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THE DISORDER PROBLEM FOR COMPOUND POISSON
PROCESSES WITH EXPONENTIAL JUMPS

By PAVEL V. GAPEEV
Russian Academy of Sciences

The problem of disorder seeks to determine a stopping time which is
as close as possible to the unknown time of “disorder” when the observed
process changes its probability characteristics. We give a partial answer to
this question for some special cases of Lévy processes and present a complete
solution of the Bayesian and variational problem for a compound Poisson
process with exponential jumps. The method of proof is based on reducing the
Bayesian problem to an integro-differential free-boundary problem where,
in some cases, the smooth-fit principle breaks down and is replaced by the
principle of continuous fit.

1. Introduction. Assume that at time = 0 we begin to observe a continu-
ously updated process = (X;),>0 Whose probability characteristics change at
some unknown timé, called thetime of disorder, which cannot be observed di-
rectly. Throughout this paper the random tithean take the value 0 with probabil-
ity 7r; under the condition that > 0, it is exponentially distributed with parameter
A > 0. The disorder problem or the problem of quickest disorder detection is to
decide by observing the proce&sthe time instant at which we should give an
alarm to indicate the occurrence of disorder. This time instant should be as close
as possible to the timein the sense that both the probability of false alarm and the
expectation of the time interval between the occurrence of disorder and the alarm
(when the latter is given correctly) should be minimal.

The problem of detecting a change in drift of a Wiener process was formulated
and solved by Shiryaev [12—-15] (see also [16] and [17], Chapter IV and page 208,
for historical notes and references). Some particular cases of the problem of
detecting a change in the intensity of a Poisson process were considered by
Gal'chuk and Rozovskii [6] and by Davis [4]. Peskir and Shiryaev [10] presented
a complete solution of the disorder problem for a Poisson process in the Bayesian
formulation. The main aim of this paper is to find an explicit expression of the
optimal stopping boundary for the a posteriori probability process in some special
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cases of the problem for Lévy processes and to present a complete solution to the
problem for a compound Poisson process that has exponentially distributed jumps.
Actually, we give the next example of process for which the quickest disorder
detection problem can be solved in an explicit form. Such processes are used, for
example, in several models of stochastic finance and insurance (see, e.g., [18]). For
some other optimal stopping problems for such processes see, for example, [9].

The paper is organized as follows. In Section 2 we give a formulation of
the Bayesian and variational problem of quickest disorder detection for Lévy
processes. In Section 3 by the examination of the sample-path behavior of
the a posteriori probability process, we find an optimal stopping boundary in
some particular cases of the Bayesian problem. In Section 4 by means of
solving the corresponding integro-differential free-boundary problem, we derive
a complete solution of the Bayesian problem for a compound Poisson process
with exponential jumps, where we can observe the breakdown of the smooth-
fit principle and its replacement by the principle of continuous fit. These effects
can be explained both by the examination of the sample-path properties of the a
posteriori probability process and by the existence of a singularity point of the
integro-differential equation. Note that in models based on jump processes the
situations when the continuous fit replaces the smooth fit were earlier observed,
for example, in bandit problems (see, e.g., [2] for references). In Section 5, passing
from the derived solution of the Bayesian problem, we find an explicit expression
for the optimal stopping boundary in the corresponding variational problem.

We note here that the problem of quickest detection admits different formula-
tions and appears in on-line quality control, radar location, seismology and so forth
(see, e.g., [3, 8]).

