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Convergence rates of Markov chains have been widely studied in recent
years. In particular, quantitativeounds on convergence rates have been
studied in various forms by Meyn and Tweedi@np. Appl. Probab.4
(1994) 981-1101], Rosenthal.[Amer. Statist. Asso€0 (1995) 558-566],
Roberts and TweedieSfochastic Process. Apf80 (1999) 211-229], Jones
and Hobert $tatist. Scil6 (2001) 312-334] and Fort [Ph.D. thesis (2001)
Univ. Paris VI]. In this paper, we extend a result of RosentldalAmer.
Statist. Assoc90 (1995) 558-566] that concerns auiative convergence
rates for time-homogeneous Markov chains. Our extension allows us to
consider f-total variation distance (instead of total variation) and time-
inhomogeneous Markov chains. We apply our results to simulated annealing.

1. Time-homogeneous case.

1.1. Introduction. Let P be a Markov transition kernel defined on a general
state space(X, B(X)). Denote by P¥ the correspondingc-step transition
kernel. Foré a probability measure o8 (X) and f a Borel function, define
EP(A) = [£(dy)P(y, A) andPf(x) = [ P(x,dy) f ().

For f:X — [1, o0), the f-total variation or f-norm of a signed measure
on B(X) is defined as

el f == sup [u(e)l.
lpI<f

When f = 1, the f-norm is the total variation norm, which is denotgd| Ty .

Our goal is to find explicit bounds on rates of convergencerf — &' P" to zero.

In the special case in whick has a stationary distributiom, this corresponds

to bounding the convergence 6" to 7. Our results extend and sharpen the

nonguantitative results developed, for example, by Meyn and Tweedie [(1993),

Chapters 15 and 16], where one typically finds conditions under which there exists

somerate functionr(n) such that (n)|| P"(x,-) — || — 0 asn — oo.
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The problem of getting explicit bounds dP” (x, -) — ||  has received much
attention in recent years, motivated by control of convergence for Markov chain
Monte Carlo and operation research problems [see, e.g., Jones and Hobert (2001)].
Most of the results available cover only total variation bound [see Rosenthal (1995)
and Roberts and Tweedie (1999)]. To the best of our knowledge, the only explicit
bound in f-total variation distance was given by Meyn and Tweedie [(1994),
Theorem 2.3]. This bound is based on the Nummelin splitting construction and
depends in a very intricate way on the constants of the kernel. In this section, we
use a different approach, basedomupling We obtain a bound (Theorem 2) which
is simple, very generally applicable and, although not tight, does improve on the
work of Meyn and Tweedie [(1994), Theorem 2.3].

1.2. Assumptions and lemmaleta A b = min(a, b) anda v b = maxa, b).
To use the coupling construction, we first need a set where coupling may occur.
We make the following assumption:

(A1) There exist a sef C X x X, a constant > 0 and a family of probability
measures$v, ,, (x, x") € C} on X with

1) P(x,A)AP(x',A)>evev(A)  VAeB(X), (x,x)eC.

Following Bickel and Ritov (2001), we calC a (1,¢)-coupling set For
simplicity, only one-step minorization is considered in this paper. Adaptations
to m-step minorization can be carried out as in Rosenthal (1995). We note that
condition (1) is in many cases satisfied by settihe= C x C, whereC is a so-
calledpseudo-smabet. Recall that a subs€tc X is (1, ¢)-pseudo-smaif there
exist a constant > 0 and a family of probability measufe, ', (x,x") € C x C}
with P(x,-) A P(x',-) > ev, »(-) for all (x,x") € C x C [see Roberts and
Rosenthal (2001)]. We stress th@is a subset ofX and that, despite the obvious
similarity, a (1, ¢)-pseudo-small set is not €&, ¢)-coupling set. Recall finally
that a setC is (1, ¢)-small if it is (1, £)-pseudo-small with the same minorizing
probability measure = v, for all (x, x") € C x C. The primary motivation for
using(1, e)-coupling set is that the usual pairwise coupling argument can be used
without change and that, in some cases detailed bélow)-coupling sets can be
significantly larger than the product ¢f, ¢)-pseudo-small sets.

To introduce the coupling construction, some additional definitions are required.
Let R be a Markov transition kernel that satisfies, for @il x’) € C and all
A € B(X),

o) Rx,x'; Ax X)=(1—¢e)"Y(P(x, A) — ev, (A)),
2
R(x,x; X x A) =1 —¢&) Y (P, A) — svy (A)).
For example, we can set, far, x') € C,
R(x,x'; Ax A)=(1—¢&) Y (P(x, A) — ev, 1/(A)))

x (L=2&) NP/, A") — ey 11 (A)),
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but other trickier constructions may also be considered. Simil_arly,PIelbe
a Markov transition kernel onX x X such that, for(x,x’) € C and all
A, A" e B(X),

(3) P(x,x'; Ax A)=1—-e)R(x,x"; Ax A') +ev, v(ANA),
and satisfies, fofx, x’) ¢ C and allA € B(X),
(4) Px,x; AxX)=P(x,A) and P(x,x; X x A)= P, A).

For example, we can once again set, for,x’) ¢ C, P(x,x; A x A') =
P(x, A)P(x’, A), to get thatP satisfies (4) for allx, x") € X x X.

