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When a beneficial mutation occurs in a population, the new, favored
allele may spread to the entire population. This process is known as a selective
sweep. Suppose we sampieindividuals at the end of a selective sweep.

If we focus on a site on the chromosome that is close to the location of
the beneficial mutation, then many of the lineages will likely be descended
from the individual that had the beneficial mutation, while others will be
descended from a different individual because of recombination between
the two sites. We introduce two approximations for the effect of a selective
sweep. The first one is simple but not very accuraterflipdependent coins
with probability p of heads and say that the lineages whose coins come up
heads are those that are descended from the individual with the beneficial
mutation. A second approximation, which is related to Kingman'’s paintbox
construction, replaces the coin flips by integer-valued random variables and
leads to very accurate results.

1. Introduction. A classical continuous-time model for a population with
overlapping generations is the Moran model, which was introduced by Moran [19].
Thinking of N diploid individuals, we assume the population size is fixedNt 2
However under the assumption that each individual is a random union of gametes,
the dynamics are the same as for a populationftaploid individuals, so we
will do our computation for that case. In the simplest version of the Moran model,
each individual independently lives for a time that is exponentially distributed
with mean 1 and then is replaced by a new individual. The parent of the new
individual is chosen at random from the&vZndividuals, including the individual
being replaced.

Here we will consider a variation of the Moran model that involves two loci—
one subject to natural selection, the other neutral—and with a probabititgach
generation of recombination between the two loci. To begin to explain the last
sentence, we assume that at the selected locus there are two @leled), and
that the relative fithesses of the two alleles are 1 ards1 The population then
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evolves with the same rules as before, except that a replacement of an individual
with a B allele by an individual with & allele is rejected with probability.
Consequently, if at some time there areindividuals with the B allele and

2N — k with the b allele, then the rate of transitions that increase the number
of B individuals fromk to k + 1 is k(2N — k)/(2N), but the rate of transitions

that reduce the number @& individuals tok — 1 isk(2N — k)(1 — s5)/(2N). See
Chapter 3 of [6] for a summary of some work with this model.

We assume that the process starts at time zero Wth-2L individuals having
the b allele and one individual having the advantagedusllele. We think of
the individual with theB allele as having had a beneficial mutation at time zero.
There is a positive probability that eventually alV2individuals will have the
favorable allele. When this happens, we say that a selective sweep occurs, because
the favorable allele has swept through the entire population.

If we assume that the entire chromosome containing the selected locus is passed
down from one generation to the next, as is the case fortlehromosome or
mitochondrial DNA, then all & chromosomes at the end of the selective sweep
will have come from the one individual that had the beneficial mutation at the
beginning of the sweep. However, nonsex chromosomes in diploid individuals are
typically not an identical copy of one of their parents’ chromosomes. Instead,
because of a process called recombination, each chromosome that an individual
inherits consists of pieces of each of a parent’s two chromosomes. In this case,
if we are interested in the origin of a second neutrally evolving locus on the
chromosome and a selective sweep occurs because of an advantageous mutation at
a nearby site, then some of the lineages will be traced back to the chromosome that
had the favorable allele at the beginning of the sweep, but other lineages will be
traced back to different individuals because of recombination between the neutral
and selected loci. When a lineage can be traced back to an individual other than the
one with the beneficial mutation, we say that the lineage escapes from the selective
sweep.

The combined effects of recombination and selective sweeps have been studied
extensively. Maynard Smith and Haigh [18] observed that selective sweeps can
alter the frequencies of alleles at sites nearby the site at which the selective
sweep occurred. They referred to this as the hitchhiking effect. They considered
a situation with a neutral locus with alleles anda and a second locus where
allele B has a fitness of % s relative tob. Supposepg is the initial frequency
of the B allele, andQ, and R, are the frequencies in generatianof the
A allele on chromosomes containing and b, respectively. IfQq = 0 (i.e.,
the advantageous mutation arises on a chromosome with #ikele) and the
recombination probability in each generatiom jslaynard Smith and Haigh [18]
showed [see (8) on page 25] that the frequency ofAtadlele after the selective
sweep is reduced fromRg to
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In the calculation of Maynard Smith and Haigh, the number of individuals with
the B locus grows deterministically. Kaplan, Hudson and Langley [15] used a
model involving an initial phase in which the number B% is a supercritical
branching process, a middle deterministic piece where the fragtiai B’s
follows the logistic differential equation

d

p — —_
(1.1) o =sp(1—p),

and a final random piece where the numbeb’sffollows a subcritical branching
process. This process is too difficult to study analytically, so they resorted to
simulation.

Stephan, Wiehe and Lenz [27] further simplified this approach by ignoring the
random first and third phases and modeling the change in the frequeBty loy
the logistic differential equation (1.1), which has solution

r(0)
p(0) + (1 — p(0))e—st

This approach has been popular with biologists in simulation studies (see, e.g., [23,
26]). However, as results in [2, 7] show, this can introduce substantial errors,
so rather than using this approximation for our analysis, we will consider a
modification of the Moran model that allows for recombination as well as
beneficial mutations.

We consider two sites on each chromosome. At one site, each of Nhe 2
chromosomes has either the advantageBuallele or ab allele. Our interest,
however, is in the genealogy at another neutral site, at which all alleles have
the same fithess. As before, we assume that each individual lives for an
exponential time with mean 1 and is replaced by a new individual whose parent is
chosen at random from the population, except that we disregard disadvantageous
replacements of & chromosome by & chromosome with probability. We will
also now assume that when a new individual is born, it inherits alleles at both
sites from the same individual with probability-1r. With probabilityr, there is
recombination between the two sites, and the individual inherits the allele at the
neutral site from its parent’s other chromosome. Since a parent’s two chromosomes
are considered to be two distinct individuals in the population, we model this by
saying that the new individual inherits the two alleles from two ancestors chosen
independently at random from th&vandividuals in the population.

Suppose we samplechromosomes at the end of a selective sweep and follow
their ancestral lines back until the beginning of the sweep. We will describe the
genealogy of the sample by a marked partitio{Xf.. ., n}, which we define to
be a partition of{1, ..., n} in which one block of the partition may be designed
as a “marked” block. We define the marked partiti®rof {1, ..., n} as follows.

We say that two integetisandj are in the same block @, denoted ~¢ j, ifand
only if the alleles at the neutral site on tith and jth chromosomes in the sample

p(t) =
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have the same ancestor at the beginning of the sweep. Thus, if we are following
the lineages associated with the allele at the neutral site, weihawe; if and

only if theith andjth lineages coalesce during the selective sweep. We also mark
the block of® containing the integersfor which theith individual is descended

from the individual that had the beneficial mutation at the beginning of the sweep.
Thus, to understand how a selective sweep affects the genealogy of a sample of
sizen, we need to understand the distribution of the random marked pardtion

In this paper we study two approximations to the distribution@f The
approximations were introduced and studied by simulation in [7]. Here we provide
precise bounds on the error in the approximations. The idea behind the first
approximation is that a large number of lineages will inherit their allele at the
neutral site from the individual that had the beneficial mutation at the beginning
of the sweep, and the corresponding integessll be in the marked block o®.

With high probability, the lineages that escape the selective sweep do not coalesce
with one another, so the corresponding integers are in singleton bloéks of

Before stating the first approximation precisely, we need a definition. Let
pel0,1]. Let &,...,&, be independent random variables such that, for
i=1...,n, we haveP(; =1 =p and P(é&1 =0) =1 — p. We call the
random marked partition ofl,...,n} such that one marked block consists of
{i €{1,...,n}:& = 1} and the remaining blocks are singletong-gartition of
{1,...,n}. Let 9, denote the distribution of a-partition of{1, ..., n}.

Theorem 1.1 below shows that the distributioréo€an be approximated by the
distribution of ap-partition. For this result and throughout the rest of the paper, we
assume that the selective advantagea fixed constant that does not depend on the
population sizeV. However, the recombination probabilityis allowed to depend
on N, even though we have not recorded this dependence in the notation. We will
assume throughout the paper that Co/(logN) for some positive constartl.

We denote by, the set of marked partitions ¢4, . .., n}.

THEOREM 1.1. Fixn € N. Let « = rlog(2N)/s. Let p = e~*. Then there
exists a positive constant C suchthat |[P(® =) — Q ()| < C/(logN) for all N
andall = € P2,.

In this theorem and throughout the rest of the pagerienotes a positive
constant that may depend enbut does not depend onor N. The value ofC
may change from line to line.

A consequence of Theorem 1.1 is that if jm ., rl0g(2N)/s = a for some
a € (0,00) andp = e™“, then the distribution 08 converges ta, asN — oo.
However, the rate of convergence that the theorem gives is rather slow, and
simulation results of Barton [2] and Durrett and Schweinsberg [7] show that
the approximation is not very accurate for realistic valuegvofConsequently,
it is necessary to look for a better approximation. Theorem 1.2 below gives an
approximation with an error term that is of ordef(tbg N)? rather than 1log N.
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It follows from the improved approximation that the error in Theorem 1.1 is
actually of order 1logN.

The motivation for the second approximation comes from the observation that,
at the beginning of the selective sweep, the numbd'estan be approximated by
a continuous-time branching process in which each individual gives birth at rate 1
and dies at rate + 5. Some individuals in this supercritical branching process
will have an infinite line of descent, meaning that they have descendants alive in
the population at all future times. As we will show later, the individuals with an
infinite line of descent can be approximated by a Yule process, a continuous-time
branching process in which each individual splits into two at a constantsrate
Since our sample, taken at the end of the selective sweep, comes from lineages
that have survived a long time, we can get a good approximation to the genealogy
by considering only individuals with an infinite line of descent. We will also show
that, during the time when there are exadtly 2 lineages with an infinite line of
descent, the expected number of recombinations along these lineagesksr
simplicity, we assume that the number of such recombinations is always either O
or 1. Such a recombination causes individuals descended from the lineage with
the recombination to be traced back to an ancestor at time zero different from
descendants of the othér— 1 lineages (and therefore to belong to a different
block of ®). Well-known facts about the Yule process (see, e.g., [14]) imply that
when there aré lineages, the fraction of individuals at the end of the sweep that
are descendants of a given lineage has approximately a beta(l) distribution.
Furthermore, we will show that with probability (1 —s))/(r(1—s) +s), there is
a recombination when there is only one individual with an infinite line of descent,
in which case none of the sampled lineages will get traced back to the individual
with the B allele at time zero.

These observations motivate the definition of a class of marked partitions of
{1, ..., n}, which we will use to approximate the distribution ®f The construc-
tion resembles the paintbox construction of exchangeable random partitions due
to Kingman [16]. To start the construction, assume 0 < s and letL be a posi-
tive integer. Then Ie(Wk),f:2 be independent random variables such #athas
a beta distribution with parameters 1 aind- 1. Let (;k),fzz be a sequence of in-
dependent random variables such tRét;, = 1) =r/s andP(5 =0 =1—r/s
for all k. As the reader might guess from the probabilitigs= 1 corresponds
to a recombination when there akelineages with an infinite line of descent.
Fork=2,3,...,L, let Vy = gt Wy and letY, = V; l_[]L-:kH(l — V;) be the frac-
tion of individuals carried away by recombination. gt= JL-:2(1 — Vj). Note
that Z,le Y, = 1. Finally, let Q, s 1 be the distribution of the random marked
partition IT of {1, ..., n} constructed in the following way. Define random vari-
ablesZ,, ..., Z, to be conditionally independent give(ﬂ’k),f:1 such that for
i=1..,nandj=1,...,L, we haveP(Z; = j|(Yx)E_,) = Y;. Here the in-
tegersi such thatZ; = k correspond to lineages that recombine when there are
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k members of theB population with an infinite line of descent. Then defifie
such thati ~py j if and only if Z; = Z;. Independently of(Z;)!_,, we mark
the block{i:Z; = 1} with probability s/(r(1 — s) + s) and, with probability
r(L—1s))/(r(—s) +s), we mark no block. When the block is marked, the in-
tegersi such thatZ; = 1 correspond to the lineages that do not recombine and
therefore can be traced back to the individual that had the beneficial mutation at
time zero; otherwise, they correspond to the lineages that recombine when there is
only one member of th& population with an infinite line of descent.

We are now ready to state our main approximation theorem, which says that
the distribution of® can be approximated well by the distributi@h. s ., where
L = |2Ns], and |[m| denotes the greatest integer less than or equal.tdhe
choice of L comes from the fact that in a continuous-time branching process with
births at rate 1 and deaths at rate-X¥, each individual has an infinite line of
descent with probability. Therefore, the number of such individuals at the end of
the selective sweep is approximatély

THEOREM 1.2. Fixn e N and let L = [2Ns]. Then there exists a positive
constant C such that for all N and all = € £,

|P(©@=1)— Qry.1(7)| < C/(lOgN)>.

Consider for concretenes§ = 10,000, a number commonly used for the
“effective size” of the human population. To explain the term in quotes, we note
that although there are now 6 billion humans, our exponential population growth
is fairly recent, so for many measures of genetic variability the human population
is the same as a homogeneously mixing population of constant size 10,000. When
N = 10,000, logV = 9.214 and(log N)? = 84.8, so Theorem 1.2 may not appear
at first glance to be a big improvement. Two concrete examples, however, show
that the improvement is dramatic (see Table 1). In each Nasel0* ands = 0.1.

More extensive simulation results comparing the two approximations are given
in [7].

In Table 1, pinb is the probability that a lineage escapes the selective sweep.

The remaining three columns pertain to two lineageXnb is the probability that

TABLE 1

pinb p2inb  p2cinb  plB1b

r=0.00106 Theorem1.1 .0 0.01 0 Q18
Moran 008203 000620 001826 011513
Theorem 1.2 ®8235 000627 001765 011687

r=0.00516 Theorem1.1 .8 0.16 0 048
Moran 033656 010567 005488 035201
Theorem 1.2 (34065 010911 005100 036112
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two lineages both escape the sweep but do not coalg8céb is the probability

both lineages escape but coalesce along the waypd®db is the probability

one lineage escapes the sweep but the other does not. The remaining possibility
is that neither lineage escapes the sweep, but this probability can be computed by
subtracting the sum of the other three probabilities from 1. The first row in each
group gives the probabilities obtained from the approximation in Theorem 1.1
and the third row gives the probabilities obtained from the approximation in
Theorem 1.2. The second row gives the average of 10,000 simulation runs of the
Moran model described earlier. The values of the recombinatiom vaéee chosen

in the two examples to make the approximationgtab given by Theorem 1.1
equal to 0.1 and 0.4, respectively. It is easy to see from the table that the
approximation from Theorem 1.2 is substantially more accurate. In particular,
note that in the approximation given by Theorem 1.1, two lineages never coalesce
unless both can be traced back to the individual with the beneficial mutation.
Consequentlyp2cinb would be zero if this approximation were correct. However,

in simulations, a significant percentage of pairs of lineages both coalesced and
escaped from the sweep, and this probability is approximated very well by
Theorem 1.2 in both examples.

The results in this paper are a first step in studying situations in which, as
proposed by Gillespie [12], selective sweeps occur at times of a Poisson process
in a single locus or distributed along a chromosome at different distances from the
neutral locus at which data have been collected. It is well known that in the Moran
model when there are no advantageous mutations, if we saniptividuals and
follow their ancestors backward in time, then when time is sped upNyvize
get the coalescent process introduced by Kingman [17]. It is known (see [6]) that
selective sweeps require an average amount of (@jie) logN, so when time
is sped up by &, the selective sweep occurs almost instantaneously. Durrett
and Schweinsberg [8] showed that Theorem 1.1 implies that if advantageous
mutations occur at times of a Poisson process then, the ancestral processes
converge a®v — oo to a coalescent with multiple collisions of the type introduced
by Pitman [22] and Sagitov [24]. At times of a Poisson process, multiple
lineages coalesce simultaneously into one. The more accurate approximation in
Theorem 1.2 suggests that a better approximation to the ancestral process can
be given by a coalescent with simultaneous multiple collisions. These coalescent
processes were studied by Moéhle and Sagitov [20] and Schweinsberg [25].