2. Formulation of the Bayesian and variational problem. For a precise
probabilistic formulation of the quickest disorder detection problem for Lévy
processes (see [17], Chapter IV, for the Wiener process case), let us suppose that
on some measurable spaée, ) equipped with a family of probability measures
(P%)s>0 there exists a nonnegative random variablsuch thatP’[0 = s] =1
for all s > 0. It is assumed that we observe a continuously updated process
X = (X;)s>0 With Xo =0 and having, under the measurg, the triplet

(2.1) ((t A 8)bg + ((l‘ —5)V O)bl, 0, dt [I{,<S}vo(dx) + I{,zs}vl(dx)])

with respect to the function(x) = x, x € R, for all ¢, s > 0, wherev;(dx) is a
Lévy measure ofR such thaty; ({0}) = 0 and [ (x? A 1)v;(dx) < oo fori =0, 1
(see, e.g., [7], Chapter II.4, or [11], Chapter 11.8). Herand X are assumed to be
stochastically independent undef for all s > 0. Let us fixA > 0 and define the
measure®,; =7 PO+ (1 — n) fé’o re M Psds for all & € [0, 1], so that we have
P,[6 =0]=x andP;[0 > t|0 > 0] =e¢* forall r > 0.

Let  be a stopping time with respect to the filtrati&rf = (F,%);>0, where
}‘IX =o{X|0<s <rt}. We interpretr as the time at which the alarm is soundedto
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signal the change in distribution of the observed prodgseheBayesian disorder
problemis to minimize the risk function

(2.2) V(m) =inf{Prlr <01+ cEx[r — 617y,

where the infimum is taken over @ stopping timesr, and to find an optimal
stopping timer, at which the infimum in (2.2) is attained. HeRg [t < 0] is the
probability of false alarmE, [t — 6]" is the average delay in detecting disorder
correctly and: > 0 is some constant.

It is easily shown (see [17], pages 195-197) that the value fundtion)
can be expressed in terms of the a posteriori probability pro¢ess where
= Pr[0 < t|37,X] forall r > 0 and P, [rg = ] = 1. Namely, we have

2.3) V(r) =irr1fEﬂ[l—n, Jrcfor n,dt]

Moreover, it is easily verified (see [17], page 204) that the infimum in (2.3) is
actually taken over the clas (;r) of stopping timeg such thatE;[t] < oc.

To give the corresponding variational or fixed false-alarm probability formula-
tion, letthe number € [0, 1) be fixed and letM (;r, @) denote the class of stopping
timest that satisfy

(2.4) Pt <0] <a,

where« is a given constant from the intervgd, 1). The variational disorder
problemis to find in the classM (7, ) a stopping timee such that

(2.5) Ex[f — 01" < Ex[t — 01"

for any other stopping time from M (r, o).

3. Preliminary resultsand examples. Suppose that the filtratioR* is right-
continuous and the conditions

(3.1) f|x|vi(dx) <00 (i=0.1).
(3.2) b1=bo+/xv1(a’x) —/xvo(dx),
(3.3) / (VTG — 1)2vo(dx) < 00

are satisfied, wher& (x) = v1(dx)/vo(dx) for all x € R. Then by means of
Girsanov’s theorem for semimartingales ([7], Theorem 111.5.34) and 1t6’s formula
([7], Theorem 1.4.57), using the schema of arguments in [17], page 202, it can be
verified that the proces%;) solves the stochastic differential equation

r-1-m)¥(x) -1

X _ X
Ton (Y)—D W —v)dhdo,

(3.4) dm :k(l—rr,)dt—{—/
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whereuX is the measure of jumps of the procésand itsFX compensatorX is
given byvX (dt, dx) = (m;—vi(dx) + (1 — m;_)vo(dx)) dt. From (3.4) it is easily
seen thaft(wr;) is a time-homogeneous (strong) Markov process urigemwith
respect to the natural filtration which clearly coincides vith The latter implies
that the infimum in (2.3) can be taken over all stopping timeg&mf playing the
role of a sufficient statistic (see, e.g., [17], Chapter 11.15).

It can be also verified (see [17], pages 197 and 198, and [10]) that the value
function V (i) is decreasing and concave [ 1], and the optimal stopping time
in (2.3) is given by

(3.5) 7, =inf{r > O|m; > B},
whereB, is the smallest number from [0, 1] suchthatV () =1— 7.
Using the arguments from [10] we now find an explicit expression for the
optimal stopping boundar®, in some particular cases of the problem.
LEMMA 3.1. Assumein addition to (2.1)and (3.1)—(3.3)that we have
(3.6) v1(dx) = vo(dx) (x €R),
3.7 0< /xvl(dx) - /xvo(dx) <c+A.