Define the product spaceg = X x X x {0,1} and the associated product
sigma algebraB(z). We define on the spac&”, 8(z2)®N) a Markov chain
(Z, := (Xn, X,,,dn),n > 0). Indeed, giverZ,, we constructZ, 1 as follows. If
d, =1,thendrawX,,, 1 ~ P(X,, -), and seIX;Hrl =X,y1andd,1=1.1fd, =0
and (X,, X) € C, flip a coin with probability of heads. If the coin comes up
heads, then draw fromvy, x: (-),and seX,+1 = X;l+1 = X andd,,+1 = 1. Ifthe
coin comes up tails, then drai,, 1.1, X}, , ;) from the residual kernat(X,, X.; -)
and setl, 11 =0. If d, =0 and(X,, X}) ¢ C, then dram(X,,41, X, ;) according
to the kernelP(X,,, X); ) and setd, .1 = 0. Hered,, is called abell variable
it indicates whether the chains have coupléd=€ 1) or not ¢, = 0) by timen.

For u a probability measure o(Z), denote byP, the probability measure
induced on(ZY, 8(2)®Y) by the Markov chainZ,, n > 0) with initial distribu-
tion . The corresponding expectation operator is denotelfl byt is then easily
checked thatX,,n > 0) and(X,, n > 0) are each marginally updated according
to the transition kerneP; that is, for anyn, for any initial distributionst andg’,
and for anyA, A’ € B(X),

Pegewsn(Zn € A x X x {0,1}) =& P"(A),

(5)
Peoews(Zn € X% x A" x {0,1}) =&'P" (A,

where §, is the Dirac measure centered enand ® is the tensor product of
measures. Define thmoupling timeT = inf{k > 1; d; = 1} (with the convention
inf @ = 00). Let P* be the Markov kernel defined, for alt, x’) € X x X and all
A e B(X x X), by

P(x,x"; A), if (x,x")¢C,

6 P*(x,x; A)=1 _ i
©) ( ) R(x,x"; A), if (x,x")eC.

For 1. a probability measure o% x X, denote byP), andEj, the probability and
the expectation induced by the Markov chainXin X with initial distribution
and transition kerneP*.
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LEMMA 1. AssumegAl). Then for any n > 0 and any nonnegative Borel
functiong : (X x X)"t1 — R, we have

Bz sol® (Xo, ..., Xu)Udp = 0} =Ef g {d(Xo, ..., X)) (L — &)1},
whereX; := (X;, X]), N; :=¥;_o1a(X;) andN_; :=0.
PrROOF We first verify that the result holds for all functioggx, ..., x,) =
[T7_q ¥i(xi), wherex; := (x;, x]) and(y;, i > 0) are nonnegative Borel functions

on B(X x X). The proof is by induction. For = 0, the result is obvious. Assume
that the result holds up to order— 1 for somen > 1. We have

Eeoerosld (Xo, - ... Xn)1(d, = 0)}

n—1
= E5®5/®50[ 1_[ Vi ()_(l)lc_‘(()_(n—l)v/n (}_(n)l(dn = O)}
i=0

n—1
+ Eé@é’mo{ [ vi(Xd1le(Xn—D)¥n(Xn)1(dy =0) }
i=0
whereC¢ := X\C. Defineg, = o (Z; = (X;,d;),0<i < k). Note that, fom > 1,
E{¥n (X)) 1(dy = 0)|Gn—1}15c (Xn—1)1(dy—1 = 0)
= Py, (Xy—1)1pc (Xn—1)L(dy—1=0).

Since N,_21zc(Xy-1) = Nyp—1lee(Xy—1) and P(x,x’;-) = P*(x,x';-) for
(x,x") ¢ C, we have, under the induction assumption,

n—1
Es®s’®ao{ [T v (X)1ae(Xn)¥n (X)) L(dy = 0)}

i=0

n—1
= Ems’@so{ [Tvi(X1lee(Xn-1) P¥n(Xn-1)1(dy-1= 0>}
i=0

n—1
= Eé‘@s/{ [T vi(X)Lee (X Py (X (1 — e)N“}
i=0

=Eige { [Tvi (XDl (Xu-@— )Nt }
i=0
Similarly, note that
E{1(dy = 0¥n (X)|Gn-1}15(Xn—1)L(dy—1 = 0)
= (1—&)RY(Xp—1)1(dy—1=0).
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Since(Ny—2+1)15(X,-1) = Ny—11a(X,—1) andR(x, x'; -) = P*(x, x’; -) for all
(x, x") € C, the induction assumption implies

n—1
Ems/@ao{ [vi(X1le(Xu—D) V(X)) 1y = 0>}

i=0

n—1
=(1- E)E%‘@E/@So[ []vi(X)16(Xn—1) R (Xp—1)1(dp-1= 0)}
i=0
(8) -
= Eg@é'{ [T ¥ (R 16 (K1) P* (X1 (L — e)N"l}
i=0
= E;@SI { 1_[ lp‘l. (Xl)lc_v()_(n_l)(l — S)Nn—l } .
i=0
Thus, the two measures @(X x X)®+D defined, respectively, by
A ES@S/@BO{]-A(XO, ..., X)1(d, =0} and
A Efgella(Xo, ..., X,)(1— g)Nn-1y

are equalonthe monotoneclads={A:A=Agx---x A,, A; € B(X x X)}and
thus these two measures coincide on the product sigma algebra, which concludes
the proof. O

1.3. Main time-homogeneous resultLet f: X — [1, co] and let¢: X — R
be any Borel function such that sy [¢ (x)|/f (x) < co. Using (5), the classical
coupling inequality [see, e.g., Thoriss@000), Chapter 2, Section 3] implies that

EP"$ — &' P"¢| = [Egaeasnid (Xn) — (X))}
= |Eewerasol (#(Xn) — ¢(X;))1(d, = 0)}|
< <fell£|¢(X)I/f(X)>Es®s/®so{(f(Xn) + FOX) Ay = 0)).
By Lemma 1,
Esesr@sol (f (Xn) + [(X;))1dn = 0} = Ef g [ (f (Xo) + f (X)) (L = )V},

Thus, the following key coupling inequality holds:
EP"¢ — &' P" |
©)
< <SU£I¢(X)|/f(x)>E§®5/{( F) 4+ FED)A - eyet)

To bound the term on the right-hand side of (9), we needfiti condition
outsideC for the kernelP*:
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(A2) There exist a functionV : X x X — [1,00) and constant$ and A,
0 < X <1, such that

(10) P*V <AV +bls.

