,+∞)), and with the additional assumption that the “evaluation functional”
〈δs, g〉 = g(s) belongs to H ′. This approach is sometimes referred as a “Hilbert
space” approach.

We describe in more detail the technique adopted, for instance, by Carmona
and Tehranchi [6] in order to compare the “Hilbert space” approach with ours.
Carmona and Tehranchi introduce the weighted Sobolev space F 2

w , defined as the
set of functions x : R+ → R, which are differentiable, such that the derivative x′
is absolutely continuous, x′(∞) = 0 and

∫ ∞
0 x′(s)2w(s) ds < ∞, where w is a

given function which represents the “weight.” The space F 2
w is a Hilbert space

for the norm ‖x‖F 2
w

= (
∫ ∞

0 x′(s)2w(s) ds < ∞)1/2. Moreover, they fix a separable
Hilbert space H and consider the space of Hilbert–Schmidt operators taking H

into F 2
w , which is denoted by LHS(H,F 2

w), and is itself a Hilbert space.
Then, they choose as “state variable” the discounted bond price curve Pt =

P(t, ·) [which in their paper is denoted by P̃t (·)]. They assume that, under the
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risk-neutral measure, the dynamics of P evolves according to the equation dPt =
σt dWt , where W is a cylindrical Wiener process on H and σt is a process with
values in LHS(H,F 2

w), such that
∫ t

0 ‖σs‖2
L ds < ∞ a.s. Hence, the process P takes

values in the Hilbert space F 2
w .

A strategy is defined as a process with values in (F 1
v )′, which is the dual space

of an appropriate weighted Sobolev space F 1
v , chosen in such a way that F 2

w can be
continuously embedded in F 1

v (see [6], page 1275 for details). Hence, a strategy
takes values in a dense subset of (F 2

w)′. In particular, a strategy φ is defined as

a (F 1
v )′-valued process such that φ(ω, t) belongs to span{δs; s ≥ t}(F 1)′

[i.e., the
closure of the span{δs; s ≥ t} in the topology of (F 1

v )′] for almost every (ω, t).
This means that each strategy can be approximated with a sequence of stochas-
tic processes, which are finite combinations of Dirac measures, that is, with our
definition, simple integrands.

Since the space of continuous local martingales is closed in the semimartingale
topology, it is clear that the strategies considered by Carmona and Tehranchi are, in
fact, generalized integrands. Moreover, a generalized integrand which takes values
in (F 1

v )′ is a strategy according to the definition of Carmona and Tehranchi. The
advantage of Carmona and Tehranchi’s definition of strategy is that it is particularly
easy to give a condition for a strategy to be self-financing (Definition 3.5 in [6]), by
means of the duality between Hilbert spaces. Vice versa, we have already pointed
out the difficulties arising with our definition of self-financing strategy in the dis-
cussion which follows Definition 3.1.

On the other hand, the set of strategies considered by Carmona and Tehranchi
is not sufficiently large: even in the case of uniqueness of the martingale measure,
the market is only approximately complete (using the terminology introduced by
Björk, Di Masi, Kabanov and Runggaldier [4]), that is, the set of hedgeable claims
is dense in the set of all sufficiently integrable claims.

On the contrary, our definition of generalized strategy allows to define complete-
ness in the classical sense: more precisely, if the martingale measure is unique,
every sufficiently integrable contingent claim can be hedged by means of a gener-
alized integrand.

However, Carmona and Tehranchi [6] show (by using Malliavin’s calculus)
that if they restrict to a smaller class of claims, a hedging portfolio can be
constructed. In particular, they consider Lipschitz claims, that is, claims of the
form g(P (T ,T1), . . . ,P (T ,Tn)), where g is a Lipschitz function: in this case, an
infinite-dimensional version of the Clark–Ocone formula provides an explicit ex-
pression for a hedging strategy and conditions are given for the uniqueness of this
strategy.

A completely different approach is due to Björk, Di Masi, Kabanov and
Runggaldier [4]: they consider the bond prices process as a process with val-
ues in a space of continuous functions. With the aim of providing a mathemat-
ical background for the theory of bond markets, Björk, Di Masi, Kabanov and
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Runggaldier [4] suggested the construction of a stochastic integral with respect to
processes taking values in a space of continuous functions. We shall prove that
their definition is a special case of ours.

Using the same notation of Björk, Di Masi, Kabanov and Runggaldier [4], we
call Eb the set of processes of the form

φ(ω, t) = ∑
i≤n

1�i×]ti ,ti+1](ω, t)mi,(4.1)

where mi ∈ M(I ), 0 ≤ t1 < t2 < · · · < tn+1 ≤ T , �i ∈ Fti .
Björk, Di Masi, Kabanov and Runggaldier [4] consider as integrator a stochastic

process Pt , which takes values in C(I ) and satisfies the following assumptions
(Assumptions 2.1 and 2.2 in [4]):

(i) P is weakly regular in the sense that, for all µ ∈ M(I ), the process µ(Pt) =∫
I Pt (x)µ(dx) is càdlàg P-a.s.