Then in the Bayesian problem of quickest disorder detection (2.2) + (2.3) the
stopping time 1, from (3.5)is optimal with B, = B, where we set

A
Atc

(3.8) B=

PROOF The assumption (3.7) ensures tiBak B, where we set

(3.9) B= x/(/xvl(dx) _ /xvo(dx)).

From (3.4) it is seen that iB > 1, then the processr;) is strictly increasing, and
if B < 1, then the drift rate of the continuous part(@f) is positive on[0, B),
negative on(B, 1) and equal to zero &. Thus, if (r;) starts in[0, B) orin (B, 1),
then under the absence of jumgs;) never reache®, because its drift tends to
zero the same time with linear order. Therefore, by virtue of the fact that under the
condition (3.6) the processr;) can have only positive jumps, it can leai® B)
only by jumping and, fluctuating inB, 1), it cannot entef0, B). If (rr;) starts or
ends up aB, then it is trapped thereP, -a.s.) until the next jump ok occurs.

From (3.4) it follows that the process;) admits the representation

t
(3.10) n,=n+K/ (A=, )ds + M,
0
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where(M,) is a martingale undeP, with respect td~X. Hence, by means of the
optional sampling theorem (see, e.g., [7], Theorem 1.1.39), from (3.10) together
with (3.4) and according to (3.1) we obtain tHat[M.] = 0 and hence

T T A
(3.12) E,,[l—rr,—{—c/ ntdt]zl—n—i—(k—l—c)En/ <rr,— )dt
0 A+c

for all stopping times from M (7). Recalling that the process;) is monotone
increasing in B, B) and that after enterlng? 1] cannot leave it, from (3.11) we
may therefore conclude that it is never optimal to step in [0, B) and that(r,)
must be stopped instantly after passing throBgh OJ

EXAMPLE 3.2. Assume that in (2.1) we havg = 1/4; and v;(dx) =
I =0y €Xp(—A;x)dx/x with &; > 0. ThusX is a gamma process with parameter
changing fromig to A1 (see, e.g., [18], Chapter I11.1). In this case the integrals
in (3.1) and (3.3) are equal to/4; and log (Ao + A1)2/(4ro)r1)], respectively.
Therefore, by Lemma 3.1 we get thakif > A1 > 0 and logig/A1) < c¢ + A, then
the stopping time, from (3.5) is optimal withB, = 1/(A + ¢).

EXAMPLE 3.3. Suppose that in (2.1) we have = 1/y; and v;(dx) =
x>0 €XP(—y2x /2) dx /(2 x3)Y/? with y; > 0. ThusX is an inverse Gaussian
process with parameter changing fromto y; (see, e. g [1]). In this case the
integrals in (3.1) and (3.3) are equal tgyl and [2(y& + ¥ 1Y? — yo — 11,
respectively. Therefore, by Lemma 3.1 we conclude thatit- 1 > 0 and
0 — ¥1 < ¢ + A, thent, from (3.5) is optimal withB, = A/(A + ¢).

REMARK 3.4. From (3.11) it is seen that one should not step when it is
in [0, B1], so for B, from (3.5) we haveB < B, < 1.