THEOREM 2. Assume(Al) and (A2). Let f:X — [1,00) be a function
which satisfiesf (x) + f(x’) <2V (x,x’) for all (x,x") € X x X. Then for all
j €{1,...,n+ 1} and for all initial probability measure§ and&’ on X;,

(11) [EP" —&'P"|lrv <2(1—&)/1(j <n)+ 2."B/"HE @ &')(V),
12 IEP" —&' Py <2(1— )/ (bA— )T+ A" (E @EN(V))1(j <n)
+2" BT EQENV),

where

B=1v ((1 —e)r"t sup RV(x,x/)).
(x,x’)eC_'

PROOF Foranyj e {l,...,n+ 1}, we have
Efged (f Xn) + £ (X)) (1 — &)1}
(13) <Efgel (f Xn) + f(X))) A= &)V 1UN, 1 > j))
+ 2B e {V (X)) (L — )M 10N, -1 < )}
Consider the first term on the right-hand side of (13). We have
Efgel (f (Xn) + (X)) L= &)V 1UN, 1 = )]
< (=) Bl ge {(f(Xn) + (X))}

If f=1, thenEg‘@g/{(f(Xn) + f(X)))} = 2. Otherwise, by repeated application
of the drift condition (A2), we have

(14)

n—1
(PY'V <P IV +b<A"V4b Y A <AV 4b/1- ).
k=0

Sincef(x) + f(x') <2V (x,x’), we get
Efe{(f(Xn) + F(X))} < 2EfgedV(Xn)} S 20" (E @ E)(V) +2b/(1—1).
Consider the second term on the right-hand side of (13). Denotexfd,
My := 2" B~ N1V (X)) (1 — e)Ns-1,
We show thatM;, s > 0) is an(F, ]P’§®§/) supermartingale, wherg := (¥; :=
o(X;,i <s),s > 0). The definition ofN, and the drift condition (A2) imply
16_‘6‘()_(S)NS = 160()_(S)NS—1 and 1CC(XS)P*‘_/()_(S) = 16_'0()_(5‘))\"7()_(5')'
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Thus, we have
E* (M 11| F}Lee (Xs)
(15) =2~ CTDB=Ne p*V (X)) (1 — )M L (Xy)
= A= 6HD p=N1 pry (X ) (1 — )N 115. (X)) < MLac(X).

By definition, sup, ,,.& RV(x,x’) < A1 — &)~1B. Since by construction
1-P*V =1zRV, we have

E*{V (Xs11)|Fs}1a(Xs) = RV(X)1a(Xs) <A1 — &) TB1a(X)).
Sincelz(X,)Ns = 15(X,)(Ny—1 + 1), we have

E*{M,41]Fs}16(X,)
(16) 3 _

<) 76TV BTIp™Ne-1(1 — g)No-1t 3 (1 — )T B1A (X)) < M15(Xy).

Equations (15) and (16) show th@¥, s > 0) is an(¥, ]P’§®g/) supermartingale.
By the optional stopping theorerﬁ;‘@)g,{Mn} < E}‘@g/{Mo}- SinceB > 1, we have
1(N,_1 < j) < BI=1B~Ne-1 which implies

Efged V(Xn) (1 — )M 11N, 1 < j)}
(17) <V'BI T B (VT BTNV (X)) (L - £) V1)
< MBI E g (M) <WBTTE @ E/(V).
By combining (14) and (17) fof =1, we have
Efged (f Xn) + £ (X)) (1 — &)1}
<2(1-e)1(j <nm) +22"B/ @& (V)

and (11) follows from (9). Similarly, forf such thatf (x) + f(x') < 2V (x, x’),
we have

Efge {(f (Xn) + f(X})) (1 — &)1
<21-e)/(M"E®ENV)+b/(L—1)+22"B "l @&/ (V)
and (12) follows from (9). O

1.4. Application to convergence to stationarityif P has a stationary distribu-
tionx, (i.e., if r P = ), then we can choosg = n. Thenz P" = & for all n and,
hence, the results (11) and (12) allow us to bo{p#t” — 7 ||tv and||§ P" — x| 7,
respectively.

To compare our result with Meyn and Tweedie (1994), Rosenthal (1995) and
Roberts and Tweedie (1999), we now derive from the explicit expressions of the
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bounds provided in Theorem 2 the rate of convergence for the total variation dis-
tance or thef-norm, that is, we find a bound for limspp ., »~tlog || P"(x, -) —

7| r. We follow the approach originally taken by Rosenthal (1995), but we adapt
the results to the expression of the bound given in Theorem 2.