Finally, it is important to emphasize that the results in this paper are for the case
of “strong selection,” where the selective advantageO (1). There has also been
considerable interest in weak selection, whigsels assumed to converge to a limit
asN — oo, which means is O(1/N). In this case, there is a diffusion limit as
N — oo. For work in this direction that incorporates the effect of recombination,
see [3, 4]. Recently, Etheridge, Pfaffelhuber and Wakolbinger [9] have shown that
many of the results in this paper carry over to the diffusion setting. They assume
that Ns — a asN — oo, so that they can work with a diffusion limit, and then
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obtain an approximation to the distribution of the ancestral partiichat has an
error of order ¥(logx)? asa — oo, by using approximations to the genealogy
similar to those used in the present paper.

2. Overview of the proofs. Since the proofs of Theorems 1.1 and 1.2 are
rather long, we outline the proofs in this section. A precise definition of the
genealogy is given in Section 2.1. The proof of Theorem 1.1 is outlined in
Section 2.2. In Section 2.3 we describe the coupling with a supercritical branching
process and outline the proof of Theorem 1.2.

2.1. Precise definition of the genealogy. We now define more precisely our
model of a selective sweep. We construct a prodéss: (M;);°,. The vector
M; = (M;(1), ..., M;(2N)) contains the information about the population at the
time of therth proposed replacement, and, (i) = (A?(i),...,Ai_l(i), B:(i))
contains the information about the ancestors ofitheindividual at timer. For
0<u<t—1, A¥(i) is the individual at timex that is the ancestor of thith
individual at timez, when we consider the genealogy at the neutral locus. The
final coordinateB, (i) = 1 if the ith individual at times has theB allele; B;(i) =0
if this individual has theb allele. Note that this is a discrete-time process, but
one can easily recover the continuous-time description by replacing discrete-time
steps with independent holding times, each having an exponential distribution with
mean Y (2N).

At time zero, only one of the chromosomes will have Ballele. We define
a random variable/, which is uniform on the sefl,...,2N}, and we let
Bo(U) =1 andBg(i) = 0 for i # U. We now define a collection of independent
random variableg; ; fort e Nandj e {1,...,5}. For j € {1, 2, 3}, the random
variable/; ; is uniformon{l, ..., 2N}.

e The random variablé, 1 will be the individual that dies at time

e The random variablé; > will be the parent of the new individual at time

e The random variablel, 3 will be the other parent from whom the new
chromosome will inherit its allele at the neutral locus if there is recombination.

e The random variablé; 4 will be an indicator for whether a proposed disadvan-
tageous change will be rejected, Bol; s =1) =s andP([;4=0)=1—s5.

e The random variabld; s will determine whether there is recombination at
timer, soP(;5=1)=randP(l;5=0)=1—r.

Using these random variables we can construct the process in the obvious way.
Refer to Figure 1 for help with the notation.

1. If Bi—1(I;1) =1, Bi—1(I;2) = 0 and I, 4 = 1, then the population will be
the same at time as at timer — 1 because the proposed replacement of
a B chromosome by @& chromosome is rejected. In this case, for ia#
1,...,2N, we defineB; (i) = B;_1(i), Aﬁ_l(i) =i and A} (i) = AY_;(i) for
u=0,...,t—2.
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Fic. 1. Apictureto explain our notation. The lineages jump around as we move backward in time,
but for simplicity we have only indicated the recombination events. Here as we work backward in
time, i and j coalesce and then recombineinto the b population. Proposition 2.4 showsthat this event
has probability at most C/log N. Proposition 2.1 estimates the probability of two recombinations as

shown in lineage k.

2. If we are not in the previous case ah@ = 0, then there is no recombination at
timer. So the individuall; 1 dies and the new individual gets its alleles at both
sites from/; . Fori # I; 1, defineB; (i) = B,_1(i), A} (i) = A}_4(i) for u =
0,....t—2 andAﬁ_l(i) =i.Let B;(I;,1) = Bi—1(1;.2), A;‘(I,,l) = A;‘_l(l,,z)

foru=0,...,t —2andA" "Y1, 1) =1, 2.

3. If we are not in either of the previous two cases, then there is recombination
at time r. This means that the new individual labeléd; gets aB or b
allele from I, » but gets its allele at the neutral locus fralys. Fori # I 1,
defineB, (i) = B,—1(i), A%(i) = A" (i) foru=0,...,r —2andA!"1() =i.

Let B;(I;1) = Bi—1(1;2), A} (I;1) = A;‘_l(lt73) foru=0,...,t — 2 and

AN L) =1s.

It will also be useful to have notation for the number of individuals with the
favorable allele. For nonnegative integerdefineX, = #{i : B, (i) = 1}, where #§
denotes the cardinality of the s&tForJ =1,2,...,2N, lett; =inf{t: X, > J}
be the first time at which the number &fs in the population reaches. Let
T = inf{r: X; € {0,2N}} be the time at which theB allele becomes fixed in
the population (in which cas&, = 2N) or disappears (in which casé, = 0).
Since our main interest is in studying a selective swe&pand E’ will denote
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probabilities and expectations under the unconditional lawfofand P and E

will denote probabilities and expectations under the conditional law afiven

X.: = 2N. Likewise, Var and Cov will always refer to conditional variances and
covariances giveX ; = 2N.

To samplen individuals from the population at the timewhen the selective
sweep ends, we may take the individuals.1,» because the distribution of
genealogy of: individuals does not depend on whighindividuals are chosen.
Therefore, we can defin@ to be the random marked partition {f, ..., n} such
thati ~¢ j if and only if theith andjth individuals at timer get their allele at the
neutral site from the same ancestor at time 0, with the marked block corresponding
to the individuals descended from the individudl which had the beneficial
mutation at time zero. More formally, we have-g j if and only if A?(i) = A?(j)
with the marked block being : A%(i) = U} or, equivalently{i : Bo(A%(i)) = 1}.

2.2. The first approximation. Recall that Theorem 1.1 says that we can
approximate® by flipping independent coins for each lineage, which come up
heads with probabilityp, to determine which lineages fail to escape the selective
sweep. These lineages are then in one block of the partition, because they are
descended from the ancestor with the beneficial mutation at time zero, while the
other lineages do not coalesce and correspond to singleton blocks of the partition.

The first step in establishing this picture is to calculate the probability
that one lineage escapes the selective sweep. In the notation above, we need
to find P(Bo(A(,)(i)) = 0). Define R(i) = supit > 0:B;(AL(i)) = 0}, where
supg = —oco. If we work backward in timeRR (i) is the first moment that the
lineage of the neutral locus resides in thpopulation. Note that it is possible to
haveR(i) > 0 andBo(Ag(i)) = 1 if a lineage is affected by two recombinations,
one taking it from theB population to thé population and another taking it back
into the B population. The next result shows that the probability of this is small.

PROPOSITION 2.1. We have P(B;(A’(i)) =1 for some ¢t < R(i)) < C/
(logN)2.

Proposition 2.1 implies that in the proofs of Theorems 1.1 and 1.2, the
probability that a lineage escapes the selective sweep can be approximated by
P(R(@i) = 0). It will also be useful to have an approximation BtR(i) > t;) for
J > 1, which is the probability that a given lineage escapes int@thepulation
after the time when the number 8fs in the population reachek The next result
gives such an approximation.

PROPOSITION2.2. Ifg; =1—exp(—L Y2V, 1 3), then

1 1
P(RG =q;+0 '
(R()=17)=qs+ ((|OgN)2+(|ogN)x/7)
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Propositions 2.1 and 2.2 will be proved in Section 3.

The next step is to consider two lineages. We now need to consider not only
recombination, but also the possibility that the lineages may coalesce, meaning
that the alleles at the neutral site on the two lineages are descended from the same
ancestor at the beginning of the sweep. Gét, j) be the time that th&h andjth
lineages coalesce. More precisely, we defiltg j) = supz: AL(i) = AL(j)} with
supg = —oo. Our first result regarding coalescence shows that it is unlikely for
two lineages to coalesce at a given time unless both alleles at the neutral site are
descended from a chromosome with #eallele at that time.

PROPOSITION 2.3. We have P(G(i, j) > 0 and Bg. j11(AC ")) =
0) <C(ogN)/N.

Next, we bound the probability that, if we trace two lineages back through the
selective sweep, the lineages coalesce and then escape from the sweep.

PrRoOPOSITION2.4. Wehave P(0< R(i) <G(i, j)) <C/(logN).

Note that Proposition 2.3 says that, with high probability, only lineages iBthe
population merge, while Proposition 2.4 says that, in the first-order approximation,
lineages that have merged do not escape intobtipepulation. Together, these
results will justify the approximation @b by a random patrtition in which the only
nonsingleton block corresponds to lineages that fail to escape the selective sweep.
The next result bounds the probability that two lineages coalesce aftet time

PROPOSITION2.5. LetC'>0.1f J <C'N/(logN), then P(G(i, j) > 1)) <
c/J.

We prove Propositions 2.3, 2.4 and 2.5 in Section 4.

We now considern lineages. To prove Theorem 1.1, we will need to show
that the event§R(1) > 0}, ...,{R(n) > 0} are approximately independent. Let
K: =#{i e {l,...,n}:R(@) > t}. If the events that the: lineages escape the
selective sweep after timeare approximately independent, th&p should have
approximately a binomial distribution. The following proposition, which we prove
in Section 5, provides a binomial approximation to the distributiok'gf. Since
71 =0, theJ =1 case will be used in the proof of Theorem 1.1, while the general
case will help to prepare us for the proof of Theorem 1.2.

PROPOSITION2.6. Defineg; asinProposition2.2.1f J < C'N/(logN), then
c C C

P(Ky, =d) — ) 41— ”‘d‘<min{—,—} <

‘ (Kv, =d) (d q5L—q)" | < gy 71 dogn 2

ford=0,1,...,n.
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PROOF OFTHEOREM 1.1. Define a new partitio®’ of {1, ..., n} such that
i ~o j ifand only if R(i) = R(j) = —oo. We mark the block of9’ consisting
of {i: R(i) = —oo}. In words, only the lineages that recombine and hence stay
in the B population are trapped by the sweep. To do this we make the following
observations:

e Proposition 2.1 implies that the probaility of two recombinations affecting a
lineage can be ignored.

e Proposition 2.3 says that we can ignore coalescence ih plopulation.

e Proposition 2.4 says that the probability two lineages coalesce and then escape
has small probability.

The results above imply thal(® # ®') < C/(logN). Therefore, to prove
Theorem 1.1, it suffices to show thaP(®' = 7) — Q,(7)| < C/(logN) for
all marked patrtitionsr of {1, ..., n}. It follows from Proposition 2.6 with/ =1
and the exchangeability @’ that|P(©' =) — Q1_4, ()| < C/(logN) for all
7 € P,. Using the definition ofy1 and|%e‘x| <1 forx > 0 gives

2N
1 r
(A= q1) - pl = exp(—f ) —) ~exp( -~ log(zzv))‘
sk:2k K
2N
r 1 C
z Z _log(? -
= s ng og( N)‘ = logN

and the theorem follows.d

2.3. Branching process coupling and the second approximation. We now
work toward improving the approximation to the distribution®fo that we can
prove Theorem 1.2. To do this, we will break the selective sweep into two stages.
Let J = [(logN)“], wherea > 4 is a fixed constant. We will consider separately
the time intervalg0, ;) and[zy, 7].

Part 1: ® ~ ©1 ~ ®,. We first establish that we can ignore coalescence
involving a lineage that escapes the sweep after tupe Define a random
marked partition®, of {1,...,n} such thati ~g, j if and only if R(i) < 7,
R(j) < t; and A%(i) = A%(j). Mark the block of®; consisting of{i : R(i) <
Ty andBo(AS(i)) = 1}. Note that®; = ©® unless, for somé and j, we have
R(@i) = 15 and eitheri ~¢ j or Bo(A‘T’(i)) = 1. It follows from Propositions 2.1,
2.3 and 2.5 thaP (® # ©1) < C/(logN)?2. Thus, we may now work witi® .

The next step is to approximate the distribution ®f. Let K; = {i €
{1,...,n}:R@) > t}, as defined before the statement of Proposition 2.6. Define
m =n — #K, to be the number of lineages in th# population at timer,.
Proposition 2.5 shows that lineages are unlikely to coalesgg in]. Relabel the
lineages using an arbitrary bijective functigrirom {1, ..., n}\ K, to{1, ..., m}.
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To describe the first stage of the selective sweep precisely, we define, for each
m < J, a new marked partition,,, of {1,...,m}. Let o,, be a random injective
map from{1,...,m} to {i : B;,(i) = 1} such that alJ),, = (J)(J = 1)---(J —
m + 1) maps are equally likely. Thus;, (1), ..., 0,,(m) is a random sample from
the J individuals with theB allele at timer;. Then defined,, such that ~g,, j
if and only if A2 (0, (1)) = A, (6. (j)). This means and j are in the same block
of W, if and only if theo,, (i)th ando,, (j)th individuals at timer; inherited their
allele at the neutral locus from the same individual at the beginning of the sweep.
The block{i : Bo(A?, (0, (i))) = 1} is marked.

Define®; to be the marked partition dfl, . . ., n} such that ~g, j if and only
if R(i) <1, R(j) <tyandf()~y, f(j).Letthe marked block o®, consist
of all i such thatR(i) < t; and f (i) is in the marked block o¥,,. To compared;
and®, note thatf (i) ~y,, f(j) if and only if A2 (0, (f())) = A2, (0w (f ()
On the other handd%(i) = A2(j) if and only if A9 (AZ/ (i)) = A? (A% (})). For
i # j, we haveP (A (i) = AY (j)) < C/(logN)* by Proposition 2.5. By the
strong Markov property, the genealogy of the process up totingindependent
of K.,. From these observations and the exchangeability of the model, it follows
that for allr € #,, we havg P(©1 =) = P(0, =)| < C/(logN)*.

Part 2: W, ~ Y, & Q) 175 (). Our next step is to understand the distribu-
tion of W,,. The first step is to show that the first stage of a selective sweep can
be approximated by a branching process. Recall that when the number of individ-
uals with the favorableB allele isk « 2N, the rate of transitions that increase
the number ofB individuals fromk to k + 1 isk(2N — k)/(2N) =~ k, while the
rate of transitions that decrease the numbeBdhdividuals fromk to k — 1 is
k(2N — k)(1 —s5)/(2N) = k(1 — s). Therefore, the individuals with thB allele
follow approximately a continuous-time branching process in which each individ-
ual gives birth at rate 1 and dies at rate-%. Also, each new individual born
with the B allele inherits the allele at the neutral site from its parent with probabil-
ity 1 — r. We can model this recombination by considering a multitype branching
process starting from one individual in which each new individual is the same type
as its parent with probability + » and is a new type, different from any other
member of the current population, with probability

Say that an individual in the branching process at tinm@s an infinite line of
descent if it has a descendant in the population at tirfer all «# > ¢. Otherwise,
say the individual has a finite line of descent. It is well known that the process
consisting only of the individuals with an infinite line of descent is also a branching
process. This is discussed, for example, in [1]. For more recent work in this
direction, see [10, 11, 21]. In Section 6 we will show that when the original
branching process is a continuous-time branching process with births at rate 1 and
deaths at rate % s, the process consisting only of the individuals with an infinite
line of descent is a continuous-time branching process with no deaths in which
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each individual gives birth at rate That is, this process is a Yule process with
births at rates. The probability that a randomly chosen individual has an infinite
line of descent is, so when the original branching process Wasdividuals, there

are approximately/s individuals with an infinite line of descent. Furthermore,
since the past and future are independent by the Markov property, the genealogy
of a sample will not be affected if we sample only from the individuals with infinite
lines of descent.

In Section 6, we justify these approximations. This will lead to a proof of the
following proposition, which explains how the genealogy of the first phase of
a selective sweep can be approximated by the genealogy of a continuous-time
branching process.

PROPOSITION2.7. Consider a continuous-time multitype branching process
started with one individual at time zero such that each individual gives birth at
rate 1 and dies at rate 1 — s. Assume that each individual born has the same type
asitsparent with probability 1— r and a new type with probability . Condition this
process to survive forever. At the first time at which thereare | Js | individuals with
an infinite line of descent, sample m of the | /s | individuals with an infinite line of
descent. Define Y, to be the marked partition of {1, ..., m} such that i ~~,, j if
and only if the ith and jth individuals in the sample have the same type, and the
mar ked block consists of the individual swith the same type astheindividual at time
zero. Thenfor all = € #,,, wehave |P(¥,, = 1) — P(Y,, = )| < C/(logN)2.