4, Solution of the Bayesian problem for a compound Poisson process with
exponential jumps. In the rest of the paper, we assume that the prodess
defined by

t t
(4.1) X,:/O es_dX}Jr/o (1—6,)dX°,

where X! = Z?’ilgé and s = Iy for all #,5 > 0, N = (N}) is a Poisson
process with intensity /A; and (g})jeN is a sequence of independent random
variables exponentially distributed with parameter[N’, (S;)jeN and 0 are

supposed to be independent] foe= 0, 1. Then in (2.1) we have; = 1/)»1.2 and
vi(dx) = Ijx=0)€Xp(—1;x) dx, and thusX is a compound Poisson process that
has exponentially distributed jumps with parameter changing #@to A1. In this
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case the integrals in (3.1) and (3.3) are equalf?land (Ao — A1)%/[kor1(Ao +
A1)]1, respectively, and (3.4) takes the form

drn, =A1—m,)dt

/Oo 7r— (1 — ) (EXP(—A1x) — €XP(—Aox))
0 7 exXp(—A1x) + (1— ) exp(—Aiox)

(4.2) x (u*(dt, dx) — (- exp(—r1x)

+ (1 — m;—) exp(—Aox)) dt dx).

Standard arguments imply that in this case the infinitesimal opelatdrthe
process;) acts on a functiory e C1([0, 1]) according to the rule

Lhom = (- (M;O_Ajl)n)(l — ) )

“3) " /ooo [f <n exp(—M:)Eil)r(li(l_f ?))exp(—kox)> B f(n)]

x (m exp(—A1x) + (1 — ) exp(—Arox)) dx

for all = € [0, 1]. Using standard arguments based on the strong Markov property,
it follows that V (xr) is C! on (0, B,). Therefore, using the results from [17],
Chapter 111.8, we can formulate thetegro-differential free-boundary problem for

the unknown functiorV () from (2.3) and the unknown boundaBy, from (3.5)

as

4.4) LV)(@m) = —cm (0O <7 < B,),
(4.5) Vir)y=1-mn (B, <m <1,
(4.6) V(B,—)=1- B, (continuous fit)

where the condition (4.6) is satisfied by virtue of the concavity argument above.
Note that the superharmonic characterization of the value function (see [5] and
[17]) implies thatV () is the largest function that satisfies (4.4)—(4.6). Moreover,
under some relationships on the parameters of the model which are specified
below, the condition

4.7) V'(By)=—1  (smooth fit)

may be satisfied or break down. We also observe that, in this Baem (3.9)
takes the form

AAQAL

Ao — A1

and turns out to be a singularity point of (4.4) wheyt> A1.

Using the schema of arguments in [10], we further show that the system (4.4)—
(4.6) admits an explicit solution which turns out to be a solution of the initial

(4.8) B=
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optimal stopping problem (2.3). For this, let us consider a continuous function
f () that satisfies (4.4) o0, B) and (4.5) on B, 1] for some O< B < 1 given
and fixed. 3
Let us first assume thay > A1. Then it follows that the functiorf (y) = f ()
with 7 = e¢” /(1 + ¢”) solves the system

(M1+em 1 ) Py fOlya+e)-1]
ey Yy Yy —D(A+e)
4.9) 131} U f(z)(1+ez) ’ B]
—Li N )
410  fo= oo (v =B,

where we sef = Ao/(ho—A1) > 1,1’ = A(Ag— A1) > 0 andB = log[B/(1— B)].
It can be easily shown that the system (4:9/.10) has a unique solution which
is given by

(4.11) Fly By = 1+1€E ~ yﬁ y(yyzllJ)rF;g,_E)ew |
(4.12) F(y.B)= %y)(g(y’g) _/yB C/({z(zl)?) gg; dz>’
(4.13) Ay) = 1:;” (Wy(yyzlli(ely;riy) - ey>’
(4.15) Goy=11¢ it B+1,
exp[—yey 1A+ e, if B=1,

for y < B, anda = (B +y — 1)/(1— B) if B # 1. Using (4.11)—(4.15) we may
thus conclude that the functiofXz; B) = f(y; B) given by

B yiiF(x, B)(1—x)[x/(L—x)]"
™ A1+ (Ao — A1)x
B C(x,B)G(x)dx
—(C(TL’, B) — >,
A(@@m)n(1—m) r AX)G@m)x(1—x)
AoA1— (Mg — AT
m[A+ (o —Ap7w]’