PROPOSITION 3. AssumeAl) and (A2), and thatr P = . Let f: X —
[1, 00) be a function that satisfieg(x) + f(x") < 2V (x,x’) for all (x,x’) €
X x X.Thenforall x € X,

limsupn~tlog || P" (x,-) — 7|l s

—log(A) log(l — ¢) i M —¢
log((M —&)/A) —log(1—¢)’ AT

(18)

log(n), if M
whereM :=sup, ¢ PV (x,x)).
PROOF. By definition of P [see (3)], for all(x, x") € C we have
(1—e)RV(x,x')+e / Ve @V (y,y) =PV (x,x") > (1—e)RV(x,x') +e,
where we have used th&t> 1. Thus
M—c¢

sup RV(x,x') < T

(x,x")eC -

which implies

(1—¢&) sup RV(x,x)At<M—e)r2
(x,x")eC

Assuming first(M — s)rl > 1, the bounds for total variation anfdnorm can be
expressed foy € {1, ..., n},

1P (x, ) — iy < 21— &) + 2277+ — g)i 1 / V (e, Xy (dx),

2b(1—¢)/

1P ) =mlly = ——
+ 2)»"((1 _ 8)j + k_j+1(M _ 8)1_1) / V(x, x/)rr(dx/).

The result follows by choosing

- —log(n
1= Log((M —¢)/2) —log(1 — e)J'
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When(M — )2~ <1, we putj =n + 1in (11) and (12), showing that

J6P" —&' Py =22° [ V(. x)m(@x) and

e & Pl p =287 [ Vi x)m @),

The result follows. O

REMARK 1. The bounds we find in this paper for tfigotal variation distance
are the same as those found for the total variation distance by Roberts and Tweedie
[(1999), Theorem 2.3].

In some applications, the minorization and drift conditions (A1) and (A2)
are more naturally expressed in terms of the kerPeland it is thus required
to derive the bivariate drift and minorization conditions from the corresponding
single variate conditions [Rosenthal (1995), Theorem 12, and Roberts and
Tweedie (1999), Section 5]. The crucial point here is to relate the bivariate
drift condition (A2) to single variate drift condition. We essentially follow to
Rosenthal’s [(1995), Theorem 12] argument, which allows us to construct such
a drift functionV from univariate test functions [see Roberts and Tweedie (1999),
Theorem 5.2, for a refinement of this result].

Consider the following assumption:

(S) There exist a functioW and a constant such that:

e The level setC ={x € X:V(x) <c} is (1, ¢)-small; that is,P(x, ) >
ev(-) for all x € C for somee > 0 and some probability measure

e There existAi, < 1 andb. < oo such thatPV < A.V + b.1¢ and
Ae+b:/(1+c¢) < 1.

Under (S),C ={(x,x"); V(x) <¢, V(x') < c}is a(l, e)-coupling set, that is,
for all (x,x) e C and allA € B(X), P(x, A) A P(x', A) > ev(A). Define the
univariate residual kernét as

(19) R(x,A)=1—e)Y(P(x,A) —sv(A)) VxeC,VAcB(X).

To apply Theorem 1, we need to define the keriel® and P*. Because the drift
condition is expressed on the univariate kerRglve define bottR and P from the
corresponding univariate kernetsand P. More precisely, for ald, A" € 8(X),
define

(20) R(x,x';Ax A):=R(x, A)R(X',A)) if (x,x")eC,
(21) P(x,x; Ax A):=Px, AP, A) if (x,x')¢C.
These kernels satisfy (2) and (4).
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PROPOSITION4. AssumgS). Then (A1) is satisfied withC = C x C and
v =v forall (x,x’) € C x C. Define P* as in (6) with R and P given in
(20)and (21). Then(A2) is satisfied withV (x, x") = (1/2)(V (x) + V (x')) for all
(x,x") € X x X with

e  cbe be —
h=he+b/(L+c) and b={c£ ¢ }v0+ £

1—¢ 1+4c 1—¢°

PROOF  The proof follows from Roberts and Tweedie [(1999), Theorem 5.2].
Since, for(x,x") ¢ C, (1+c¢)/2 < V(x,x"), we have

P*‘_/( / 7 / & bC 7 / /
X, x)<AV(x,x)+ > < k6+1+c Vix,x") Vx,x)¢CxC

and, for(x,x") e C x C,

(7 / 1 /
P*V(x,x") = E(RV(x) + RV (x))

=50 (PV(x)+ PV(x') —2ev(V))

A - b, — _
¢ Vrx)+ T8 <AV (e, X)) + b,

1-¢9) 1-¢

where we have used that, for, x') € C, V (x, x) < c. The proof follows. [

=<

Under (S), we may thus apply Theorem 2 wifh=V which yields explicit
bounds for the total variation and tHé-norm, under the assumptions used by
Rosenthal (1995) and Roberts and Tweedie (1999) to obtain bounds for the total
variation distance [see also Rosenthal (2002)]. It is worthwhile to note that (see
the discussion above) the rate of convergendé-imorm is thesameas the rate of
convergence in total variation.

REMARK 2. It may be checked that if the set§ < d} are 1-small for all
d > ¢, then assumption (S) is always satisfied for large enalgiee Roberts and
Tweedie (1999), discussion following Theorem 5.2].

We summarize the discussion above in the following theorem.

THEOREM 5. AssumdS).Thenforall j € {1,...,n + 1} and for all initial
probability measures and&’ on X,

IEP" — &' PMlTv < 2(1— &)/ 1(j <n) + A"BI 7L E(V) +E/(V)),
IEP" — &' Py <2(1— &)/ (b(1— 1)L+ A" (E(V) +E'(V))/2)1(j <n)
+A"BI Y E(V) + E/(V)),
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wherex = A, + b./(1+ ¢) and

B=1v ((1 —e)xt SupRV(x)).

xeC

1.5. Example. We conclude this section with a simple example that shows
a situation where we can exploit the additional degree of flexibility brought by
(1, £)-coupling sets. Consider the Markov chainkf defined fork € Z* by

Xie+1=8(X) + Zg,
where:
1. g is a Lipshitz function oveR¢ for some norm| - || with Lipshitz constant

lg(x) — gl
lglltip= sup —————<1;
(x,y)ERdx]Rd ”x - y”
XF£y

2. (Zx,k = 0) is a sequence of independent and identically distributed random
vectors with density w.r.t. Lebesgue measure &4. In addition,q is positive
and continuous.