Recall that in the introduction we constructed a random marked parfitiwith
distribution Q, ; 1., whereL = [2Ns]. To compare this partition witky, we will
consider the construction in two stages, just as we considered two stages of the
selective sweep. The first stage of the construction will involve the intéggrsh
thatZ; < | Js], and the second stage involves the integessch thatZ; > | Js].

We think of Z; = k as meaning that thah lineage escapes the selective sweep

at a time when there ark individuals in the Yule process (or, equivalently,

k lineages in the branching process with an infinite line of descent). Weide

as the boundary between the two stages because, when the population size of
the branching process reachgsthere are approximatelys individuals with an
infinite line of descent.

The next result compares the first stage of a selective sweep to the random
variablesZ; such thatz; < | Js].

PROPOSITION2.8. There is a positive constant C such that for all parti-
tions of {1,...,n}, wehave |P(Y, =) — Q.15 ()| < C/(logN)?.

Part 3: ©2 ~ Q. 1Js],q; & Ors,.- Proposition 2.6 shows that the number
of lineages that escape the sweep dufing r] has approximately a binomial
distribution with success probability;. This motivates the following definition:



APPROXIMATING A SELECTIVE SWEEP 1605

DEFINITION 2.9. Letr, s andg be in (0,1), and let L be a positive
integer. LetQ, 1 , be the distribution of the random marked partiti®fi
of {1,...,n} obtained as follows. First, Ieil be a random marked partition of
{1,...,n} with distribution Q, 5 1. Let &1, ..., &, be i.i.d. random variables such
that P(§; =1)=qg and P(§;, = 0) =1 — ¢g. Then say that ~ j if and only if
i ~n j and§; = &; = 0. Mark the block oflT’ consisting of all integers in the
marked block oflT such that; = 0.

The next two propositions establish the connection between the second stage of
the construction of1 and the second stage of the selective sweep. Proposition 2.10
shows that it is unlikely to haveZ; = Z; if both are at leastJs], just as
Proposition 2.5 shows that lineages are unlikely to coalesce during the second
stage of a selective sweep. Likewise, Proposition 2.11 shows that the nuniher of
greater thanJs | has approximately a binomial distribution, just as Proposition 2.6
shows that the number of lineages that escape the selective sweep during the
second stage has approximately a binomial distribution.

PROPOSITION2.10. Foralli # j, P(Zi=Z; > | Js]) < C/(logN)®.

PROPOSITION2.11. Let D =#{i:Z; > |Js]}, and define ¢; asin Proposi-
tion 2.2.Then
n

C
_ . dep n—d
‘P(D-d) (d)cml a7) ‘S(IogN)5

ford=0,1,...,n.

Propositions 2.8, 2.10 and 2.11 are proved in Section 7. The proofs of
Propositions 2.10 and 2.11 are straightforward, but the proof of Proposition 2.8 is
more difficult. It involves considering marked partitiomswith different numbers
of blocks and doing combinatorial calculations in each case.

PROOF OFTHEOREM 1.2. By Propositions 2.7 and 2.8, we hawV¥,, =
) = Qrs, s (M) < C/(logN)? for all = € £,. It follows from this fact, Propo-
sition 2.6 and the construction @b, that |[P(©2 = ) — Q5 1Js),q;, ()] <
C/(logN)? for all = € 2,. Also, by definings; = 1¢z,~7s)} @and applying Propo-
sitions 2.10 and 2.11, we see thak, s | s5).4, () — Ors.. ()| < C/(log N)>® for
all = € #,. This observation, combined with the discussion in Part 1 of this sub-
section, completes the proof of Theorem 1.7]

3. Recombination of one lineage. Our goal in this section is to prove
Propositions 2.1 and 2.2, which pertain to the recombination probabilities for a
single lineage. The strategy will be to study the proc&ss- (X;);_,, which
describes how the number of individuals with tBeallele evolves during the
selective sweep, and then calculate recombination probabilities conditional on the
processX. In Section 3.1, we show that the procésbehaves like an asymmetric
random walk and we work out some calculations that will be needed later. We
prove Proposition 2.1 in Section 3.2 and Proposition 2.2 in Section 3.3.
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3.1. Random walk calculations. Suppose Xk X; 1 < 2N — 1. ThenX; =
X;—1+1ifandonlyif B,_1(/;,1) =0andB;_1(I; 2) = 1. Also, X, = X;_1 — 1if
and only if B,_1(I;.1) =0, B,—1(I;.2) =1 and/; 4 = 0. Otherwise X; = X;_1. It
follows that, for 1<k <2N — 1,

2N — k k
31) P(X, =X, 1+ 11X, =k=( )(—)
(3.1) (X; -1+ 11X, 1 ) SN SN

(3.2) P(X;=X—1—1UX,_1=k) = (ZN_k)( k )(1—s),

v )av
2—s)k(2N —k
(33) P =Xl =k =1 E

Let So =0 and, form > 1, let S,, = inf{t > S,,_1: X, # X5, ,} be the time of
the mth jump. It follows from (3.1) and (3.2) that the proceSss, )  is a
random walk on{0, 1, ..., 2N} that starts at 1, at each step moves to the right
with probability 1/(2 — s) and to the left with probabilitf1l — s)/(2 — s), and is
absorbed when it first reaches 0 dv 2A standard calculation for random walks
(see, e.g., Section 3.1 of [6]) gives the following result.

LEMMA 3.1. Let p(a,b,k) = P'(inf{s > 1: Xy, = b} < infls > 1:X, =
a}| X, = k) be the probability that if the number of B’s is k, then the number
of B'swill reach b beforea. For 0<a <k <b < 2N,

1—(1—s)ke
bk)=— —"—
pla,b, k) 1-(1_s)b-a

and
S

Given 1< j <2N — 1l and 1< k < 2N — 1, we define the quantities
upjumps Ui j=#t>1;:X;=kandX; 1 =k+1},
downjumps Dy ;j=#t>1;:X;=kandX,;; 1=k —1},
holds H ; =#{t>7;:X; =k andX,;1 =k},
total Ty ; = Ui, j+ Dy, j + Hy ;.
Also, letUy = Uy, 1, Dy = Di.1, Hr = Hi,1 andTy = Tx.1. The expected values of
these quantities are given in the following lemma.
LEMMA 3.2. Supposel<j<2N —land1<k <2N — 1.Define

_ pk,2Nk+1) s A-a-92)
T 002N k+1)  (I—(1—9)2V k) A= @=sk ="

qk
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Also define go = 1. Definer ; =1for j <k andletrg; =0.If j > k, let

pk2N.j) _,  (A-(A-9H d-d-92)
Cp02N,j) T A-A-9NF) A-A-s))) ~

Then E[Uk,j] = rk,j/Qk- Also, E[Dk’j] =1/qx-1) —1 for k > j and E[Dk,j] =
rk—1,j/qr—1 for k < j. Furthermore,

k.
Tk,j = <(1-s)"

1 mln{(l—s)J —k 1}
Bk — sPBr

where By = k(2N — k)/ (k% + (2N — k)2 + sk(2N — k)).

1
(3.4)  E[Hk j1=E[Uy, + Dy ]]< )

PROOF First, supposé& > j. On the evenf{ X, = 2N}, we haveX; =k
and X;;1 = k + 1 for somer > 7;. Note that P’'(X, > kforalls > 7|X, =
k+1) = pk,2N,k+ 1) for all 1, so P(Xy; > kforalls > ¢|X; =k + 1) =
pk,2N,k +1)/p(0,2N,k + 1) = gy. It follows that the distribution ofUy ;
is Geometricgy), so E[Uy, ;] = 1/qx. If insteadk < j, then P(X; > k for all
t>1;)=pk,2N, j)/p(0,2N, j). Therefore P (T} ; > 1) =ry ;. It follows from
the strong Markov property that, conditional Gif; > 1, the distribution oty ; is
Geometricgy), SOE[Ux, j1 =rk,j/qx.

To find E[Dy ;], note that ifk > j, thenX takes a downward step fromto
k — 1 after each step frorh — 1 to k except the last one, sb; j = Ux—1,; — 1.
If kK < j, then the number of steps aftey from & to k — 1 is the same as the
number of steps fromkt — 1 to k, so Dy ; = Ux_1,;. The formulas forE[Dy ;]
follow immediately from these observations.

Let pp = P(X; # X;_1|X;_1 =k). To prove (3.4), note that (3.3) gives

_ k@2N —k)(2—s)
B (2N)2

It follows that the conditional distribution df; ; givenUy ; and Dy ; is the same
as the distribution of the sum @éf; ; + Dy ; independent random variables with a
Geometricpy) distribution. Therefore,

1
E[Hi j1= E[Tk ;1 — E[Uxj1— E[Dy j1= E[Ux,; + Dk,j](; — 1).

Straightforward algebraic manipulations givgpl — 1 = 1/[8x(2 — s)], which
implies the equality in (3.4). To check the inequality in (3.4), note thatf ;,
then

1 1 1 2—5

1
EWUpj+Dejl= —+— 1<+ —1="—,
gk qk-1 N )
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and ifk < j, then
1— j—k 1— j—k+1
1-s) 4 (1-y)
qk qk—1
— )k
_A-9

E[Ux,j + Dy j] <

14+ @-y¥)

_@-9a-sy*
_ S .

g

We will now calculate the probability that the ancestor at tirhas the opposite
B or b allele from the ancestor at tinre— 1, given thatX; ; =k and X; =1,
where 1<k <2N — 1, 1< <2N and|k —I| < 1. All of these recombination
probabilities are the same undé&’ and P because of the conditioning on
X;_1 andX;. We define

pyk,l) = P(Bi—1(A7710)) =0\ X,_1 =k, X, =1, B,(i) = 1),
ok, 1) = P(B—1(A77Y(0)) = 1X,_1=k, X, =1, B;(i) = 0).

LEMMA 3.3. Wehave
plk,k—1)=py(k,k+1)=0,

Pk, k+1) = M’
(k+1)(2N)
Phlk ke —1) = rk

(2N —k+1)(2N)’
rk(2N — k) B
2N[k?+ (2N — k)2 +sk(2N — k)] 2N’

ppk. k) = py(k, k) =

PrROOF We will prove three of the six results; the others are similar. If
X;_1 =k andX; =k + 1, then the new individual born at timrehas aB allele.
Therefore, ifB;(i) = 0, then Bt_l(Aﬁ‘l(i)) =0, sopj(k,k +1) =0. Suppose
instead B;(i) = 1. Then B,_l(Ai_l(i)) =0 if and only if I; 1 =i (meaning
that theith individual is the new one born); s = 1 (meaning that there is
recombination) an®;_1(/; 3) = 0 (meaning that the new individual gets its allele
at the neutral site from the member of theopulation). Conditional oX;_; =k,

X; =k+1andB,;(i) =1, the probabilites of, 1 =i, I, s =1 andB;_1(I;3) =0
are Y(k + 1), r and (2N — k)/(2N), respectively. Multiplying them gives the
expression fop’, (k, k + 1). To calculatep’; (k, k) we use the fact that, conditional
on X,_1 =k and X; = k, the probability thatB,_1(/;.1) = B,—1(l;2) =1 is
k2/[k? + (2N — k)% + sk(2N — k)]. Multiplying by 1/k, r and (2N — k)/(2N)
givespl (k, k). O



APPROXIMATING A SELECTIVE SWEEP 1609

3.2. Bounding the probability of two recombinations. We now begin working
toward a proof of Proposition 2.1, which shows that it is unlikely that a lineage will
go from theB population to theé population and then back to ti# population
because of two recombination events. We begin by proving two simple lemmas.
Lemma 3.4 bounds the probability that the number of individuals wittBtladele
is k at the recombination tim&(i). Lemma 3.5 is a useful deterministic result,
which can be proved easily by splitting the sum into terms witk N/2 and
j>N/2.

LEMMA 3.4. Wehave P(Xgi) =k) <r/ks.

PROOFE Considering the case8z()+1 =k + 1 and Xg)+1 = k and using
Lemmas 3.2 and 3.3,
P(Xgi) =k) < pg(k,k + 1) E[Ui]l + plg(k, k) E[ Hy)
r(2N —k) r r(2N —k)y+rk r
< < = —,
~ (k+1)(2Ns) = 2Ns — 2Nks ks o

LEMMA 3.5. If a > 1, there is a C depending on a but not on N so that
Y ial/j <Ca" /N,

PROOF OFPROPOSITION2.1. Denote the time of the second recombination
event byRo(i) = sup{r < R(i): B;(AL(i)) = 1}, where sug = —oco. Our goal
is to showP (R2(i) > 0) < C/(logN)2. Note that by symmetry, the conditional
distribution of(Xt)f:_ol given X, = 2N is the same as the conditional distribution
of 2N —X:_;){_, givenX, = 2N. Itfollows from this fact and the strong Markov
property that

E[#{r < R(): X, =k andX, 1=k + 1| Xg() = j}] = E[U2n—k—1.2n—],

E[#{l <R@(): X, =k andXt+1 =k — 1|XR(i) = j}] = E[DZN—k+1,2N—j]»

E[#{t < R():X; =k andX,;41=k|Xgi) = j}] = E[Hon—k.2nv— /]

Therefore, by Lemmas 3.2 and 3.3,

P (X ryiy = kI XrG) = J)
< ppk,k — D)E[Don—k+1,2N—j1+ pp(k, k) E[Hon—k 2N j]
rk
<
~ (2N —k+1)(2Ns)

inf(1— k=i T min((1 — s)k—i
min{(1—s) ,1}+2Nsm|n{(1 s 7,1

N
S(ZN—k)smm{(l s) 1.
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Using Lemma 3.4,

2N-1 2N ke
P(Ra(i) = 0) < L(Z rmin{(1—s) 11}>

(2N — k)s
(3.5)

j .

Sincer?/s? < C/(log N)?, it suffices to show that the sum on the right-hand side
of (3.5) is bounded a® — oco. We will handle the two terms separately. For the
first term, we change variablés= 2N — k and use Lemma 3.5 to get the bound

2N—14 /2N—1 (1— s)k= 2N-1 (1— s5)2N-=i 2N—j 1 N\
2 —(g m>= 2 —< > () z)

=1/ =1 J =1

2N-1 N
1 2C 1
(3.6) <C —— < -
— J(@2N — J) jzl J
- 2C(1 +logN)
J— N .
The second term in the sum on the right-hand side of (3.5) can be bounded by
2N-1 1 7 2N-1 1) 1 2N-14 2v-1

il<1\.,>+ > ( > —1+—Z Y <3

-1/ jen N\ oy ; t . oN

3.3. Estimating the recombination probability. Our next goal is to prove
Proposition 2.2, which gives an approximation &R (i) > t;). The idea behind
the proof is that every time there is a change in the population, there is some
probability that a lineage will escape the selective sweep at that time, given that it
has not previously escaped. Since the individual probabilities are small, if they sum
to S, we will be able to approximate the probability that the lineage never escapes
by ¢~5. It will be easier to work with conditional escape probabilities given
so to justify the approximation, it will be necessary to show that the sum of the
conditional probabilities has low variance.

For 1<t <, let6, = pp(X;—1, X;). Now, 6; is the conditional probability,
given X, that a lineage escapes at timé it has not previously escaped, so we
have

(B.7) P(R()=1y|X)= H [1-pp(Xi1. X)]=1— 1‘[ (1—6)).
= Tj+1 = Tj-i-l

To estimate the probability that a lineage escapes after timeve will consider
the sum of these conditional probabilities, which we denote by >/_, ., 6;.
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The next lemma shows that to estimafgR(i) > t;) to within an error
of O((logN)~2), it suffices to calculat&[e"].

LEMMA 3.6. For all J, we have |P(R() > 15) — (1 — E[e7V])] <
C/(logN)?.