(4.16) f(m; B) =

dx,

(4.17) F(n, B) =

(4.18) A(n) =
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_ _ -1 _ -1
(4.19) C(r.B) = ~— 8 (1 B)y —c(xo—xl)(ln”)y ,

y(y—-D\ B
Aor1 — (Ao — ADT 4 1 i AAQAL 21
(4200 Gr)— (M—A1—Mor)A—m)| 1—7’ Ao — A1 ’
' ox ( Aot ) 1 . AAOM _q
P\or—r0d-m ’ ho—r1
AL+ Ax Ao
(4.21) = 1(1+ A%o) i MAor 21,
0— A1— AAoA1 A0 — A1

for = € (0, B] is a unique solution of the system (4:4)4.5).
_Let us now assume thatp < A3. In this case it follows that the function
f(y)= f(@r)with T =¢”/(1+ ¢”) solves the equation

N(A+e) 1 )f’(y) fOlyd+e)) —1]
er vy =1 y(y —1D(A+e)
(4.22)
f(Z)(l + ez) c(ho — Ap)e” ~
= (y <B)
1+ ey vz 14 ¢V

and satisfies (4.10), wher)e = Ao/(A0 — A1) <0, A’ = A(ho — A1) <0 and
=log[B/(1— B)]. It can be easily verified that the system (4.22Q%.10) has a
unique solution which is given by

/y V(V—l)f(z)e”zd
1+eB  Jooo y(l4e)—1

~ c(xo—m<_< Ly, [ TG @E) )
4.24 F = y=Ry 4 ~ ~ d
(4.24)  F Ay \° /—oo Az GOy

for y < B, whereA(y) andG(y) are defined in (4.13) and (4.15), respectively.
Using (4.23)+ (4.24':) and (4.13}% (4.15) we may therefore conclude that the
function f (r; B) = f(y) given by (4.16) with

c(ho— A1) ((1 - n)y—l T G(x)(1—x)7 2 dx)
A(@@m)n(1—m) T 0o AMXG(m)xY
for = € (0, B] is a unique solution of the system (4:4)4.5).

Taking into account the facts proved above, we are now ready to formulate the
main assertion of the section.

(4.23)  fo)=

’

(4.25) F(n)=—

THEOREM4.1. Suppose that the observed process X is given by (4.1). Then
in the Bayesian problem of quickest disorder detection (2.2) + (2.3) the value
function V (7) coincides with the function

(4.26) v*m:{f (m:By),  me(0,By),
1-m, 7 € [Bs, 1],
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[with V,(0) = f(O+; B,)] and the optimal stopping time z, is explicitly given
by (3.5),where f (;r; B) and the boundary B, are specified as follows:

() frxo>2r1andc > 1/r1 —1/ro— A, then f(r; B) is given by (4.16)+
(4.17)and B, = B=A/(A +¢).
(i) If Ao>Arandc=1/A1—1/0g— A, then f(r; B) is given by (4.16)+
(4.17)and B, = B = B = Aior1/ (Ao — A1).
(i) If 2o >Xx1and c <1/x1—1/Ao— A, then f(r; B) is given by (4.16)+
(4.17)and B, > B isaunigueroot of H(B,) = 0, where we set

B BC(x,B)G(x)
HB) = [ e

(iv) If Ao < A1, then f(z; B) = f(r) is given by (4.16)+ (4.25)and B, is
uniquely determined from the equation

(4.28) f'(By) =—1.

(4.27)

PROOF_ (i) and (ii) In these cases the conditions (3+6(3.7) are satisfied and
thusB < B. Hence, by Lemma 3.1 we get th&f coincides withB and, by means
of the uniqueness arguments for solutions of the first-order ordinary differential
equations, we may conclude tHat(r) = V() for all = € [0, 1].

