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RANDOM PARTITIONS APPROXIMATING THE COALESCENCE
OF LINEAGES DURING A SELECTIVE SWEEP

BY JASON SCHWEINSBERG1 AND RICK DURRETT2

University of California, San Diego and Cornell University

When a beneficial mutation occurs in a population, the new, favored
allele may spread to the entire population. This process is known as a selective
sweep. Suppose we samplen individuals at the end of a selective sweep.
If we focus on a site on the chromosome that is close to the location of
the beneficial mutation, then many of the lineages will likely be descended
from the individual that had the beneficial mutation, while others will be
descended from a different individual because of recombination between
the two sites. We introduce two approximations for the effect of a selective
sweep. The first one is simple but not very accurate: flipn independent coins
with probability p of heads and say that the lineages whose coins come up
heads are those that are descended from the individual with the beneficial
mutation. A second approximation, which is related to Kingman’s paintbox
construction, replaces the coin flips by integer-valued random variables and
leads to very accurate results.

1. Introduction. A classical continuous-time model for a population with
overlapping generations is the Moran model, which was introduced by Moran [19].
Thinking of N diploid individuals, we assume the population size is fixed at 2N .
However under the assumption that each individual is a random union of gametes,
the dynamics are the same as for a population of 2N haploid individuals, so we
will do our computation for that case. In the simplest version of the Moran model,
each individual independently lives for a time that is exponentially distributed
with mean 1 and then is replaced by a new individual. The parent of the new
individual is chosen at random from the 2N individuals, including the individual
being replaced.

Here we will consider a variation of the Moran model that involves two loci—
one subject to natural selection, the other neutral—and with a probabilityr in each
generation of recombination between the two loci. To begin to explain the last
sentence, we assume that at the selected locus there are two alleles,B andb, and
that the relative fitnesses of the two alleles are 1 and 1− s. The population then
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evolves with the same rules as before, except that a replacement of an individual
with a B allele by an individual with ab allele is rejected with probabilitys.
Consequently, if at some time there arek individuals with theB allele and
2N − k with the b allele, then the rate of transitions that increase the number
of B individuals fromk to k + 1 is k(2N − k)/(2N), but the rate of transitions
that reduce the number ofB individuals tok − 1 is k(2N − k)(1 − s)/(2N). See
Chapter 3 of [6] for a summary of some work with this model.

We assume that the process starts at time zero with 2N − 1 individuals having
the b allele and one individual having the advantageousB allele. We think of
the individual with theB allele as having had a beneficial mutation at time zero.
There is a positive probability that eventually all 2N individuals will have the
favorable allele. When this happens, we say that a selective sweep occurs, because
the favorable allele has swept through the entire population.

If we assume that the entire chromosome containing the selected locus is passed
down from one generation to the next, as is the case for theY chromosome or
mitochondrial DNA, then all 2N chromosomes at the end of the selective sweep
will have come from the one individual that had the beneficial mutation at the
beginning of the sweep. However, nonsex chromosomes in diploid individuals are
typically not an identical copy of one of their parents’ chromosomes. Instead,
because of a process called recombination, each chromosome that an individual
inherits consists of pieces of each of a parent’s two chromosomes. In this case,
if we are interested in the origin of a second neutrally evolving locus on the
chromosome and a selective sweep occurs because of an advantageous mutation at
a nearby site, then some of the lineages will be traced back to the chromosome that
had the favorable allele at the beginning of the sweep, but other lineages will be
traced back to different individuals because of recombination between the neutral
and selected loci. When a lineage can be traced back to an individual other than the
one with the beneficial mutation, we say that the lineage escapes from the selective
sweep.

The combined effects of recombination and selective sweeps have been studied
extensively. Maynard Smith and Haigh [18] observed that selective sweeps can
alter the frequencies of alleles at sites nearby the site at which the selective
sweep occurred. They referred to this as the hitchhiking effect. They considered
a situation with a neutral locus with allelesA anda and a second locus where
allele B has a fitness of 1+ s relative tob. Supposep0 is the initial frequency
of the B allele, andQn and Rn are the frequencies in generationn of the
A allele on chromosomes containingB and b, respectively. IfQ0 = 0 (i.e.,
the advantageous mutation arises on a chromosome with thea allele) and the
recombination probability in each generation isr , Maynard Smith and Haigh [18]
showed [see (8) on page 25] that the frequency of theA allele after the selective
sweep is reduced fromR0 to

lim
n→∞Qn = R0

∞∑
n=0

r(1− r)n · 1− p0

1− p0 + p0(1+ s)n+1 .
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In the calculation of Maynard Smith and Haigh, the number of individuals with
the B locus grows deterministically. Kaplan, Hudson and Langley [15] used a
model involving an initial phase in which the number ofB ’s is a supercritical
branching process, a middle deterministic piece where the fractionp of B ’s
follows the logistic differential equation

dp

dt
= sp(1− p),(1.1)

and a final random piece where the number ofb’s follows a subcritical branching
process. This process is too difficult to study analytically, so they resorted to
simulation.

Stephan, Wiehe and Lenz [27] further simplified this approach by ignoring the
random first and third phases and modeling the change in the frequency ofB ’s by
the logistic differential equation (1.1), which has solution

p(t) = p(0)

p(0) + (1− p(0))e−st
.

This approach has been popular with biologists in simulation studies (see, e.g., [23,
26]). However, as results in [2, 7] show, this can introduce substantial errors,
so rather than using this approximation for our analysis, we will consider a
modification of the Moran model that allows for recombination as well as
beneficial mutations.

We consider two sites on each chromosome. At one site, each of the 2N

chromosomes has either the advantageousB allele or ab allele. Our interest,
however, is in the genealogy at another neutral site, at which all alleles have
the same fitness. As before, we assume that each individual lives for an
exponential time with mean 1 and is replaced by a new individual whose parent is
chosen at random from the population, except that we disregard disadvantageous
replacements of aB chromosome by ab chromosome with probabilitys. We will
also now assume that when a new individual is born, it inherits alleles at both
sites from the same individual with probability 1− r . With probabilityr , there is
recombination between the two sites, and the individual inherits the allele at the
neutral site from its parent’s other chromosome. Since a parent’s two chromosomes
are considered to be two distinct individuals in the population, we model this by
saying that the new individual inherits the two alleles from two ancestors chosen
independently at random from the 2N individuals in the population.

Suppose we samplen chromosomes at the end of a selective sweep and follow
their ancestral lines back until the beginning of the sweep. We will describe the
genealogy of the sample by a marked partition of{1, . . . , n}, which we define to
be a partition of{1, . . . , n} in which one block of the partition may be designed
as a “marked” block. We define the marked partition� of {1, . . . , n} as follows.
We say that two integersi andj are in the same block of�, denotedi ∼� j , if and
only if the alleles at the neutral site on theith andj th chromosomes in the sample
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have the same ancestor at the beginning of the sweep. Thus, if we are following
the lineages associated with the allele at the neutral site, we havei ∼� j if and
only if the ith andj th lineages coalesce during the selective sweep. We also mark
the block of� containing the integersi for which theith individual is descended
from the individual that had the beneficial mutation at the beginning of the sweep.
Thus, to understand how a selective sweep affects the genealogy of a sample of
sizen, we need to understand the distribution of the random marked partition�.

In this paper we study two approximations to the distribution of�. The
approximations were introduced and studied by simulation in [7]. Here we provide
precise bounds on the error in the approximations. The idea behind the first
approximation is that a large number of lineages will inherit their allele at the
neutral site from the individual that had the beneficial mutation at the beginning
of the sweep, and the corresponding integersi will be in the marked block of�.
With high probability, the lineages that escape the selective sweep do not coalesce
with one another, so the corresponding integers are in singleton blocks of�.

Before stating the first approximation precisely, we need a definition. Let
p ∈ [0,1]. Let ξ1, . . . , ξn be independent random variables such that, for
i = 1, . . . , n, we haveP(ξi = 1) = p and P(ξ1 = 0) = 1 − p. We call the
random marked partition of{1, . . . , n} such that one marked block consists of
{i ∈ {1, . . . , n} : ξi = 1} and the remaining blocks are singletons ap-partition of
{1, . . . , n}. Let Qp denote the distribution of ap-partition of{1, . . . , n}.

Theorem 1.1 below shows that the distribution of� can be approximated by the
distribution of ap-partition. For this result and throughout the rest of the paper, we
assume that the selective advantages is a fixed constant that does not depend on the
population sizeN . However, the recombination probabilityr is allowed to depend
on N , even though we have not recorded this dependence in the notation. We will
assume throughout the paper thatr ≤ C0/(logN) for some positive constantC0.
We denote byPn the set of marked partitions of{1, . . . , n}.

THEOREM 1.1. Fix n ∈ N. Let α = r log(2N)/s. Let p = e−α . Then there
exists a positive constant C such that |P(� = π)−Qp(π)| ≤ C/(logN) for all N

and all π ∈ Pn.

In this theorem and throughout the rest of the paper,C denotes a positive
constant that may depend ons, but does not depend onr or N . The value ofC
may change from line to line.

A consequence of Theorem 1.1 is that if limN→∞ r log(2N)/s = α for some
α ∈ (0,∞) andp = e−α , then the distribution of� converges toQp asN → ∞.
However, the rate of convergence that the theorem gives is rather slow, and
simulation results of Barton [2] and Durrett and Schweinsberg [7] show that
the approximation is not very accurate for realistic values ofN . Consequently,
it is necessary to look for a better approximation. Theorem 1.2 below gives an
approximation with an error term that is of order 1/(logN)2 rather than 1/ logN .
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It follows from the improved approximation that the error in Theorem 1.1 is
actually of order 1/ logN .

The motivation for the second approximation comes from the observation that,
at the beginning of the selective sweep, the number ofB ’s can be approximated by
a continuous-time branching process in which each individual gives birth at rate 1
and dies at rate 1− s. Some individuals in this supercritical branching process
will have an infinite line of descent, meaning that they have descendants alive in
the population at all future times. As we will show later, the individuals with an
infinite line of descent can be approximated by a Yule process, a continuous-time
branching process in which each individual splits into two at a constant rates.
Since our sample, taken at the end of the selective sweep, comes from lineages
that have survived a long time, we can get a good approximation to the genealogy
by considering only individuals with an infinite line of descent. We will also show
that, during the time when there are exactlyk ≥ 2 lineages with an infinite line of
descent, the expected number of recombinations along these lineages isr/s. For
simplicity, we assume that the number of such recombinations is always either 0
or 1. Such a recombination causes individuals descended from the lineage with
the recombination to be traced back to an ancestor at time zero different from
descendants of the otherk − 1 lineages (and therefore to belong to a different
block of �). Well-known facts about the Yule process (see, e.g., [14]) imply that
when there arek lineages, the fraction of individuals at the end of the sweep that
are descendants of a given lineage has approximately a beta(1, k − 1) distribution.
Furthermore, we will show that with probability(r(1− s))/(r(1− s)+ s), there is
a recombination when there is only one individual with an infinite line of descent,
in which case none of the sampled lineages will get traced back to the individual
with theB allele at time zero.

These observations motivate the definition of a class of marked partitions of
{1, . . . , n}, which we will use to approximate the distribution of�. The construc-
tion resembles the paintbox construction of exchangeable random partitions due
to Kingman [16]. To start the construction, assume 0< r < s and letL be a posi-
tive integer. Then let(Wk)

L
k=2 be independent random variables such thatWk has

a beta distribution with parameters 1 andk − 1. Let (ζk)
L
k=2 be a sequence of in-

dependent random variables such thatP(ζk = 1) = r/s andP(ζk = 0) = 1 − r/s

for all k. As the reader might guess from the probabilities,ζk = 1 corresponds
to a recombination when there arek lineages with an infinite line of descent.
For k = 2,3, . . . ,L, let Vk = ζkWk and letYk = Vk

∏L
j=k+1(1 − Vj ) be the frac-

tion of individuals carried away by recombination. LetY1 = ∏L
j=2(1 − Vj ). Note

that
∑L

k=1 Yk = 1. Finally, let Qr,s,L be the distribution of the random marked
partition � of {1, . . . , n} constructed in the following way. Define random vari-
ablesZ1, . . . ,Zn to be conditionally independent given(Yk)

L
k=1 such that for

i = 1, . . . , n and j = 1, . . . ,L, we haveP(Zi = j |(Yk)
L
k=1) = Yj . Here the in-

tegersi such thatZi = k correspond to lineages that recombine when there are
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k members of theB population with an infinite line of descent. Then define�

such thati ∼� j if and only if Zi = Zj . Independently of(Zi)
n
i=1, we mark

the block {i :Zi = 1} with probability s/(r(1 − s) + s) and, with probability
(r(1 − s))/(r(1 − s) + s), we mark no block. When the block is marked, the in-
tegersi such thatZi = 1 correspond to the lineages that do not recombine and
therefore can be traced back to the individual that had the beneficial mutation at
time zero; otherwise, they correspond to the lineages that recombine when there is
only one member of theB population with an infinite line of descent.

We are now ready to state our main approximation theorem, which says that
the distribution of� can be approximated well by the distributionQr,s,L, where
L = �2Ns�, and�m� denotes the greatest integer less than or equal tom. The
choice ofL comes from the fact that in a continuous-time branching process with
births at rate 1 and deaths at rate 1− s, each individual has an infinite line of
descent with probabilitys. Therefore, the number of such individuals at the end of
the selective sweep is approximatelyL.

THEOREM 1.2. Fix n ∈ N and let L = �2Ns�. Then there exists a positive
constant C such that for all N and all π ∈ Pn,

|P(� = π) − Qr,s,L(π)| ≤ C/(logN)2.

Consider for concretenessN = 10,000, a number commonly used for the
“effective size” of the human population. To explain the term in quotes, we note
that although there are now 6 billion humans, our exponential population growth
is fairly recent, so for many measures of genetic variability the human population
is the same as a homogeneously mixing population of constant size 10,000. When
N = 10,000, logN = 9.214 and(logN)2 = 84.8, so Theorem 1.2 may not appear
at first glance to be a big improvement. Two concrete examples, however, show
that the improvement is dramatic (see Table 1). In each caseN = 104 ands = 0.1.
More extensive simulation results comparing the two approximations are given
in [7].

In Table 1,pinb is the probability that a lineage escapes the selective sweep.
The remaining three columns pertain to two lineages:p2inb is the probability that

TABLE 1

pinb p2inb p2cinb p1B1b

r = 0.00106 Theorem 1.1 0.1 0.01 0 0.18
Moran 0.08203 0.00620 0.01826 0.11513

Theorem 1.2 0.08235 0.00627 0.01765 0.11687
r = 0.00516 Theorem 1.1 0.4 0.16 0 0.48

Moran 0.33656 0.10567 0.05488 0.35201
Theorem 1.2 0.34065 0.10911 0.05100 0.36112



APPROXIMATING A SELECTIVE SWEEP 1597

two lineages both escape the sweep but do not coalesce,p2cinb is the probability
both lineages escape but coalesce along the way andp1B1b is the probability
one lineage escapes the sweep but the other does not. The remaining possibility
is that neither lineage escapes the sweep, but this probability can be computed by
subtracting the sum of the other three probabilities from 1. The first row in each
group gives the probabilities obtained from the approximation in Theorem 1.1
and the third row gives the probabilities obtained from the approximation in
Theorem 1.2. The second row gives the average of 10,000 simulation runs of the
Moran model described earlier. The values of the recombination rater were chosen
in the two examples to make the approximations topinb given by Theorem 1.1
equal to 0.1 and 0.4, respectively. It is easy to see from the table that the
approximation from Theorem 1.2 is substantially more accurate. In particular,
note that in the approximation given by Theorem 1.1, two lineages never coalesce
unless both can be traced back to the individual with the beneficial mutation.
Consequently,p2cinb would be zero if this approximation were correct. However,
in simulations, a significant percentage of pairs of lineages both coalesced and
escaped from the sweep, and this probability is approximated very well by
Theorem 1.2 in both examples.

The results in this paper are a first step in studying situations in which, as
proposed by Gillespie [12], selective sweeps occur at times of a Poisson process
in a single locus or distributed along a chromosome at different distances from the
neutral locus at which data have been collected. It is well known that in the Moran
model when there are no advantageous mutations, if we samplen individuals and
follow their ancestors backward in time, then when time is sped up by 2N , we
get the coalescent process introduced by Kingman [17]. It is known (see [6]) that
selective sweeps require an average amount of time(2/s) logN , so when time
is sped up by 2N , the selective sweep occurs almost instantaneously. Durrett
and Schweinsberg [8] showed that Theorem 1.1 implies that if advantageous
mutations occur at times of a Poisson process then, the ancestral processes
converge asN → ∞ to a coalescent with multiple collisions of the type introduced
by Pitman [22] and Sagitov [24]. At times of a Poisson process, multiple
lineages coalesce simultaneously into one. The more accurate approximation in
Theorem 1.2 suggests that a better approximation to the ancestral process can
be given by a coalescent with simultaneous multiple collisions. These coalescent
processes were studied by Möhle and Sagitov [20] and Schweinsberg [25].

Finally, it is important to emphasize that the results in this paper are for the case
of “strong selection,” where the selective advantages is O(1). There has also been
considerable interest in weak selection, whereNs is assumed to converge to a limit
asN → ∞, which meanss is O(1/N). In this case, there is a diffusion limit as
N → ∞. For work in this direction that incorporates the effect of recombination,
see [3, 4]. Recently, Etheridge, Pfaffelhuber and Wakolbinger [9] have shown that
many of the results in this paper carry over to the diffusion setting. They assume
that Ns → α asN → ∞, so that they can work with a diffusion limit, and then
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obtain an approximation to the distribution of the ancestral partition� that has an
error of order 1/(logα)2 asα → ∞, by using approximations to the genealogy
similar to those used in the present paper.

2. Overview of the proofs. Since the proofs of Theorems 1.1 and 1.2 are
rather long, we outline the proofs in this section. A precise definition of the
genealogy is given in Section 2.1. The proof of Theorem 1.1 is outlined in
Section 2.2. In Section 2.3 we describe the coupling with a supercritical branching
process and outline the proof of Theorem 1.2.

2.1. Precise definition of the genealogy. We now define more precisely our
model of a selective sweep. We construct a processM = (Mt)

∞
t=0. The vector

Mt = (Mt(1), . . . ,Mt(2N)) contains the information about the population at the
time of the t th proposed replacement, andMt(i) = (A0

t (i), . . . ,A
t−1
t (i),Bt (i))

contains the information about the ancestors of theith individual at timet . For
0 ≤ u ≤ t − 1, Au

t (i) is the individual at timeu that is the ancestor of theith
individual at timet , when we consider the genealogy at the neutral locus. The
final coordinateBt(i) = 1 if the ith individual at timet has theB allele;Bt(i) = 0
if this individual has theb allele. Note that this is a discrete-time process, but
one can easily recover the continuous-time description by replacing discrete-time
steps with independent holding times, each having an exponential distribution with
mean 1/(2N).

At time zero, only one of the chromosomes will have theB allele. We define
a random variableU , which is uniform on the set{1, . . . ,2N}, and we let
B0(U) = 1 andB0(i) = 0 for i 	= U . We now define a collection of independent
random variablesIt,j for t ∈ N andj ∈ {1, . . . ,5}. For j ∈ {1,2,3}, the random
variableIt,j is uniform on{1, . . . ,2N}.
• The random variableIt,1 will be the individual that dies at timet .
• The random variableIt,2 will be the parent of the new individual at timet .
• The random variableIt,3 will be the other parent from whom the new

chromosome will inherit its allele at the neutral locus if there is recombination.
• The random variableIt,4 will be an indicator for whether a proposed disadvan-

tageous change will be rejected, soP(It,4 = 1) = s andP(It,4 = 0) = 1− s.
• The random variableIt,5 will determine whether there is recombination at

time t , soP(It,5 = 1) = r andP(It,5 = 0) = 1− r .

Using these random variables we can construct the process in the obvious way.
Refer to Figure 1 for help with the notation.