It is known [see, e.g., Doukhan and Ghindes (1980)] that under these assumptions
the Markov chain is positive recurrent and thus has a unique invariant distribution.
Define for§ > 0,

(22) C8):={(x,x) e R x R : ||x — x| < &).

Usinga Ab = (1/2)((a+b) —|a — b)), it is easily shown that for allx, x") € C(8)
and allA € B(RY),

P(x, A) A P(x', A)
>1 fA (a(z — g@) +a(z — 8&N) — gz — g(0) — q(z — g@)) dz
and thusP (x, A) A P(x, A) > (8)vy »(A) with
b = [ (g = @) +4(z - g)
A

~laz—g() —q(z — gx))]) dz
@3) B
< (2= [lae - g —ale— g az)

e@=1-3 sup [lg(z— () —g(x")) —q(@|dz.
(x,x")eC(d)
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Note that for all(x, x") € C(8), [|g(x) — gl < llgllLip lx — "Il < l|gllLip8. Since
the functioru — [ |¢(z —u) —q(z)| dz is continuous ang is everywhere positive,
for all § > 0, the setC(8) is a(1, £(8))-coupling set.

Lets > 0. Forall(x,x’) e RY x R¢ and allA, A’ € B(R?), defineP by

Plr.x; Ax A) = / 14(f @) +2) 10 (f () +2)q(2) dz

and let, for(x, x') € C(§),
Rs(r,x'; Ax A)=(1—e(8) H(P(x,x"; Ax A) — e()vy (AN A)).

It is easily checked thaRs and P satisfy (2) and (4), respectively. Finally,
definePys as in (6).

We now determine an explicit bound for the total variation distance. Put
V(x,x") =1+ ||x — x'||. Note that for all(x, x’) € R? x R?,

PV (x,x) =1+1g(x) — g0l < 1+ liglluip lx — x|

Choosex such that|g|lLip < 2 < 1. By construction, for all(x,x’) ¢ C(®),
we have |lx — x’|| > 8. Hence, for anys > (1 — 1)/(A — lgllLp) and all

(x,x") ¢ C(0,8), we have
L+ llgliiplly = x'Il = A1+ llx = XD + (1= 2 = (A = ligllLip) lx — xIl)
=AQ+lx =2+ (1 =2 = = lglLip)d)
<A+ lx = x|).
It remains to prove that syp, ¢ RV (x, x') < oo. Note that

sup RV (x.x)< SUR, xhecs) PV (. x') — () < 1+ IgllLipd — 8(8).
(. NeCE) 1—2(8) 1—e(5)
Summarizing our findings, for any with | gllLip <A <1 and anys > (1 — 1)/
(A —lIgllip), (A1) is satisfied withe := £(5) and (A2) is satisfied With/ (x, x') =
1+ |lx — x’|l. We may thus apply Theorem 2 to obtain a total variation distance
bound as follows. [Note that with this choice of bivariate drift functiornve may

only compute total variation bound; the conditigx) + f(x) <2(1+ [|lx —x'|))
indeed implies thay < 1.]

PROPOSITIONG. For all A such that|g|lip < <1, forall 6§ > (1— 1)/
(A = ligllLip), forall j € {1,...,n 4+ 1} and for all initial probability measures
£ and&¢’ on X,

IEP" — &P |7y
<2(1-e@)/ 16 = +287 1+ [ [ e@ng @ -1).
wheres(8) is defined in(23) and
B=1v A Y1+ lgliips —e@®)}.
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2. Time-inhomogeneous case. We now proceed to extend Theorem 2 to
time-inhomogeneous chains. Specifically, we consider a fagily k > 1) of
Markov transition kernels. That is, we allow(x, A) to depend not only on
the starting pointc and the target subset, but also on the time parameter
For example, this would be the case for simulated annealing and hidden Markov
models; a specific example is discussed in Section 3.

2.1. Assumptions and lemmaThe assumptions and notations parallel those
from the time-homogeneous case. We first assume the following minorization
condition.

(NS1) There exist a sequen¢€y, k > 1) of subsets ofX x X, C;y C X x X,
a sequencéei, k > 1), g > 0, and a family of probability measures
(Vkx.x'» (x,x") € Ck, k > 1) such that

Pr(x, ) A Pr(x’, ) > e ().

Let (P, k > 1) be a family of transitions kernels that satisfy, foriglthe analog
of (4) with P = P, and let(Ry, k > 0) be a family of transition kernels that verify,
for all k, the analog of (2) withP? = Py, v, o = v, &€ = & and C = Cy.
The proof is based on straightforward adaptation of the coupling construction
used in the homogeneous case. kor O, if (X,, X)) € Cny1 andd, =0,
flip a coin with pobability of success, 1. If the coin comes up heads, then
draw X, +1 fromv, 1 x, x; and setX,,+1 = X, , andd, 11 = 1. Otherwise, draw
(Xnt1, X, 1) from Ryia(X,, X,;-) and setd, 11 = 0. If (X, X},) ¢ C,41 and
d, =0, then draw(X,. 41, X}, , ;) from P, 11(X,, X,; -) and setd, 11 = 0. Finally,
define( P}, k > 0) to be the family of transition kernels defined as the analog of (6).
For 1« a probability measure o x X, denoteP;, andE), the probability and the
expectation induced by the Markov chain with initial distributiprand transition
kernels(P;’, k > 0).