(iii) In this case we have8 < B, and thus, according to Remark 3.4, we see
that the optimal boundar®, is located to the right oB. Taking an arbitraryB
from (E, 1), by means of the arguments above we obtain that the fun¢tion B)
from (4.16)+ (4.17) is a unique solution of the system (4.4)—(4.6)foz (B, B].
Observe that in the given case there exists a unique @iet(B, 1) such that
lim,, 5 f(; B) = oo for B € (B, B') U (B',1) and lim_ 5 f(; B') is finite.
Hence f (w; B) together withF (, B) from (4.17) can be uniquely extended to
the mtervaI(O B], where by I'H6pital’s rule, we may leF (B, B') = F(B=+, B)
and thusf’(B; B') = f'(B+; B') = —cA2/(ho— A1 — AAoh1). Then from (4.16)
(4.17) it follows thatB’ can be characterized by means #f{B’) = 0, where
H(B) is defined in (4.27). Sinc& (B+) = 40 and the derivativé!’(B) > 0 for
B € (B, B)andH'(B) < 0for B € ( B, 1), the functionH (B) increases onB, B )
and decreases diB, 1). Thus, by virtue of the property lighoo H(B) = —00, we
get thatB’ belongs to the intervalB, 1) and H (B’) = 0 has a unique solution.

Summarizing the facts proved above, we see that the value funétion and
the optimal boundarB,. should necessarily solve the system (4.4)—(4.6) and there
is only one pointB’ such that the solutiorf (; B') taken atr = B is finite. We
may therefore conclude thd&, coincides withB’ and the uniqueness argument
for solutions of first-order differential equations implies tiatr) = V () for all
7 € [0, 1], thus proving the claim.

(iv) Taking into account the fact that in this case the prog¢egscan increase
only continuously, following the arguments in [17], Chapter IV.4, and [10] we may



496 P. V. GAPEEV

guess that the smooth-fit condition (4.7) is satisfied and thus (4.28) holds. Using
straightforward calculations it is shown that (7)) < 0 for = € (0, 1); hence, the
function f () from (4.16)+ (4.25) is concave of0, 1] and its derivativef’ (i)
is decreasing on0, 1). Therefore, by virtue of the facts that (0+) = 0 and
f'(1-) = —oo, we may conclude that (4.28) admits a unique solution.

Let us now show that the functioV, () defined in (4.26} (4.16)+ (4.25)
coincides with the value functioW () and thatB, being a unique root of (4.28)
is an optimal stopping boundary. For this, applying 1t6’s formula, we get

t
(4.29) V() = V() + /0 (LV,) (ty_) ds + M7,
where the processV/;) defined by
* rree TTs— eXP(—A1x) .
M; _/o /o |:V*<ns_ exp(—i1x) + (L — 75_) exp(—,\ox)> V(75 }
(4.30)

x (¥ (ds, dx) — (ms_ exp(—A1x) + (1 — my_) exp(—rox)) ds dx)

is a martingale undeP,, with respect td~X.

Since V, () is a bounded function, from (4.30) by means of the optional
sampling theorem we get that, [M;] = 0 for all = from M (). Thus, taking
the expectation on both sides in (4.29) witlinstead of and using the fact that a
direct verification yieldgILV,) () > —cm andV,(x) < 1 — 7, we obtain

(4.31) Ve(m) < Ex [1—7‘[r ~|—c/of Ty a’t}

for all T from the classM (), and hence/, () < V (xr) for all = € [0, 1].

Observe that straightforward calculations above imply that the funétign)
and the boundar, solve the system (4.4)—(4.6); hence we haXgr,,) =
1— ., and(LV,)(m;) = —cm; forall 0 <t < 7. Therefore, taking the expectation
on both sides in (4.29) with replaced byr, and using the obvious fact that
belongs toM(r), we see that the equality in (4.31) is attainedrat t,. This
implies thatV, () = V(i) for all = € [0, 1] and thatB, is an optimal stopping
boundary. Thus the proof is complete.]