1. If Bt−1(It,1) = 1, Bt−1(It,2) = 0 and It,4 = 1, then the population will be
the same at timet as at timet − 1 because the proposed replacement of
a B chromosome by ab chromosome is rejected. In this case, for alli =
1, . . . ,2N , we defineBt(i) = Bt−1(i), At−1

t (i) = i andAu
t (i) = Au

t−1(i) for
u = 0, . . . , t − 2.
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FIG. 1. A picture to explain our notation. The lineages jump around as we move backward in time,
but for simplicity we have only indicated the recombination events. Here as we work backward in
time, i and j coalesce and then recombine into the b population. Proposition 2.4shows that this event
has probability at most C/ logN . Proposition 2.1estimates the probability of two recombinations as
shown in lineage k.

2. If we are not in the previous case andIt,5 = 0, then there is no recombination at
time t . So the individualIt,1 dies and the new individual gets its alleles at both
sites fromIt,2. For i 	= It,1, defineBt(i) = Bt−1(i), Au

t (i) = Au
t−1(i) for u =

0, . . . , t − 2 andAt−1
t (i) = i. Let Bt(It,1) = Bt−1(It,2), Au

t (It,1) = Au
t−1(It,2)

for u = 0, . . . , t − 2 andAt−1
t (It,1) = It,2.

3. If we are not in either of the previous two cases, then there is recombination
at time t . This means that the new individual labeledIt,1 gets aB or b

allele from It,2 but gets its allele at the neutral locus fromIt,3. For i 	= It,1,
defineBt(i) = Bt−1(i), Au

t (i) = Au
t−1(i) for u = 0, . . . , t − 2 andAt−1

t (i) = i.
Let Bt(It,1) = Bt−1(It,2), Au

t (It,1) = Au
t−1(It,3) for u = 0, . . . , t − 2 and

At−1
t (It,1) = It,3.

It will also be useful to have notation for the number of individuals with the
favorable allele. For nonnegative integerst , defineXt = #{i :Bt(i) = 1}, where #S
denotes the cardinality of the setS. ForJ = 1,2, . . . ,2N , let τJ = inf{t :Xt ≥ J }
be the first time at which the number ofB ’s in the population reachesJ . Let
τ = inf{t :Xt ∈ {0,2N}} be the time at which theB allele becomes fixed in
the population (in which caseXτ = 2N ) or disappears (in which caseXτ = 0).
Since our main interest is in studying a selective sweep,P ′ andE′ will denote
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probabilities and expectations under the unconditional law ofM , andP andE

will denote probabilities and expectations under the conditional law ofM given
Xτ = 2N . Likewise, Var and Cov will always refer to conditional variances and
covariances givenXτ = 2N .

To samplen individuals from the population at the timeτ when the selective
sweep ends, we may take the individuals 1, . . . , n because the distribution of
genealogy ofn individuals does not depend on whichn individuals are chosen.
Therefore, we can define� to be the random marked partition of{1, . . . , n} such
thati ∼� j if and only if theith andj th individuals at timeτ get their allele at the
neutral site from the same ancestor at time 0, with the marked block corresponding
to the individuals descended from the individualU , which had the beneficial
mutation at time zero. More formally, we havei ∼� j if and only if A0

τ (i) = A0
τ (j)

with the marked block being{i :A0
τ (i) = U} or, equivalently,{i :B0(A

0
τ (i)) = 1}.

2.2. The first approximation. Recall that Theorem 1.1 says that we can
approximate� by flipping independent coins for each lineage, which come up
heads with probabilityp, to determine which lineages fail to escape the selective
sweep. These lineages are then in one block of the partition, because they are
descended from the ancestor with the beneficial mutation at time zero, while the
other lineages do not coalesce and correspond to singleton blocks of the partition.

The first step in establishing this picture is to calculate the probability
that one lineage escapes the selective sweep. In the notation above, we need
to find P(B0(A

0
τ (i)) = 0). Define R(i) = sup{t ≥ 0 :Bt(A

t
τ (i)) = 0}, where

sup∅ = −∞. If we work backward in time,R(i) is the first moment that the
lineage of the neutral locus resides in theb population. Note that it is possible to
haveR(i) ≥ 0 andB0(A

0
τ (i)) = 1 if a lineage is affected by two recombinations,

one taking it from theB population to theb population and another taking it back
into theB population. The next result shows that the probability of this is small.

PROPOSITION 2.1. We have P(Bt(A
t
τ (i)) = 1 for some t ≤ R(i)) ≤ C/

(logN)2.

Proposition 2.1 implies that in the proofs of Theorems 1.1 and 1.2, the
probability that a lineage escapes the selective sweep can be approximated by
P(R(i) ≥ 0). It will also be useful to have an approximation ofP(R(i) ≥ τJ ) for
J ≥ 1, which is the probability that a given lineage escapes into theb population
after the time when the number ofB ’s in the population reachesJ . The next result
gives such an approximation.

PROPOSITION2.2. If qJ = 1− exp(− r
s

∑2N
k=J+1

1
k
), then

P
(
R(i) ≥ τJ

) = qJ + O

(
1

(logN)2 + 1

(logN)
√

J

)
.
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Propositions 2.1 and 2.2 will be proved in Section 3.
The next step is to consider two lineages. We now need to consider not only

recombination, but also the possibility that the lineages may coalesce, meaning
that the alleles at the neutral site on the two lineages are descended from the same
ancestor at the beginning of the sweep. LetG(i, j) be the time that theith andj th
lineages coalesce. More precisely, we defineG(i, j) = sup{t :At

τ (i) = At
τ (j)} with

sup∅ = −∞. Our first result regarding coalescence shows that it is unlikely for
two lineages to coalesce at a given time unless both alleles at the neutral site are
descended from a chromosome with theB allele at that time.

PROPOSITION 2.3. We have P(G(i, j) ≥ 0 and BG(i,j)+1(A
G(i,j)+1
τ (i)) =

0) ≤ C(logN)/N .

Next, we bound the probability that, if we trace two lineages back through the
selective sweep, the lineages coalesce and then escape from the sweep.

PROPOSITION2.4. We have P(0 ≤ R(i) ≤ G(i, j)) ≤ C/(logN).

Note that Proposition 2.3 says that, with high probability, only lineages in theB

population merge, while Proposition 2.4 says that, in the first-order approximation,
lineages that have merged do not escape into theb population. Together, these
results will justify the approximation of� by a random partition in which the only
nonsingleton block corresponds to lineages that fail to escape the selective sweep.
The next result bounds the probability that two lineages coalesce after timeτJ .

PROPOSITION2.5. Let C′ > 0. If J ≤ C′N/(logN), then P(G(i, j) ≥ τJ ) ≤
C/J .

We prove Propositions 2.3, 2.4 and 2.5 in Section 4.
We now considern lineages. To prove Theorem 1.1, we will need to show

that the events{R(1) ≥ 0}, . . . , {R(n) ≥ 0} are approximately independent. Let
Kt = #{i ∈ {1, . . . , n} :R(i) ≥ t}. If the events that then lineages escape the
selective sweep after timet are approximately independent, thenKt should have
approximately a binomial distribution. The following proposition, which we prove
in Section 5, provides a binomial approximation to the distribution ofKτJ

. Since
τ1 = 0, theJ = 1 case will be used in the proof of Theorem 1.1, while the general
case will help to prepare us for the proof of Theorem 1.2.

PROPOSITION2.6. Define qJ as in Proposition 2.2.If J ≤ C′N/(logN), then∣∣∣∣P (
KτJ

= d
) −

(
n

d

)
qd
J (1− qJ )n−d

∣∣∣∣ ≤ min
{

C

logN
,
C

J

}
+ C

(logN)2

for d = 0,1, . . . , n.
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PROOF OFTHEOREM 1.1. Define a new partition�′ of {1, . . . , n} such that
i ∼�′ j if and only if R(i) = R(j) = −∞. We mark the block of�′ consisting
of {i :R(i) = −∞}. In words, only the lineages that recombine and hence stay
in theB population are trapped by the sweep. To do this we make the following
observations:

• Proposition 2.1 implies that the probaility of two recombinations affecting a
lineage can be ignored.

• Proposition 2.3 says that we can ignore coalescence in theb population.
• Proposition 2.4 says that the probability two lineages coalesce and then escape

has small probability.

The results above imply thatP(� 	= �′) ≤ C/(logN). Therefore, to prove
Theorem 1.1, it suffices to show that|P(�′ = π) − Qp(π)| ≤ C/(logN) for
all marked partitionsπ of {1, . . . , n}. It follows from Proposition 2.6 withJ = 1
and the exchangeability of�′ that |P(�′ = π) − Q1−q1(π)| ≤ C/(logN) for all
π ∈ Pn. Using the definition ofq1 and| d

dx
e−x | ≤ 1 for x ≥ 0 gives

|(1− q1) − p| =
∣∣∣∣∣exp

(
−r

s

2N∑
k=2

1

k

)
− exp

(
−r

s
log(2N)

)∣∣∣∣∣
≤ r

s

∣∣∣∣∣
2N∑
k=2

1

k
− log(2N)

∣∣∣∣∣ ≤ C

logN

and the theorem follows.�

2.3. Branching process coupling and the second approximation. We now
work toward improving the approximation to the distribution of� so that we can
prove Theorem 1.2. To do this, we will break the selective sweep into two stages.
Let J = �(logN)a�, wherea > 4 is a fixed constant. We will consider separately
the time intervals[0, τJ ) and[τJ , τ ].

Part 1: � ≈ �1 ≈ �2. We first establish that we can ignore coalescence
involving a lineage that escapes the sweep after timeτJ . Define a random
marked partition�1 of {1, . . . , n} such thati ∼�1 j if and only if R(i) < τJ ,
R(j) < τJ and A0

τ (i) = A0
τ (j). Mark the block of�1 consisting of{i :R(i) <

τJ andB0(A
0
τ (i)) = 1}. Note that�1 = � unless, for somei and j , we have

R(i) ≥ τJ and eitheri ∼� j or B0(A
0
τ (i)) = 1. It follows from Propositions 2.1,

2.3 and 2.5 thatP(� 	= �1) ≤ C/(logN)2. Thus, we may now work with�1.
The next step is to approximate the distribution of�1. Let Kt = {i ∈

{1, . . . , n} :R(i) ≥ t}, as defined before the statement of Proposition 2.6. Define
m = n − #KτJ

to be the number of lineages in theB population at timeτJ .
Proposition 2.5 shows that lineages are unlikely to coalesce in[τJ , τ ]. Relabel the
lineages using an arbitrary bijective functionf from {1, . . . , n}\KτJ

to {1, . . . ,m}.
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To describe the first stage of the selective sweep precisely, we define, for each
m ≤ J , a new marked partition�m of {1, . . . ,m}. Let σm be a random injective
map from{1, . . . ,m} to {i :BτJ

(i) = 1} such that all(J )m = (J )(J − 1) · · · (J −
m + 1) maps are equally likely. Thus,σm(1), . . . , σm(m) is a random sample from
theJ individuals with theB allele at timeτJ . Then define�m such thati ∼�m j

if and only if A0
τJ

(σm(i)) = A0
τJ

(σm(j)). This meansi andj are in the same block
of �m if and only if theσm(i)th andσm(j)th individuals at timeτJ inherited their
allele at the neutral locus from the same individual at the beginning of the sweep.
The block{i :B0(A

0
τJ

(σm(i))) = 1} is marked.
Define�2 to be the marked partition of{1, . . . , n} such thati ∼�2 j if and only

if R(i) < τJ , R(j) < τJ andf (i) ∼�m f (j). Let the marked block of�2 consist
of all i such thatR(i) < τJ andf (i) is in the marked block of�m. To compare�1
and�2, note thatf (i) ∼�m f (j) if and only if A0

τJ
(σm(f (i))) = A0

τJ
(σm(f (j))).

On the other hand,A0
τ (i) = A0

τ (j) if and only if A0
τJ

(AτJ
τ (i)) = A0

τJ
(AτJ

τ (j)). For
i 	= j , we haveP(AτJ

τ (i) = AτJ
τ (j)) ≤ C/(logN)4 by Proposition 2.5. By the

strong Markov property, the genealogy of the process up to timeτJ is independent
of KτJ

. From these observations and the exchangeability of the model, it follows
that for allπ ∈ Pn, we have|P(�1 = π) = P(�2 = π)| ≤ C/(logN)4.

Part 2: �m ≈ ϒm ≈ Qr,s,�J s�(π). Our next step is to understand the distribu-
tion of �m. The first step is to show that the first stage of a selective sweep can
be approximated by a branching process. Recall that when the number of individ-
uals with the favorableB allele is k 
 2N , the rate of transitions that increase
the number ofB individuals fromk to k + 1 is k(2N − k)/(2N) ≈ k, while the
rate of transitions that decrease the number ofB individuals fromk to k − 1 is
k(2N − k)(1 − s)/(2N) ≈ k(1 − s). Therefore, the individuals with theB allele
follow approximately a continuous-time branching process in which each individ-
ual gives birth at rate 1 and dies at rate 1− s. Also, each new individual born
with theB allele inherits the allele at the neutral site from its parent with probabil-
ity 1 − r . We can model this recombination by considering a multitype branching
process starting from one individual in which each new individual is the same type
as its parent with probability 1− r and is a new type, different from any other
member of the current population, with probabilityr .

Say that an individual in the branching process at timet has an infinite line of
descent if it has a descendant in the population at timeu for all u > t . Otherwise,
say the individual has a finite line of descent. It is well known that the process
consisting only of the individuals with an infinite line of descent is also a branching
process. This is discussed, for example, in [1]. For more recent work in this
direction, see [10, 11, 21]. In Section 6 we will show that when the original
branching process is a continuous-time branching process with births at rate 1 and
deaths at rate 1− s, the process consisting only of the individuals with an infinite
line of descent is a continuous-time branching process with no deaths in which
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each individual gives birth at rates. That is, this process is a Yule process with
births at rates. The probability that a randomly chosen individual has an infinite
line of descent iss, so when the original branching process hasJ individuals, there
are approximatelyJ s individuals with an infinite line of descent. Furthermore,
since the past and future are independent by the Markov property, the genealogy
of a sample will not be affected if we sample only from the individuals with infinite
lines of descent.

In Section 6, we justify these approximations. This will lead to a proof of the
following proposition, which explains how the genealogy of the first phase of
a selective sweep can be approximated by the genealogy of a continuous-time
branching process.

PROPOSITION2.7. Consider a continuous-time multitype branching process
started with one individual at time zero such that each individual gives birth at
rate 1 and dies at rate 1− s. Assume that each individual born has the same type
as its parent with probability 1−r and a new type with probability r . Condition this
process to survive forever. At the first time at which there are �J s� individuals with
an infinite line of descent, sample m of the �J s� individuals with an infinite line of
descent. Define ϒm to be the marked partition of {1, . . . ,m} such that i ∼ϒm j if
and only if the ith and j th individuals in the sample have the same type, and the
marked block consists of the individuals with the same type as the individual at time
zero. Then for all π ∈ Pm, we have |P(�m = π) − P(ϒm = π)| ≤ C/(logN)2.

Recall that in the introduction we constructed a random marked partition� with
distributionQr,s,L, whereL = �2Ns�. To compare this partition with�, we will
consider the construction in two stages, just as we considered two stages of the
selective sweep. The first stage of the construction will involve the integersi such
thatZi ≤ �J s�, and the second stage involves the integersi such thatZi > �J s�.
We think of Zi = k as meaning that theith lineage escapes the selective sweep
at a time when there arek individuals in the Yule process (or, equivalently,
k lineages in the branching process with an infinite line of descent). We use�J s�
as the boundary between the two stages because, when the population size of
the branching process reachesJ , there are approximatelyJ s individuals with an
infinite line of descent.

The next result compares the first stage of a selective sweep to the random
variablesZi such thatZi ≤ �J s�.

PROPOSITION 2.8. There is a positive constant C such that for all parti-
tions π of {1, . . . , n}, we have |P(ϒn = π) − Qr,s,�J s�(π)| ≤ C/(logN)2.

Part 3: �2 ≈ Qr,s,�J s�,qJ
≈ Qr,s,L. Proposition 2.6 shows that the number

of lineages that escape the sweep during[τJ , τ ] has approximately a binomial
distribution with success probabilityqJ . This motivates the following definition:
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DEFINITION 2.9. Let r , s and q be in (0,1), and let L be a positive
integer. Let Qr,s,L,q be the distribution of the random marked partition�′
of {1, . . . , n} obtained as follows. First, let� be a random marked partition of
{1, . . . , n} with distributionQr,s,L. Let ξ1, . . . , ξn be i.i.d. random variables such
that P(ξi = 1) = q andP(ξi = 0) = 1 − q. Then say thati ∼�′ j if and only if
i ∼� j andξi = ξj = 0. Mark the block of�′ consisting of all integersi in the
marked block of� such thatξi = 0.

The next two propositions establish the connection between the second stage of
the construction of� and the second stage of the selective sweep. Proposition 2.10
shows that it is unlikely to haveZi = Zj if both are at least�J s�, just as
Proposition 2.5 shows that lineages are unlikely to coalesce during the second
stage of a selective sweep. Likewise, Proposition 2.11 shows that the number ofZi

greater than�J s� has approximately a binomial distribution, just as Proposition 2.6
shows that the number of lineages that escape the selective sweep during the
second stage has approximately a binomial distribution.

PROPOSITION2.10. For all i 	= j , P(Zi = Zj > �J s�) ≤ C/(logN)5.

PROPOSITION2.11. Let D = #{i :Zi > �J s�}, and define qJ as in Proposi-
tion 2.2.Then∣∣∣∣P(D = d) −

(
n

d

)
qd
J (1− qJ )n−d

∣∣∣∣ ≤ C

(logN)5 for d = 0,1, . . . , n.

Propositions 2.8, 2.10 and 2.11 are proved in Section 7. The proofs of
Propositions 2.10 and 2.11 are straightforward, but the proof of Proposition 2.8 is
more difficult. It involves considering marked partitionsπ with different numbers
of blocks and doing combinatorial calculations in each case.

PROOF OF THEOREM 1.2. By Propositions 2.7 and 2.8, we have|P(�n =
π) − Qr,s,�J s�(π)| ≤ C/(logN)2 for all π ∈ Pn. It follows from this fact, Propo-
sition 2.6 and the construction of�2 that |P(�2 = π) − Qr,s,�J s�,qJ

(π)| ≤
C/(logN)2 for all π ∈ Pn. Also, by definingξi = 1{Zi>�J s�} and applying Propo-
sitions 2.10 and 2.11, we see that|Qr,s,�J s�,qJ

(π) − Qr,s,L(π)| ≤ C/(logN)5 for
all π ∈ Pn. This observation, combined with the discussion in Part 1 of this sub-
section, completes the proof of Theorem 1.2.�

3. Recombination of one lineage. Our goal in this section is to prove
Propositions 2.1 and 2.2, which pertain to the recombination probabilities for a
single lineage. The strategy will be to study the processX = (Xt)

τ
t=0, which

describes how the number of individuals with theB allele evolves during the
selective sweep, and then calculate recombination probabilities conditional on the
processX. In Section 3.1, we show that the processX behaves like an asymmetric
random walk and we work out some calculations that will be needed later. We
prove Proposition 2.1 in Section 3.2 and Proposition 2.2 in Section 3.3.
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3.1. Random walk calculations. Suppose 1≤ Xt−1 ≤ 2N − 1. ThenXt =
Xt−1 + 1 if and only ifBt−1(It,1) = 0 andBt−1(It,2) = 1. Also,Xt = Xt−1 − 1 if
and only ifBt−1(It,1) = 0, Bt−1(It,2) = 1 andIt,4 = 0. Otherwise,Xt = Xt−1. It
follows that, for 1≤ k ≤ 2N − 1,

P ′(Xt = Xt−1 + 1|Xt−1 = k) =
(

2N − k

2N

)(
k

2N

)
,(3.1)

P ′(Xt = Xt−1 − 1|Xt−1 = k) =
(

2N − k

2N

)(
k

2N

)
(1− s),(3.2)

P ′(Xt = Xt−1|Xt−1 = k) = 1− (2− s)k(2N − k)

(2N)2 .(3.3)

Let S0 = 0 and, form ≥ 1, let Sm = inf{t > Sm−1 :Xt 	= XSm−1} be the time of
the mth jump. It follows from (3.1) and (3.2) that the process(XSm)∞m=0 is a
random walk on{0,1, . . . ,2N} that starts at 1, at each step moves to the right
with probability 1/(2 − s) and to the left with probability(1 − s)/(2 − s), and is
absorbed when it first reaches 0 or 2N . A standard calculation for random walks
(see, e.g., Section 3.1 of [6]) gives the following result.