ProoF It follows from the Poisson approximation on page 140 of [5] that
(3.8) [P(RG) = 1/1X) —A—e ™)< Y 67
l‘=‘Ej+l
By taking expectations, we get
|P(R(i)>1;) — (L— E[e ]| < E[ > 9,2].
l‘=rj+l

It now remains to bound&[Y""_, #?]. By Lemma 3.3,

2N-1 2 2 2p2
2 re(2N — k) r<Bg
29 > (v eane * Hawe)

Therefore, by Lemma 3.2,
(2N — k) 7 Bx
E|Y 02 ( d )
|:t:2:1 t} = k;l s+ D222 T N

2 2N
. 1 1 , C
= ?;((k T2 " (2N)2> == Gogmy2’

which completes the proof.(]

(3.9)

The next result will allow us to work with a truncated version of the sum.

LEMMA 3.7. Ifn} =3[, 110/ 1(x, 1>y, then E[n; —n’;]1 < C/J(logN).

PROOF Using Lemmas 3.2, 3.3 and 3.5, we get

J-1
Elny —nj1= ) (ppk, k+DE[Ux 41+ ppk, k) E[H s1)
k=1
N r@N—k A= g A-s)F
S Gk+D@N) s 2N sh
J-1

>kJ Cr
= sJ O

S (R

1

~
1
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We will work with »’, rather thann,; because we can obtain a rather
precise estimate of its expected value, which is given in the next lemma. We
will also be able to obtain a bound on its variance, which will enable us to
approximate£[e~"7] by e~ El],

_
LEMMA 3.8. E[,]1=.Y2, 11+ 0(} + (Jllogl)N)'

ProOF It follows from Lemma 3.2 and a straightforward calculation that

E[Hy] = (qik + qk—l_l -1) (ﬂk(zil—@)

1 <<1— (1-951— (1—s>2N—’<>>
Pk '

1—(1—s)2N
Therefore,
P8 r@eN k) rBr
E[n,)]1= k; (m [Uk ]+ﬁE[Hk]>
_ Zfl(r@N — (A= 1= - 152V
By (k+1)(2Ns)(1— (1 —5)2N)
r(l—(1—s)%) 1 —(1—5)2Nk
(2Ns)(1— (1—5)2N) >
2N 1 2N —k
—(1-ys)
s Z( 1—(1—s)2N )
2N —k)(1—1—s)h 1@ -9k
X( N )
Now
2%1 e i ((2N—k)(1—(1—s)k+1) N l—(l—s)k>
k:,( 1—(1—s5)2N > (2N)(k + 1) 2N
2N-1 1 1
_ \2N—k il
skg}(l 5) ( +2N)

Al N 2 &l 2N—k 2
=3 a-9 (5)+ X a-92*(5)

k=N+1

2 C
<2Q+logN)Q—s)N + — < —
<2(1+logN)( S)+N_N
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Therefore,

2N 1 k+1 k
@N KA —1—kl) 1-(1—y) 1
Ebny]= k:z,( i ) oy)

5%

Also, note that

2§1 A- (-9 - A-a-95 _ 22’\’: (1—s)ks g 1-s
k=J 2N = N

Therefore, since < Co/logN,

r 2t 2N —k 1 - 1
1= 2 (amarp * o) - A0 o)

r2N+1\%N511 - (1 — )kt 1
3.10 = - —+ 0| =
( ) s( 2N ),; k+1 + (N)
2N (1—s)k 1
=iy +0(ﬁ>'
k J+1
Since
2N (1—s)k r r(l—s)/*1
_Z k 71p 2 A9 =G
S k=711 s(+)kJ+l s°(J +1)

the desired result follows from (3.10)

The key remaining step is to bound Vaf). The necessary bound is given
in Lemma 3.10. The proof uses Lemma 3.9, which can easily be proved by
conditioning onM andN.

LEMMA 3.9. Suppose (X;)7°; and (¥;)72, are independent i.i.d. sequences
such that E[X1] = u and E[Y1] = y. Suppose M and N are integer-valued
random variables that are independent of these sequences. Then Cov(X1 + --- +
Xp, Y1+ +Yn)=py Cou(M, N).

LEMMA 3.10. Thereexistsa constant C such that Var(n’,) < C/J(logN)2.

PrROOFE Let
2N —k 1
3.11 = <
G a=5T1ew <k
k(2N —k k(2 k
(3.12) by = ( ) (2N — )

2N[k?2+ (2N — k)2 + sk(2N — k)]_ 2N3
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Then n, = Y7_, 1 0Lx, 420y = r Yo, NaxUx + beHy). For any random
variablesX andY,

Var(X +Y)=Var(X) +Var(Y) +2CouX, Y)

< Var(X) + Var(Y) + 2y/Var(X) Var(Y) < 4maxVar(X), Var(Y)}.
Therefore,

oN-1 oN—-1
(3.13)  Var(y)) <4r? max{Var( > akUk>,Var< > kak)}.

k=J k=J

We will bound Vaxy-2¥ 1 a, Up) and Vary2¥ 1 b, Hy) by €/J, which will
prove the lemma.

To bound Vaty"2¥ 71 4, Uy), we will need to bound Cawy, Up). To do this,
we will break upU; into jumps froml to [ 4+ 1 that occur before the last visit fo
and those that occur after the last visiktdMore formally, let, = supt: X; = k}.
If k <1, thenU; = Uy, + Uy.1, Where

U =#t>6: X, =1andX, 11 =141},

Uk,l =#r< g X, =landX;1 1 =1+ 1}.
The processe&X;)o<i<; and(X;)¢ <:<: are independent. Thereford, andU,Q,,
are independent, andy; and U, , are independent. As observed in the proof of
Lemma 3.2[; has a Geometrig{) distribution. Likewise, note tha®’ (X > [ for
alls >1|X;,=1+1)=p(,2N,[+1) andP'(X; > kforall s > | X;, =1+ 1) =
p(k,2N,l + 1). Therefore,

p(,2N,1+1)
p(k,2N,[+1)°

It follows that if we letvy; = p(l,2N,l + 1)/p(k,2N,l + 1), then Uy, has a
Geometric{y ;) distribution. Using Lemmas 3.1 and 3.2 and the fact that
p(,2N,l+1)/p(0,2N,I+ 1), we have

1 1_1—(1—s)2N—l(1—(1—s)’+1 1—(1—s)’+1—’<)
N

P(X;>lIforalls >t|X;=1+1,X,>kforalls >r) =

1—(1—s5)2N  1—(1—s)2N-k

(1 . S)H-l—k

S

qi Uk,i

R

Also, VarU,) = Var(Uk D+ Var(Uy,;) becausely,; and Ukl are independent.
Therefore, ifJ <k <1 < 2N, then by the formula for the variance of a geometric
distribution,

(3.14)

7 1- 1—
Var(y 1) = Var(Uy) — Var(Uy ) = — 2 — =
gl Uie 1

Nk
(R b og)(Bo by et
qi Uk,1 qi Uk,1 N N

(3.15)
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where the inequality uses (3.14) and the facts fhat s andvg ; > s. Also

(3.16) var(U;) = 1-

SinceUy andU,Q,l are independent, it follows from (3.15) and (3.16) thé&t i /,
then

Cov(Uy, U;) = Cov(Uy, Ulé,l + Uk,l) = Cov(Ug, Uk,l)
(3.17)

- 2
< NarUo Var(@ey) < Y21 - 5)0-b12
S

Using (3.17) and (3.11), we calculate

2N-1 2N—-12N-1
Var( Z akUk> = Z Z ara; Cov(Uy, Up)

k=J k=J I=J
2N 12N-1

ZZM

(3.18)

2 22N—1 1 2N-1
l PNV
=7 2 1z (1-s)
c
J

<C

It remains to bound Vap 2¥ 1 b Hy). Recall from the proof of Lemma 3.2
that

k(2N —k)(2—s)

(2N)?
and thatDy + Uy = Uy_1 — 1+ Uy, using the convention thdfy = 1. Therefore,
we can writeHy = G1 + G2 + --- + Gy+u,_,—1, Where (G;)72, is an i.i.d.
sequence of random varlables such tatt- 1 has a Geometrig(,) distribution
foralli. Thus,E[G;] = —1.If k <1, then by Lemma 3.9,

pe=PX; #X—1|X,—1=k) =

1 1
Cov(Hy, H)) = <— — )(— — 1) CovUr+Ur1—1,U+U;_1-1
Pk pi

1
< — Cov(Uy + Ug-1,U; + Uj—1)
Pk DI

4\/_ _ g)=k=D/2 (1 ) =072
s pkpl Pk DI
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Note that (3.12) implies

b _k@2N —k) (2N)? _ 2 2
= 2N3  k@2N-k(2-s) (@2—-s)N N’

Therefore,

2N—-1 2N—12N-1
Var( Z kak> = Z Z bib; Cov(Hy, Hp)

k=J k=J I=J
2N—-12N— 1bkbl

=C 2

k=) 1=k Pk p
¢ 2V-12N-1

3 YN @)t

k=J =k
2N-1 1

C e
—NZZl J1—s =N

_ 5)=h2

(3.19)

IA

The lemma follows from (3.13), (3.18) and (3.19)]

PROOF OFPROPOSITION2.2. Lemma 3.6 gives

i C
; —_(1— —nJ 2
|P(R(i)>1))— (L— E[e” ]| < E[zzgﬂet} < log M2

Since|%e—x| <1forx >0, Lemma 3.7 gives

E[e—U/J — e—UJ] <Eny 77]] < ](|ogN)

Using Jensen’s inequality and Lemma 3.10,
|E[e,,,/j] _ efE[n/,]| < E|e,,7/1 _ efE[n’,]|

12 _

< Eln, — E[n/)]| < Var(n)) _\/_(IogN)'

Furthermore, it follows from Lemma 3.8 that

_ (1—s)/
e o )
¢ =47+ + JlogN

Combining the last four equations gives the propositidn.
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4. Coalescence of two lineages. In this section, we prove Propositions 2.3,
2.4 and 2.5, all of which pertain to the probabilities that two lineages in the
sample coalesce. We begin by computing the following coalescence probabilities
forintegersk and/ suchthat i<k <2N —1,1<[<2N andlk —1]| < 1:

popk, ) =P(A7Y0) = AT ()X 1=k, X, =1, B,()) = 1, B,(j) = 1),
iy, D) =P(ATYi) = A7 () X,—1 =k, X, =1, B,(i) =0, B,(j) =0),
Pk, 1) = P(A7Y0) = A7 ()I1X,_1=k, X, =1, B,(i) = 1, B,(j) = 0).

As with the recombination probabilities in the previous section, the Markov
property implies that the coalescence probabilities are the same utidas
underP.

LEMMA 4.1. Wehave
Pk, k—1) = pp,(k,k+1)=0,

C kel ( _r(2N—k)>
PeBl% T k(k+1) oN )
¢ (k k—1) = 2 1 Tk
PppK, )_(2N—k)(2N—k+1)< ﬁ)
c __ 2k (y_TK
Pk ) =108 0 (1 2N>’
. 28 N -
pBB(k’k)_k(ZN—k)(l 2N )
. . Bk c . r
Prhb= 1oy PeEktD=onn
¢ _ . r
Peok k=) = o kD

ProoOFE This result follows from a series of straightforward calculations,
similar to those used to prove Lemma 3.3. We explain the idea behind some
of these calculations. WheK;_; = k and X; = k — 1, the new individual born
at time ¢ has theb allele. Therefore, twoB lineages cannot coalesce at this
time, sopy5(k,k — 1) = 0. By the same reasoningy,(k,k 4+ 1) = 0. When
Xi—1 =k and X; = k + 1, the new individual born at time has theB allele.
With probability r(2N — k)/(2N), this individual inherits its allele at the neutral
site from a member of thé population because of recombination. If this does
not happen, then two of thB individuals get their allele at the neutral site from
the same parent. Thus, conditional By(i) = B;(j) = 1, the probability that the
ith and jth individuals get their allele at the neutral site from the same parent
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is 2/[k(k 4+ 1)], which implies the formula fop$; ; (k, k + 1). The calculation of
Ppp(k, k — 1) is similar.

Now supposeX,_1 = X, = k. Conditional on this event, # replaces aB
with probability k2/[k2 + (2N — k)2 + sk(2N — k)]. If the newB gets its allele
at the neutral site from a member of tlie population, which has probability
1—-r@2N —k)/(2N), and if B;(i) = B;(j) = 1, then the probability that the
ith and jth lineages coalesce is/2?, because there arke possibilities both
for the individual who dies and the parent of the new individual. The formula
for p% 5 (k, k) follows, andp;, (k, k) can be calculated in the same way. Next, to
find p%,(k, k), note that if aB replaces aB, and B; (i) = 1 and B;(j) = 0, then
the probability of coalescence ig(2kN), because there must be recombination,
and there aré choices for theB individual that is just born and choices for
the parent from which it gets its allele at the neutral site. If insteadd-eplaces
a b, which happens with probabilitN — k)2/[k2 + (2N — k)2 + sk(2N — k)]
conditional onX;_1 = X; = k, the probability of coalescenceng[ (2N —k)(2N)].
Adding the probabilities for the two cases gives the formulapfgg(k, k).

Finally, to calculatep$, (k,k + 1) and p%,(k,k — 1), note that when aB
replaces ab, the probability that aB lineage coalesces with A lineage is
r/[(k+1)(2N)], because there must be recombination, and therke-afkechoices
for the B individual that was just born and\2choices for its parent. Likewise, the
coalescence probability ig[(2N — k + 1)(2N)] when ab replaces &8. [

ProOOF OFPROPOSITION2.3. We consider first the case in which tlith
lineage is descended from a member of Bhgopulation at the time of coalescence.
Summing over the possible value$or X, j, and applying Lemmas 3.2 and 4.1,
we get

P(G(i, j) > 0, B j+1(A%4DTL(0)) =0, and B jy+1(ASEDHE(j)) = 1)

2N—-1
< Y (pgpk. k+ DE[Ukl + pgyk, k — DE[Di] + p,, (k. k) E[Hy])
k=1

2N-1 r r
- Z <2N(k+l)s 2N(2N—k+1)s+sk(2N—k)>

- 2N—1<1 N 1 N 2N )

~ 2Ns k2N —k ' k(2N —k)
_ 2 ZNzl _4 1 _4r(L+logN) _C
Ky k(2N k) k Ns - N’

It remains to consider the case in which tite and jth lineages are both
descended from a member of tlepopulation at the coalescence time. By
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summing over the possible values Bf;, and X, j), we see that it suffices
to show

2N—-12N-1 o
Y Y P(Xri)=0)P(Xci.j) =k. Boi.j+1(AZHD i) =0,
=1 k=1
(4.2) andBc;(i’j)+1(AtG(ivj)+1(j)) = O|XR(,') = Z)
- C(IogN)‘
=N

If BG(i,j)+1(ATG(i’j)+1(i)) =0, thenG(i, j) < R(i). Therefore, it follows from
Lemmas 3.2 and 4.1 and the time-reversal argument in the proof of Proposition 2.1
that

P(XG(,"J') =k and
B, j+1(ASCDT@)) = Bg i jy+1(AZEDH(j)) = 0| X gy = 0)

< pipk,k — 1) E[Don—ik+1.28—¢1 + pip (k, k) E[Hon—k 28 —¢]
2

<

~ (2N —k)2N —k+ 1)s

min{(1— s)*¢, 1}

; k=t
+ —sk(ZN 0 min{(1—s)""", 1}
2k+202N =K\ .y
< <—sk(2N o )mm{(l $FC 1)
AN min{(1— )" 1)
N sk(2N — k)2

Combining this result with Lemma 3.4, we get that the left-hand side of (4.1) is at
most

2N-1 . (2N-1 AN ming(1— s)*t, 1)
> g( 2 TN — k2 )

(4.2) =1 k=1

4 2N-1 1(21\/—1 N(L— st 2 N )

=22 X 7 + 2
s2 = 0\ = k@N—Kk? T = k@N -k

Using (3.6) and the fact tha&f /[k(2N — k)] <1forl<k <2N — 1, we get
2N-1., /2N-1 k=t
4.3) 4r 3 }( 3 N@1—ys) >§4r<2C(1+|OgN)) <£'

2 2 2 -
S e:lg =t k(2N — k) S N N
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For the second term in (4.2), we have
4r 2N-1q (01 N
2 Z (Z k(2N — k)Z)
N ¢ 2N-1 14
1 N 4r 1 N
< — — - B
S5 ) 5 3 )

[=N 1
(4.4) -

2 2N—12N-1
4r<N1) 4y 1
< —
=—=(2 ZZZ o3
Ns2\ = ¢ ~ = kN —k)

2 N
S4r(1+logN) 4r ) 1 <C(IogN)‘

Ns2 52 kglk(ZN —k) — N

Using (4.3) and (4.4) in (4.2) proves (4.1)]

The next lemma, which bounds the probability that therekaralividuals with
the B allele at the time théth andjth lineages coalesce, will be used in the proofs
of Propositions 2.4 and 2.5.