REMARK 4.2. We observe that in case (i) of Theorem 4.1 we can verify
that f'(B,—; B,) = —1 and in the case (iv) we have proved that (4.28) holds,
so that the smooth-fit condition (4.7) is satisfied. This can be explained by the
facts that the process;) may pass througB, continuously and that (4.4) has no
singularity point. On the other hand, in case (ii) it is shown tfaB,—; B,) =
—ck%/(ko — A1 — Aror1) > —1 and in case (iii) it can be also proved that the
smooth-fit condition (4.7) breaks down. This can be explained by means of the
facts that the procesa;) may pass througB. for the first time only by jumping
and that (4.4) has a singularity poiEt
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REMARK 4.3. We note that the functiofi(zr; B) for differentB < (0, 1) and
the functionV, (r) in cases (i)—(iv) look the same as in [10], Figures 2-5.

5. Solution of thevariational problem for acompound Poisson processwith
exponential jumps. Let us first note that ifr > 1 — =, then lettingt = 0 we get
P;[t <0]l=Py[0 >0l=1—nm <a andE,[T —6]T =0, whence it is seen that
7 =0 is optimal in the formulation (2.4} (2.5).

Assuming that O< « < 1 — 7 and following the arguments from [17],
pages 198-200, we further show that the solution of the variational problem
(2.4)+ (2.5) can be obtained using the solution of the Bayesian problem. For this,
let us introduce the function

(5.1) u(m; By) = Pyt < 6] (= Ex[1—7]).

To find an explicit expression for the functiaiir; B) in the case whehg > A1,
we observe that, by virtue of the strong Markov property, it should solve the system
(5.2) (Lu)(m; By=0 (0< 7w < B),

(5.3) u(x;B)=1—nx (B<m<1l).
By means of the same arguments as in the text that accompanies the formulas
(4.9)—(4.21), it is shown that the system (5425.3) admits the unique solution
y21D(x, B)(1—x) ( X )V d
X,

A+ Qo—Apx \1
1-B G(B)(l—B)V
Yy —DA@n(1—-7)G@)\ B
for r € (0, B), m # B, wherey = Ag/(Ao — A1) > 1, the functionsA(x) and
G(rr) are given by (4.18) and (4.20), respectively, and by I'HOpital’s rule, we can
let D(B, B) = D(B+, B) =0 as well ast(0; B) = u(0+; B).

It is not difficult to verify thatdu(z; B)/(@B) < 0 for B € (x,1), so that
the functionu(rr; B) is strictly decreasing orir, 1) for 0 < 7w < 1 — « fixed.
Therefore, by virtue of the obvious facts thatr; 0) =1 — 7 andu(r; 1) =0,
we may conclude that there exists a paiiitr) < 1 — « that is a unique solution
of the equation
(5.6) u(m; B(e)) =o.

Let us now formulate the main result of the section.

B
(5.4) u(rr;B):l—B—/

— X

(5.5) D(x, B) =

THEOREM5.1. Suppose that the observed process X is given by (4.1). Then
in the variational problem of quickest disorder detection (2.4)+ (2.5),the optimal
stopping time 7 is explicitly given by

(5.7) 7 =inf{r > 0|, > B(a)},
where the boundary B(«) <1 — « is specified as follows:
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() fO<a <1l—mandig> A1, then B(x) isauniqueroot of (5.6).
(i) fa>=1—moripg<Ais, then B(a)=1—a.

PrROOF (i) Let us consider the functioB. = B.(c) as an optimal boundary
in the corresponding Bayesian problem which is uniquely determined from parts
(h—(iii) of Theorem 4.1.. It can be easily shown tht(c) is continuous and strictly
decreasing on0, oo), and it satisfies lim g B.(c) = 1 and lim.yo By (c) =0.
Then there exists a constanta) such thatB(a) = B.(c(«x)) and by the
definition (2.2), we have

(5.8)  Py[f <0]+c(@)Ex[f — 01T < Py[t < 0]+ c(a)Ex[t — 01"

for all stopping times. Since from (5.6) together with (5.1) and (3.5) it is seen
that P, [t < 6] = «, we may thus conclude that (5.8) directly yields

(5.9) c(@)Ex[t — 01T <c(a)Ex[t —0]"

for all T from M (r, o). Therefore, by virtue of the obvious fact thatr) > O for
0 <o <1—m, we obtain that from (5.7) is optimal in (2.5).