LEMMA 3.1. Let p(a, b, k) = P ′(inf{s > t :Xs = b} < inf{s > t :Xs =
a}|Xt = k) be the probability that if the number of B ’s is k, then the number
of B ’s will reach b before a. For 0 ≤ a < k < b ≤ 2N ,

p(a, b, k) = 1− (1− s)k−a

1− (1− s)b−a

and

P(Xτ = 2N) = p(0,2N,1) = s

1− (1− s)2N
.

Given 1≤ j ≤ 2N − 1 and 1≤ k ≤ 2N − 1, we define the quantities

up jumps Uk,j = #{t ≥ τj :Xt = k andXt+1 = k + 1},
down jumps Dk,j = #{t ≥ τj :Xt = k andXt+1 = k − 1},

holds Hk,j = #{t ≥ τj :Xt = k andXt+1 = k},
total Tk,j = Uk,j + Dk,j + Hk,j .

Also, letUk = Uk,1, Dk = Dk,1, Hk = Hk,1 andTk = Tk,1. The expected values of
these quantities are given in the following lemma.

LEMMA 3.2. Suppose 1≤ j ≤ 2N − 1 and 1≤ k ≤ 2N − 1. Define

qk = p(k,2N,k + 1)

p(0,2N,k + 1)
= s

(1− (1− s)2N−k)
· (1− (1− s)2N)

(1− (1− s)k+1)
≥ s.
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Also define q0 = 1. Define rk,j = 1 for j ≤ k and let r0,j = 0. If j > k, let

rk,j = 1− p(k,2N,j)

p(0,2N,j)
= 1− (1− (1− s)j−k)

(1− (1− s)2N−k)
· (1− (1− s)2N)

(1− (1− s)j )
≤ (1− s)j−k.

Then E[Uk,j ] = rk,j /qk . Also, E[Dk,j ] = (1/qk−1) − 1 for k > j and E[Dk,j ] =
rk−1,j /qk−1 for k ≤ j . Furthermore,

E[Hk,j ] = E[Uk,j + Dk,j ]
(

1

2− s

)
1

βk

≤ min{(1− s)j−k,1}
sβk

,(3.4)

where βk = k(2N − k)/(k2 + (2N − k)2 + sk(2N − k)).

PROOF. First, supposek ≥ j . On the event{Xτ = 2N}, we haveXt = k

and Xt+1 = k + 1 for some t ≥ τj . Note thatP ′(Xs > k for all s > t |Xt =
k + 1) = p(k,2N,k + 1) for all t , so P(Xs > k for all s > t |Xt = k + 1) =
p(k,2N,k + 1)/p(0,2N,k + 1) = qk . It follows that the distribution ofUk,j

is Geometric(qk), so E[Uk,j ] = 1/qk . If insteadk < j , then P(Xt > k for all
t > τj ) = p(k,2N,j)/p(0,2N,j). Therefore,P(Tk,j ≥ 1) = rk,j . It follows from
the strong Markov property that, conditional onTk,j ≥ 1, the distribution ofUk,j is
Geometric(qk), soE[Uk,j ] = rk,j /qk .

To find E[Dk,j ], note that ifk > j , thenX takes a downward step fromk to
k − 1 after each step fromk − 1 to k except the last one, soDk,j = Uk−1,j − 1.
If k ≤ j , then the number of steps afterτj from k to k − 1 is the same as the
number of steps fromk − 1 to k, so Dk,j = Uk−1,j . The formulas forE[Dk,j ]
follow immediately from these observations.

Let pk = P(Xt 	= Xt−1|Xt−1 = k). To prove (3.4), note that (3.3) gives

pk = k(2N − k)(2− s)

(2N)2 .

It follows that the conditional distribution ofTk,j givenUk,j andDk,j is the same
as the distribution of the sum ofUk,j + Dk,j independent random variables with a
Geometric(pk) distribution. Therefore,

E[Hk,j ] = E[Tk,j ] − E[Uk,j ] − E[Dk,j ] = E[Uk,j + Dk,j ]
(

1

pk

− 1
)
.

Straightforward algebraic manipulations give 1/pk − 1 = 1/[βk(2 − s)], which
implies the equality in (3.4). To check the inequality in (3.4), note that ifk > j ,
then

E[Uk,j + Dk,j ] = 1

qk

+ 1

qk−1
− 1 ≤ 1

s
+ 1

s
− 1 = 2− s

s
,
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and if k ≤ j , then

E[Uk,j + Dk,j ] ≤ (1− s)j−k

qk

+ (1− s)j−k+1

qk−1

≤ (1− s)j−k

s

(
1+ (1− s)

)

= (2− s)(1− s)j−k

s
. �

We will now calculate the probability that the ancestor at timet has the opposite
B or b allele from the ancestor at timet − 1, given thatXt−1 = k andXt = l,
where 1≤ k ≤ 2N − 1, 1≤ l ≤ 2N and |k − l| ≤ 1. All of these recombination
probabilities are the same underP ′ and P because of the conditioning on
Xt−1 andXt . We define

pr
B(k, l) = P

(
Bt−1

(
At−1

t (i)
) = 0|Xt−1 = k,Xt = l,Bt (i) = 1

)
,

pr
b(k, l) = P

(
Bt−1

(
At−1

t (i)
) = 1|Xt−1 = k,Xt = l,Bt (i) = 0

)
.

LEMMA 3.3. We have

pr
B(k, k − 1) = pr

b(k, k + 1) = 0,

pr
B(k, k + 1) = r(2N − k)

(k + 1)(2N)
,

pr
b(k, k − 1) = rk

(2N − k + 1)(2N)
,

pr
B(k, k) = pr

b(k, k) = rk(2N − k)

2N[k2 + (2N − k)2 + sk(2N − k)] = rβk

2N
.

PROOF. We will prove three of the six results; the others are similar. If
Xt−1 = k andXt = k + 1, then the new individual born at timet has aB allele.
Therefore, ifBt(i) = 0, thenBt−1(A

t−1
t (i)) = 0, sopr

b(k, k + 1) = 0. Suppose
insteadBt(i) = 1. Then Bt−1(A

t−1
t (i)) = 0 if and only if It,1 = i (meaning

that the ith individual is the new one born),It,5 = 1 (meaning that there is
recombination) andBt−1(It,3) = 0 (meaning that the new individual gets its allele
at the neutral site from the member of theb population). Conditional onXt−1 = k,
Xt = k + 1 andBt(i) = 1, the probabilities ofIt,1 = i, It,5 = 1 andBt−1(It,3) = 0
are 1/(k + 1), r and (2N − k)/(2N), respectively. Multiplying them gives the
expression forpr

B(k, k +1). To calculatepr
B(k, k) we use the fact that, conditional

on Xt−1 = k and Xt = k, the probability thatBt−1(It,1) = Bt−1(It,2) = 1 is
k2/[k2 + (2N − k)2 + sk(2N − k)]. Multiplying by 1/k, r and(2N − k)/(2N)

givespr
B(k, k). �
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3.2. Bounding the probability of two recombinations. We now begin working
toward a proof of Proposition 2.1, which shows that it is unlikely that a lineage will
go from theB population to theb population and then back to theB population
because of two recombination events. We begin by proving two simple lemmas.
Lemma 3.4 bounds the probability that the number of individuals with theB allele
is k at the recombination timeR(i). Lemma 3.5 is a useful deterministic result,
which can be proved easily by splitting the sum into terms withj ≤ N/2 and
j > N/2.

LEMMA 3.4. We have P(XR(i) = k) ≤ r/ks.

PROOF. Considering the casesXR(i)+1 = k + 1 andXR(i)+1 = k and using
Lemmas 3.2 and 3.3,

P
(
XR(i) = k

) ≤ pr
B(k, k + 1)E[Uk] + pr

B(k, k)E[Hk]
≤ r(2N − k)

(k + 1)(2Ns)
+ r

2Ns
≤ r(2N − k) + rk

2Nks
= r

ks
. �

LEMMA 3.5. If a > 1, there is a C depending on a but not on N so that∑N
j=1 aj/j ≤ CaN/N .

PROOF OFPROPOSITION2.1. Denote the time of the second recombination
event byR2(i) = sup{t ≤ R(i) :Bt(A

t
τ (i)) = 1}, where sup∅ = −∞. Our goal

is to showP(R2(i) ≥ 0) ≤ C/(logN)2. Note that by symmetry, the conditional
distribution of(Xt)

τ−1
t=0 givenXτ = 2N is the same as the conditional distribution

of (2N −Xτ−t )
τ
t=1 givenXτ = 2N . It follows from this fact and the strong Markov

property that

E
[
#
{
t < R(i) :Xt = k andXt+1 = k + 1|XR(i) = j

}] = E[U2N−k−1,2N−j ],
E

[
#
{
t < R(i) :Xt = k andXt+1 = k − 1|XR(i) = j

}] = E[D2N−k+1,2N−j ],
E

[
#
{
t < R(i) :Xt = k andXt+1 = k|XR(i) = j

}] = E[H2N−k,2N−j ].
Therefore, by Lemmas 3.2 and 3.3,

P
(
XR2(i) = k|XR(i) = j

)
≤ pr

b(k, k − 1)E[D2N−k+1,2N−j ] + pr
b(k, k)E[H2N−k,2N−j ]

≤ rk

(2N − k + 1)(2Ns)
min{(1− s)k−j ,1} + r

2Ns
min{(1− s)k−j ,1}

≤ r

(2N − k)s
min{(1− s)k−j ,1}.
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Using Lemma 3.4,

P
(
R2(i) ≥ 0

) ≤
2N−1∑
j=1

r

js

( 2N−1∑
k=1

r min{(1− s)k−j ,1}
(2N − k)s

)

(3.5)

= r2

s2

2N−1∑
j=1

1

j

( 2N−1∑
k=j

(1− s)k−j

2N − k
+

j−1∑
k=1

1

2N − k

)
.

Sincer2/s2 ≤ C/(logN)2, it suffices to show that the sum on the right-hand side
of (3.5) is bounded asN → ∞. We will handle the two terms separately. For the
first term, we change variables� = 2N − k and use Lemma 3.5 to get the bound

2N−1∑
j=1

1

j

( 2N−1∑
k=j

(1− s)k−j

2N − k

)
=

2N−1∑
j=1

(1− s)2N−j

j

( 2N−j∑
�=1

(
1

1− s

)� 1

�

)

≤ C

2N−1∑
j=1

1

j (2N − j)
≤ 2C

N

N∑
j=1

1

j
(3.6)

≤ 2C(1+ logN)

N
.

The second term in the sum on the right-hand side of (3.5) can be bounded by

N∑
j=1

1

j

(
j

N

)
+

2N−1∑
j=N+1

1

N

( 2N−1∑
�=2N−j

1

�

)
= 1+ 1

N

2N−1∑
�=1

1

�

2N−1∑
j=2N−l

(1) ≤ 3.
�

3.3. Estimating the recombination probability. Our next goal is to prove
Proposition 2.2, which gives an approximation forP(R(i) ≥ τJ ). The idea behind
the proof is that every time there is a change in the population, there is some
probability that a lineage will escape the selective sweep at that time, given that it
has not previously escaped. Since the individual probabilities are small, if they sum
to S, we will be able to approximate the probability that the lineage never escapes
by e−S . It will be easier to work with conditional escape probabilities givenX,
so to justify the approximation, it will be necessary to show that the sum of the
conditional probabilities has low variance.

For 1≤ t ≤ τ , let θt = pr
B(Xt−1,Xt). Now, θt is the conditional probability,

given X, that a lineage escapes at timet if it has not previously escaped, so we
have

P
(
R(i) ≥ τJ |X) = 1−

τ∏
t=τJ +1

[1− pr
B(Xt−1,Xt)] = 1−

τ∏
t=τJ +1

(1− θt ).(3.7)

To estimate the probability that a lineage escapes after timeτJ , we will consider
the sum of these conditional probabilities, which we denote byηJ = ∑τ

t=τJ +1 θt .
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The next lemma shows that to estimateP(R(i) ≥ τJ ) to within an error
of O((logN)−2), it suffices to calculateE[e−ηJ ].

LEMMA 3.6. For all J , we have |P(R(i) ≥ τJ ) − (1 − E[e−ηJ ])| ≤
C/(logN)2.

PROOF. It follows from the Poisson approximation on page 140 of [5] that

∣∣P (
R(i) ≥ τJ |X) − (1− e−ηJ )

∣∣ ≤
τ∑

t=τJ +1

θ2
t .(3.8)

By taking expectations, we get

∣∣P (
R(i) ≥ τJ

) − (1− E[e−ηJ ])∣∣ ≤ E

[
τ∑

t=τJ +1

θ2
t

]
.

It now remains to boundE[∑τ
t=1 θ2

t ]. By Lemma 3.3,

τ∑
t=1

θ2
t =

2N−1∑
k=1

(
Uk

r2(2N − k)2

(k + 1)2(2N)2 + Hk

r2β2
k

(2N)2

)
.

Therefore, by Lemma 3.2,

E

[
τ∑

t=1

θ2
t

]
≤

2N∑
k=1

(
r2(2N − k)2

s(k + 1)2(2N)2 + r2βk

(2N)2s

)
(3.9)

≤ r2

s

2N∑
k=1

(
1

(k + 1)2 + 1

(2N)2

)
≤ Cr2 ≤ C

(logN)2 ,

which completes the proof.�

The next result will allow us to work with a truncated version of the sum.

LEMMA 3.7. If η′
J = ∑τ

t=τJ +1 θt1{Xt−1≥J }, then E[ηJ − η′
J ] ≤ C/J (logN).

PROOF. Using Lemmas 3.2, 3.3 and 3.5, we get

E[ηJ − η′
J ] =

J−1∑
k=1

(
pr

B(k, k + 1)E[Uk,J ] + pr
B(k, k)E[Hk,J ])

≤
J−1∑
k=1

r(2N − k)

(k + 1)(2N)
· (1− s)J−k

s
+ rβk

2N
· (1− s)J−k

sβk

≤
J−1∑
k=1

(1− s)J−k

(
r

ks

)
= r

s

J−1∑
k=1

1

k

(
1

1− s

)k−J

≤ Cr

sJ
.

�
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We will work with η′
J rather thanηJ because we can obtain a rather

precise estimate of its expected value, which is given in the next lemma. We
will also be able to obtain a bound on its variance, which will enable us to
approximateE[e−η′

J ] by e−E[η′
J ].

LEMMA 3.8. E[η′
J ] = r

s

∑2N
k=J+1

1
k

+ O( 1
N

+ (1−s)J

J logN
).

PROOF. It follows from Lemma 3.2 and a straightforward calculation that

E[Hk] =
(

1

qk

+ 1

qk−1
− 1

)(
1

βk(2− s)

)

= 1

sβk

(
(1− (1− s)k)(1− (1− s)2N−k)

1− (1− s)2N

)
.

Therefore,

E[η′
J ] =

2N−1∑
k=J

(
r(2N − k)

(k + 1)(2N)
E[Uk] + rβk

2N
E[Hk]

)

=
2N−1∑
k=J

(
r(2N − k)(1− (1− s)k+1)(1− (1− s)2N−k)

(k + 1)(2Ns)(1− (1− s)2N)

+ r(1− (1− s)k)(1− (1− s)2N−k)

(2Ns)(1− (1− s)2N)

)

= r

s

2N−1∑
k=J

(
1− (1− s)2N−k

1− (1− s)2N

)

×
(

(2N − k)(1− (1− s)k+1)

(2N)(k + 1)
+ 1− (1− s)k

2N

)
.

Now

2N−1∑
k=J

(
1− 1− (1− s)2N−k

1− (1− s)2N

)(
(2N − k)(1− (1− s)k+1)

(2N)(k + 1)
+ 1− (1− s)k

2N

)

≤
2N−1∑
k=J

(1− s)2N−k

(
1

k
+ 1

2N

)

≤
N∑

k=1

(1− s)N
(

2

k

)
+

2N∑
k=N+1

(1− s)2N−k

(
2

N

)

≤ 2(1+ logN)(1− s)N + 2

Ns
≤ C

N
.
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Therefore,

E[η′
J ] = r

s

2N−1∑
k=J

(
(2N − k)(1− (1− s)k+1)

(2N)(k + 1)
+ 1− (1− s)k

2N

)
+ O

(
1

N

)
.

Also, note that

2N−1∑
k=J

(1− (1− s)k+1) − (1− (1− s)k)

2N
=

2N∑
k=J

(1− s)ks

2N
≤ 1− s

2N
.

Therefore, sincer ≤ C0/ logN ,

E[η′
J ] = r

s

2N−1∑
k=J

(
2N − k

(2N)(k + 1)
+ 1

2N

)(
1− (1− s)k+1) + O

(
1

N

)

= r

s

(
2N + 1

2N

) 2N−1∑
k=J

1− (1− s)k+1

k + 1
+ O

(
1

N

)
(3.10)

= r

s

2N∑
k=J+1

1− (1− s)k

k
+ O

(
1

N

)
.

Since

r

s

2N∑
k=J+1

(1− s)k

k
≤ r

s(J + 1)

∞∑
k=J+1

(1− s)k = r(1− s)J+1

s2(J + 1)
,

the desired result follows from (3.10).�

The key remaining step is to bound Var(η′
J ). The necessary bound is given

in Lemma 3.10. The proof uses Lemma 3.9, which can easily be proved by
conditioning onM andN .

LEMMA 3.9. Suppose (Xi)
∞
i=1 and (Yi)

∞
i=1 are independent i.i.d. sequences

such that E[X1] = µ and E[Y1] = γ . Suppose M and N are integer-valued
random variables that are independent of these sequences. Then Cov(X1 + · · · +
XM,Y1 + · · · + YN) = µγ Cov(M,N).

LEMMA 3.10. There exists a constant C such that Var(η′
J ) ≤ C/J (logN)2.

PROOF. Let

ak = 2N − k

(k + 1)(2N)
≤ 1

k
,(3.11)

bk = k(2N − k)

2N[k2 + (2N − k)2 + sk(2N − k)] ≤ k(2N − k)

2N3 .(3.12)
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Then η′
J = ∑τ

t=τJ +1 θt1{Xt−1≥J } = r
∑2N−1

k=J (akUk + bkHk). For any random
variablesX andY ,

Var(X + Y) = Var(X) + Var(Y ) + 2Cov(X,Y )

≤ Var(X) + Var(Y ) + 2
√

Var(X)Var(Y ) ≤ 4max{Var(X),Var(Y )}.
Therefore,

Var(η′
J ) ≤ 4r2 max

{
Var

( 2N−1∑
k=J

akUk

)
,Var

( 2N−1∑
k=J

bkHk

)}
.(3.13)

We will bound Var(
∑2N−1

k=J akUk) and Var(
∑2N−1

k=J bkHk) by C/J , which will
prove the lemma.