(ii) P is a controlled process in the following sense: there exists a control pair
(κ,p), where κ is a predictable random measure of the form κ(dt, du) = lt (du) dt

on ([0, T ] × U,B([0, T ]) ⊗ U), where (U,U) is a Lusin space, while p is a real-
valued (measurable) function defined on (� × [0, T ] × U × M(I ),P r × U ×
σ(M(I ))) (P r denotes the predictable σ -field), with the following properties:

(a) Kt = 1 + κ([0, t] × U) < ∞ for all t ;
(b) p(ω, t, u, ·) is weakly continuous, it is a seminorm on M(I ) such that

p(ω, t, u,µ) ≤ ‖µ‖V [where ‖ · ‖V denotes the total variation norm on M(I )];
(c) given a process φ ∈ Eb of the form (4.1) and define the integral (φ · P)

in the natural way as

(φ · P)t = ∑
i≤n

(
mi

(
Pti+1∧t

) − mi

(
Pti∧t

))
1�i

,(4.2)

the following inequality holds for any stopping time τ ≤ T :

E

[
sup
t≤τ

|(φ · P)t |2
]

≤ CE

[
Kτ

∫ τ

0

∫
U

p2(s, u,φs)κ(ds, du)

]
,(4.3)

where C is a constant which does not depend on φ.

With these assumptions, the process P satisfies the assumptions on the integra-
tor process that we made in Section 2. Indeed, if we set Sx = Pt(x) = (δx · P)t ,
we have that, by condition (i) above, Sx is a càdlàg process. Furthermore, it can be
proved, as a particular case of Theorem 2.4(a) in [4], that Sx is a semimartingale.
So, we have defined a family of semimartingales S = (Sx)x∈I .

To show that S fulfills Assumption 2.1, that is, the mapping x 
→ Sx is con-
tinuous, we can follow the proof of Theorem 2.4(a) in [4]. We can assume, by
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localization, that E[K2
T ] < ∞. Let H be a real predictable elementary integrand,

uniformly bounded by 1. Then, setting φ = H(δx − δy), it follows from (4.3) that

E

[
sup
t≤T

|(H · Sx)t − (H · Sy)t |2
]

≤ CE

[
KT

∫ T

0

∫
U

p2(s, u, δx − δy)κ(ds, du)

]
.

In particular, the following inequality holds:

‖Sx − Sy‖S(P) ≤ CE

[
KT

∫ T

0

∫
U

p2(s, u, δx − δy)κ(ds, du)

]
.

Because of condition (b), we have that p(s,u, δx − δy) ≤ ‖δx − δy‖V = 2; since
limy→x p2(s, u, δx − δy) = 0, it follows that Sy converges to Sx in S(P) as y tends
to x.

It remains to show that the integrands according to Björk, Di Masi, Kabanov
and Runggaldier [4] are generalized integrands. Let τ be a fixed bounded stopping
time. Björk, Di Masi, Kabanov and Runggaldier denote by L2

τ the set of all weakly
predictable measure-valued processes φ, such that

q2
τ (φ) = E

[
Kτ

∫ τ

0

∫
U

p2(s, u,φs)κ(ds, du)

]
< ∞

and by L2
loc(P) the set of all weakly predictable measure-valued processes φ, such

that, for all t , ∫ t

0

∫
U

p2(s, u,φs)κ(ds, du) < ∞ a.s.

They show that the integral defined on Eb by (4.2) can be extended to L2
τ con-

tinuously with respect to the seminorm 
τ(Y ) = E[supt≤τ |Yt |2]1/2 and then, by
localization, to L2

loc(P). Furthermore, they prove that the integral (φ · P) does not
depend on the particular choice of a control pair (κ,p) and that it is a semimartin-
gale.

In order to show that every process in L2
loc(P) is a generalized integrand in the

sense of Definition 2.6, it is sufficient to show that every φ ∈ L2
τ is a generalized

integrand for any bounded stopping time τ . Björk, Di Masi, Kabanov and Rung-
galdier [4] prove that such a process is limit of a sequence φn ∈ Eb, such that
the sequence of integrals φn · P converges in the topology given by qτ , hence,
in S(P). So, in fact, we only need to prove that, for every process φ ∈ Eb, there
exists a sequence of simple integrands Hn such that Hn · S converges to φ · S in
S(P). In particular, it is sufficient to show that this holds for a process φ of the
form φ = 1Am, where A is a predictable set and m is an element of M(I ). It is a
known fact that m is the limit (in the weak topology) of a sequence mn of linear
combination of Dirac measures, such that ‖mn‖V ≤ ‖m‖V . Then, φn = 1Amn is a
sequence which satisfies our requirements.
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