(i) Since whenevehg < A1, the processr;) can increase only continuously,
we getthafrm; > B(«a)} = {m; = B(«)}, and from (5.1) it thus follows that in this
case we hava(r; B) = 1— B. Hence, from (5.6) it is seen th&(«) = 1 — «,
and the arguments from the previous part (i) complete the pra@of.

Acknowledgments. | am grateful to A. N. Shiryaev and G. Peskir for the
statement of the problem and for many helpful discussions. | am thankful to the
Editor for the encouragement to prepare the revised version, and am obliged to an
Associate Editor and a referee for many useful suggestions which are incorporated
into the final version of the paper.

REFERENCES

[1] BARNDORFFNIELSEN, O. E. (1995). Normal inverse Gaussian processes and the modelling
of stock returns. Research Report 300, Dept. Theoretical Statistics, Aarhus Univ.

[2] BERRY, D. A. and RRISTEDT, B. (1985).Bandit Problems: Sequential Allocation of Experi-
ments. Chapman and Hall, London.

[3] CARLSTEIN, E., MULLER, H.-G. and $EGMUND, D., eds. (1994)Change-Point Problems.
IMS, Hayward, CA.

[4] Davis, M. H. A. (1976). A note on the Poisson disorder probléBanach Center Publ. 1
65-72.

[5] DYNKIN, E. B. (1963). The optimum choice of the instant for stopping a Markov process.
Soviet Math. Dokl. 4 627—629.

[6] GAL'cHUK,L.I.and Rozovskil, B. L. (1971). The “disorder” problem for a Poisson process.
Theory Probab. Appl. 16 712—-716.

[7] Jacob, J. and ®IRYAEV, A. N. (1987).Limit Theorems for Sochastic Processes. Springer,
Berlin.

[8] KoLMoGOROV, A. N., PROKHOROV, YU. V. and SHIRYAEV, A. N. (1990). Methods of
detecting spontaneously occurring effe€@soc. Seklov Inst. Math. 1 1-21.



(9]

[10]

[11]

[12]
[13]

[14]
[15]
[16]

[17]
[18]

ON THE DISORDER PROBLEM 499

MoORDECKI, E. (1999). Optimal stopping for a diffusion with jumpSinance Sochastics 3
227-236.

PESKIR, G. and $IRYAEV, A. N. (2002). Solving the Poisson disorder problemAtivances
in Finance and Sochastics. Essays in Honour of Dieter Sondermann (K. Sandmann and
P. Schonbucher, eds.) 295-312. Springer, Berlin.

SaT0, K. I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ.
Press.

SHIRYAEV, A. N. (1961). The detection of spontaneous effeBtsiet Math. Dokl. 2 740—-743.

SHIRYAEV, A. N. (1961). The problem of the most rapid detection of a disturbance in a
stationary proces$oviet Math. Dokl. 2 795-799.

SHIRYAEV, A. N. (1963). On optimum methods in quickest detection probldim=ory Probab.
Appl. 8 22-46.

SHIRYAEV, A. N. (1965). Some exact formulas in a “disorder” probldreory Probab. Appl.
10 348-354.

SHIRYAEV, A. N. (1967). Two problems of sequential analy€igbernetics 3 63—69.

SHIRYAEV, A. N. (1978).0Optimal Stopping Rules. Springer, Berlin.

SHIRYAEV, A. N. (1999).Essentials of Stochastic Finance. World Scientific, Singapore.

RUSSIANACADEMY OF SCIENCES
INSTITUTE OF CONTROL SCIENCES
PROFSOYUZNAYASTREET 65
117997 Moscow

RussiA

E-MAIL : gapeev@cniica.ru