LEMMA 7. Assume(NS1) and let f: X — [1, +00). For any probability
measureg, £ on B(X), foranyn > 1,

IEPL- - Py —&"Pr--- Pylly
(24)

n

<Efge) (f X0 + FX)) [TA = eile, (Ximn) ¢
i=1

whereX; = (X;, X}).

The proof can be adapted from Lemma 1 and (9). We also assume the following
drift condition:
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(NS2) There exist a family of functiond/ }x=0, Vi : X x X — [1, 00), and two
sequencebi;, k> 0), 0< 1, <1forallk > 1and(bg, k > 0), such that
(25) Pk*+l‘_/k+l <M Vi + bklék+1 Vk>0.
Defineforj € {1, ..., k},

J

A—-9)jk :_ k1< <k U —¢y) and Bjj:= <k1< <k -« 1_[ By,,
where, for any integet,
(26) By =1v ((1 — 8k)< sup_ Rk‘_/k(x, x/))}‘k_—ll)
(x,x")eCy

By convention, we seBg ; = 1 for all k.

2.2. Main time-inhomogeneous resultWe can now state our main result, as
follows.

THEOREM 8. AssumgNS1)and (NS2).Let (f;,k > 0) be a family of func-
tions such thatfor all k > 0, fi (x) + fi(x") < 2Vi(x, x") forall (x,x) € X x X.
Thenforall j € {1,...,n+ 1} and for all initial probability measure§ andé&’,

|EPL-- Py — &' P1--- PyllTv

(27) n—1
<2(1—e)j,1(j <n)+ 2(1‘[ xs) Bj_1.,( ® ) (Vo),
s=0
|EPL-- Py — & Pr--- Pylly,
(28) -
<2(1—¢); . Dy1(j <n)+ 2(1‘[ m)B,-_l,n(s ® &) (Vo),
s=0

where D, = ([T/Zg M)€ ® &' (Vo) + L1 5(IT/=;,1 A)b; with the convention
[1/_; & = 1wheni > j.

PrROOF The proof is along the same lines as for the time-homogeneous case.
DenoteN; = Z];:o 1¢,,,(Xj. X}). Foranyj € {1,....n+ 1}, we have

E%‘@s/{(fn X)) + (X)) [ - eile, o?l-_l))}
i=1
< (1—8)j B ge{ (fu(Xn) + fu(X;))}1( < n)

+ 28 g { Va(Xn) [T(1 = &ilg, (Xim1))L(Np—1 < j)},
i=1
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where we have used thBl'_; (1 — ;15 (Xi—1))1(Ny—1> j) < (1—¢)j .. When
fa=1,

E;(gg/{(fn(xn) + fn(Xy/l))} =2.
Otherwise,
Efpe{ (fu(Xn) + fu(X)))} < 2B g (Vi (X))} < 2D,
Now, since by definitionB; > 1 [see (26)], we havé8; , < B/, forall0 < j <
j'<nand
ANpo1 < j = D(Bjo1n) " < (By,n)
which implies that

Egﬂ@g,{vno?n) [T eilg, (X )Ny 1 < )
(29) =

n—1
= (H )\j>Bj—1,nE§®g/{Mn},
Jj=0

where, fors > 0,

N

-1 -1 K
—1 - _
I x,~> (B, 1) [T —e)le, (X)) Vs(Xs. X0).
j=0 j=1 '
As above(M;, s > 0) is an(F, ]P’§®$/) supermartingale w.r.t., whetg := { ¥ :=

o(X;,0< j <s),s > 0}, which concludes the proof.C]

(30) M, := (

3. Application to simulated annealing. In this section, we apply the results
above to study the convergence of the simulated annealing (SA) algorithm for
continuous global optimization [see Locatelli (2001, 2002), Fouskakis and Draper
(2001), Andrieu, Breyer and Doucet (2001) and the references therein].

3.1. Assumptions. Let f be a function defined oR, and letM be the set of
global minima off (to keep the discussion simple, multidimensional versions are
not considered here). We make the following assumptions:

(SAO0) the functionf is twice continuously differentiable and there exist 0,
x1 € R, such that, for alh > x > x1,

(31) SO)—f&x) = aly —x)
and similarly, for ally < x < —x1,

(32) fO) — fx)=alx—y).
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(SAl1) Foreach € M, we havef”(x) > 0.

Under (SA0) M C [—x1, x1], that is, the set of global minima gf is contained
in the interval[—x1, x1]. Assumption (SA1l) implies that the global minima are
isolated and thus, that the sat is finite. Assumption (SAO) implies that for
all y >0, [exp(—yf (»)u0(dy) < oo, where"®® is the Lebesgue measure
overR.

Consider acandidate transition kernglQ(x, A), x € R, A € B(R), which
generates potential transitions for a discrete time Markov chain evolvirg.on
We focus on the case where the candidate points are proposed from a ran-
dom walk with increment distribution that has a densitywith respect to
neP: 0 (x, A) = [, q(y — x)u-eP(dy), A € B(R). In addition, make the follow-
ing assumption:

(SA2) The proposal density is continuous and strictly positive and symmetric:
q(y) > 0andg(y) =q(—y).

3.2. The random walk Metropolis—Hastings algorithmlThe random walk
Metropolis—Hastings (RWMH) algorithm corresponds to the Hastings—Metropolis
algorithm introduced by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(1953) and Hastings (1970). It proceeds as follows to sample from the (unnor-
malized) distribution exp-y f (x)) ' €(dx) for y > 0. (For RWMH, the “inverse
temperature” parameter is held constant. We see later that with simulated an-
nealing, by contrast; is modified at each iteration of the algorithm.)