LEMMA 4.2. Wehave
P(XG(i,j) =k and

(4.5) B:i. jy+1(AYCDHL(0)) = Bg j+1(ASEDTL()) = 1)
AN
<
- Sk2(2N —k)

PrROOF BylLemmas 3.2 and 4.1, the probability on the left-hand side of (4.5)
IS at most

Pk, k +DE[Ur]l + ps 5k, k) E[ Hi]
2 2
< +
~sk(k+1) ' sk(2N —k)
22N — k) + 2k AN
< - .
= sk2(2N —k) sk2(2N — k) U

PROOF OFPROPOSITION2.4. By Proposition 2.3, it suffices to show that

P(0O<R()<G(,j)and
C

B jy+1(ASCDT(@)) = B, j41(ATEDH()) =1) < og N’
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By Lemmas 3.2 and 3.3 and the time-reversal argument in the proof of
Proposition 2.1,
P(XR(i) =¢ and Of R(i) < G(i,j)|XG(,'7j) :k)
< ppl, £+ DE[Uan—¢—12N—k] + P, ) E[Hon ¢, 2N 1]
r(2N —¢) . 41—k ro . —k
—— _min{f(1—s)"""%, 1} + — min{(1— ,1
= CrD@Ns) {1—1s) }+2Ns {1—3s) }

< L minf1— )%, 1.
Ls
Combining this result with (4.5), we get
P(0<R()<G(,j)and

B, j+1(ASCDT(@)) = B j1(AZEDT(j)) = 1)

2N-1 AN 2N-1 r . ok
(4.6) < Z PON = k)( Z Emln{(l—s) ,1})

52 Z k2(2N — k)( Z ¢ +ZZ)'

=1

The first term in the sum on the right-hand side of (4.6) is at most

2N-1 N 2N-1 s N 1 2N-1 1
Zk3(.2N k)(z(l g ) (Zk3+ 2 N2(2N—k)>’

k=1 k=N+1

which is bounded by a constant. The other term in the sum in (4.6) is at most

2N-1 2N-1
Z N1+ logk) Z:1—i—logk Z 1+ log(2N)

k2(2N — k) — NQ@2N —k)’

k=1 k=N+1

which is also bounded by a constant. Sinegs4 < C/(logN), the proposition
follows. O

PROOF OF PROPOSITION2.5. BYy reasoning similar to that used to prove
Lemma 4.2, we have

P(G(i, j) =ty and

(4.7) B, j+1(ASCDT(@)) = Bg, j1(AZED i) = 1)
2N-1

< Y (pgpk.k+ DE[Ur g1+ pgpk. k) E[Hy ;]).
k=1
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However, this time we keep the factor rith — s)’ %, 1} from Lemma 3.2 to
bound the right-hand side of (4.7) by

4N N1 N
4.8 1—s)/ % —_—.
(4:8) Z( D e o T ijﬂskZ(zN — )
Using the fact thaN/ [k(2N — k)] <1lforl<k <2N —1 and then Lemma 3.5,
we have
4N 1 C
1-5)/* “a- ( ) L
Z( ) eaN —h = ( 9’ Z k=7
For the second term in (4.8), we observe
2N-1 N—-1 2N-1
AN 4 4
Z 2 = Z 2t Z
eyl sk“(2N — k) feT 1 sk — sN(2N — k)
<i+4(1+logN)‘
—sJ Ns

SinceJ < C'N/(logN), the bounds in the last two equations add ug'to’, and
the desired result follows from these bounds and Proposition 2I3.

5. Approximate independence of n lineages. In this section, we prove
Proposition 2.6. We first establish a lemma that involves the coupling of two
{0,1,...,n}-valued random variables.

LEMMA 5.1. LetVandV’be{0,1,..., n}-valued randomvariables such that
E[V]= E[V’]. Then, there exist random variables V and V' on some probability
space such that V and V have the same distribution, V/ and V' have the same
distribution, and

P(V £V <nmaxP(V >2), P(V >2)).

PROOF lItis clear thatV and V' can be constructed such that they have the
same distributions a¥ and V', respectively, anoD(V = \7/) > min{P(V = 0),
P(V' =0)} + min{P(V = 1), P(V' = 1)}. Note thatP(V =0) > 1 — E[V].
Since E[V] = E[V'], it follows that mifP(V =0), P(V' =0)} > 1— E[V].
Also, P(V=1)=E[V] —ZZ=2kP(V =k),soP(V=1)=>E[V]—nP((V > 2).
Likewise, P(V/' =1) > E[V] —nP (V' > 2). It follows that

P(V=V)>1—nmaxP(V >2), P(V' >2)}. O

Recall thatK, = #{i € {1,...,n}:R(@) >t} for 0 <t < 7. Define 9, =
p(X:—1, X;) asin Section 3, and defimg =>_/_, 16, andn’, =3>7_ 16, x
1ix,_,>sy @s in Lemma 3.7. Finally, leF; = P(R(i) > t;]X), which is shown
in (3.7) to be equal to + []/_,,, (1 —6)).
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LEMMA 5.2. IfJ <C'N/(logN),thenfor all d € {0,1,...,n},
C} C

_ _(n dr _ n—d E— —_—
‘P(Kn_d) <d>E[FJ(1 F)' =] ogn” 7| T logm)Z

< min{

PrRoOOFE Note thatKk; =0. Also,K;_ 1 — K; €{0,1,...,n}foralll<tr <t
and

E[K,;—1— K|X, (Ku);:;] = (n— K;)6,.
Define another procesX;)_, such thatk, = 0 and the conditional distribution
of K/_; — K/ givenX and(K,);_, is Binomial(z — K7, 6;). Note thatE[K,_; —

K/|X,(K))i—]= (n — K))6;. We will show that the processeX;);_, and
(K));_o can be coupled so that

(5.1) P(Kt;éK’forsomet>rJ)<min{— E} _c
' ! - logN’ J | = (logN)2’
Equation (5.1) implies the lemma because the conditional distributiaj ofjiven
X is binomial with parameters and 1-[];_,, . 1(1 —6,) = F}.
By applying Lemma 5.1 withV = K;,_1 — K; andV' = K, _; — K/, we can
construct the proces,);_, on the same probability space @);_, such that

P(K; # K, for somer > 7| X)

T
(5.2) <n Z P(K;—1—K; > 2|X, (Ky),—,)
t=t5+1

T
+n ) P(Ki_y— K[ =2|X, (K})i,).
t=t5+1
If K;_1— K, > 2 for somer > 1, thent; < R(i) < G(i, j) for somei and .
We haveP(t; < R(i) < G(i, j)) < C/(logN) for all J by Proposition 2.4 and
P(ty < R(i) < G(i,j)) <C/J for all J < C'N/(logN) by Proposition 2.5.
Therefore, for/ < C'N/(logN),

E[ Z P(K;—1— K; > 2|X, (Ku)f,:,)]

t=t;+1

T
<> P(Ki—1— K;>2andr > 1))

=1
(5.3) .
< EP(Kt,l — K, > 2 for somer > 1)
<m

{ c C}
in{ ——, — 1.
logN J
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Now a binomial random variable will be at least 2 if and only if there is some pair
of successful trials, s& (K,_, — K| > 2|X, (K})_,) < (567 and

T

(5.4) > P K z2XKi)=(5) X 6

t=t7+1 t=17+1

By taking expectations in (5.2) and applying (5.3), (5.4) and (3.9), we get (5.1),
which completes the proof.(]

PROOF OFPROPOSITION2.6. Inview of Lemma 5.2, it suffices to show that
_C 9} _C
logN’ J (logN)2
for all d € {0,1,...,n}. If 0 <ay,...,a, <1 and 0< bq,...,b, <1, then

lay---an —by---by| < D7 1 lai —b;|, as shown in Lemma 4.3 of Chapter 2 of [5].
Therefore,

(5.5) |E[F{1— F)y 41— g1 —q | < min{

[ELFf (L= Fp)" 1= qf(L—q)"™
<E[d|F;—qil+(n—d)(1-Fj)—(1—q))ll
=nE[|F; —q/ll.
Note that

|Fy—qil <|Fp—(L—e™")]
(56) ’ ’ ’ ’
+|e—n,_e—n1|+|e—n,_e—E[n,]|+|(1_6—E[n,])_qj}_

It follows from (3.8) and (3.9) that[|F; — (1 — e ")|] < C/(logN)?. The
expectations of the second, third and fourth terms on the right-hand side of (5.6)
can be bounded as in the conclusion of the proof of Proposition 2.2 at the end of
Section 3. All of those error estimates are smaller than the right-hand side of (5.5),
so the desired result follows.[]

6. A branching process approximation. In this section we will show how
the evolution of the individuals with th@ allele during the first stage of the
selective sweep can be approximated by a supercritical branching process. This
will lead to a proof of Proposition 2.7. Recall that the first stage of the sweep
consists of the times 8 ¢ < t;, whereJ = | (log N)?]| for some fixed constant
a > 4. We will assume throughout this section thais large enough that < N.
In Section 6.1, we explain the coupling between the branching process and the
population model. In Section 6.2, we consider the lineages in the branching process
with an infinite line of descent. Proposition 2.7 is proved using these ideas in
Section 6.3.
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6.1. Coupling the population model with a branching process. We begin
by constructing a multitype branching process with the properties mentioned in
Proposition 2.7. That is, the process will start with one individual at time zero, and
each individual will give birth at rate 1 and die at rate-k. Each new individual
has the same type as its parent with probabilityrland a new type, different from
all other types, with probability. We now explain how to construct this branching
process so that until the number of individuals reachethe branching process
will be coupled with the population proce&¥;):°, with high probability.

Define random variables & & < &1 < --- such that(§; — &_1)72, is an
i.i.d. sequence of random variables, each having an exponential distribution with
mean ¥(2N). The branching process will start with one individual at time zero.
Until the population size reachek there will be no births during the intervals
(&1, &), but births and deaths can occur at the tirfag$o, . ... This branching
process will be coupled wittM;):°, so that, with high probability, the number of
individuals with theB allele at timer will be the same as the number of individuals
in the branching process at tinge To facilitate this coupling, we will also assign
to each individual in the branching process a label such that all the individuals alive
at a given time have distinct labels. We denotehyhe set of ali such that there
is an individual labeled in the population at timé&,. WhenL, = {i : B,(i) = 1},
meaning that the labels are the same as the individuals in the population model
with the B allele at timer, we say the coupling holds at time The label of
the individual at time zero will bé&/, whereU is the random variable with a
uniform distribution on{1, ..., 2N} defined at the beginning of Section 2. We
haveBo(U) = 1, so the coupling holds at time zero.

For the branching process to have the desired properties, each individual must
have probability 1(2N) of giving birth at timeé, and probability(1 — s)/(2N)
of dying at time¢;. Also, at most one birth or death event can occur at a time.
Suppose the coupling holds at tirge 1 andi € L;_1. Also, assumeX;_1 =k. In
the population model, the number Bfs increases by 1 at time with i being the
parent of the new individual, if; 2 =i and B;_1(I; 1) = 0, which has probability
(2N — k)/(2N)?2. Also, theith individual in the population dies at timecausing
the B population to decrease in size by 1/ifi =i, B,—1(I;2) =0 andl; 4 =1,
which has probability2N — k)(1 — s)/(2N)2. Consequently, we can define the
branching process such that the individual labelegves birth at time; if and
only if I; 2 =i, which has probability A(2N). We give the new individual the
label I, 1, unless one of the other individuals already has this label. As a result,
the coupling will hold at time if B,_1(l;,1) =0, but not if B;_1(1;1) = 1. The
individual labeled will die with probability (1 — s)/(2N), and will die whenever
I;1=1i, Bi_1(I; 2) =0 andl; 4 = 1. Then the probability that the coupling fails to
hold at timer is

k(l 2N—k) k(l—s (2N—k)(1—s)>:k2(2—s)

2N (2N)2 B (2N)2

(6.1) 2N (2N)2
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If a new individual in the branching process is born at timae say that it has

a new type whenevek; 5 = 1, which has probability. This means that births of

individuals with new types correspond to recombinations in the population model.
Fix a positive integerm. On the event that the branching process has at least

J individuals at some time, we define a random marked partifignas follows.

Define k such that, is the first time at which there arg individuals. Define

a random injective mag :{1,...,m} — L, such that all(J),, possible maps

are equally likely. Then say thaitw\pm j if and only if the individuals labeled

&(i) and&(j) are of the same type. Mark the block @, consisting of alli
such that the individual labelegl(i) has the same type as the individual at time
zero. Furthermore, we can defigesuch thatoc = ¢ on the event that = 7,
and L., = {i: B, (i) = 1}, whereo :{1,...,m} — {i: B, (i) = 1} is the map
defined in Section 2 that is used in the construction of the random marked
partition ¥,,. Recall thati ~,, j if and only if A? (o(i)) = A (5(j)), and the
block {i : Bo(A? (0 (i))) = 1} is marked.

SupposeX,; = J for somer and the coupling holds for all < 77, sox = 1;.
Then the genealogy of the branching process is the same as the genealogy of
the B’s in the population up to time ;. Furthermore, groups of individuals in
the branching process with the same type correspond to groups of lineages in the
population that escape the selective sweep at the same time and, therefore, get their
allele at the neutral site from the same ancestor. Therefore, we willkhave ¥,
unless one of the following events happens to a sampled lineage during the first
stage of the selective sweep:

1. One of theB lineages experiences recombination, but the allele at the neutral
site comes from anothe? individual.

2. Two recombinations cause a lineage to go from h@opulation to theb
population and then back into thpopulation.

3. There is a coalescence event involving at least one lineage ingbpulation.

More formally, the lemma below is a consequence of our construction. Note that
the eventsAg, Ay andA§ correspond to the three possibilities mentioned above.

LEMMA 6.1. Let R;(i) = sup(r > 0:B,(AL (i)) = 0} and G,(,)) =
supt > O:A’U(i) = A’U(j)}. We have ¥,, = ¥,, on the event A1 N --- N As,
where:

Aj isthe event that X, = J for somez;

A» isthe event that the coupling holds for all ¢ < 1y;

Azistheeventthat for all # < z; for which B;_1(1; 2) = 1,wehave B,_1(l; 3) = 0;

A4 is the event that for i € {1,...,m}, we have B,(A’”(a(i))) = 0 for all
t < Ry(@i);
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Asistheeventthat for all i, j € {1, ..., m} with G;(c (i), o (j)) > 0, we have

B0 (i).0(in+1(AZ OO0 (5 (1))

=BG, (.o(in+1(AG DTG (j)) =1

PROOFE We have seen that when; and A, occur, we havelL, =
{i:By,(i)=1} ando = 0. For integersy <t andi € L;, let A;‘(i) be the label
of the individual in the branching process at tifgethat is the ancestor of the
individual labeledi at timeé&,, unless the ancestor is of a different type than the
individual labeled at time¢, in which case we definé;‘(i) = 0. Note that when
Az and Az occur, we have ~ j if and only if AL (5(i)) = AL (5(j)) # O for
somet.