To bound Var(
∑2N−1

k=J akUk), we will need to bound Cov(Uk,Ul). To do this,
we will break upUl into jumps froml to l + 1 that occur before the last visit tok
and those that occur after the last visit tok. More formally, letζk = sup{t :Xt = k}.
If k ≤ l, thenUl = U ′

k,l + Ūk,l , where

U ′
k,l = #{t ≥ ζk :Xt = l andXt+1 = l + 1},

Ūk,l = #{t < ζk :Xt = l andXt+1 = l + 1}.
The processes(Xt)0≤t≤ζk

and(Xt)ζk≤t≤τ are independent. Therefore,Uk andU ′
k,l

are independent, and̄Uk,l andU ′
k,l are independent. As observed in the proof of

Lemma 3.2,Ul has a Geometric(ql) distribution. Likewise, note thatP ′(Xs > l for
all s > t |Xt = l + 1) = p(l,2N, l + 1) andP ′(Xs > k for all s > t |Xt = l + 1) =
p(k,2N, l + 1). Therefore,

P(Xs > l for all s > t |Xt = l + 1,Xs > k for all s > t) = p(l,2N, l + 1)

p(k,2N, l + 1)
.

It follows that if we let vk,l = p(l,2N, l + 1)/p(k,2N, l + 1), thenU ′
k,l has a

Geometric(vk,l) distribution. Using Lemmas 3.1 and 3.2 and the fact thatql =
p(l,2N, l + 1)/p(0,2N, l + 1), we have

1

ql

− 1

vk,l

= 1− (1− s)2N−l

s

(
1− (1− s)l+1

1− (1− s)2N
− 1− (1− s)l+1−k

1− (1− s)2N−k

)
(3.14)

≤ 1

s

(
1− (

1− (1− s)l+1−k)) = (1− s)l+1−k

s
.

Also, Var(Ul) = Var(U ′
k,l) + Var(Ūk,l) becauseŪk,l and U ′

k,l are independent.
Therefore, ifJ ≤ k ≤ l < 2N , then by the formula for the variance of a geometric
distribution,

Var(Ūk,l) = Var(Ul) − Var(U ′
k,l) = 1− ql

q2
l

− 1− vk,l

v2
k,l

(3.15)

=
(

1

ql

+ 1

vk,l

− 1
)(

1

ql

− 1

vk,l

)
≤ 2

s
· (1− s)l−k

s
,
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where the inequality uses (3.14) and the facts thatql ≥ s andvk,l ≥ s. Also

Var(Ul) = 1− ql

q2
l

≤ 1

s2 .(3.16)

SinceUk andU ′
k,l are independent, it follows from (3.15) and (3.16) that ifk ≤ l,

then

Cov(Uk,Ul) = Cov(Uk,U
′
k,l + Ūk,l) = Cov(Uk, Ūk,l)

(3.17)

≤
√

Var(Uk)Var(Ūk,l) ≤
√

2

s2 (1− s)(l−k)/2.

Using (3.17) and (3.11), we calculate

Var

( 2N−1∑
k=J

akUk

)
=

2N−1∑
k=J

2N−1∑
l=J

akal Cov(Uk,Ul)

≤ 2
√

2

s2

2N−1∑
k=J

2N−1∑
l=k

1

kl
(1− s)(l−k)/2

(3.18)

≤ 2
√

2

s2

2N−1∑
k=J

1

k2

( 2N−1∑
l=k

(1− s)(l−k)/2

)

≤ C

2N−1∑
k=J

1

k2 ≤ C

J
.

It remains to bound Var(
∑2N−1

k=J bkHk). Recall from the proof of Lemma 3.2
that

pk = P(Xt 	= Xt−1|Xt−1 = k) = k(2N − k)(2− s)

(2N)2

and thatDk + Uk = Uk−1 − 1+ Uk , using the convention thatU0 = 1. Therefore,
we can writeHk = G1 + G2 + · · · + GUk+Uk−1−1, where (Gi)

∞
i=1 is an i.i.d.

sequence of random variables such thatGi + 1 has a Geometric(pk) distribution
for all i. Thus,E[Gi] = p−1

k − 1. If k ≤ l, then by Lemma 3.9,

Cov(Hk,Hl) =
(

1

pk

− 1
)(

1

pl

− 1
)

Cov(Uk + Uk−1 − 1,Ul + Ul−1 − 1)

≤ 1

pkpl

Cov(Uk + Uk−1,Ul + Ul−1)

≤ 4
√

2

s2pkpl

(1− s)(l−k−1)/2 ≤ C

pkpl

(1− s)(l−k)/2.
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Note that (3.12) implies

bk

pk

≤ k(2N − k)

2N3 · (2N)2

k(2N − k)(2− s)
= 2

(2− s)N
≤ 2

N
.

Therefore,

Var

( 2N−1∑
k=J

bkHk

)
=

2N−1∑
k=J

2N−1∑
l=J

bkbl Cov(Hk,Hl)

≤ C

2N−1∑
k=J

2N−1∑
l=k

bkbl

pkpl

(1− s)(l−k)/2

(3.19)

≤ C

N2

2N−1∑
k=J

2N−1∑
l=k

(1− s)(l−k)/2

≤ C

N2

2N−1∑
k=J

1

1− √
1− s

≤ C

N
.

The lemma follows from (3.13), (3.18) and (3.19).�

PROOF OFPROPOSITION2.2. Lemma 3.6 gives

∣∣P (
R(i) ≥ τJ

) − (1− E[e−ηJ ])∣∣ ≤ E

[
τ∑

t=τJ +1

θ2
t

]
≤ C

(logN)2 .

Since| d
dx

e−x | ≤ 1 for x ≥ 0, Lemma 3.7 gives

E
[
e−η′

J − e−ηJ
] ≤ E[ηJ − η′

J ] ≤ C

J(logN)
.

Using Jensen’s inequality and Lemma 3.10,

∣∣E[
e−η′

J
] − e−E[η′

J ]∣∣ ≤ E
∣∣e−η′

J − e−E[η′
J ]∣∣

≤ E|η′
J − E[η′

J ]| ≤ Var(η′
J )1/2 ≤ C√

J (logN)
.

Furthermore, it follows from Lemma 3.8 that

1− e−E[η′
J ] = qJ + O

(
1

N
+ (1− s)J

J logN

)
.

Combining the last four equations gives the proposition.�
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4. Coalescence of two lineages. In this section, we prove Propositions 2.3,
2.4 and 2.5, all of which pertain to the probabilities that two lineages in the
sample coalesce. We begin by computing the following coalescence probabilities
for integersk andl such that 1≤ k ≤ 2N − 1, 1≤ l ≤ 2N and|k − l| ≤ 1:

pc
BB(k, l) = P

(
At−1

t (i) = At−1
t (j )|Xt−1 = k,Xt = l,Bt (i) = 1,Bt (j) = 1

)
,

pc
bb(k, l) = P

(
At−1

t (i) = At−1
t (j )|Xt−1 = k,Xt = l,Bt (i) = 0,Bt (j) = 0

)
,

pc
Bb(k, l) = P

(
At−1

t (i) = At−1
t (j )|Xt−1 = k,Xt = l,Bt (i) = 1,Bt (j) = 0

)
.

As with the recombination probabilities in the previous section, the Markov
property implies that the coalescence probabilities are the same underP ′ as
underP .

LEMMA 4.1. We have

pc
BB(k, k − 1) = pc

bb(k, k + 1) = 0,

pc
BB(k, k + 1) = 2

k(k + 1)

(
1− r(2N − k)

2N

)
,

pc
bb(k, k − 1) = 2

(2N − k)(2N − k + 1)

(
1− rk

2N

)
,

pc
bb(k, k) = 2βk

k(2N − k)

(
1− rk

2N

)
,

pc
BB(k, k) = 2βk

k(2N − k)

(
1− r(2N − k)

2N

)
,

pc
Bb(k, k) = rβk

k(2N − k)
, pc

Bb(k, k + 1) = r

2N(k + 1)
,

pc
Bb(k, k − 1) = r

2N(2N − k + 1)
.

PROOF. This result follows from a series of straightforward calculations,
similar to those used to prove Lemma 3.3. We explain the idea behind some
of these calculations. WhenXt−1 = k andXt = k − 1, the new individual born
at time t has theb allele. Therefore, twoB lineages cannot coalesce at this
time, sopc

BB(k, k − 1) = 0. By the same reasoning,pc
bb(k, k + 1) = 0. When

Xt−1 = k and Xt = k + 1, the new individual born at timet has theB allele.
With probability r(2N − k)/(2N), this individual inherits its allele at the neutral
site from a member of theb population because of recombination. If this does
not happen, then two of theB individuals get their allele at the neutral site from
the same parent. Thus, conditional onBt(i) = Bt(j) = 1, the probability that the
ith andj th individuals get their allele at the neutral site from the same parent
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is 2/[k(k + 1)], which implies the formula forpc
BB(k, k + 1). The calculation of

pc
bb(k, k − 1) is similar.
Now supposeXt−1 = Xt = k. Conditional on this event, aB replaces aB

with probability k2/[k2 + (2N − k)2 + sk(2N − k)]. If the newB gets its allele
at the neutral site from a member of theB population, which has probability
1 − r(2N − k)/(2N), and if Bt(i) = Bt(j) = 1, then the probability that the
ith and j th lineages coalesce is 2/k2, because there arek possibilities both
for the individual who dies and the parent of the new individual. The formula
for pc

BB(k, k) follows, andpc
bb(k, k) can be calculated in the same way. Next, to

find pc
Bb(k, k), note that if aB replaces aB, andBt(i) = 1 andBt(j) = 0, then

the probability of coalescence isr/(2kN), because there must be recombination,
and there arek choices for theB individual that is just born and 2N choices for
the parent from which it gets its allele at the neutral site. If instead ab replaces
a b, which happens with probability(2N − k)2/[k2 + (2N − k)2 + sk(2N − k)]
conditional onXt−1 = Xt = k, the probability of coalescence isr/[(2N −k)(2N)].
Adding the probabilities for the two cases gives the formula forpc

Bb(k, k).
Finally, to calculatepc

Bb(k, k + 1) and pc
Bb(k, k − 1), note that when aB

replaces ab, the probability that aB lineage coalesces with ab lineage is
r/[(k +1)(2N)], because there must be recombination, and there arek +1 choices
for theB individual that was just born and 2N choices for its parent. Likewise, the
coalescence probability isr/[(2N − k + 1)(2N)] when ab replaces aB. �

PROOF OF PROPOSITION 2.3. We consider first the case in which thej th
lineage is descended from a member of theB population at the time of coalescence.
Summing over the possible valuesk for XG(i,j) and applying Lemmas 3.2 and 4.1,
we get

P
(
G(i, j) ≥ 0,BG(i,j)+1

(
AG(i,j)+1

τ (i)
) = 0, andBG(i,j)+1

(
AG(i,j)+1

τ (j)
) = 1

)

≤
2N−1∑
k=1

(
pc

Bb(k, k + 1)E[Uk] + pc
Bb(k, k − 1)E[Dk] + pc

Bb(k, k)E[Hk])

≤
2N−1∑
k=1

(
r

2N(k + 1)s
+ r

2N(2N − k + 1)s
+ r

sk(2N − k)

)

≤ r

2Ns

2N−1∑
k=1

(
1

k
+ 1

2N − k
+ 2N

k(2N − k)

)

= 2r

s

2N−1∑
k=1

1

k(2N − k)
≤ 4r

Ns

N∑
k=1

1

k
≤ 4r(1+ logN)

Ns
≤ C

N
.

It remains to consider the case in which theith and j th lineages are both
descended from a member of theb population at the coalescence time. By



APPROXIMATING A SELECTIVE SWEEP 1619

summing over the possible values ofXR(i) and XG(i,j), we see that it suffices
to show

2N−1∑
�=1

2N−1∑
k=1

P
(
XR(i) = �

)
P

(
XG(i,j) = k,BG(i,j)+1

(
AG(i,j)+1

τ (i)
) = 0,

andBG(i,j)+1
(
AG(i,j)+1

τ (j)
) = 0

∣∣XR(i) = �
)

(4.1)

≤ C(logN)

N
.

If BG(i,j)+1(A
G(i,j)+1
τ (i)) = 0, thenG(i, j) ≤ R(i). Therefore, it follows from

Lemmas 3.2 and 4.1 and the time-reversal argument in the proof of Proposition 2.1
that

P
(
XG(i,j) = k and

BG(i,j)+1
(
AG(i,j)+1

τ (i)
) = BG(i,j)+1

(
AG(i,j)+1

τ (j)
) = 0|XR(i) = �

)
≤ pc

bb(k, k − 1)E[D2N−k+1,2N−�] + pc
bb(k, k)E[H2N−k,2N−�]

≤ 2

(2N − k)(2N − k + 1)s
min{(1− s)k−�,1}

+ 2

sk(2N − k)
min{(1− s)k−�,1}

≤
(

2k + 2(2N − k)

sk(2N − k)2

)
min{(1− s)k−�,1}

= 4N min{(1− s)k−l,1}
sk(2N − k)2 .

Combining this result with Lemma 3.4, we get that the left-hand side of (4.1) is at
most

2N−1∑
�=1

r

�s

( 2N−1∑
k=1

4N min{(1− s)k−�,1}
sk(2N − k)2

)

(4.2)

≤ 4r

s2

2N−1∑
�=1

1

�

( 2N−1∑
k=�

N(1− s)k−�

k(2N − k)2 +
�−1∑
k=1

N

k(2N − k)2

)
.

Using (3.6) and the fact thatN/[k(2N − k)] ≤ 1 for 1≤ k ≤ 2N − 1, we get

4r

s2

2N−1∑
�=1

1

�

( 2N−1∑
k=�

N(1− s)k−�

k(2N − k)2

)
≤ 4r

s2

(
2C(1+ logN)

N

)
≤ C

N
.(4.3)
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For the second term in (4.2), we have

4r

s2

2N−1∑
�=1

1

�

(
�−1∑
k=1

N

k(2N − k)2

)

≤ 4r

s2

N∑
�=1

1

�

(
�∑

k=1

N

kN2

)
+ 4r

s2

2N−1∑
l=N+1

1

N

(
�∑

k=1

N

k(2N − k)2

)

(4.4)

≤ 4r

Ns2

(
N∑

�=1

1

�

)2

+ 4r

s2

2N−1∑
k=1

2N−1∑
�=k

1

k(2N − k)2

≤ 4r(1+ logN)2

Ns2 + 4r

s2 · 2
N∑

k=1

1

k(2N − k)
≤ C(logN)

N
.

Using (4.3) and (4.4) in (4.2) proves (4.1).�

The next lemma, which bounds the probability that there arek individuals with
theB allele at the time theith andj th lineages coalesce, will be used in the proofs
of Propositions 2.4 and 2.5.

LEMMA 4.2. We have

P
(
XG(i,j) = k and

BG(i,j)+1
(
AG(i,j)+1

τ (i)
) = BG(i,j)+1

(
AG(i,j)+1

τ (j)
) = 1

)
(4.5)

≤ 4N

sk2(2N − k)
.

PROOF. By Lemmas 3.2 and 4.1, the probability on the left-hand side of (4.5)
is at most

pc
BB(k, k + 1)E[Uk] + pc

BB(k, k)E[Hk]
≤ 2

sk(k + 1)
+ 2

sk(2N − k)

≤ 2(2N − k) + 2k

sk2(2N − k)
= 4N

sk2(2N − k)
. �

PROOF OFPROPOSITION2.4. By Proposition 2.3, it suffices to show that

P
(
0≤ R(i) ≤ G(i, j) and

BG(i,j)+1
(
AG(i,j)+1

τ (i)
) = BG(i,j)+1

(
AG(i,j)+1

τ (j)
) = 1

) ≤ C

logN
.
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By Lemmas 3.2 and 3.3 and the time-reversal argument in the proof of
Proposition 2.1,

P
(
XR(i) = � and 0≤ R(i) ≤ G(i, j)|XG(i,j) = k

)
≤ pr

B(�, � + 1)E[U2N−�−1,2N−k] + pr
B(�, �)E[H2N−�,2N−k]

≤ r(2N − �)

(� + 1)(2Ns)
min{(1− s)�+1−k,1} + r

2Ns
min{(1− s)�−k,1}

≤ r

�s
min{(1− s)�−k,1}.

Combining this result with (4.5), we get

P
(
0 ≤ R(i) ≤ G(i, j) and

BG(i,j)+1
(
AG(i,j)+1

τ (i)
) = BG(i,j)+1

(
AG(i,j)+1

τ (j)
) = 1

)

≤
2N−1∑
k=1

4N

sk2(2N − k)

( 2N−1∑
�=1

r

�s
min{(1− s)�−k,1}

)
(4.6)

≤ 4r

s2

2N−1∑
k=1

N

k2(2N − k)

( 2N−1∑
�=k

(1− s)�−k

�
+

k−1∑
�=1

1

�

)
.

The first term in the sum on the right-hand side of (4.6) is at most

2N−1∑
k=1

N

k3(2N − k)

( 2N−1∑
�=k

(1− s)�−k

)
≤ 1

s

(
N∑

k=1

1

k3 +
2N−1∑

k=N+1

1

N2(2N − k)

)
,

which is bounded by a constant. The other term in the sum in (4.6) is at most

2N−1∑
k=1

N(1+ logk)

k2(2N − k)
≤

N∑
k=1

1+ logk

k2 +
2N−1∑

k=N+1

1+ log(2N)

N(2N − k)
,

which is also bounded by a constant. Since 4r/s2 ≤ C/(logN), the proposition
follows. �

PROOF OF PROPOSITION 2.5. By reasoning similar to that used to prove
Lemma 4.2, we have

P
(
G(i, j) ≥ τJ and

BG(i,j)+1
(
AG(i,j)+1

τ (i)
) = BG(i,j)+1

(
AG(i,j)+1

τ (i)
) = 1

)
(4.7)

≤
2N−1∑
k=1

(
pc

BB(k, k + 1)E[Uk,J ] + pc
BB(k, k)E[Hk,J ]).
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However, this time we keep the factor min{(1 − s)J−k,1} from Lemma 3.2 to
bound the right-hand side of (4.7) by

J∑
k=1

(1− s)J−k 4N

sk2(2N − k)
+

2N−1∑
k=J+1

4N

sk2(2N − k)
.(4.8)

Using the fact thatN/[k(2N − k)] ≤ 1 for 1≤ k ≤ 2N − 1 and then Lemma 3.5,
we have

J∑
k=1

(1− s)J−k 4N

sk2(2N − k)
≤ 4

s
(1− s)J

J∑
k=1

(
1

1− s

)k 1

k
≤ C

J
.

For the second term in (4.8), we observe

2N−1∑
k=J+1

4N

sk2(2N − k)
≤

N−1∑
k=J+1

4

sk2 +
2N−1∑
k=N

4

sN(2N − k)

≤ 4

sJ
+ 4(1+ logN)

Ns
.

SinceJ ≤ C′N/(logN), the bounds in the last two equations add up toC/J , and
the desired result follows from these bounds and Proposition 2.3.�

5. Approximate independence of n lineages. In this section, we prove
Proposition 2.6. We first establish a lemma that involves the coupling of two
{0,1, . . . , n}-valued random variables.

LEMMA 5.1. Let V and V ′ be {0,1, . . . , n}-valued random variables such that
E[V ] = E[V ′]. Then, there exist random variables Ṽ and Ṽ ′ on some probability
space such that V and Ṽ have the same distribution, V ′ and Ṽ ′ have the same
distribution, and

P(Ṽ 	= Ṽ ′) ≤ nmax{P(Ṽ ≥ 2),P (Ṽ ′ ≥ 2)}.
PROOF. It is clear thatṼ and Ṽ ′ can be constructed such that they have the

same distributions asV andV ′, respectively, andP(Ṽ = Ṽ ′) ≥ min{P(V = 0),

P (V ′ = 0)} + min{P(V = 1),P (V ′ = 1)}. Note thatP(V = 0) ≥ 1 − E[V ].
SinceE[V ] = E[V ′], it follows that min{P(V = 0),P (V ′ = 0)} ≥ 1 − E[V ].
Also,P(V = 1) = E[V ]−∑n

k=2 kP (V = k), soP(V = 1) ≥ E[V ]−nP (V ≥ 2).
Likewise,P(V ′ = 1) ≥ E[V ] − nP (V ′ ≥ 2). It follows that

P(Ṽ = Ṽ ′) ≥ 1− nmax{P(Ṽ ≥ 2),P (Ṽ ′ ≥ 2)}. �

Recall that Kt = #{i ∈ {1, . . . , n} :R(i) ≥ t} for 0 ≤ t ≤ τ . Define θt =
pr

B(Xt−1,Xt) as in Section 3, and defineηJ = ∑τ
t=τJ +1 θt andη′

J = ∑τ
t=τJ +1 θt ×

1{Xt−1≥J } as in Lemma 3.7. Finally, letFJ = P(R(i) ≥ τJ |X), which is shown
in (3.7) to be equal to 1− ∏τ

t=τJ +1(1− θt ).
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LEMMA 5.2. If J ≤ C′N/(logN), then for all d ∈ {0,1, . . . , n},∣∣∣∣P (
KτJ

= d
) −

(
n

d

)
E[Fd

J (1− FJ )n−d ]
∣∣∣∣ ≤ min

{
C

logN
,
C

J

}
+ C

(logN)2 .