Given the current state, a candidate new stateis chosen according to the
law Q(x, -). This candidate is then accepted with probability, (x, y), where

ay(x,y) =1A (exp(—y (f(y) — f(x)))).
The RWMH kernel is thus given by
K, (x, A) = fA oy (x, Y)a (y — V) ut(dy)

(33)
+8,(A) f (1=, (. 0)g(y — 0 Pdy),  AeBR).

It then follows thatr,, (-) is a stationary distribution fok,,, where
Ja €XP(—yf ()t (dx)
Jrexp(—y f (x))uteP(dx)

The RWMH algorithm oriR was extensively studied by Mengersen and Tweedie
(1996), who showed that the transition kernglsarer,, -irreducible (Lemma 1.1)
and that all the compact sets are small (Lemma 1.2).

7, (A) = VAeBM®).
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LEMMA 9. AssuméSA0)—(SA2).Thenfor every compact subs€tof R such
that £-®2(C) > 0, we have for allx € C, K, (x, A) > &, v, (A) with

ALebANnC)

i - b .

(34) gy 1=¢e vdlebcy and v(A):= TaLeb(C)

where

(35) d:=supf(x)—inf f(x) and e:= inf g(y—x)>0.
xeC xeC (x,y)eCxC

PrRoor Forallx e C,

Ky(x,A) > / (e VDTN A1) (y — ) P(dy) = ee 7 APA N ).
ANC

O

To apply Theorem 8, we need to find drift functions that satisfy drift conditions
outside the compact sets & The existence of drift functions for the RWMH
algorithm was shown by Mengersen and Tweedie [(1996), Theorem 3.2]. The
proposition below relaxes some of the assumptions required in their result, and
shows that the same drift function can be taken for all the Markov keglfor
large enougly. For O< s <y, let Vy(x) := /™ and

_ v/s _ (y—s)/s
(36) r(y,s>:=1—(y “‘) +(V “‘) .
Y Y

PROPOSITION 10. AssumeSA0)—-(SA2).Then for all 8 such thatl/2 <
B < 1,there existc < oo, y > 0 ands > 0 such that

(i) (K, Vi(x)/(Vy(x)) <r(y,s)forall x e Randy > 0;
(i) (KyVs(x)/(Vs(x)) < pforall |x| >xandy > y.

PROOF By (33) and using tha¥,(y) = /™), we have, fory > s > 0,
K,Vi(x) _ _
37) By Vs / 0ys (e TOIFON g (y — 3) Dy,
Vs(x)

wheregp, (1) :=u=*w” A1)+ 1— (u” A1). We easily check that, for all > 0,

_ 1/s
(38) (Py,s(bi) =< (py,s|:<%) :| = r(y, S),

which proves the first assertion of the proposition. Now, for any0, we prove
that there exists somesuch that

. K, V,(x) 1
lim sup—2X—=-— < )
U AT I
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The proof of the corresponding inequality where= x is replaced byx < —x
follows the same lines. Choodé > 0 such that

/ 4 uPdz) < e/2.

Inserting this inequality into (37), whete= y — x, and using (38) yields

Ky, Vi(x) /o —(f(x+D)—f(x) Leb
- . . d
= e )

+rvo( [T a@unt o + )
For all x > x :=x1 + M and all-M < z <0, we have by assumption (SAO),
exp(—(f(x +2) — f(x))) > exp(—az) > 1 and sincep, ;(u) =u~* foru > 1,
K, Vs(x) - 1+£.
Vi(x) — 2

Now, choose sufficiently large so that the first term on the right-hand side is less
thane /2. Onces is chosen, we easily check that lim ., r(y, s) = 1. This proves
the second assertiond

0
/ " g ()utdz) + r(y, s)

Define K, (x,x’; A x A’) = K, (x, A)K, (x, A’) and, fors > 0, V,(x,x') =
(1/2) (Vs (x) + Vs(x)).

PrROPOSITION 11. AssumgSAQ0)—(SA2).For all s > 0 and for all ¢ > 0,
{Vy < c} is a compactl-small set forK, . Moreoverthere existO < 1o <1 < 1,
s>0,c0<c¢,b andZ such thatfor all y > Vs

(39) Ky Ve < AoV, + bl{inco}v

(40) Ky, Vs < AV + b1y, <cjx (Vi <c)-

PrRoOOF The compactness ¢V, < ¢} is straightforward from (SAQ). Then,

by Lemma 9, itis a 1-small set fd¢,, . Equation (39) follows from Proposition 10.
To prove (40), write for > cg,

Ky, Vs < 20V + bLv,<jx(vi<e) + (/2 (Lv, <) x (Ve >c) + Livy>c)x (Ve <c})-

Set 0< g < i <1landc=(h/(A— Lo — 1) Vco. We have, for all(x, x) €
{Vi <c} x{Vs >},

b/2 < (h—r0)(1+¢)/2 < (h—ho) Vs (x, x),
which implies

(AoVs + (0/2)) Ly, <) x Ve >c) < AVsLv,<e)x (Vi)
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This concludes the proof.(J

The key point in the above result [also outlined in Andrieu, Breyer and Doucet
(2001)] is that, for large enough (y > y), all the transition kerneli’y satisfy
a drift condition outside theame small setV; < ¢} x {V,; < ¢}, with the same
drift function V, and thesameconstants. andb.