Sinceo = ¢ when A; and A, occur, we havei ~g, J if and only if
AL (0(i)) = AL (0(j)) # O for somer. Supposej € L,. It follows from the
constructions that!~1(j) = A’"1(j) unlessj = I,.1 and I, 5 = 1. In this case,
Al=1(j) = 0 and if A3 occurs, thenB,_1(A'~1(j)) = 0. It follows that if A4
also occurs, them? (o (i) = AL (0(j)) # 0 if and only if we have both
A’U (o)) = A’”(a(j)) and B,(A’TJ (o)) = B,(A;J (0(j))) = 1. Furthermore,
when As occurs, we have bott’ (o (i)) = AL (o(j)) and B;(A7, (0 (i) =
Bi(AL (0(j))) = 1 for somer if and only if A? (o(i)) = A2, (0(j)), which is
exactly the condition fot ~y, j. Thus, whenAy, ..., As all occur, we have
i ~g, jifandonly ifi ~g, J-

It remains only to show that the marked blocks®f, and ¥,, are the same.
Note thati is in the marked block ofY,, if and only if 5 (i) = o (i) has the same
type as the individual at time zero or, equivalently, if and onlyi?g(a(i)) # 0.
The fact that this condition is equivalent R@)(AQJ (o (i))) = 1 follows from the
coupling and conditiondz andA4. O

We now use this coupling to show that the partitidy, conditioned on the
survival of the branching process has almost the same distributid, as

LEMMA 6.2. Lets beapartitionof {1, ..., m}. Thenthereexistsa constant C
such that

|P'(U,, =7 |#L, > Ofor all t e N) — P(¥,, =7)| < C/(log N)?.

PrRooF We will show that ifA1 occurs, them> N --- N As occurs with high
probability. Conditional on the event that,_; = k£ and that the coupling holds
at timer — 1, it follows from (6.1) that the probability that the coupling fails to
hold at timer is k2(2 — s)/(2N)?. Likewise, conditional on these same events,
the probability thatB;_1(1; 2) = B—1(l;3) =1 is (k/(2N))2. Thus, if D, is the
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event thatr is the first integer such that either the coupling fails at timer
Bi_1(I;2) = Bi_1(I;,3) = 1, thenP'(D,|X, = k) < (3 — s)k?/(2N)?, where we

use P’ because we are not conditioning on the event fhat 2N for some:z.
Therefore,

P'(A1N(ASUAS) <) P'(D;N{t <15 <o0))

=Y E'[P'(D;N{t <75 <00}|X;-1)]

TG3— s)xtz_l]l
W {X;—1=<J}

IA
2
e

I > E'[XZ 11(x,_1=0)]

Since P'(X; # X;—11X;—1 =k) = P(X; # X;—1|X—1 = k) = pr = k(2N —
k)(2—s)/(2N)2 and E'[Uy + Dy] < C, it follows that

. . 3—s I LE'[Ux + Di]
P'(A1N(ASUAS)) < k2
( 2UA3) <2N>2k§l P

To handleA 4 and As, note that

(6.2) P'(X,=2N|A1) = p(0,2N J):ﬂ>l—(l—s)1

' " VEPS A T T2 = '

It follows from (6.2) and the proof of Proposition 2.1 th& (A1 N AY) <
C/(logN)?2. Likewise, it follows from (6.2) and the proof of Proposition 2.3 that
P'(A1NAE) <C(logN)/N.

Since P'(A1) = s/(1 — (1 — 5)’) by Lemma 3.1, it follows from the above
calculations thaiP’(A1 N --- N As) — s| < C/(logN)2. Recall thatP'(X; =
2N) =s/(1 — (1 —s5)?Y) by Lemma 3.1. Sincd#L, > Oforallr € N} is the
event that the branching process survives, it is well known HétL, > 0 for
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all t e N) = s. Furthermore, ifA; N --- N As occurs, therX, = J for somer and

#L, = J for somer. Note thatP’/(X, = 2N|X, = J for somer) > 1 — (1 —s)”
asin (6.2) and®’(#L, > O for all t|#L, = J for somer) =1 — (1 —s)”. Thus, the
eventsAiN---NAs, {X; =2N} and{#L, = 0 for all } agree closely enough that
the probability, unde’, that either all or none of these three events occurs is at
least 1— C/(log N)2. It follows from this observation, Lemma 6.1 and the fact that
P is the conditional probability measure 8f given X, = 2N that

P' (W, =w|#L, > Oforallt e N) = P'(¥,, = 7|A1N---N As) + O((logN)~?)
= P'(V,, =7|A1N---N As) 4+ O((logN)~?)
= P'(W,, =7|X, =2N) + O((logN)~?)
= P(V,, =7) + O((logN)™?),

which proves the lemma.OJ

6.2. Infinitelines of descent. Consider a continuous-time branching process in
which each individual gives birth at rate 1 and dies at rates LEquivalently, each
individual lives for an exponentially distributed time with meaf{2— s) and then
has some number of offspring, which is 0 with probability— s) /(2 — s) and 2
with probability 1/(2 — s). Say that an individual at timehas an infinite line of
descent if it has a descendant in the population at tirfer all # > ¢. Otherwise,
say that the individual has a finite line of descent.

Define the procesSY,(l), Y,(z))tzo such thath(l) is the number of individuals
at timer having an infinite line of descent aridz) is the number of individuals
having a finite line of descent. Gadag and Rajarshi [11] showed that this process
is a two-type Markov branching process. They also showed that the behavior
of the process can be described as follows. pgtbe the probability that an
individual hask offspring and letf (x) = 32 prx* be the generating function
of the offspring distribution. Let(x) = b[ f(x) — x], whereb~1 is the mean
lifetime of an individual. Letf® (x, y) = 524372, pﬁ)xjyk, wherepﬁ) is
the probability that an individual with an infinite line of descent hasffspring
with an infinite line of descent ank offspring with a finite line of descent. Let
[P =%, Z,‘:‘;opﬁ)xfyk, Wherepﬁ) is the probability that an individual
with a finite line of descent hag offspring with an infinite line of descent arid
offspring with a finite line of descent. Let™ (x, y) = b[fP(x, y) — x] and let
u@(x,y) =b[f@(x,y) — y]. Let ¢ be the smallest nonnegative solution of the
equationu(x) = 0, which is also the probability that the branching process dies
out. Then, by equation (4) of [11],

_u(x(1—=q)+yq) —ulyq) u(yq)

u®(x,y) = T—q and u®(x,y)= -
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In the case of interest to us, we hafiér) = 3= + 52-x2 and, therefore,

u(x)=@2-9)[f(x)—xl=L—s) +x>— (2—s5)x.
Sinceu(x) = x ifand only if x € {1 —s, 1}, we haveg = 1 — 5. It follows that
u B x, y) = {lxs + y(1— )" = (2= )lxs + y(1—9)]
— A=+ Q- )AL —91}/s
=sx°+2(1—s)xy — (2— 5)x.

Thus, an individual with an infinite line of descent lives for an exponentially
distributed time with mean/12 — s). Itis replaced by two individuals with infinite
lines of descent at ratg and it is replaced by one individual with an infinite line
of descent and another individual with a finite line of descent at rdte-2).

Now, consider the proces(é/,(l), Yt(z)) started with one individual and con-
ditioned to survive forever, which is equivalent to assuming ﬁlﬁ%ﬁ =1 and
Yéz) = 0. Assume, as in Proposition 2.7, that the individuals are assigned types,
and that each new individual born is the same type as its parent with probabil-
ity 1 — r and is a new type with probability. DefineA* = inf{z: Y,(l) = |Js]}.
Let Ay = inf{z: Yt(l) + Y,(z) =k}. LetJy = |J(1+s~L/TogT)/T)~ 1] andJ; =
[J(1—s~+/0ogH/T) 1.

LEMMA 6.3. Wehavel— P(Lj, <A* <Xij)<C/(logN)&.

ProoOE If S has a Binomiak, p) distribution andp < ¢ < 1, then we have
the large deviations result th&t(S > cn) < e~21c=P? (see [13]).

Let S; have a Binomial/y, s) distribution and letSo have a Binomialla, s)
distribution. Letc = s + /(IogJ)/J. Then J; = |Js/c], so c¢J1 < Js and,
therefore,

P(A* <Ap)=P(S1>|Js]|S1>0)
_PS1z s _ PS1=le1))
O PS1>0 T 1-(1-s)
- P(S1>(c—1/J1)J1)
- 1-(1-s)N

RecallingJ = | (logN)“| with a > 4, it follows that if ¢ > 0 is small, then for
largeN,

PO <iy) < 20— 2/1(/M0g NN T—J; H?

< Cem2U/DI09) < € 7=(2=0) < C/(log N)B.
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Likewise, ifd = (1—s)+4/(logJ)/J,thenlo =[Js/(1—d)],s0(l—d)Jo > Js
and thus

P(A* > i) =P(S2< [Js]|Sa>0) < P(S2 < |Js))
=P(J2— 82> Jo—|Js]) S P(J2—S2=dJ]2).

Therefore, P(A* > A;,) < e=22/)1007 < j=2 < C/(logN)® and the lemma
follows. O

6.3. Proof of Proposition 2.7. We now prove Proposition 2.7. Recall that
Y, is the marked partition obtained by samplingof the | Js| individuals at
time A* that have an infinite line of descent, and then declatiagd j to be in the
same block ofY,, if and only if theith andjth individuals in the sample have the
same type. The marked block ©f, consists of the individuals in the sample with
the same type as the individual at time zero. We now define three other random
marked partitionST,g,D, T,Sf) and T,Sf’) in the same way, except that the sample
of m individuals is taken differently for each partition. Namely, to obfa?iﬁ), we
samplen of the individuals attime.;. To getT,Sf), we samplen of the individuals
at timexy,. To getT,Ef*), we samplen of the individuals at time. 7, that have an
infinite line of descent, assuming thatsuch individuals exist (otherwise, sample
from all individuals at timet z,).

Since the branching process has been conditioned to survive foreyehas
the same distribution as the conditional distributionlgf given #L, > 0 for all
t € N. Thus, by Lemma 6.2, it suffices to show that for all marked partitions
w € P, We have

|P(YP =) - P(Ty=m)| < Tog N2
Note also thatT,§12) and T,Sf) have the same distribution by the strong Markov
property.

We can coupIeT,E}) and T,(,,z) such that the sample at time; used to
construct’r,(nl) includes all of the individuals in the sample at tirhg, that were
born before time\,. If there are fewer tham such individuals, the rest of the
sample at time.; can be picked from the remaining individuals. By the strong
Markov property, this way of picking the sample at tithe does not change the
distribution of T,S}). Therefore,T,(,,l) = T,Sf) if the m individuals sampled when
constructingT,Sf) were all born before time.;. Likewise, we can couple the
partitions Y;,, and T,Sf) such that on the everit* < 1,,, all of the individuals
sampled at time.;, that were born before timg* are part of the sample at
time A* used to construct,,. Note thatA* is a stopping time with respect to the
process(Yt(l), Y,(z))tzo, so the strong Markov property implies that, conditional
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on (Y,(l), YI(Z))OE,EM, all (Lfn”) m-tuples of individuals with an infinite line of
descent at time.* are equally likely to form the sample used to construgt

With this coupling,T,ﬁf) =T, if A* <X, , and all individuals sampled when

constructingT,Sf’) were born before timg*.

SinceT,ﬁf) =4 T,Sf’), Proposition 2.7 will be proved if the couplings described in
the previous paragraph work well enough tmmf) #*Yp) andP(T,ﬁll) * T,(,zz))
can both be bounded ky/(log N)2. These bounds follow from Lemma 6.3 and

Lemma 6.5 below.

LEMMA 6.4. Let ()72, be a random walk on Z such that £) = 1 and,
for all k, P(¢/ =k + 1§ =k)=1/2—5) and P(§/,, =k — 1]§/ =k) =
(1-5)/(2—5). Let & = (&);2, be the Markov process whose law is the same as
the conditional law of (/)52 given £/ > 1 for all 7. Let k, = inf{z:& = n}. For all
positive integers n, we have Elk,+1 — kn] < (2—15)/s.

PrROOF Note thatky = 0 andx> = 1. Therefore,E[k2 — k1] = 1. Suppose
Elkn —kn_11<2—s)/s.LetD, =#{t 1k, <t <kyy1,& =nand&1=n—1}
be the number of times thgt goes fromn to n — 1 before hittingn + 1. Since
l,=P(& =n+1&_1=n) >1/(2—5), we have thaD,, + 1 follows a geometric
distribution with parametdy, > 1/(2—s). Therefore E[D, ] = (1/1,) —1 < 1—s.
Note that each time thdt goes fromn to n — 1, it must eventually return te,
which takes expected timE[k, — k,—1]. Thus,E[k,+1 — k] =1+ E[D,](1+
Elkp —kn—1]) <14+ 1L —95)[14+ (2—15)/s]=(2—5)/s. The lemma now follows
by induction. O

LEMMA 6.5. The probability that an individual chosen at randomat time 1 ;,
was born after A, isat most C/(logN)>.

PrROOF Define(?,)fio such that if 0= 19 < 1 < --- are the jump times of
Y + ¥ P)0, then ¥, = vV + 72, Let ix = inf{r:¥; = k}. The number
of births between.;, and Ay, is at mostiy, — A;. We haveE[ry, — Ay ] <
[(2—s)/s1(J2 — J1) by Lemma 6.4. Note that

Jo— 1 _J(A—stYAog N/ T) "t = J(A+s~1/Mog 1)/ T)~* +2
b = JA+s—1/(Tog))/T)1

s /IogJ’
- J

so the probability that a randomly chosen individual at timewas born aften ;,

is at most
(2—s><Jz—J1><C IogJ< C ’
s Jo — VYV J 7~ (logN)2
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where the last inequality holds becauke- | (logN)“ | for somea > 4. O

7. Approximating the distribution of ®. In this section we complete
the proof of Theorem 1.2 by proving Propositions 2.10, 2.11 and 2.8. We will
use the notatiomVy, i, Yr andZ; introduced before the statement of Theorem 1.2
in the Introduction. Recall also that= |2Ns .

In Section 7.1, we prove Propositions 2.10 and 2.11, which pertain to
the random variablesZ; introduced in the paint-box construction given in
the Introduction. The rest of the section is devoted to the proof of Proposition 2.8.
In Section 7.2 we introduce random variabl&susing the branching process. In
Section 7.3 we state some lemmas comparingtrendZ;, and explain how these
lemmas imply Proposition 2.8. In Section 7.4 we present some results related to
Pdlya urns that are needed to prove these lemmas and, finally, the lemmas are
proved in Section 7.5.

7.1. Proofs of Propositions2.10and 2.11

PROOF OFPROPOSITION2.10. SinceP(Zy = Zo> =k|Vy) < sz, we have
P(Z1= Z2 = k) < EIVZ] = E[ZWZ] = EI¢Z1EIWZ]. Since E[¢(Z] = Elg] =
r/s and E[W?] = 2/k(k + 1), it follows that

L 2
P(Zi=Z>Ish< Y —0
k=LTs5)41 sk(k+1)
- 2r - C
~ s|Js] ~ (logN)lta’ 0

We next prove Proposition 2.11, which says that the distribution of the number
of i such thatZ; > | Js| is approximately binomial. We begin with a lemma that
gives an approximation t&(Z; > | Js]).

LEMMA 7.1. Wehave P(Z; > |Js]) =gy + O(1/(logN)®).

PrROOF By the construction in the IntroductionP(Z; = k|Z; < k) =
E[Vi] = E[G]EIWi] = r/(sk). Therefore, P(Z; < [Js]) = [Tiz 5111 —
r/(sk)). This is the same as the probability that none of the evépis 11, ..., AL
occurs if the events are independent &@\;) = r/(sk). Since

L r\2 r2 C

2 (E) = 52Js] = (ogN)®’

k=[Js]+1 9

it follows from the Poisson approximation result on page 140 of [5] that

L r 1
P(Zi>|Jsh=1-exp[— > sk +O<W)'

k=|Js|+1
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If1 <y < yp, thenO< 322 1 log (§2) < 2/1y1]. Therefore,

K=Lyil &
2N [2Ns] 2N [2Ns]
1 1] 1 1 2N 2N 1
LorT 2 F=7T Z%""g(T)‘*"Og(TS)‘ 2 z‘
k=J+1 k=|Js|+1 k=J § k=Js]
3 2 C
< — 4 < i
= J ' Js] ~ (logN)«
It follows that
2N 1
P(Zi>|Js))=1—expl— > Z +0<7>
’ sk (logN)®
—qs+ o( ! )
-4 (IogN)s ) O

PROOF OFPROPOSITION2.11. Letny =#{i:Z; =k}. ThenD =n j5)4+1+
-..+nr.Define the sequenqék),f:mHl such that;; has a Binomial, »/(sL))
distribution and, conditional ofj;.1, ..., 7., the distribution of7; is binomial
with parameters: — nx+1 — --- — 17, andr/(sk). Thinking of flippingn coins
and continuing to flip those that do not show tails, it is easy to seelhat
NJs|+1 + --- + 1. has a binomial distribution with parametersand y, where
y = P(Z; > | Js]). To compareD and D we note that

PO = 2 -om) < () E1V21 = () ElGIEWA

_<n> 27‘
“\2) sk(k+1)

and P(fx > 2|fk+1,--..711) < (Z)(r/(sk))z. By Lemma 5.1, we can couple the
nx and 7 such thatP (g # fxlm =7 forl =k +1,..., L) < Cr/k? for all k.
Therefore,

L
P (i # 7ix for somek > [Js)) < > Cr_Cr . €
T e(Te1 K2 T LIs) T (logN)>

This result, combined with Lemma 7.1, gives the propositidn.