PROOF. Note thatKτ = 0. Also,Kt−1 − Kt ∈ {0,1, . . . , n} for all 1 ≤ t ≤ τ

and

E[Kt−1 − Kt |X, (Ku)
τ
u=t ] = (n − Kt)θt .

Define another process(K ′
t )

τ
t=0 such thatK ′

τ = 0 and the conditional distribution
of K ′

t−1 − K ′
t givenX and(K ′

u)
τ
u=t is Binomial(n − K ′

t , θt ). Note thatE[K ′
t−1 −

K ′
t |X, (K ′

u)
τ
u=t ] = (n − K ′

t )θt . We will show that the processes(Kt)
τ
t=0 and

(K ′
t )

τ
t=0 can be coupled so that

P(Kt 	= K ′
t for somet ≥ τJ ) ≤ min

{
C

logN
,
C

J

}
+ C

(logN)2 .(5.1)

Equation (5.1) implies the lemma because the conditional distribution ofK ′
τJ

given
X is binomial with parametersn and 1− ∏τ

t=τJ +1(1− θt ) = FJ .
By applying Lemma 5.1 withV = Kt−1 − Kt andV ′ = K ′

t−1 − K ′
t , we can

construct the process(K ′
t )

τ
t=0 on the same probability space as(Kt)

τ
t=0 such that

P(Kt 	= K ′
t for somet ≥ τJ |X)

≤ n

τ∑
t=τJ +1

P
(
Kt−1 − Kt ≥ 2|X, (Ku)

τ
u=t

)
(5.2)

+ n

τ∑
t=τJ +1

P
(
K ′

t−1 − K ′
t ≥ 2|X, (K ′

u)
τ
u=t

)
.

If Kt−1 − Kt ≥ 2 for somet ≥ τJ , thenτJ ≤ R(i) ≤ G(i, j) for somei andj .
We haveP(τJ ≤ R(i) ≤ G(i, j)) ≤ C/(logN) for all J by Proposition 2.4 and
P(τJ ≤ R(i) ≤ G(i, j)) ≤ C/J for all J ≤ C′N/(logN) by Proposition 2.5.
Therefore, forJ ≤ C′N/(logN),

E

[
τ∑

t=τJ +1

P
(
Kt−1 − Kt ≥ 2|X, (Ku)

τ
u=t

)]

≤
τ∑

t=1

P(Kt−1 − Kt ≥ 2 andt ≥ τJ )

(5.3)
≤ n

2
P(Kt−1 − Kt ≥ 2 for somet ≥ τJ )

≤ min
{

C

logN
,
C

J

}
.
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Now a binomial random variable will be at least 2 if and only if there is some pair
of successful trials, soP(K ′

t−1 − K ′
t ≥ 2|X, (K ′

u)
τ
u=t ) ≤ (n

2

)
θ2
t and

τ∑
t=τJ +1

P
(
K ′

t−1 − K ′
t ≥ 2|X, (K ′

u)
τ
u=t

) ≤
(

n

2

) τ∑
t=τJ +1

θ2
t .(5.4)

By taking expectations in (5.2) and applying (5.3), (5.4) and (3.9), we get (5.1),
which completes the proof.�

PROOF OFPROPOSITION2.6. In view of Lemma 5.2, it suffices to show that

|E[Fd
J (1− FJ )n−d ] − qd

J (1− qJ )n−d | ≤ min
{

C

logN
,
C

J

}
+ C

(logN)2(5.5)

for all d ∈ {0,1, . . . , n}. If 0 ≤ a1, . . . , an ≤ 1 and 0≤ b1, . . . , bn ≤ 1, then
|a1 · · ·an −b1 · · ·bn| ≤ ∑n

i=1 |ai −bi |, as shown in Lemma 4.3 of Chapter 2 of [5].
Therefore,

|E[Fd
J (1− FJ )n−d ] − qd

J (1− qJ )n−d |
≤ E[d|FJ − qJ | + (n − d)|(1− FJ ) − (1− qJ )|]
= nE[|FJ − qJ |].

Note that

|FJ − qJ | ≤ |FJ − (1− e−ηJ )|
(5.6)

+ ∣∣e−η′
J − e−ηJ

∣∣ + ∣∣e−η′
J − e−E[η′

J ]∣∣ + ∣∣(1− e−E[η′
J ]) − qJ

∣∣.
It follows from (3.8) and (3.9) thatE[|FJ − (1 − e−ηJ )|] ≤ C/(logN)2. The
expectations of the second, third and fourth terms on the right-hand side of (5.6)
can be bounded as in the conclusion of the proof of Proposition 2.2 at the end of
Section 3. All of those error estimates are smaller than the right-hand side of (5.5),
so the desired result follows.�

6. A branching process approximation. In this section we will show how
the evolution of the individuals with theB allele during the first stage of the
selective sweep can be approximated by a supercritical branching process. This
will lead to a proof of Proposition 2.7. Recall that the first stage of the sweep
consists of the times 0≤ t ≤ τJ , whereJ = �(logN)a� for some fixed constant
a > 4. We will assume throughout this section thatN is large enough thatJ ≤ N .
In Section 6.1, we explain the coupling between the branching process and the
population model. In Section 6.2, we consider the lineages in the branching process
with an infinite line of descent. Proposition 2.7 is proved using these ideas in
Section 6.3.
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6.1. Coupling the population model with a branching process. We begin
by constructing a multitype branching process with the properties mentioned in
Proposition 2.7. That is, the process will start with one individual at time zero, and
each individual will give birth at rate 1 and die at rate 1− s. Each new individual
has the same type as its parent with probability 1−r and a new type, different from
all other types, with probabilityr . We now explain how to construct this branching
process so that until the number of individuals reachesJ , the branching process
will be coupled with the population process(Mt)

∞
t=0 with high probability.

Define random variables 0= ξ0 < ξ1 < · · · such that(ξi − ξi−1)
∞
i=1 is an

i.i.d. sequence of random variables, each having an exponential distribution with
mean 1/(2N). The branching process will start with one individual at time zero.
Until the population size reachesJ , there will be no births during the intervals
(ξt−1, ξt ), but births and deaths can occur at the timesξ1, ξ2, . . . . This branching
process will be coupled with(Mt)

∞
t=0 so that, with high probability, the number of

individuals with theB allele at timet will be the same as the number of individuals
in the branching process at timeξt . To facilitate this coupling, we will also assign
to each individual in the branching process a label such that all the individuals alive
at a given time have distinct labels. We denote byLt the set of alli such that there
is an individual labeledi in the population at timeξt . WhenLt = {i :Bt(i) = 1},
meaning that the labels are the same as the individuals in the population model
with the B allele at timet , we say the coupling holds at timet . The label of
the individual at time zero will beU , whereU is the random variable with a
uniform distribution on{1, . . . ,2N} defined at the beginning of Section 2. We
haveB0(U) = 1, so the coupling holds at time zero.

For the branching process to have the desired properties, each individual must
have probability 1/(2N) of giving birth at timeξt and probability(1 − s)/(2N)

of dying at timeξt . Also, at most one birth or death event can occur at a time.
Suppose the coupling holds at timeξt−1 andi ∈ Lt−1. Also, assumeXt−1 = k. In
the population model, the number ofB ’s increases by 1 at timet , with i being the
parent of the new individual, ifIt,2 = i andBt−1(It,1) = 0, which has probability
(2N − k)/(2N)2. Also, theith individual in the population dies at timet , causing
theB population to decrease in size by 1, ifIt,1 = i, Bt−1(It,2) = 0 andIt,4 = 1,
which has probability(2N − k)(1 − s)/(2N)2. Consequently, we can define the
branching process such that the individual labeledi gives birth at timeξt if and
only if It,2 = i, which has probability 1/(2N). We give the new individual the
label It,1, unless one of the other individuals already has this label. As a result,
the coupling will hold at timet if Bt−1(It,1) = 0, but not ifBt−1(It,1) = 1. The
individual labeledi will die with probability (1− s)/(2N), and will die whenever
It,1 = i, Bt−1(It,2) = 0 andIt,4 = 1. Then the probability that the coupling fails to
hold at timet is

k

(
1

2N
− 2N − k

(2N)2

)
+ k

(
1− s

2N
− (2N − k)(1− s)

(2N)2

)
= k2(2− s)

(2N)2 .(6.1)
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If a new individual in the branching process is born at timet , we say that it has
a new type wheneverIt,5 = 1, which has probabilityr . This means that births of
individuals with new types correspond to recombinations in the population model.

Fix a positive integerm. On the event that the branching process has at least
J individuals at some time, we define a random marked partition�̃m as follows.
Define κ such thatξκ is the first time at which there areJ individuals. Define
a random injective map̃σ : {1, . . . ,m} → Lκ such that all(J )m possible maps
are equally likely. Then say thati ∼�̃m

j if and only if the individuals labeled

σ̃ (i) and σ̃ (j) are of the same type. Mark the block of�̃m consisting of alli
such that the individual labeled̃σ(i) has the same type as the individual at time
zero. Furthermore, we can defineσ̃ such thatσ = σ̃ on the event thatκ = τJ

and LτJ
= {i :BτJ

(i) = 1}, whereσ : {1, . . . ,m} → {i :BτJ
(i) = 1} is the map

defined in Section 2 that is used in the construction of the random marked
partition�m. Recall thati ∼�m j if and only if A0

τJ
(σ (i)) = A0

τJ
(σ (j)), and the

block {i :B0(A
0
τJ

(σ (i))) = 1} is marked.
SupposeXt = J for somet and the coupling holds for allt ≤ τJ , soκ = τJ .

Then the genealogy of the branching process is the same as the genealogy of
the B ’s in the population up to timeτJ . Furthermore, groups of individuals in
the branching process with the same type correspond to groups of lineages in the
population that escape the selective sweep at the same time and, therefore, get their
allele at the neutral site from the same ancestor. Therefore, we will have�̃m = �m

unless one of the following events happens to a sampled lineage during the first
stage of the selective sweep:

1. One of theB lineages experiences recombination, but the allele at the neutral
site comes from anotherB individual.

2. Two recombinations cause a lineage to go from theB population to theb
population and then back into theB population.

3. There is a coalescence event involving at least one lineage in theb population.

More formally, the lemma below is a consequence of our construction. Note that
the events�c

3, �c
4 and�c

5 correspond to the three possibilities mentioned above.

LEMMA 6.1. Let RJ (i) = sup{t ≥ 0 :Bt(A
t
τJ

(i)) = 0} and GJ (i, j) =
sup{t ≥ 0 :At

τJ
(i) = At

τJ
(j)}. We have �m = �̃m on the event �1 ∩ · · · ∩ �5,

where:

�1 is the event that Xt = J for some t ;
�2 is the event that the coupling holds for all t ≤ τJ ;
�3 is the event that for all t ≤ τJ for which Bt−1(It,2) = 1,we have Bt−1(It,3) = 0;
�4 is the event that for i ∈ {1, . . . ,m}, we have Bt(A

t
τJ

(σ (i))) = 0 for all
t ≤ RJ (i);
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�5 is the event that for all i, j ∈ {1, . . . ,m} with GJ (σ(i), σ (j)) ≥ 0, we have

BGJ (σ(i),σ (j))+1
(
AGJ (σ(i),σ (j))+1

τJ
(σ (i))

)
= BGJ (σ(i),σ (j))+1

(
AGJ (σ(i),σ (j))+1

τJ
(σ (j))

) = 1.

PROOF. We have seen that when�1 and �2 occur, we haveLτJ
=

{i :BτJ
(i) = 1} andσ = σ̃ . For integersu ≤ t and i ∈ Lt , let Ãu

t (i) be the label
of the individual in the branching process at timeξu that is the ancestor of the
individual labeledi at timeξt , unless the ancestor is of a different type than the
individual labeledi at timet , in which case we definẽAu

t (i) = 0. Note that when
�1 and�2 occur, we havei ∼�̃m

j if and only if Ãt
τJ

(σ̃ (i)) = Ãt
τJ

(σ̃ (j)) 	= 0 for
somet .

Since σ = σ̃ when �1 and �2 occur, we havei ∼�̃m
j if and only if

Ãt
τJ

(σ (i)) = Ãt
τJ

(σ (j)) 	= 0 for somet . Supposej ∈ Lt . It follows from the

constructions thatAt−1
t (j ) = Ãt−1

t (j ) unlessj = It,1 and It,5 = 1. In this case,
Ãt−1

t (j ) = 0 and if �3 occurs, thenBt−1(A
t−1
t (j )) = 0. It follows that if �4

also occurs, thenÃt
τJ

(σ (i)) = Ãt
τJ

(σ (j)) 	= 0 if and only if we have both
At

τJ
(σ (i)) = At

τJ
(σ (j)) and Bt(A

t
τJ

(σ (i))) = Bt(A
t
τJ

(σ (j))) = 1. Furthermore,
when �5 occurs, we have bothAt

τJ
(σ (i)) = At

τJ
(σ (j)) and Bt(A

t
τJ

(σ (i))) =
Bt(A

t
τJ

(σ (j))) = 1 for somet if and only if A0
τJ

(σ (i)) = A0
τJ

(σ (j)), which is
exactly the condition fori ∼�m j . Thus, when�1, . . . ,�5 all occur, we have
i ∼�m j if and only if i ∼�̃m

j .

It remains only to show that the marked blocks of�m and �̃m are the same.
Note thati is in the marked block of̃�m if and only if σ̃ (i) = σ(i) has the same
type as the individual at time zero or, equivalently, if and only ifÃ0

τJ
(σ (i)) 	= 0.

The fact that this condition is equivalent toB0(A
0
τJ

(σ (i))) = 1 follows from the
coupling and conditions�3 and�4. �

We now use this coupling to show that the partition�̃m conditioned on the
survival of the branching process has almost the same distribution as�m.

LEMMA 6.2. Let π be a partition of {1, . . . ,m}. Then there exists a constant C

such that

|P ′(�̃m = π |#Lt > 0 for all t ∈ N) − P(�m = π)| ≤ C/(logN)2.

PROOF. We will show that if�1 occurs, then�2 ∩ · · · ∩ �5 occurs with high
probability. Conditional on the event thatXt−1 = k and that the coupling holds
at time t − 1, it follows from (6.1) that the probability that the coupling fails to
hold at timet is k2(2 − s)/(2N)2. Likewise, conditional on these same events,
the probability thatBt−1(It,2) = Bt−1(It,3) = 1 is (k/(2N))2. Thus, if Dt is the
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event thatt is the first integer such that either the coupling fails at timet or
Bt−1(It,2) = Bt−1(It,3) = 1, thenP ′(Dt |Xt = k) ≤ (3 − s)k2/(2N)2, where we
useP ′ because we are not conditioning on the event thatXt = 2N for somet .
Therefore,

P ′(�1 ∩ (�c
2 ∪ �c

3)
) ≤

∞∑
t=1

P ′(Dt ∩ {t ≤ τJ < ∞})

=
∞∑
t=1

E′[P ′(Dt ∩ {t ≤ τJ < ∞}|Xt−1)]

≤
∞∑
t=1

E′
[
(3− s)X2

t−1

(2N)2 1{Xt−1≤J }
]

= 3− s

(2N)2

∞∑
t=1

E′[X2
t−11{Xt−1≤J }

]

≤ 3− s

(2N)2

J∑
k=1

k2E′[Tk].

Since P ′(Xt 	= Xt−1|Xt−1 = k) = P(Xt 	= Xt−1|Xt−1 = k) = pk = k(2N −
k)(2− s)/(2N)2 andE′[Uk + Dk] ≤ C, it follows that

P ′(�1 ∩ (�c
2 ∪ �c

3)
) ≤ 3− s

(2N)2

J∑
k=1

k2E′[Uk + Dk]
pk

≤ C

N2

J∑
k=1

k2(2N)2

k(2N − k)

≤ C

J∑
k=1

k

2N − k
≤ CJ 2

N
.

To handle�4 and�5, note that

P ′(Xτ = 2N |�1) = p(0,2N,J ) = 1− (1− s)J

1− (1− s)2N
≥ 1− (1− s)J .(6.2)

It follows from (6.2) and the proof of Proposition 2.1 thatP ′(�1 ∩ �c
4) ≤

C/(logN)2. Likewise, it follows from (6.2) and the proof of Proposition 2.3 that
P ′(�1 ∩ �c

5) ≤ C(logN)/N .
SinceP ′(�1) = s/(1 − (1 − s)J ) by Lemma 3.1, it follows from the above

calculations that|P ′(�1 ∩ · · · ∩ �5) − s| ≤ C/(logN)2. Recall thatP ′(Xτ =
2N) = s/(1 − (1 − s)2N) by Lemma 3.1. Since{#Lt > 0 for all t ∈ N} is the
event that the branching process survives, it is well known thatP ′(#Lt > 0 for
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all t ∈ N) = s. Furthermore, if�1 ∩ · · · ∩ �5 occurs, thenXt = J for somet and
#Lt = J for somet . Note thatP ′(Xτ = 2N |Xt = J for somet) ≥ 1 − (1 − s)J

as in (6.2) andP ′(#Lt > 0 for all t |#Lt = J for somet) = 1− (1− s)J . Thus, the
events�1 ∩ · · ·∩�5, {Xτ = 2N} and{#Lt = 0 for all t} agree closely enough that
the probability, underP ′, that either all or none of these three events occurs is at
least 1−C/(logN)2. It follows from this observation, Lemma 6.1 and the fact that
P is the conditional probability measure ofP ′ givenXτ = 2N that

P ′(�̃m = π |#Lt > 0 for all t ∈ N) = P ′(�̃m = π |�1 ∩ · · · ∩ �5) + O
(
(logN)−2)

= P ′(�m = π |�1 ∩ · · · ∩ �5) + O
(
(logN)−2)

= P ′(�m = π |Xτ = 2N) + O
(
(logN)−2)

= P(�m = π) + O
(
(logN)−2),

which proves the lemma.�

6.2. Infinite lines of descent. Consider a continuous-time branching process in
which each individual gives birth at rate 1 and dies at rate 1− s. Equivalently, each
individual lives for an exponentially distributed time with mean 1/(2− s) and then
has some number of offspring, which is 0 with probability(1 − s)/(2 − s) and 2
with probability 1/(2 − s). Say that an individual at timet has an infinite line of
descent if it has a descendant in the population at timeu for all u > t . Otherwise,
say that the individual has a finite line of descent.