3.3. The simulated annealing algorithmWe now consider the simulated
annealing case. Herya = y; depends on the iteration, and for thé iteration,

the kernel P; = K,, is used. Define similarlyP; = K,, and r; = =,,. Denote
={Vs <c} x{Vy < c} with the constants andc¢ chosen to satisfy (40). For
(x x') e C,setR;(x,x"; Ax A') = Ri(x, A)R; (x", A"), with

(41) R,-(x,A):(l—E,-)_l(P,-(x,A) —8,‘1),‘(14)), Ei =&y, andv,- =Dy,
wheree, andv, are defined in (34). We may now state the main result of this
section.

THEOREM12. AssumgSA0)—(SA2).For & >0, set
log(i + 1)
d(1+§)
whered is defined in(35). Then for any initial probability measune, we have

(43) Nim | Py Py — Ty =0.

(42) Yi=

PROOF Forany 1< m <n, we have
Py~ Py — myllTv
(44) <|[(uP1 Pn)Pmy1-* Pn — T Pug1--- PallTv
n—1
+ Y llm PPz Py — mip1Piya Py Pallty.
[=m

Let (a,, n > 0) be a sequence of integers such that lim,sup (an‘1 +a,/n)=0
Note that for sufficiently larga,

(b)) Z gi=¢ Z eVl = g7vdg Z (1+i) YA+,
i=n—ay i=n—ay i=n—ay
Hence lim 00 X1, & = 0.
From Proposition1l, we have SYsuR, .. RiVs(x,x) < oo, and thus
there exists an integérsuch that\’ sup sup, ,ec RiVs(x,x') <2, with 2 <1
satisfying (40). Since

Alsup sup RiVi(x,x)A"l<1,
i (x,x)eC
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Theorem 8 implies that, for all > (I + 1)a,, and any initial distributiong andé&’,

1€ Pu—ts1a, -+ Pn — & Pa—Dran -+ Pullpy

< [ [T a- e»} +A9E ® E'(V))

i=n—ay
n -
<expl— > 8i>+k“”§®5/(Vs)-
i=n—ay

To bound the first term on the right-hand side of (44), we use the expression above
with & = uPy--- P, and&’ = m,, with m =n — (I + 1)a, — 1. Equation (39)
implies that for any initial distributiope and any integes,

MPl"'PmVSS)\gMVs'i‘—-
1-Xo

Sincern,, Py, =

T Vs <A Vo +b — m, Vi< .
1-2o

HencewPy - - Py ® (V) < AFuVy/2+ b/(1— Ag) < oo, which implies

MM [[(w Py Po—iva,~1) Pa—+Day
(45)
P, — 7Tn—(l+l)a,,—an—(l+l)dn Py HTV =0.

We now bound the second term on the right-hand side of (44). For any
le{l,....n}, lmPy1--- Py — mp1Piy1--- Polltv < lm — m4allvv and thus

n—1 n—1
D o lmPiyr- Po—mgaPrya-- Palltv < ) Il — mugallTv.
l=m

[=m

To bound this difference we use Lemma A.1, which simplifies the argument in
Haario, Saksman and Tamminen (2001). This lemma shows that

n—1
(46) > i — msality < 2100(Z () / Z (vw)).
I=m

where Z(y) = [pe 7™ 0 dx)/sup. g e 7). Using the Laplace formula
[see, e.g., Barndorff-Nielsen and Cox (1989)], it may be shown that

(47) Z<y>=<2ny‘1>1/2(2(f”<x>)‘1/2)(1+o<1>) asy — oo,

xXEM
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where M is the set of global minima off (x) (recall that, under the stated
assumptions, these minima are isolated and there are only a finite number of them).
For any integer, (46) and (47) show that

n—1
. . Z(Vn—jan)
lim Z 7 — wrgallv < 2nll)moo |09<Tyn))

< lim |og< Y ):0.

n—00 Y jan

I=n—jay,

(48)

Together with (45), this concludes the proof]
APPENDIX: TECHNICAL LEMMAS

LEMMA A.l. Let 4 be a nonnegative function on a measurable space
(X, B(X), n). Assume thaD < [hYdu < oo for all y > y9 > 0 and that
|h]loo =€SSSUR h(x) :=inf{M:pu{x:h(x) > M} =0} < oco. For y >y, denote
by u,, the measure ovearX, 8(X)) with probability density function” / [ h? du
w.r.t. . Thenfor y’ >y > yp,

Z(J/)) o= d 1 dn
zZ()) W=

PrROOF Sheffé’s identity shows that
lity = syl = [ 1f = gld.

where f = h?/[hdu and g = h?'/ [h? du. Note that f/||flle =

(h/Ihll0)” = 8/lglloo = (h/llhlleo)?", p-a.e. andiglloo/Il flloo = Z(¥)/Z ().
The proof follows from Lemma A.2, which may be of independent interdst.

Ity — 1Ty <2 Iog(

LEMMA A.2. Let f and g be two probability density functions.m.
a common dominating measugeon (X, B8(X)). Assume thaf f |, < oo and

glloo < 00, and f(x)/l flloo = g(x)/lI8lloc, n-a.s. Then
/If —gldp = 210g(lIglloe/ 11 f lloo)-

PROOF  Using the inequality(l| flloc/llglloc)g < f and|f — gl = f + g —
2(f A g), we have

/|f—g|dﬂ=2<1—/f/\gdu)

2<1_ I flloog /\gd,u)
llglloo

(- Faz)

IA




1664 R. DOUC, E. MOULINES AND J. S. ROSENTHAL

and the proof follows from the inequality

1—x<log(1/x) for x > 0. O
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