7.2. Random variables Z; from the branching process. It remains only to
prove Proposition 2.8, which requires considerably more work. For convenience,
let H = |Js|. From this point forward,Z4, ..., Z, will be random variables
defined as in the Introduction but with = H, so that the associated marked
partition IT has the distributionD, ;. z. Our goal is to describe the distribution
of the marked partitionr;,, from Propositions 2.7 and 2.8 using random variables
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Zy,...,Z;,, whereZ will be the number of individuals with an infinite line of
descent at the time when the type of ttie individual first appeared. We will
then prove Proposition 2.8 by comparing the distribution®f, ..., Z,) to the
distribution of (Z4, ..., Z,).

Define times G= y1 < y2 < --- < yy such thaty; =inf{z: Y,(l) = j} is the first
time that the branching process hasdividuals with an infinite line of descent.
Note that(y; 11 — y;)/;* is a sequence of independent random variables and the
distribution ofy; 1 — y; is exponential with ratgs. Whenever a new individual
with an infinite line of descent is born, it has a new type with probabilitilso,
each individual with an infinite line of descent is giving birth to a new individual
with a finite line of descent at rate(2— s). Since a new individual has a new
type with probabilityr, between timesg/; and y;,1, births of individuals with
new types occur at ratej2(1 — s). Whenever such a birth occurs, the type of
the individual with an infinite line of descent changes with probabiljtg.IThus,
between timeg; andy; .1, we can view the branching process as consisting of
lineages with infinite lines of descent, and their types are changing at(dates).

It follows that if, for somej > 1, we choose at random one of tihéndividuals
at timey; 11— with an infinite line of descent, the probability that its ancestor at
time y; is not of the same type is

r(l—s)
r(L—s)+js
Furthermore, foyj > 2, the probability that its ancestor at timgis not of the same
type as its ancestor at timg— is r/j because, with probability, exactly one of
the individuals at time; is of a type that did not exist at timeg —. It follows that

for j > 2, the probability that the individual sampled at timyg 1 — has a different
type from its ancestor at timg; — is

r(l—ys) n js (r)_ r <r
rl—s)+js r(l—s)+js\j _r(l—s)—i-js_js'

Likewise, the probability that at least one of théndividuals with an infinite line
of descent at timgy; .1 — has a different ancestor at timye— is

(7.1)

(7.2)

r(l—ys) s r
+ (r)= .
rl—s)+s r(l—s)+s r(l—s)+s
Leto’(1),..., o (n) represent individuals sampled at random from those with

an infinite line of descent at timgy. Then we can take the partition, to be
defined such that~~, j if and only if ¢/(i) ando’(j) have the same type, and
the marked block igi : o’ (i) has the same type as the individual at timeNow
defineZy, ..., Z, as follows. LetZ = 1 if the ancestor at time 0 a@f'(i) has the
same type as’(i). Otherwise, define

Z; =maxk :o'(i) has a different type from its ancestor at tippe-}.
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If Z. Z;., then since each new type is different from all types previously
in the populationg’(i) ando’(j) have different types. I1Z; = Z}, theno’(i)
and ¢’(j) have the same type unless(i) and o’(j) have different ancestors
at time y,,,— because they both have the same type as their ancestor at
time )/Zl{_|_1l—. We will show in Lemma 7.2 below that the probability that
Z; =7}, and o'(i) and o'(j) have different ancestors at timg, 1 — is
O((logN)~2). Therefore, the probability that, for somand j, we haveZ! = Z}
buto’(i) ando’(j) have different types i® ((log N)~2). Furthermore, it follows
from (7.1) that the individual§o’ (i) : Z] = 1} have the same type as the individual
at time 0 with probabilitys/(r(1 — s) + s). Define the marked partition; of
{1,...,n} such thati ~y, j if and only if Z; = Z}, and independently with
probabilitys/(r(1—s) + ), mark the blocKi : Z; = 1}. The preceding discussion
implies that

/
(7.3) |P(Yp=m)— P(Y, =m)| < (ogN)2
for all = € #,. Thus, for proving Proposition 2.8, we may consid€r instead
of Y,. This will be convenient becausg, is defined fromZ}, ..., Z, in the
same way thatl is defined fromZy, ..., Z,. Consequently, once we establish
Lemma 7.2 below, the remainder of the proof of Proposition 2.8 will just involve
comparingZ; andZ;.

LEMMA 7.2. Ifi # j,then

P(Z;=Z'; and o’ (i) and o' (j) have different ancestors at time /., 1 —)
(7.4) ’
C

= (log )2’

PROOF.  First note that ifZ; = Z', = k, theno’(i) ando’(j) have the same
type as their ancestor at tinpg, 1 —. If they have different ancestors at timg.1—,
there must be & € (y«, yx+1) such that eithes’(i) or ¢’(j) has an ancestor of
a different type at timg— but not at timey. The other ofo’(i) ando’(j) must
have an ancestor of a different type at time- than at timey —. Given thato’ (i)
ando’(j) have different ancestors at timg, 1 —, the probability that both of these
things happen ik > 2 is

< 2r(l—ys) )( r >< 2r2
2r(l—s)+ks)\r(1—s)+ks) ~ k252

The first factor is the probability that'(i) or ¢’(j) has an ancestor of a different
type at some time»—, while the second factor is the probability from (7.2) that
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the other ofo’(i) ando’(j) has an ancestor of a different type at time- than at
timey —. If k =1, then this conditional probability becomes

( 2r(l1—-ys) )( r(l—s) ) - 2r2
2r(L—s)+ks)\r(1—s)+ks) ~ k252
by (7.1). Therefore, if # j, the probability thaZ; = Z/ ando’(i) ando’(j) have

different ancestors attime,,1— is at mosty L 1(2r2/(k2 2)) <C/(logN)?, as
claimed.

7.3. Comparison of the Z; and Z;, and proof of Proposition 2.8 We first
prove two fairly straightforward lemmas, one for ti#% and one for theZ;.
Lemma 7.3 allows us to disregard the possibility that Zienay take more than
two distinct values greater than 1, as well as the possibility that there may be
two distinct values greater than 1, with multiple occurrences of the higher value.
Lemma 7.4 rules out the same possibilities for e

LEMMA 7.3. Wehave

;. : C(log(logN))3
(7.6) P(Z’:jZ/:Z’:kforsomez<j<k)<L
' 1= - ~ (logN)?’

PROOF.  From (7.2), we getP(Z5 =1) <r/sl, P(Z, =k|Z5=1) <r/(sk)
and P(Z| = jlZ, =k, Z5 =1) < r/(sj). Thus, the probability on the left-hand
side of (7.5) is at most
i ii( )( )( r ) C(log(log N))3

— .
P Is ) \ks (logN)

Conditional on the event that’(2) and ¢’(3) have different ancestors at
time y,,+1—, the probability that they have the same ancestor at type is
(”21)_1 = 2/m(m—1). Therefore, the probability that' (2) ando’(3) have the same
ancestor at timey.1— is at mostzm —i412/m(m — 1) < 2/k. The probability
thatZ, = Z5 = k given thato'(2) ando’(3) have the same ancestor at timeg.1—
is at mostr/(ks). Also, for j < k, we haveP(Z| = j|Z, = Z5=k) <r/(js).
Combining these results with Lemma 7.2, we can bound the probability on the
left-hand side of (7.6) by

w52 (B w2 L, L

=1k=j+1

. ¢
~ (logN)?2’ O
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LEMMA 7.4. Wehave

PROOF Fix j,k,l suchthat2< j <k <l < H. We haveP(Z3 =1|Z3 <
D="L,P(Zo=klZz=1,Z2<k)=1, P(Zr=jlZo=k, Z3=1,Z1< j) ==

sj
and hence
r r r
P(Zy=j,Za=k Zz=1) < <_><_><_>
sj /) \sk/\sl

Summing as in the proof of Lemma 7.3 gives the first result. To prove (7.7), first
note that

2r
sk(k+1)

and P(Z1 = j|Z» = Z3 = k) < r/(sj). Then compute as in the proof of
Lemma 7.3. [J

P(Zy=Z3=k) < E[V?] = E[(A1E[W?] =

Throughout the rest of this section we use the notation

_(k—Dal(n—a+k—2)
han= (n+k—1)!

We now state four more lemmas relatedzpand Z;. Their proofs will be given
after we explain how they imply Proposition 2.8.

LEMMA 7.5. Supposel<a <n—1.Then

P(Zy=1,2b=-=Z, 1=k, Z, ,=--=Z,=1forsome2<k <)
2 H H
r qk,a,n—1 1
-5y X +0( Goawiz):
izt ! (log )

LEMMA 7.6. Supposel<a <n—1.Then

P(Zi1=1,Z2=---=Zy11=k, Zys2=---=Z,=1forsome2 <k <)

}’2 ul 1 qk,a,n—1 1
:s_zz Z l +0<(IogN)2>'

k=21=k+1
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LEMMA 7.7. If2<a <n,then

P(Zy=---=Z,=kand Z, ,=---=Z, =1for somek > 2)
(7.8)
nr Qkan ( 1 )
- kan — :
Zq s ZZ (g2
P(Zi=kand Z,=---=Z, = 1for somek > 2)
nr? le
(7.9) _Zlen_ $2 Z Z -
k=21=k+1
2 H k-1
— 1
) 30D +0( o3 )
i 2k(n+l—2) (logN)

LEMMA 7.8. If2<a <n,then

P(Zi=---=Z;,=kand Z,y1=---=Z, =1for somek > 2)
(7.10)
nr Qkan 1
T > B0 l)
k=21=k+1 (logN)
P(lekandzzz‘--:zn=1forsomek22)
nr? d 9k, 1n
(7.11) :_Zlen—s—ZkZZlkZ
+1
("_Wikzl +o( s )
P 2k(n+l—2) (logN)2 /)"
PROOF OFPROPOSITION2.8. Letw € #,. If = has four or more blocks,

or three blocks of size at least 2, thé(Y, = n) < C/(logN)2 by Lemma 7.3
and Q5. u(m) < C/(logN)2 by Lemma 7.4. Ifx has three blocks, at least
one containing just one integer, then the fact tha¢Y, = 7) — Q5. u(7)| <
C/(logN)? follows from Lemmas 7.3, 7.4, 7.5 and 7.6, as well as the fact that
the probabilities that the blocKs: Z; = 1} and{i : Z/ = 1} are marked in the two
partitions are both /(r (1 — s) + s). If = has just two blocks, thepP (Y, =7) —
Q,.5.11(m)| < C/(log N)? follows from Lemmas 7.7 and 7.8, Lemmas 7.5 and 7.6
with a =n — 1, and equations (7.6) and (7.7). Finally, wheias just one block,
|P(Y, =7) — Qrs.u()| < C/(logN)? follows from Lemmas 7.7 and 7.8 with

a =n, and the factthaP(Z1=---=Z,=1) andP(Zy=---=Z, = 1) can be
obtained by subtracting from 1 the remaining possibilities. Proposition 2.8 now
follows from these results and (7.3)
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7.4. Polyaurnfacts. It remains to prove Lemmas 7.5, 7.6, 7.7 and 7.8. In this
section, we establish three lemmas that are related to Pdlya urns. The first two
lemmas are standard and straightforward, and their proofs are omitted.

LEMMA 7.9. Suppose X hasa beta distribution with parameters 1 and k — 1,
where k is an integer. Let U1, ..., U, bei.i.d. random variables with a uniform
distribution on [0, 1]. Then

PWU;<Xfori=1,...,aandU; > Xfori=a+1,....,n) =qran-

LEMMA 7.10. Consider an urn with one red ball and £ — 1 black balls.
Suppose that » new balls are added to the urn one at a time. Each new ball iseither
red or black, and the probability that a given ball isred is equal to the fraction of
red balls currently in the urn. Let S be any a-element subset of {1,...,n}. The
probability that the ith ball added isred for i € S and black for i ¢ S iS gx.q.n-
Note that this implies the sequence of draws is exchangeable.

LEMMA 7.11. Inthe setting of Lemma 7.10,suppose instead / — k new balls
are added to the urn. Then suppose we sample n of the [ balls at random. Let
Dk.1.a.n Dethe probability that the first a balls sampled are red and the next n — a
are black. If a > 1, then there exists a constant C, which may depend on a and =,
suchthat |pk.r.a.n — Gk.a.n| < C/(kl) for all k and .

ProoFk It follows from Lemma 7.10 that, conditional on the event that none
of the originalk balls is in the sample of, the probability that the firsé balls
sampled are red and the next- a are black is exactly ,.,. The probability
that the sample ot balls contains exactly of the originalk balls, an event we

call D, is
= ()

Jmm=i — J
<(n.)kl { n)!<C<§> ’
- \J I - l

sincen is a constant and thus so are< n andj <n.

Conditional on the evend; , we can calculate the probability that we sample
red balls and: — a black balls. The probability that the original red ball is in the
sample isj/k. If it is, then by Lemma 7.10 the probability that- 1 of the other
balls in the sample are red ($"{)gx.a—1..—;. Likewise, conditional on the event
that the original red ball is not in the sample, the probability thatthe other balls

(7.12)
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in the sample are red (§;j)qk,a,n_j. Thus, conditional orD; «, the probability
that we sample red balls and — a black balls is

j—PDIk—D(n—j—a+k—1)!

k m—j—a+Dln—j+k—1)!
k—jn— k-1 —j—a+k—2)!
k (n—j—a)ln—j+k—1)!

Our next step is to bring’)gx .., out in front. Using thatm — j)! =m!/(m); for
integers 1< j <m, we get, fork > 3,
n>.a'.(k—1)(n—a+k—2)!|:(n—a)j_1i' (n+k-1);
a ’ (n+k—1)! n)j kn—a+k—2);1
(n—a)jk—j (I’l+k—1)j ]
(n); k n—a+k—2);]

(7.13)

Consider the expression in brackets. Each term can be written as a ratio of two
polynomials ink of the same degree. Sinee< n andj < n, if k — oo with n

fixed, the expression in brackets is bounded by a constant. Now suppede

The bracketed expression becomes

jn+k—Dn+k—-2 m—j)Hk—j)n+k—Dn+k—2)
nk(n+k—j—1) nkin+k—j—1Dn+k—j—2
_Jjintk=Dn+k—-2)(n+k—j—2)
 nk(n+k—j—-Dn+k—j—2)
(n—jk—jpn+k—Dn+k—2)
nkn+k—j—Ln+k—j—2)

Both the numerator and the denominator of this fraction can be written as third-
degree polynomials it whose leading term isk2. Consequently, this fraction
minus 1 can be written as a second-degree polynomial divided by a third-
degree polynomial itt, which can be bounded k1 for some constant.