Define the process(Y (1)
t , Y

(2)
t )t≥0 such thatY (1)

t is the number of individuals
at time t having an infinite line of descent andY (2)

t is the number of individuals
having a finite line of descent. Gadag and Rajarshi [11] showed that this process
is a two-type Markov branching process. They also showed that the behavior
of the process can be described as follows. Letpk be the probability that an
individual hask offspring and letf (x) = ∑∞

k=0 pkx
k be the generating function

of the offspring distribution. Letu(x) = b[f (x) − x], whereb−1 is the mean
lifetime of an individual. Letf (1)(x, y) = ∑∞

j=0
∑∞

k=0 p
(1)
jk xjyk, wherep

(1)
jk is

the probability that an individual with an infinite line of descent hasj offspring
with an infinite line of descent andk offspring with a finite line of descent. Let
f (2)(x, y) = ∑∞

j=0
∑∞

k=0 p
(2)
jk xjyk, wherep

(2)
jk is the probability that an individual

with a finite line of descent hasj offspring with an infinite line of descent andk
offspring with a finite line of descent. Letu(1)(x, y) = b[f (1)(x, y) − x] and let
u(2)(x, y) = b[f (2)(x, y) − y]. Let q be the smallest nonnegative solution of the
equationu(x) = 0, which is also the probability that the branching process dies
out. Then, by equation (4) of [11],

u(1)(x, y) = u(x(1− q) + yq) − u(yq)

1− q
and u(2)(x, y) = u(yq)

q
.
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In the case of interest to us, we havef (x) = 1−s
2−s

+ 1
2−s

x2 and, therefore,

u(x) = (2− s)[f (x) − x] = (1− s) + x2 − (2− s)x.

Sinceu(x) = x if and only if x ∈ {1− s,1}, we haveq = 1− s. It follows that

u(1)(x, y) = {[xs + y(1− s)]2 − (2− s)[xs + y(1− s)]
− [y(1− s)]2 + (2− s)[y(1− s)]}/s

= sx2 + 2(1− s)xy − (2− s)x.

Thus, an individual with an infinite line of descent lives for an exponentially
distributed time with mean 1/(2− s). It is replaced by two individuals with infinite
lines of descent at rates, and it is replaced by one individual with an infinite line
of descent and another individual with a finite line of descent at rate 2(1− s).

Now, consider the process(Y (1)
t , Y

(2)
t ) started with one individual and con-

ditioned to survive forever, which is equivalent to assuming thatY
(1)
0 = 1 and

Y
(2)
0 = 0. Assume, as in Proposition 2.7, that the individuals are assigned types,

and that each new individual born is the same type as its parent with probabil-
ity 1 − r and is a new type with probabilityr . Defineλ∗ = inf{t :Y (1)

t = �J s�}.
Let λk = inf{t :Y (1)

t + Y
(2)
t = k}. Let J1 = �J (

1 + s−1√(logJ )/J )−1� andJ2 =
�J (1− s−1√(logJ )/J )−1�.

LEMMA 6.3. We have 1− P(λJ1 ≤ λ∗ ≤ λJ2) ≤ C/(logN)8.

PROOF. If S has a Binomial(n,p) distribution andp < c < 1, then we have
the large deviations result thatP(S ≥ cn) ≤ e−2n(c−p)2

(see [13]).
Let S1 have a Binomial(J1, s) distribution and letS2 have a Binomial(J2, s)

distribution. Let c = s + √
(logJ )/J . Then J1 = �J s/c�, so cJ1 ≤ J s and,

therefore,

P
(
λ∗ ≤ λJ1

) = P(S1 ≥ �J s�|S1 > 0)

= P(S1 ≥ �J s�)
P (S1 > 0)

≤ P(S1 ≥ �cJ1�)
1− (1− s)J1

≤ P(S1 ≥ (c − 1/J1)J1)

1− (1− s)J1
.

RecallingJ = �(logN)a� with a > 4, it follows that if ε > 0 is small, then for
largeN ,

P
(
λ∗ ≤ λJ1

) ≤ 2e−2J1(
√

(logJ )/J−J−1
1 )2

≤ Ce−2(J1/J ) logJ ≤ CJ−(2−ε) ≤ C/(logN)8.
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Likewise, ifd = (1− s)+√
(logJ )/J , thenJ2 = �J s/(1−d)�, so(1−d)J2 ≥ J s

and thus

P
(
λ∗ > λJ2

) = P(S2 < �J s�|S2 > 0) ≤ P(S2 < �J s�)
= P(J2 − S2 > J2 − �J s�) ≤ P(J2 − S2 ≥ dJ2).

Therefore,P(λ∗ > λJ2) ≤ e−2(J2/J ) logJ ≤ J−2 ≤ C/(logN)8 and the lemma
follows. �

6.3. Proof of Proposition 2.7. We now prove Proposition 2.7. Recall that
ϒm is the marked partition obtained by samplingm of the �J s� individuals at
timeλ∗ that have an infinite line of descent, and then declaringi andj to be in the
same block ofϒm if and only if theith andj th individuals in the sample have the
same type. The marked block ofϒm consists of the individuals in the sample with
the same type as the individual at time zero. We now define three other random
marked partitionsϒ(1)

m , ϒ
(2)
m andϒ

(3)
m in the same way, except that the sample

of m individuals is taken differently for each partition. Namely, to obtainϒ
(1)
m , we

samplem of the individuals at timeλJ . To getϒ(2)
m , we samplem of the individuals

at timeλJ2. To getϒ(3)
m , we samplem of the individuals at timeλJ2 that have an

infinite line of descent, assuming thatm such individuals exist (otherwise, sample
from all individuals at timeλJ2).

Since the branching process has been conditioned to survive forever,ϒ
(1)
m has

the same distribution as the conditional distribution of�̃m given #Lt > 0 for all
t ∈ N. Thus, by Lemma 6.2, it suffices to show that for all marked partitions
π ∈ Pm, we have

∣∣P (
ϒ(1)

m = π
) − P(ϒm = π)

∣∣ ≤ C

(logN)2 .

Note also thatϒ(2)
m and ϒ

(3)
m have the same distribution by the strong Markov

property.
We can coupleϒ

(1)
m and ϒ

(2)
m such that the sample at timeλJ used to

constructϒ(1)
m includes all of the individuals in the sample at timeλJ2 that were

born before timeλJ . If there are fewer thanm such individuals, the rest of the
sample at timeλJ can be picked from the remaining individuals. By the strong
Markov property, this way of picking the sample at timeλJ does not change the
distribution ofϒ(1)

m . Therefore,ϒ(1)
m = ϒ

(2)
m if the m individuals sampled when

constructingϒ
(2)
m were all born before timeλJ . Likewise, we can couple the

partitionsϒm and ϒ
(3)
m such that on the eventλ∗ ≤ λJ2, all of the individuals

sampled at timeλJ2 that were born before timeλ∗ are part of the sample at
time λ∗ used to constructϒm. Note thatλ∗ is a stopping time with respect to the
process(Y (1)

t , Y
(2)
t )t≥0, so the strong Markov property implies that, conditional
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on (Y
(1)
t , Y

(2)
t )0≤t≤λ∗ , all

(�J s�
m

)
m-tuples of individuals with an infinite line of

descent at timeλ∗ are equally likely to form the sample used to constructϒm.
With this coupling,ϒ(3)

m = ϒm if λ∗ ≤ λJ2 and all individuals sampled when
constructingϒ(3)

m were born before timeλ∗.
Sinceϒ

(2)
m =d ϒ

(3)
m , Proposition 2.7 will be proved if the couplings described in

the previous paragraph work well enough thatP(ϒ
(3)
m 	= ϒm) andP(ϒ

(1)
m 	= ϒ

(2)
m )

can both be bounded byC/(logN)2. These bounds follow from Lemma 6.3 and
Lemma 6.5 below.

LEMMA 6.4. Let (ξ ′
t )

∞
t=0 be a random walk on Z such that ξ ′

0 = 1 and,
for all k, P(ξ ′

t+1 = k + 1|ξ ′
t = k) = 1/(2 − s) and P(ξ ′

t+1 = k − 1|ξ ′
t = k) =

(1 − s)/(2 − s). Let ξ = (ξt )
∞
t=0 be the Markov process whose law is the same as

the conditional law of (ξ ′
t )

∞
t=0 given ξ ′

t ≥ 1 for all t . Let κn = inf{t : ξt = n}. For all
positive integers n, we have E[κn+1 − κn] ≤ (2− s)/s.

PROOF. Note thatκ1 = 0 andκ2 = 1. Therefore,E[κ2 − κ1] = 1. Suppose
E[κn − κn−1] ≤ (2− s)/s. Let Dn = #{t :κn ≤ t < κn+1, ξt = n andξt+1 = n − 1}
be the number of times thatξ goes fromn to n − 1 before hittingn + 1. Since
ln = P(ξt = n+1|ξt−1 = n) ≥ 1/(2− s), we have thatDn +1 follows a geometric
distribution with parameterln ≥ 1/(2−s). Therefore,E[Dn] = (1/ln)−1≤ 1−s.
Note that each time thatξ goes fromn to n − 1, it must eventually return ton,
which takes expected timeE[κn − κn−1]. Thus,E[κn+1 − κn] = 1 + E[Dn](1 +
E[κn − κn−1]) ≤ 1+ (1− s)[1+ (2− s)/s] = (2− s)/s. The lemma now follows
by induction. �

LEMMA 6.5. The probability that an individual chosen at random at time λJ2

was born after λJ1 is at most C/(logN)2.

PROOF. Define(Ỹt )
∞
t=0 such that if 0= τ0 < τ1 < · · · are the jump times of

(Y
(1)
t + Y

(2)
t )t≥0, then Ỹt = Y

(1)
τt + Y

(2)
τt . Let λ̃k = inf{t : Ỹt = k}. The number

of births betweenλJ1 and λJ2 is at mostλ̃J2 − λ̃J1. We haveE[λ̃J2 − λ̃J1] ≤
[(2− s)/s](J2 − J1) by Lemma 6.4. Note that

J2 − J1

J2
≤ J (1− s−1√(logJ )/J )−1 − J (1+ s−1√(logJ )/J )−1 + 2

J (1+ s−1
√

(logJ )/J )−1

≤ C

√
logJ

J
,

so the probability that a randomly chosen individual at timeλJ2 was born afterλJ1

is at most (
2− s

s

)(
J2 − J1

J2

)
≤ C

√
logJ

J
≤ C

(logN)2 ,
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where the last inequality holds becauseJ = �(logN)a� for somea > 4. �

7. Approximating the distribution of �. In this section we complete
the proof of Theorem 1.2 by proving Propositions 2.10, 2.11 and 2.8. We will
use the notationWk , ζk , Yk andZi introduced before the statement of Theorem 1.2
in the Introduction. Recall also thatL = �2Ns�.

In Section 7.1, we prove Propositions 2.10 and 2.11, which pertain to
the random variablesZi introduced in the paint-box construction given in
the Introduction. The rest of the section is devoted to the proof of Proposition 2.8.
In Section 7.2 we introduce random variablesZ′

i using the branching process. In
Section 7.3 we state some lemmas comparing theZi andZ′

i , and explain how these
lemmas imply Proposition 2.8. In Section 7.4 we present some results related to
Pólya urns that are needed to prove these lemmas and, finally, the lemmas are
proved in Section 7.5.

7.1. Proofs of Propositions 2.10and 2.11.

PROOF OF PROPOSITION 2.10. SinceP(Z1 = Z2 = k|Vk) ≤ V 2
k , we have

P(Z1 = Z2 = k) ≤ E[V 2
k ] = E[ζ 2

k W2
k ] = E[ζ 2

k ]E[W2
k ]. SinceE[ζ 2

k ] = E[ζk] =
r/s andE[W2

k ] = 2/k(k + 1), it follows that

P(Z1 = Z2 > �J s�) ≤
L∑

k=�J s�+1

2r

sk(k + 1)

≤ 2r

s�J s� ≤ C

(logN)1+a
. �

We next prove Proposition 2.11, which says that the distribution of the number
of i such thatZi > �J s� is approximately binomial. We begin with a lemma that
gives an approximation toP(Zi > �J s�).

LEMMA 7.1. We have P(Zi > �J s�) = qJ + O(1/(logN)5).

PROOF. By the construction in the Introduction,P(Zi = k|Zi ≤ k) =
E[Vk] = E[ζk]E[Wk] = r/(sk). Therefore,P(Zi ≤ �J s�) = ∏L

k=�J s�+1(1 −
r/(sk)). This is the same as the probability that none of the eventsA�J s�+1, . . . ,AL

occurs if the events are independent andP(Ak) = r/(sk). Since
L∑

k=�J s�+1

(
r

sk

)2

≤ r2

s2�J s� ≤ C

(logN)6 ,

it follows from the Poisson approximation result on page 140 of [5] that

P(Zi > �J s�) = 1− exp

(
−

L∑
k=�J s�+1

r

sk

)
+ O

(
1

(logN)6

)
.
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If 1 ≤ y1 < y2, then 0≤ ∑�y2�
k=�y1�

1
k

− log
(y2
y1

) ≤ 2/�y1�. Therefore,

∣∣∣∣∣
2N∑

k=J+1

1

k
−

�2Ns�∑
k=�J s�+1

1

k

∣∣∣∣∣ ≤ 1

J
+

∣∣∣∣∣
2N∑
k=J

1

k
− log

(
2N

J

)∣∣∣∣∣ +
∣∣∣∣∣log

(
2Ns

Js

)
−

�2Ns�∑
k=�J s�

1

k

∣∣∣∣∣
≤ 3

J
+ 2

�J s� ≤ C

(logN)a
.

It follows that

P(Zi > �J s�) = 1− exp

(
−

2N∑
k=J+1

r

sk

)
+ O

(
1

(logN)5

)

= qJ + O

(
1

(logN)5

)
. �

PROOF OFPROPOSITION2.11. Letηk = #{i :Zi = k}. ThenD = η�J s�+1 +
· · ·+ηL. Define the sequence(η̃k)

L
k=�J s�+1 such that̃ηL has a Binomial(n, r/(sL))

distribution and, conditional oñηk+1, . . . , η̃L, the distribution ofη̃k is binomial
with parametersn − η̃k+1 − · · · − η̃L and r/(sk). Thinking of flipping n coins
and continuing to flip those that do not show tails, it is easy to see thatD̃ =
η̃�J s�+1 + · · · + η̃L has a binomial distribution with parametersn andγ , where
γ = P(Zi > �J s�). To compareD andD̃ we note that

P(ηk ≥ 2|ηk+1, . . . , ηL) ≤
(

n

2

)
E[V 2

k ] =
(

n

2

)
E[ζk]E[W2

k ]

=
(

n

2

)
2r

sk(k + 1)

andP(η̃k ≥ 2|η̃k+1, . . . , η̃L) ≤ (n
2

)
(r/(sk))2. By Lemma 5.1, we can couple the

ηk and η̃k such thatP(ηk 	= η̃k|ηl = η̃l for l = k + 1, . . . ,L) ≤ Cr/k2 for all k.
Therefore,

P(ηk 	= η̃k for somek > �J s�) ≤
L∑

k=�J s�+1

Cr

k2 ≤ Cr

�J s� ≤ C

(logN)5 .

This result, combined with Lemma 7.1, gives the proposition.�

7.2. Random variables Z′
i from the branching process. It remains only to

prove Proposition 2.8, which requires considerably more work. For convenience,
let H = �J s�. From this point forward,Z1, . . . ,Zn will be random variables
defined as in the Introduction but withL = H , so that the associated marked
partition � has the distributionQr,s,H . Our goal is to describe the distribution
of the marked partitionϒn from Propositions 2.7 and 2.8 using random variables
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Z′
1, . . . ,Z

′
n, whereZ′

i will be the number of individuals with an infinite line of
descent at the time when the type of theith individual first appeared. We will
then prove Proposition 2.8 by comparing the distribution of(Z′

1, . . . ,Z
′
n) to the

distribution of(Z1, . . . ,Zn).
Define times 0= γ1 < γ2 < · · · < γH such thatγj = inf{t :Y (1)

t = j} is the first
time that the branching process hasj individuals with an infinite line of descent.
Note that(γj+1 − γj )

H−1
i=1 is a sequence of independent random variables and the

distribution ofγj+1 − γj is exponential with ratejs. Whenever a new individual
with an infinite line of descent is born, it has a new type with probabilityr . Also,
each individual with an infinite line of descent is giving birth to a new individual
with a finite line of descent at rate 2(1 − s). Since a new individual has a new
type with probabilityr , between timesγj and γj+1, births of individuals with
new types occur at rate 2jr(1 − s). Whenever such a birth occurs, the type of
the individual with an infinite line of descent changes with probability 1/2. Thus,
between timesγj andγj+1, we can view the branching process as consisting ofj

lineages with infinite lines of descent, and their types are changing at rater(1− s).
It follows that if, for somej ≥ 1, we choose at random one of thej individuals
at timeγj+1− with an infinite line of descent, the probability that its ancestor at
timeγj is not of the same type is

r(1− s)

r(1− s) + js
.(7.1)

Furthermore, forj ≥ 2, the probability that its ancestor at timeγj is not of the same
type as its ancestor at timeγj− is r/j because, with probabilityr , exactly one of
the individuals at timeγj is of a type that did not exist at timeγj−. It follows that
for j ≥ 2, the probability that the individual sampled at timeγj+1− has a different
type from its ancestor at timeγj− is

r(1− s)

r(1− s) + js
+ js

r(1− s) + js

(
r

j

)
= r

r(1− s) + js
≤ r

js
.(7.2)

Likewise, the probability that at least one of thej individuals with an infinite line
of descent at timeγj+1− has a different ancestor at timeγj− is

r(1− s)

r(1− s) + s
+ s

r(1− s) + s
(r) = r

r(1− s) + s
.

Let σ ′(1), . . . , σ ′(n) representn individuals sampled at random from those with
an infinite line of descent at timeγH . Then we can take the partitionϒn to be
defined such thati ∼ϒn j if and only if σ ′(i) andσ ′(j) have the same type, and
the marked block is{i :σ ′(i) has the same type as the individual at time 0}. Now
defineZ′

1, . . . ,Z
′
n as follows. LetZ′

i = 1 if the ancestor at time 0 ofσ ′(i) has the
same type asσ ′(i). Otherwise, define

Z′
i = max{k :σ ′(i) has a different type from its ancestor at timeγk−}.
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If Z′
i 	= Z′

j , then since each new type is different from all types previously
in the population,σ ′(i) and σ ′(j) have different types. IfZ′

i = Z′
j , thenσ ′(i)

and σ ′(j) have the same type unlessσ ′(i) and σ ′(j) have different ancestors
at time γZ′

i+1− because they both have the same type as their ancestor at
time γZ′

i+1−. We will show in Lemma 7.2 below that the probability that
Z′

i = Z′
j , and σ ′(i) and σ ′(j) have different ancestors at timeγZ′

i+1− is

O((logN)−2). Therefore, the probability that, for somei andj , we haveZ′
i = Z′

j

but σ ′(i) andσ ′(j) have different types isO((logN)−2). Furthermore, it follows
from (7.1) that the individuals{σ ′(i) :Z′

i = 1} have the same type as the individual
at time 0 with probabilitys/(r(1 − s) + s). Define the marked partitionϒ ′

n of
{1, . . . , n} such thati ∼ϒ ′

n
j if and only if Z′

i = Z′
j , and independently with

probabilitys/(r(1− s)+ s), mark the block{i :Z′
i = 1}. The preceding discussion

implies that

|P(ϒn = π) − P(ϒ ′
n = π)| ≤ C

(logN)2(7.3)

for all π ∈ Pn. Thus, for proving Proposition 2.8, we may considerϒ ′
n instead

of ϒn. This will be convenient becauseϒ ′
n is defined fromZ′

1, . . . ,Z
′
n in the

same way that� is defined fromZ1, . . . ,Zn. Consequently, once we establish
Lemma 7.2 below, the remainder of the proof of Proposition 2.8 will just involve
comparingZi andZ′

i .

LEMMA 7.2. If i 	= j , then

P
(
Z′

i = Z′
j and σ ′(i) and σ ′(j) have different ancestors at time γZ′

i+1−
)

(7.4)

≤ C

(logN)2 .

PROOF. First note that ifZ′
i = Z′

j = k, thenσ ′(i) andσ ′(j) have the same
type as their ancestor at timeγk+1−. If they have different ancestors at timeγk+1−,
there must be aγ ∈ (γk, γk+1) such that eitherσ ′(i) or σ ′(j) has an ancestor of
a different type at timeγ− but not at timeγ . The other ofσ ′(i) andσ ′(j) must
have an ancestor of a different type at timeγk− than at timeγ−. Given thatσ ′(i)
andσ ′(j) have different ancestors at timeγk+1−, the probability that both of these
things happen ifk ≥ 2 is

(
2r(1− s)

2r(1− s) + ks

)(
r

r(1− s) + ks

)
≤ 2r2

k2s2 .