Note that

k—Dan—a+k—-2) a(n—a+k-—2)!
dk,a,n = =<
n+k—121)! (n+k—2)!
al C
= — << —,
(n+k—2) — k¢

(7.14)

To comparepy 1 4., andgk. .., Whena > 2, we will break up the probabilityy ; 4.»
by conditioning on the number of the original balls that were sampled.
Conditional on sampling > 1 of the originalk balls, the probability that the
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first a balls sampled are red and the next- « are black is(Z)_1 times the
probability in (7.13), which can be bounded Wygi ... The probability of
sampling;j of the originalk balls is at mosC (k/1)/ by (7.12), so

" k! Ik _k C
|pk,l,a,n - Qk,a,n| <C Z(‘) dk.an = Ck™ Z(‘) <Ck “n.— < —.
—~\ | —~\ [ [ — Kkl
Jj=1 j=1
Finally, whena = 1, we have
" k! C " kN _, C
|pk,l,a,n - Qk,a,nl =< C Z(?) Qk,a,nz =< C (7) k 2 =< E
j=1 j=1 O

7.5. Proofsof Lemmas 7.5, 7.6, 7.7and 7.8.

PROOF OFLEMMA 7.5. For2<k <|, let A’fl be the event that’(1), ...,
o’(n) all have distinct ancestors at time,;—. Let A’;l be the event that the
ancestor ob’(1) at timey;— has a different type from the ancestor«of1) at
timey;+1—. Let A’g’l be the event that one of tlkd@ndividuals at timey1— is the
ancestor ob’(2),...,0'(a + 1) but noto’(a + 2), ...,0'(n), and IetA’fl’l be the
event that the ancestor of this individual at tipe- has a different type. We claim
that

P(Zy=1,Zy="=Z,, =k,
(7.15) wip=---=2,=1forsome 2<k <)
1
kil ~ gkl A gkl ~ gkl
=P AT NAS NAT NAY —1—0(7).
(2§L1<J<1 ! 2 ° 4) (log N)?
First consider the probability thaty =1,2, =---=Z,  =kandZ, , =

... =7} =1for some 2< k < but that not all ofA5", A5!, A% and A}’ occur
for any k and!. Note that this can only happen in two ways. One way would be
for A%/ not to hold, which would mean’(1), ..., o’ (n) do not all have distinct
ancestors at timgy 11 —. However, it follows from the argument used to prove (7.6)
that P((AS") N (z} =1} N {Z} = k} for some 2< k < I) is O((logN)~2). The
second way would be foA’i’l to hold but foro’(2), ..., 0’(a + 1) not all to have
the same ancestor at timg, 1—. It follows from Lemma 7.2 that this possibility
also has probability) ((log N)~2).

Next, we consider the probability that’, A5/, A% and A% all hold, but we
donothaveZ; =1,Z,=---=2, =kandZ, ,=---=Z, =1 Thisis only
possible if there is a third timg, other than the times betweenandy;, 1 and
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betweeny, andy+1, such that the type of the ancestor of one of the individuals
o’'(1),...,o'(n) attimey is different from the type of the ancestor at time-.
However, it is a consequence of (7.5) that the probability that this occurs is at
mostO ((loglogN)3/(log N)3). It follows that (7.15) holds.

Recall from the proof of Lemma 7.3 that if two individuals with an infinite line
of descent are chosen at random at tigpe; —, then the probability that they will
have the same ancestor at time- is 2/(k(k — 1)). Since there ar(%) pairs of
individuals, we have

H
2 n\ 2 C
Ak >1_(”) 7>1_< )_>1__‘
(4= 2 k:%k(k—l)— 2) 1~ l

We have P(AS’HA’{’I) =r/[r(1 — s) + Is] by (7.2). Next, note that if we

choose at random one of theindividuals between times; and 411, then

the probability that the individual born at timg,,1 is a descendant of the
randomly chosen individual is/k, and thereafter the probability that each new
individual is a descendant of the randomly chosen individual is the fraction of
the current individuals that are descended from the randomly chosen individual.
This is the same description as the urn problem of Lemma 7.11, so conditional
on A’fl, the probability thato’(2),...,0'(a + 1) but noto’(a + 2),...,0'(n)

are descended from the randomly chosen individuapjs . ,—1. Therefore,
P(AS1AY N A = kprpan—1- By (7.2), we haveP (AL 1A} N A5 N AST) =
r/[r(1 — s) + ks]. By the arguments used to prove (7.5), the probability
that A%/ na%! N a%" N A%! holds for more than one paitk,!) is at most
O((loglogN)3/(logN)3). Thus,

P( U Al naAb nay'n A’j’l>
2<k<l

H H
r kr k.l
7.16 = n—1)P(AT
( ) lgl;l(r(l—s) +ls)(r(l—s) +ks)(pk’l’a’ )PA)
O((IoglogN)3>
(logN)3 /)
By Lemma 7.11, we can Writ@y ; 4.n—1 = gk.a.n—1 + 8, Where|s| < C/(kl).
Also, P(A1) =1 — n, wheren < C/I. Note thatr/[r(1 — s) + Is] <r/(ls) and
kr/[r(1 —s) + ks] < r/s. Recall from (7.14) thaty ,, < C/k for all a > 1.
To complete the proof, we will need to simplify the four factors inside the sum
in (7.16) by obtaining four inequalities. First, note that

r | r2(1—s) - r2
r(—s)+1Is Is|  (r(A—s)+1s)Is) ~ 1252
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Therefore,
H H 3 H H
ZZ 1 1_;<£><%)5C—222k_§2
(7.17) i=tikial” _S)+s o ki
§Cr3=0< ! )
(logN)3
Also,
kr rl_ 2(1—s) <ﬁ
r(l—s)4+ks s| (r(L—s)+ks)s — ks?
Therefore,
ZZ r<r><C><Cr3i§: 1
(7.18) k=21=k+1 r(l_S)Jrks Is/\k) = 53 =211 K1
' 3 __(loglogN
<Cr°logH =0 7 |-
(logN)
Also,
C 2B 2o 1
o £ 5 (05 5 5 o=l
e Yl AN ki 2 [, L kI? (logN)?
and
H H 2 H H
r r C k.l Cr 1
>y (HE)(Fe-ran =52 ¥ 4
(7.20) —21=k+1 k=21=k+1
| = (o)
~ " \(ogN)? )’

It follows from (7.16)—(7.20) that

( U Ay nay’nay mA4>

2<k<l

—zz(l)( Jatan-1+0(Gogra):

which, combined with (7.15), implies the lemma

PROOF OFLEMMA 7.6. Suppose 2 k < 1. Let B’l"l be the event that; <!
fori=1,...,n. Let B’z"l be the eventthat; =1 andZ; #1forall2<i <n. Let
Blg” be the eventthat; <kforall2<i <n.Let Bﬁ’l bethe eventthat, =. .- =
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Zoy1=kbutZ;, £kfora+2<i<n.Let B’s"l be the eventthat,,o=--- =
Z,=1.NotethatZz,=1,Zr=---=Z,y1=kandZ,,o=---=Z, =1 forsome
2 <k <lifandonlyif, forsome < k < [, the evenlB’l"l N B’Z‘” N B§’1 N Bﬁ’l N B’g”
occurs. Furthermore, the ever§’ N --- N B are disjoint for different values of
k and/, so we need to calculafgl’ , >, ., P(By' n By N BY n By nBEY).
We have

H H
PByh= ] Ela-vp"1= ] ER1—nV;]

j=l+1 j=l+1
(7.21)
H H
>1— ) nE[Vil=1-n ) —.
j=l+1 j=i+17%
By Lemma 7.9,

(d—1n+! —3)!)

k.l pk,l r r
PS8 =g = (AT

T ( I1-1 ) _r
Csi\n+1-D(n+1-2)) ~ sl
By the same reasoning used to get (7.21), we have

-1
(7.22) PBY By NBYHY=1-(n—-1 Y —.
j=k+17®

r

By Lemma 7.9,
kI, pk,l kI k1 r

Finally, by the argument used to establish (7.21) and (7.22),
k=1

(7.23)  PBSIBYNBY NBY NByHY=1-(n—a-D ) —.
5 JS
j=2

Note that the product of the probabilities on the right-hand side of (7.21), (7.22)
and (7.23)is atleasttn Y, £ > 1— CI09H Gincey, .1 < C/k by (7.14),

h j=ljs = logN
we have
i i <L><E)qk l(CIogH)< c i i (log H)
ey Sret ATV VAN logN /= (logN)® = 4+, K
3
- C(logH)

(logN)3
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and so
<A kil ~ pkid ~ pkid ~ pkd ~ pkil
> > Py nBy nBy N By nBgY)
k=21=k+1
H H
r\(r 11 —1)
(7.24) =33 <_><_>[ }qk’a’n_l
it S \sJLin+1-D(n+1-2)
+0< ! )
(logN)2 /"
Finally, note thafl — ml < € for some constant’. Sinceg 4,11 <
C/k and
h A r r\ C C
X3 ()E)a = mgme
=21kl sl)\s/kl — (logN)

equation (7.24) remains true if the term in brackets is replaced by 1. The lemma
follows. O

PROOF OFLEMMA 7.7. LetA% be the event that one of theindividuals at
time y,11— is the ancestor of’(1), ...,0'(a) but note’(a + 1), ...,0'(n), and
let A% be the event that the ancestor of this individual at time has a different
type. It follows from Lemma 7.2 that the probability that, for soke 2, we have

Zy=--=Z,=kandZ,_ ,=---=Z,=1but the eventi’ N A5 does not occur
is at mostO ((log N)~2). We will therefore calculate the probability that the event
ASnAsn{zi=---=Z,=KkIn{Z, == Z] =1} occurs for somé > 2.

Note that this occurs for at most one valuekoso we may sum the probabilities
overk=2,...,H.

Note thatP(A%) = kpi. p.a.n and P(AS|AY) = r/(r(1 - 5) + ks) by (7.2). It
follows that P (A N A%) = [kr/(r(1— ) +ks)1pk, .a,n- NOte thatkr/(r (1 —5) +
ks) <r/s,andrecall thakpx z 4.n —qk.a.nl < C/(kH) by Lemma 7.11. Therefore,
H kr ) crd 1

Z<— |Pk.H.an — Gk.an| < — T
= r(l—s)+ks s = kH

CrlogH C
< < .
— H ~ (logN)®

It follows thaty"{_, P(A§N AS) = Y4, Grtirgs )k an + O (1/ (log N)®). Also,
Qk,a,n S C/k1 SO

A kr r 22\ C 1
Z(r(l—s) +ks ;>Qk’a’n = Z(W)E - 0<(|OgN)2).

k=2 k=2
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Thus,
1
7.25 P Afn A%) an ( )
If A% and A’é both occur, then we will havg} =---=Z, =k andZ, , =

-~ =12, =1 unless eitheZ, =/ forsomei =1,...,n andl ¢ {1,k} or Z =k
for somei > a + 1. By Lemma 7.2, we have (A5 N AXN{Z; = k} for somek > 2
andi > a + 1) < C/(log N)2. Therefore, we only need to consider the possibility
thatZlf =l[forsomei =1,...,n andl ¢ {1, k}. We will treat separately the cases
I <k and/ > k. Note that by (7.5), the probability thatX and A% both occur,
Z; =1 andZ} = I, wherely and!; are distinct integers not i, k}, is at most
O((loglogN)*/(log N)®).

We first considef > k. By (7.6) the probability tha#tX and A% both occur and

Z = Z;. — [ for somei # j is O((log N)~2). By the same argument used to prove

Lemma 7.5, the probability thatk N A% for somek but z, =1 for somel > k is

1
(7.26) ar” Tk.an ( )
;;u él (log )2

There are two differences between this formula and the result of Lemma 7.5, which
can be explained as follows. First, in place of the e\me@f, we need the event
that, for some =1, ..., n, the ancestor of’(i) at timey;— has a different type
from the ancestor of’(i) at time y;.1—. This is why the double summation is
multiplied by n. Second, instead o&“, we need one of the individuals at time
vr+1— to be the ancestor @f’(1), ...,0'(a) but noto’(a + 1), ...,0’(n), rather
thano’(2),...,0'(a +1) butnote’(a +2), ..., o’ (n). This is why we havey 4.,
in the formula rather thag , ,—1. Otherwise, the calculation proceeds as before.

If a > 2, a consequence of (7.6) is that the probability tA4tn A% for
somek but Z =1 for somel < k is O((logN)~?). Thus, (7.8) follows by
subtracting (7.26) from (7.25). Now, consider the casel. LetS be ad-element
subset of{2, ..., n}. By the argument used to prove Lemma 7.5, the probability
that, for some X [ < k, the eventsA; ; and Az, occur butZ; =1 for i € S and
Z/=1forie{2,....,n}\Sis

2 H k—
CIZdn L, 1
ZZZ ((IogN)2>'

k=21=2

Summing this oved = 1,...,n — 1 and all subsets of sized, we get that
the probability thatA;; and Ao occur butZ =1 for i € S and Z/ = 1 for
ie{2,...,n}\ S forsome nonempty C {2,...,n}is

(7.27) 25211(21( 1)qz,d,n_1) + o((log;mz)

k=21=2 d=1
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Using the probabilistic interpretation of tlge; ,—1 as in Lemma 7.10, we have

n—1
L1 I —1((n—1)+1—2)
Z( d )qudsﬂ—lzl_m’"—lzl_ (n—1) +1—1)!

d=1

-1 . n—1
n+l1—2 n+l1-2

Thus, (7.27) becomes

(n—l)l’z H k-1 1
(7.28) ZZk(n+l—Z) +0((IogN)2>'

k=21=2
We get (7.9) by subtracting (7.28) and (7.26) from (7.25)1

LEMMA 7.12. Letédq,...,8y €(0,1). Assumethat§ =81+ ---+38, € (0, 1).
Then

N
81-8)<1-J]@—8x)=<s.
n=1

PROOF The second inequality follows from[Y_;1 — [TV_;(1 — 8,)| <
,’;’:1 8,. To prove the first inequality using the second, note that

1—ﬁ(1—8n)— Z(H(l 5 )—1‘[(1 8 ))

m=1\n=1

m—1
= (1‘[ (1—6n>>8m

n=1

N
(1—58)8, =8(1—3).
2:: ) 1-9 -

PROOF OF LEMMA 7.8. LetBfY ={z; <k fori=1,...,n). Let B =
{Zi=kforl<i<aandZ; <kfora+1<j<nj}. LetB§={Zi=1for
a+1<i<n}. We have

P (B N B N B for somek > 2)
H
(7.29) =Y P(BY)P(B5|BY)P(B5|B} N BS)
k=2

H H r k—1
- Z( [T Efa- vn"]) (—qk,a,n) ( 1 Elc - vz>”—“]>.
§ =2

k=2 \l=k+1
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Using Lemma 7.9,

A W R A A (e R )
E[(l—Vl)]—<1 s>+s‘ﬂ,0’m—<1 s>+s< (m+1—1)! )

rm
sm4+1-1)

Therefore, the expression on the right-hand side of (7.29) is

k-1 (

| (- stg) | T s g e

Letd == Zl k+1n+1 1+ Zl 2 n— a+l 1 Then

2
62_r2 XH: n +k2_:1 n—a
52 n+l— n—a+l-1

57\ Skt 1 =
r? Ul ? 2 2
gs—2<n27> < Cr(logH)*.
=1

Sincegi,a,» < C/k by (7.14), we havé 31, 62gk 4.0 < Crilog H)? Y11, 1 <

Cri(log H)3. Using Lemma 7.12, the rlght hand side of (7.29) can be written as

: i 1 i Z (n—ayr
sk—Z 1=k S(I’l—l—l—]_) S(n—a+l—1) 4k.a,n
= =k+1 =2
(7.30)
0(('09|09N)3)
(logNn)3 )
We haver — 7 = z<n”+731) < %. Sincegy q.n < C/k, it follows that
nr? 1 HoH g :
73 N an<C 2 R
( ) 2 Z Z (I’l+l Z’Qk, an=>0r Z Z 2 (IOgN)Z

k=21=k+1 k=21=k+1

Sincegk.q.n < C/k% by (7.14), wheru > 2 we have

2 H k-1 n—a 2 !
(7.32) ZZZ S qkan_CrZZ 1k2 ((IogN)2>'

k=21=2" 1=2k=I+1
By combining (7.30), (7.31) and (7.32), we get (7.10) when 2. Whena = 1,
note that
n—a mn—-0Dk*k-1)
n—atl 1T Dt kDt k—2)
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Also, note thalm—% < 5. Itfollows that, when: = 1, we have
2 H k-1
n—a
52— dkan
b 2n—a—|—l
(7.33)
("_Drzikzl +o( )
5 -
iz 2k(n+l—2) (logN)

Equations (7.30), (7.31) and (7.33) establish (7.11) whenl. O
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