The first factor is the probability thatσ ′(i) or σ ′(j) has an ancestor of a different
type at some timeγ−, while the second factor is the probability from (7.2) that
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the other ofσ ′(i) andσ ′(j) has an ancestor of a different type at timeγk− than at
timeγ−. If k = 1, then this conditional probability becomes(

2r(1− s)

2r(1− s) + ks

)(
r(1− s)

r(1− s) + ks

)
≤ 2r2

k2s2

by (7.1). Therefore, ifi 	= j , the probability thatZ′
i = Z′

j , andσ ′(i) andσ ′(j) have

different ancestors at timeγZ′
i+1− is at most

∑H
k=1(2r2/(k2s2)) ≤ C/(logN)2, as

claimed. �

7.3. Comparison of the Zi and Z′
i , and proof of Proposition 2.8. We first

prove two fairly straightforward lemmas, one for theZi and one for theZ′
i .

Lemma 7.3 allows us to disregard the possibility that theZ′
i may take more than

two distinct values greater than 1, as well as the possibility that there may be
two distinct values greater than 1, with multiple occurrences of the higher value.
Lemma 7.4 rules out the same possibilities for theZi .

LEMMA 7.3. We have

P(Z′
1 = j,Z′

2 = k,Z′
3 = l for some 2 ≤ j < k < l) ≤ C(log(logN))3

(logN)3 ,(7.5)

P(Z′
1 = j,Z′

2 = Z′
3 = k for some 2≤ j < k) ≤ C

(logN)2 .(7.6)

PROOF. From (7.2), we getP(Z′
3 = l) ≤ r/sl, P(Z′

2 = k|Z′
3 = l) ≤ r/(sk)

andP(Z′
1 = j |Z′

2 = k,Z′
3 = l) ≤ r/(sj). Thus, the probability on the left-hand

side of (7.5) is at most
H∑

j=1

H∑
k=j

H∑
l=k

(
r

ls

)(
r

ks

)(
r

js

)
≤ C(log(logN))3

(logN)3 .

Conditional on the event thatσ ′(2) and σ ′(3) have different ancestors at
time γm+1−, the probability that they have the same ancestor at timeγm− is(m

2

)−1 = 2/m(m−1). Therefore, the probability thatσ ′(2) andσ ′(3) have the same
ancestor at timeγk+1− is at most

∑H
m=k+1 2/m(m − 1) ≤ 2/k. The probability

thatZ′
2 = Z′

3 = k given thatσ ′(2) andσ ′(3) have the same ancestor at timeγk+1−
is at mostr/(ks). Also, for j < k, we haveP(Z′

1 = j |Z′
2 = Z′

3 = k) ≤ r/(js).
Combining these results with Lemma 7.2, we can bound the probability on the
left-hand side of (7.6) by

C

(logN)2 +
H∑

j=1

H∑
k=j+1

(
r

js

)(
r

ks

)(
2

k

)
≤ C

(logN)2 + 2r2

s2

H∑
j=1

H∑
k=j+1

1

jk2

≤ C

(logN)2 . �
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LEMMA 7.4. We have

P(Z1 = j,Z2 = k,Z3 = l for some 2≤ j < k < l) ≤ C(log(logN))3

(logN)3 ,

P (Z1 = j,Z2 = Z3 = k for some 2 ≤ j < k) ≤ C

(logN)2 .(7.7)

PROOF. Fix j, k, l such that 2≤ j < k < l ≤ H . We haveP(Z3 = l|Z3 ≤
l) = r

sl
, P(Z2 = k|Z3 = l,Z2 ≤ k) = r

sk
, P(Z1 = j |Z2 = k,Z3 = l,Z1 ≤ j) = r

sj

and hence

P(Z1 = j,Z2 = k,Z3 = l) ≤
(

r

sj

)(
r

sk

)(
r

sl

)
.

Summing as in the proof of Lemma 7.3 gives the first result. To prove (7.7), first
note that

P(Z2 = Z3 = k) ≤ E[V 2
k ] = E[ζ 2

k ]E[W2
k ] = 2r

sk(k + 1)

and P(Z1 = j |Z2 = Z3 = k) ≤ r/(sj). Then compute as in the proof of
Lemma 7.3. �

Throughout the rest of this section we use the notation

qk,a,n = (k − 1)a!(n − a + k − 2)!
(n + k − 1)! .

We now state four more lemmas related toZi andZ′
i . Their proofs will be given

after we explain how they imply Proposition 2.8.

LEMMA 7.5. Suppose 1≤ a ≤ n − 1. Then

P(Z′
1 = l,Z′

2 = · · · = Z′
a+1 = k,Z′

a+2 = · · · = Z′
n = 1 for some 2≤ k < l)

= r2

s2

H∑
k=2

H∑
l=k+1

qk,a,n−1

l
+ O

(
1

(logN)2

)
.

LEMMA 7.6. Suppose 1≤ a ≤ n − 1. Then

P(Z1 = l,Z2 = · · · = Za+1 = k,Za+2 = · · · = Zn = 1 for some 2≤ k < l)

= r2

s2

H∑
k=2

H∑
l=k+1

qk,a,n−1

l
+ O

(
1

(logN)2

)
.
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LEMMA 7.7. If 2 ≤ a ≤ n, then

P(Z′
1 = · · · = Z′

a = k and Z′
a+1 = · · · = Z′

n = 1 for some k ≥ 2)
(7.8)

= r

s

H∑
k=2

qk,a,n − nr2

s2

H∑
k=2

H∑
l=k+1

qk,a,n

l
+ O

(
1

(logN)2

)
,

P (Z′
1 = k and Z′

2 = · · · = Z′
n = 1 for some k ≥ 2)

= r

s

H∑
k=2

qk,1,n − nr2

s2

H∑
k=2

H∑
l=k+1

qk,1,n

l
(7.9)

− (n − 1)r2

s2

H∑
k=2

k−1∑
l=2

1

k(n + l − 2)
+ O

(
1

(logN)2

)
.

LEMMA 7.8. If 2 ≤ a ≤ n, then

P(Z1 = · · · = Za = k and Za+1 = · · · = Zn = 1 for some k ≥ 2)
(7.10)

= r

s

H∑
k=2

qk,a,n − nr2

s2

H∑
k=2

H∑
l=k+1

qk,a,n

l
+ O

(
1

(logN)2

)
,

P (Z1 = k and Z2 = · · · = Zn = 1 for some k ≥ 2)

= r

s

H∑
k=2

qk,1,n − nr2

s2

H∑
k=2

H∑
l=k+1

qk,1,n

l
(7.11)

− (n − 1)r2

s2

H∑
k=2

k−1∑
l=2

1

k(n + l − 2)
+ O

(
1

(logN)2

)
.

PROOF OF PROPOSITION 2.8. Let π ∈ Pn. If π has four or more blocks,
or three blocks of size at least 2, thenP(ϒ ′

n = π) ≤ C/(logN)2 by Lemma 7.3
and Qr,s,H (π) ≤ C/(logN)2 by Lemma 7.4. Ifπ has three blocks, at least
one containing just one integer, then the fact that|P(ϒ ′

n = π) − Qr,s,H (π)| ≤
C/(logN)2 follows from Lemmas 7.3, 7.4, 7.5 and 7.6, as well as the fact that
the probabilities that the blocks{i :Zi = 1} and{i :Z′

i = 1} are marked in the two
partitions are boths/(r(1− s) + s). If π has just two blocks, then|P(ϒ ′

n = π) −
Qr,s,H (π)| ≤ C/(logN)2 follows from Lemmas 7.7 and 7.8, Lemmas 7.5 and 7.6
with a = n − 1, and equations (7.6) and (7.7). Finally, whenπ has just one block,
|P(ϒ ′

n = π) − Qr,s,H (π)| ≤ C/(logN)2 follows from Lemmas 7.7 and 7.8 with
a = n, and the fact thatP(Z1 = · · · = Zn = 1) andP(Z′

1 = · · · = Z′
n = 1) can be

obtained by subtracting from 1 the remaining possibilities. Proposition 2.8 now
follows from these results and (7.3).�
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7.4. Pólya urn facts. It remains to prove Lemmas 7.5, 7.6, 7.7 and 7.8. In this
section, we establish three lemmas that are related to Pólya urns. The first two
lemmas are standard and straightforward, and their proofs are omitted.

LEMMA 7.9. Suppose X has a beta distribution with parameters 1 and k − 1,
where k is an integer. Let U1, . . . ,Un be i.i.d. random variables with a uniform
distribution on [0,1]. Then

P(Ui ≤ X for i = 1, . . . , a and Ui > X for i = a + 1, . . . , n) = qk,a,n.

LEMMA 7.10. Consider an urn with one red ball and k − 1 black balls.
Suppose that n new balls are added to the urn one at a time. Each new ball is either
red or black, and the probability that a given ball is red is equal to the fraction of
red balls currently in the urn. Let S be any a-element subset of {1, . . . , n}. The
probability that the ith ball added is red for i ∈ S and black for i /∈ S is qk,a,n.
Note that this implies the sequence of draws is exchangeable.

LEMMA 7.11. In the setting of Lemma 7.10,suppose instead l − k new balls
are added to the urn. Then suppose we sample n of the l balls at random. Let
pk,l,a,n be the probability that the first a balls sampled are red and the next n − a

are black. If a ≥ 1, then there exists a constant C, which may depend on a and n,
such that |pk,l,a,n − qk,a,n| ≤ C/(kl) for all k and l.

PROOF. It follows from Lemma 7.10 that, conditional on the event that none
of the originalk balls is in the sample ofn, the probability that the firsta balls
sampled are red and the nextn − a are black is exactlyqk,a,n. The probability
that the sample ofn balls contains exactlyj of the originalk balls, an event we
call Dj,k , is

(k
j

)( l−k
n−j

)
( l
n

) ≤
(

kj

j !
)(

(l − k)n−j

(n − j)!
)(

n!(l − n)!
l!

)
(7.12)

≤
(

n

j

)
kj ln−j (l − n)!

l! ≤ C

(
k

l

)j

,

sincen is a constant and thus so area ≤ n andj ≤ n.
Conditional on the eventDj,k , we can calculate the probability that we samplea

red balls andn − a black balls. The probability that the original red ball is in the
sample isj/k. If it is, then by Lemma 7.10 the probability thata − 1 of the other
balls in the sample are red is

(n−j
a−1

)
qk,a−1,n−j . Likewise, conditional on the event

that the original red ball is not in the sample, the probability thata of the other balls
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in the sample are red is
(n−j

a

)
qk,a,n−j . Thus, conditional onDj,k , the probability

that we samplea red balls andn − a black balls is

j

k

(n − j)!(k − 1)(n − j − a + k − 1)!
(n − j − a + 1)!(n − j + k − 1)!

+ k − j

k

(n − j)!(k − 1)(n − j − a + k − 2)!
(n − j − a)!(n − j + k − 1)! .

Our next step is to bring
(n
a

)
qk,a,n out in front. Using that(m − j)! = m!/(m)j for

integers 1≤ j ≤ m, we get, fork ≥ 3,(
n

a

)
· a! · (k − 1)(n − a + k − 2)!

(n + k − 1)!
[
(n − a)j−1

(n)j

j

k

(n + k − 1)j

(n − a + k − 2)j−1
(7.13)

+ (n − a)j

(n)j

k − j

k

(n + k − 1)j

(n − a + k − 2)j

]
.

Consider the expression in brackets. Each term can be written as a ratio of two
polynomials ink of the same degree. Sincea ≤ n andj ≤ n, if k → ∞ with n

fixed, the expression in brackets is bounded by a constant. Now supposea = 1.
The bracketed expression becomes

j (n + k − 1)(n + k − 2)

nk(n + k − j − 1)
+ (n − j)(k − j)(n + k − 1)(n + k − 2)

nk(n + k − j − 1)(n + k − j − 2)

= j (n + k − 1)(n + k − 2)(n + k − j − 2)

nk(n + k − j − 1)(n + k − j − 2)

+ (n − j)(k − j)(n + k − 1)(n + k − 2)

nk(n + k − j − 1)(n + k − j − 2)
.

Both the numerator and the denominator of this fraction can be written as third-
degree polynomials ink whose leading term isnk3. Consequently, this fraction
minus 1 can be written as a second-degree polynomial ink divided by a third-
degree polynomial ink, which can be bounded byCk−1 for some constantC.

Note that

qk,a,n = (k − 1)a!(n − a + k − 2)!
(n + k − 1)! ≤ a!(n − a + k − 2)!

(n + k − 2)!
(7.14)

= a!
(n + k − 2)a

≤ C

ka
.

To comparepk,l,a,n andqk,a,n whena ≥ 2, we will break up the probabilitypk,l,a,n

by conditioning on the number of the originalk balls that were sampled.
Conditional on samplingj ≥ 1 of the originalk balls, the probability that the
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first a balls sampled are red and the nextn − a are black is
(n
a

)−1 times the
probability in (7.13), which can be bounded byCqk,a,n. The probability of
samplingj of the originalk balls is at mostC(k/l)j by (7.12), so

|pk,l,a,n − qk,a,n| ≤ C

n∑
j=1

(
k

l

)j

qk,a,n ≤ Ck−a
n∑

j=1

(
k

l

)j

≤ Ck−an · k

l
≤ C

kl
.

Finally, whena = 1, we have

|pk,l,a,n − qk,a,n| ≤ C

n∑
j=1

(
k

l

)j

qk,a,n

C

k
≤ C

n∑
j=1

(
k

l

)j

k−2 ≤ C

kl
.

�

7.5. Proofs of Lemmas 7.5, 7.6, 7.7and 7.8.

PROOF OFLEMMA 7.5. For 2≤ k ≤ l, let A
k,l
1 be the event thatσ ′(1), . . . ,

σ ′(n) all have distinct ancestors at timeγl+1−. Let A
k,l
2 be the event that the

ancestor ofσ ′(1) at timeγl− has a different type from the ancestor ofσ ′(1) at
timeγl+1−. LetAk,l

3 be the event that one of thek individuals at timeγk+1− is the

ancestor ofσ ′(2), . . . , σ ′(a + 1) but notσ ′(a + 2), . . . , σ ′(n), and letAk,l
4 be the

event that the ancestor of this individual at timeγk− has a different type. We claim
that

P(Z′
1 = l,Z′

2 = · · · = Z′
a+1 = k,

Z′
a+2 = · · · = Z′

n = 1 for some 2≤ k < l)(7.15)

= P

( ⋃
2≤k<l

A
k,l
1 ∩ A

k,l
2 ∩ A

k,l
3 ∩ A

k,l
4

)
+ O

(
1

(logN)2

)
.

First consider the probability thatZ′
1 = l,Z′

2 = · · · = Z′
a+1 = k andZ′

a+2 =
· · · = Z′

n = 1 for some 2≤ k < l but that not all ofAk,l
1 , A

k,l
2 , A

k,l
3 andA

k,l
4 occur

for any k and l. Note that this can only happen in two ways. One way would be
for A

k,l
1 not to hold, which would meanσ ′(1), . . . , σ ′(n) do not all have distinct

ancestors at timeγl+1−. However, it follows from the argument used to prove (7.6)
that P((A

k,l
1 )c ∩ {Z′

1 = l} ∩ {Z′
2 = k} for some 2≤ k < l) is O((logN)−2). The

second way would be forAk,l
1 to hold but forσ ′(2), . . . , σ ′(a + 1) not all to have

the same ancestor at timeγk+1−. It follows from Lemma 7.2 that this possibility
also has probabilityO((logN)−2).

Next, we consider the probability thatA
k,l
1 , A

k,l
2 , A

k,l
3 andA

k,l
4 all hold, but we

do not haveZ′
1 = l,Z′

2 = · · · = Z′
a+1 = k andZ′

a+2 = · · · = Z′
n = 1. This is only

possible if there is a third timeγ , other than the times betweenγl andγl+1 and
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betweenγk andγk+1, such that the type of the ancestor of one of the individuals
σ ′(1), . . . , σ ′(n) at timeγ is different from the type of the ancestor at timeγ−.
However, it is a consequence of (7.5) that the probability that this occurs is at
mostO((log logN)3/(logN)3). It follows that (7.15) holds.

Recall from the proof of Lemma 7.3 that if two individuals with an infinite line
of descent are chosen at random at timeγk+1−, then the probability that they will
have the same ancestor at timeγk− is 2/(k(k − 1)). Since there are

(n
2

)
pairs of

individuals, we have

P(A
k,l
1 ) ≥ 1−

(
n

2

) H∑
k=l+1

2

k(k − 1)
≥ 1−

(
n

2

)
2

l
≥ 1− C

l
.

We have P(A
k,l
2 |Ak,l

1 ) = r/[r(1 − s) + ls] by (7.2). Next, note that if we
choose at random one of thek individuals between timesγk and γk+1, then
the probability that the individual born at timeγk+1 is a descendant of the
randomly chosen individual is 1/k, and thereafter the probability that each new
individual is a descendant of the randomly chosen individual is the fraction of
the current individuals that are descended from the randomly chosen individual.
This is the same description as the urn problem of Lemma 7.11, so conditional
on A

k,l
1 , the probability thatσ ′(2), . . . , σ ′(a + 1) but not σ ′(a + 2), . . . , σ ′(n)

are descended from the randomly chosen individual ispk,l,a,n−1. Therefore,
P(A

k,l
3 |Ak,l

1 ∩ A
k,l
2 ) = kpk,l,a,n−1. By (7.2), we haveP(A

k,l
4 |Ak,l

1 ∩ A
k,l
2 ∩ A

k,l
3 ) =

r/[r(1 − s) + ks]. By the arguments used to prove (7.5), the probability
that A

k,l
1 ∩ A

k,l
2 ∩ A

k,l
3 ∩ A

k,l
4 holds for more than one pair(k, l) is at most

O((log logN)3/(logN)3). Thus,

P

( ⋃
2≤k<l

A
k,l
1 ∩ A

k,l
2 ∩ A

k,l
3 ∩ A

k,l
4

)

=
H∑

k=2

H∑
l=k+1

(
r

r(1− s) + ls

)(
kr

r(1− s) + ks

)(
pk,l,a,n−1

)
P(A

k,l
1 )(7.16)

+ O

(
(log logN)3

(logN)3

)
.

By Lemma 7.11, we can writepk,l,a,n−1 = qk,a,n−1 + δ, where |δ| ≤ C/(kl).
Also, P(A1) = 1 − η, whereη ≤ C/l. Note thatr/[r(1 − s) + ls] ≤ r/(ls) and
kr/[r(1 − s) + ks] ≤ r/s. Recall from (7.14) thatqk,a,n ≤ C/k for all a ≥ 1.
To complete the proof, we will need to simplify the four factors inside the sum
in (7.16) by obtaining four inequalities. First, note that∣∣∣∣ r

r(1− s) + ls
− r

ls

∣∣∣∣ = r2(1− s)

(r(1− s) + ls)(ls)
≤ r2

l2s2 .
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Therefore,

H∑
k=2

H∑
l=k+1

∣∣∣∣ r

r(1− s) + ls
− r

ls

∣∣∣∣
(

r

s

)(
C

k

)
≤ Cr3

s3

H∑
k=2

H∑
l=k+1

1

kl2

(7.17)

≤ Cr3 = O

(
1

(logN)3

)
.

Also, ∣∣∣∣ kr

r(1− s) + ks
− r

s

∣∣∣∣ = r2(1− s)

(r(1− s) + ks)s
≤ r2

ks2 .

Therefore,

H∑
k=2

H∑
l=k+1

∣∣∣∣ kr

r(1− s) + ks
− r

s

∣∣∣∣
(

r

ls

)(
C

k

)
≤ Cr3

s3

H∑
k=2

H∑
l=k+1

1

k2l

(7.18)

≤ Cr3 logH = O

(
log logN

(logN)3

)
.

Also,

H∑
k=2

H∑
l=k+1

(
r

ls

)(
r

s

)(
C

kl

)
≤ Cr2

s2

H∑
k=2

H∑
l=k+1

1

kl2
≤ Cr2 = O

(
1

(logN)2

)
(7.19)

and
H∑

k=2

H∑
l=k+1

(
r

ls

)(
r

s

)(
C

k

)(
1− P(A

k,l
1 )

) ≤ Cr2

s2

H∑
k=2

H∑
l=k+1

1

kl2

(7.20)

= O

(
1

(logN)2

)
.

It follows from (7.16)–(7.20) that

P

( ⋃
2≤k<l

A
k,l
1 ∩ A

k,l
2 ∩ A

k,l
3 ∩ A

k,l
4

)

=
H∑

k=2

H∑
l=k+1

(
r

ls

)(
r

s

)
qk,a,n−1 + O

(
1

(logN)2

)
,

which, combined with (7.15), implies the lemma.�

PROOF OFLEMMA 7.6. Suppose 2≤ k < l. Let Bk,l
1 be the event thatZi ≤ l

for i = 1, . . . , n. Let Bk,l
2 be the event thatZ1 = l andZi 	= l for all 2≤ i ≤ n. Let

B
k,l
3 be the event thatZi ≤ k for all 2≤ i ≤ n. LetBk,l

4 be the event thatZ2 = · · · =
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Za+1 = k but Zi 	= k for a + 2 ≤ i ≤ n. Let B
k,l
5 be the event thatZa+2 = · · · =

Zn = 1. Note thatZ1 = l,Z2 = · · · = Za+1 = k andZa+2 = · · · = Zn = 1 for some
2≤ k < l if and only if, for some 2≤ k < l, the eventBk,l

1 ∩B
k,l
2 ∩B

k,l
3 ∩B

k,l
4 ∩B

k,l
5

occurs. Furthermore, the eventsB
k,l
1 ∩ · · · ∩B

k,l
5 are disjoint for different values of

k andl, so we need to calculate
∑H

k=2
∑H

l=k+1 P(B
k,l
1 ∩ B

k,l
2 ∩ B

k,l
3 ∩ B

k,l
4 ∩ B

k,l
5 ).

We have

P(B
k,l
1 ) =

H∏
j=l+1

E[(1− Vj )
n] ≥

H∏
j=l+1

E[1− nVj ]
(7.21)

≥ 1−
H∑

j=l+1

nE[Vj ] = 1− n

H∑
j=l+1

r

js
.

By Lemma 7.9,

P(B
k,l
2 |Bk,l

1 ) = r

s
ql,1,n = r

s

(
(l − 1)(n + l − 3)!

(n + l − 1)!
)

= r

sl

(
l(l − 1)

(n + l − 1)(n + l − 2)

)
≤ r

sl
.

By the same reasoning used to get (7.21), we have

P(B
k,l
3 |Bk,l

1 ∩ B
k,l
2 ) ≥ 1− (n − 1)

l−1∑
j=k+1

r

js
.(7.22)

By Lemma 7.9,

P(B
k,l
4 |Bk,l

1 ∩ B
k,l
2 ∩ B

k,l
3 ) = r

s
qk,a,n−1.

Finally, by the argument used to establish (7.21) and (7.22),

P(B
k,l
5 |Bk,l

1 ∩ B
k,l
2 ∩ B

k,l
3 ∩ B

k,l
4 ) ≥ 1− (n − a − 1)

k−1∑
j=2

r

js
.(7.23)

Note that the product of the probabilities on the right-hand side of (7.21), (7.22)
and (7.23) is at least 1−n

∑H
j=1

r
js

≥ 1− C logH
logN

. Sinceqk,a,n−1 ≤ C/k by (7.14),
we have

H∑
k=2

H∑
l=k+1

(
r

sl

)(
r

s

)
qk,a,n−1

(
C logH

logN

)
≤ C

(logN)3

H∑
k=2

H∑
l=k+1

(logH)

kl

≤ C(logH)3

(logN)3
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and so
H∑

k=2

H∑
l=k+1

P(B
k,l
1 ∩ B

k,l
2 ∩ B

k,l
3 ∩ B

k,l
4 ∩ B

k,l
5 )

=
H∑

k=2

H∑
l=k+1

(
r

sl

)(
r

s

)[
l(l − 1)

(n + l − 1)(n + l − 2)

]
qk,a,n−1(7.24)

+ O

(
1

(logN)2

)
.

Finally, note that|1− l(l−1)
(n+l−1)(n+l−2)

| ≤ C
l

for some constantC. Sinceqk,a,n−1 ≤
C/k and

H∑
k=2

H∑
l=k+1

(
r

sl

)(
r

s

)
C

kl
≤ C

(logN)2 ,

equation (7.24) remains true if the term in brackets is replaced by 1. The lemma
follows. �

PROOF OFLEMMA 7.7. LetAk
1 be the event that one of thek individuals at

time γk+1− is the ancestor ofσ ′(1), . . . , σ ′(a) but notσ ′(a + 1), . . . , σ ′(n), and
let Ak

2 be the event that the ancestor of this individual at timeγk− has a different
type. It follows from Lemma 7.2 that the probability that, for somek ≥ 2, we have
Z′

1 = · · · = Z′
a = k andZ′

a+1 = · · · = Z′
n = 1 but the eventAk

1 ∩Ak
2 does not occur

is at mostO((logN)−2). We will therefore calculate the probability that the event
Ak

1 ∩ Ak
2 ∩ {Z′

1 = · · · = Z′
a = k} ∩ {Z′

a+1 = · · · = Z′
n = 1} occurs for somek ≥ 2.

Note that this occurs for at most one value ofk, so we may sum the probabilities
overk = 2, . . . ,H .

Note thatP(Ak
1) = kpk,H,a,n andP(Ak

2|Ak
1) = r/(r(1 − s) + ks) by (7.2). It

follows thatP(Ak
1 ∩Ak

2) = [kr/(r(1− s)+ ks)]pk,H,a,n. Note thatkr/(r(1− s)+
ks) ≤ r/s, and recall that|pk,H,a,n−qk,a,n| ≤ C/(kH) by Lemma 7.11. Therefore,

H∑
k=2

(
kr

r(1− s) + ks

)
|pk,H,a,n − qk,a,n| ≤ Cr

s

H∑
k=2

1

kH

≤ Cr logH

H
≤ C

(logN)5 .

It follows that
∑H

k=2 P(Ak
1∩Ak

2) = ∑H
k=2(

kr
r(1−s)+ks

)qk,a,n+O(1/(logN)5). Also,
qk,a,n ≤ C/k, so

H∑
k=2

(
kr

r(1− s) + ks
− r

s

)
qk,a,n ≤

H∑
k=2

(
r2

ks2

)
C

k
= O

(
1

(logN)2

)
.
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Thus,
H∑

k=2

P(Ak
1 ∩ Ak

2) = r

s

H∑
k=2

qk,a,n + O

(
1

(logN)2

)
.(7.25)

If Ak
1 andAk

2 both occur, then we will haveZ′
1 = · · · = Z′

a = k andZ′
a+1 =

· · · = Z′
n = 1 unless eitherZ′

i = l for somei = 1, . . . , n and l /∈ {1, k} or Z′
i = k

for somei ≥ a +1. By Lemma 7.2, we haveP(Ak
1 ∩Ak

2 ∩{Zi = k} for somek ≥ 2
andi ≥ a + 1) ≤ C/(logN)2. Therefore, we only need to consider the possibility
thatZ′

i = l for somei = 1, . . . , n andl /∈ {1, k}. We will treat separately the cases
l < k and l > k. Note that by (7.5), the probability thatAk

1 andAk
2 both occur,

Z′
i = l1 andZ′

j = l2, wherel1 andl2 are distinct integers not in{1, k}, is at most

O((log logN)3/(logN)3).
We first considerl > k. By (7.6) the probability thatAk

1 andAk
2 both occur and

Z′
i = Z′

j = l for somei 	= j is O((logN)−2). By the same argument used to prove

Lemma 7.5, the probability thatAk
1 ∩ Ak

2 for somek butZ′
i = l for somel > k is

nr2

s2

H∑
k=2

H∑
l=k+1

qk,a,n

l
+ O

(
1

(logN)2

)
.(7.26)

There are two differences between this formula and the result of Lemma 7.5, which
can be explained as follows. First, in place of the eventA

k,l
2 , we need the event

that, for somei = 1, . . . , n, the ancestor ofσ ′(i) at timeγl− has a different type
from the ancestor ofσ ′(i) at timeγl+1−. This is why the double summation is
multiplied by n. Second, instead ofAk,l

3 , we need one of the individuals at time
γk+1− to be the ancestor ofσ ′(1), . . . , σ ′(a) but notσ ′(a + 1), . . . , σ ′(n), rather
thanσ ′(2), . . . , σ ′(a + 1) but notσ ′(a + 2), . . . , σ ′(n). This is why we haveqk,a,n

in the formula rather thanqk,a,n−1. Otherwise, the calculation proceeds as before.
If a ≥ 2, a consequence of (7.6) is that the probability thatAk

1 ∩ Ak
2 for

some k but Z′
i = l for some l < k is O((logN)−2). Thus, (7.8) follows by

subtracting (7.26) from (7.25). Now, consider the casea = 1. LetS be ad-element
subset of{2, . . . , n}. By the argument used to prove Lemma 7.5, the probability
that, for some 2≤ l < k, the eventsA1,k andA2,k occur butZ′

i = l for i ∈ S and
Z′

i = 1 for i ∈ {2, . . . , n} \ S is

r2

s2

H∑
k=2

k−1∑
l=2

ql,d,n−1

k
+ O

(
1

(logN)2

)
.

Summing this overd = 1, . . . , n − 1 and all subsetsS of size d, we get that
the probability thatA1,k and A2,k occur butZ′

i = l for i ∈ S and Z′
i = 1 for

i ∈ {2, . . . , n} \ S for some nonemptyS ⊂ {2, . . . , n} is

r2

s2

H∑
k=2

k−1∑
l=2

1

k

(
n−1∑
d=1

(
n − 1

d

)
ql,d,n−1

)
+ O

(
1

(logN)2

)
.(7.27)
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Using the probabilistic interpretation of theql,d,n−1 as in Lemma 7.10, we have

n−1∑
d=1

(
n − 1

d

)
ql,d,n−1 = 1− ql,0,n−1 = 1− (l − 1)((n − 1) + l − 2)!

((n − 1) + l − 1)!

= 1− l − 1

n + l − 2
= n − 1

n + l − 2
.

Thus, (7.27) becomes

(n − 1)r2

s2

H∑
k=2

k−1∑
l=2

1

k(n + l − 2)
+ O

(
1

(logN)2

)
.(7.28)

We get (7.9) by subtracting (7.28) and (7.26) from (7.25).�

LEMMA 7.12. Let δ1, . . . , δN ∈ (0,1). Assume that δ = δ1 + · · · + δn ∈ (0,1).
Then

δ(1− δ) ≤ 1−
N∏

n=1

(1− δn) ≤ δ.

PROOF. The second inequality follows from|∏N
n=1 1 − ∏N

n=1(1 − δn)| ≤∑N
n=1 δn. To prove the first inequality using the second, note that

1−
N∏

n=1

(1− δn) =
N∑

m=1

(
m−1∏
n=1

(1− δn) −
m∏

n=1

(1− δn)

)

=
N∑

m=1

(
m−1∏
n=1

(1− δn)

)
δm

≥
N∑

m=1

(1− δ)δm = δ(1− δ).
�

PROOF OF LEMMA 7.8. Let Bk
1 = {Zi ≤ k for i = 1, . . . , n}. Let Bk

2 =
{Zi = k for 1 ≤ i ≤ a and Zj < k for a + 1 ≤ j ≤ n}. Let Bk

3 = {Zi = 1 for
a + 1≤ i ≤ n}. We have

P(Bk
1 ∩ Bk

2 ∩ Bk
3 for somek ≥ 2)

=
H∑

k=2

P(Bk
1)P (Bk

2|Bk
1)P (Bk

3|Bk
1 ∩ Bk

2)(7.29)

=
H∑

k=2

(
H∏

l=k+1

E[(1− Vl)
n]

)(
r

s
qk,a,n

)(
k−1∏
l=2

E[(1− Vl)
n−a]

)
.
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Using Lemma 7.9,

E[(1− Vl)
m] =

(
1− r

s

)
+ r

s
ql,0,m =

(
1− r

s

)
+ r

s

(
(l − 1)(m + l − 2)!

(m + l − 1)!
)

= 1− rm

s(m + l − 1)
.

Therefore, the expression on the right-hand side of (7.29) is

r

s

H∑
k=2

[
H∏

l=k+1

(
1− nr

s(n + l − 1)

)][
k−1∏
l=2

(
1− (n − a)r

s(n − a + l − 1)

)]
qk,a,n.

Let δ = r
s

∑H
l=k+1

n
n+l−1 + r

s

∑k−1
l=2

n−a
n−a+l−1. Then

δ2 = r2

s2

(
H∑

l=k+1

n

n + l − 1
+

k−1∑
l=2

n − a

n − a + l − 1

)2

≤ r2

s2

(
n

H∑
l=1

1

l

)2

≤ Cr2(logH)2.

Sinceqk,a,n ≤ C/k by (7.14), we haver
s

∑H
k=2 δ2qk,a,n ≤ Cr3(logH)2 ∑H

k=2
1
k

≤
Cr3(logH)3. Using Lemma 7.12, the right-hand side of (7.29) can be written as

r

s

H∑
k=2

(
1−

H∑
l=k+1

nr

s(n + l − 1)
−

k−1∑
l=2

(n − a)r

s(n − a + l − 1)

)
qk,a,n

(7.30)

+ O

(
(log logN)3

(logN)3

)
.

We have1
l
− 1

n+l−1 = n−1
l(n+l−1)

≤ n
l2

. Sinceqk,a,n ≤ C/k, it follows that

nr2

s2

H∑
k=2

H∑
l=k+1

∣∣∣∣ 1

(n + l − 1)
− 1

l

∣∣∣∣qk,a,n ≤ Cr2
H∑

k=2

H∑
l=k+1

1

kl2
≤ C

(logN)2 .(7.31)

Sinceqk,a,n ≤ C/ka by (7.14), whena ≥ 2 we have

r2

s2

H∑
k=2

k−1∑
l=2

n − a

n − a + l − 1
qk,a,n ≤ Cr2

H∑
l=2

H∑
k=l+1

1

lk2 = O

(
1

(logN)2

)
.(7.32)

By combining (7.30), (7.31) and (7.32), we get (7.10) whena ≥ 2. Whena = 1,
note that

n − a

n − a + l − 1
qk,a,n = (n − 1)(k − 1)

(n + l − 2)(n + k − 1)(n + k − 2)
.
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Also, note that| k−1
(n+k−1)(n+k−2)

− 1
k
| ≤ C

k2 . It follows that, whena = 1, we have

r2

s2

H∑
k=2

k−1∑
l=2

n − a

n − a + l − 1
qk,a,n

(7.33)

= (n − 1)r2

s2

H∑
k=2

k−1∑
l=2

1

k(n + l − 2)
+ O

(
1

(logN)2

)
.

Equations (7.30), (7.31) and (7.33) establish (7.11) whena = 1. �

REFERENCES

[1] ATHREYA, K. B. and NEY, P. E. (1972).Branching Processes. Springer, New York.
[2] BARTON, N. H. (1998). The effect of hitch-hiking on neutral genealogies.Genetic Research

Cambridge 72 123–133.
[3] BARTON, N. H., ETHERIDGE, A. M. and STURM, A. K. (2004). Coalescence in a random

background.Ann. Appl. Probab. 14 754–785.
[4] DONNELLY, P. and KURTZ, T. G. (1999). Genealogical processes for Fleming–Viot models

with selection and recombination.Ann. Appl. Probab. 9 1091–1148.
[5] DURRETT, R. (1996).Probability: Theory and Examples, 2nd ed. Duxbury, Belmont, CA.
[6] DURRETT, R. (2002).Probability Models for DNA Sequence Evolution. Springer, New York.
[7] DURRETT, R. and SCHWEINSBERG, J. (2004). Approximating selective sweeps.Theoret.

Population Biol. 66 129–138.
[8] DURRETT, R. and SCHWEINSBERG, J. (2004). A coalescent model for the effect of advanta-

geous mutations on the genealogy of a population. Preprint. Available at http://front.math.
ucdavis.edu/ math.PR/0411071.

[9] ETHERIDGE, A. M., PFAFFELHUBER, P. and WAKOLBINGER, A. (2005). An approximate
sampling formula under genetic hitchhiking. Preprint. Available at http://front.math.
ucdavis.edu/math.PR/0503485.

[10] GADAG, V. G. and RAJARSHI, M. B. (1987). On multitype processes based on progeny length
particles of a supercritical Galton–Watson process.J. Appl. Probab. 24 14–24.

[11] GADAG, V. G. and RAJARSHI, M. B. (1992). On processes associated with a super-critical
Markov branching process.Serdica 18 173–178.

[12] GILLESPIE, J. H. (2000). Genetic drift in an infinite population: The pseudohitchhiking model.
Genetics 155 909–919.

[13] JOHNSON, N. L., KOTZ, S. and KEMP, A. W. (1992). Univariate Discrete Distributions,
2nd ed. Wiley, New York.

[14] JOYCE, P. and TAVARÉ, S. (1987). Cycles, permutations and the structure of the Yule process
with immigration.Stochastic Process. Appl. 25 309–314.

[15] KAPLAN, N. L., HUDSON, R. R. and LANGLEY, C. H. (1989). The “hitchhiking effect”
revisited.Genetics 123 887–899.

[16] KINGMAN, J. F. C. (1978). The representation of partition structures.J. London Math. Soc. 18
374–380.

[17] KINGMAN, J. F. C. (1982). The coalescent.Stochastic Process. Appl. 13 235–248.
[18] MAYNARD SMITH, J. and HAIGH, J. (1974). The hitch-hiking effect of a favorable gene.

Genetic Research 23 23–35.
[19] MORAN, P. A. P. (1958). Random processes in genetics.Proceedings of the Cambridge

Philosophical Society 54 60–71.



APPROXIMATING A SELECTIVE SWEEP 1651

[20] MÖHLE, M. and SAGITOV, S. (2001). A classification of coalescent processes for haploid
exchangeable population models.Ann. Probab. 29 1547–1562.

[21] O’CONNELL, N. (1993). Yule process approximation for the skeleton of a branching process.
J. Appl. Probab. 30 725–729.

[22] PITMAN , J. (1999). Coalescents with multiple collisions.Ann. Probab. 27 1870–1902.
[23] PRZEWORSKI, M. (2002). The signature of positive selection at randomly chosen loci.Genetics

160 1179–1189.
[24] SAGITOV, S. (1999). The general coalescent with asynchronous mergers of ancestral lines.

J. Appl. Probab. 36 1116–1125.
[25] SCHWEINSBERG, J. (2000). Coalescents with simultaneous multiple collisions.Electron. J.

Probab. 5 1–50.
[26] SIMONSEN, K. L., CHURCHILL, G. A. and AQUADRO, C. F. (1995). Properties of statistical

tests of neutrality for DNA polymorphism data.Genetics 141 413–429.
[27] STEPHAN, W., WIEHE, T. and LENZ, M. W. (1992). The effect of strongly selected

substitutions on neutral polymorphism: Analytical results based on diffusion theory.
Theoret. Population Biol. 41 237–254.

DEPARTMENT OFMATHEMATICS, 0112
UNIVERSITY OF CALIFORNIA AT SAN DIEGO

9500 GILMAN DRIVE

LA JOLLA , CALIFORNIA 92093-0112
USA
E-MAIL : jschwein@math.ucsd.edu

DEPARTMENT OFMATHEMATICS

MALOTT HALL

CORNELL UNIVERSITY

ITHACA, NEW YORK 14853-4201
USA
E-MAIL : rtd1@cornell.edu


