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Convergence rates of Markov chains have been widely studied in recent
years. In particular, quantitativebounds on convergence rates have been
studied in various forms by Meyn and Tweedie [Ann. Appl. Probab.4
(1994) 981–1101], Rosenthal [J. Amer. Statist. Assoc.90 (1995) 558–566],
Roberts and Tweedie [Stochastic Process. Appl.80 (1999) 211–229], Jones
and Hobert [Statist. Sci.16 (2001) 312–334] and Fort [Ph.D. thesis (2001)
Univ. Paris VI]. In this paper, we extend a result of Rosenthal [J. Amer.
Statist. Assoc.90 (1995) 558–566] that concerns quantitative convergence
rates for time-homogeneous Markov chains. Our extension allows us to
considerf -total variation distance (instead of total variation) and time-
inhomogeneous Markov chains. We apply our results to simulated annealing.

1. Time-homogeneous case.

1.1. Introduction. Let P be a Markov transition kernel defined on a general
state space(X,B(X)). Denote by P k the correspondingk-step transition
kernel. Forξ a probability measure onB(X) and f a Borel function, define
ξP (A) = ∫

ξ(dy)P (y,A) andPf (x) = ∫
P (x, dy)f (y).

For f :X → [1,∞), the f -total variation or f -norm of a signed measureµ
onB(X) is defined as

‖µ‖f := sup
|φ|≤f

|µ(φ)|.

Whenf ≡ 1, thef -norm is the total variation norm, which is denoted‖µ‖TV.
Our goal is to find explicit bounds on rates of convergence ofξP n − ξ ′P n to zero.
In the special case in whichP has a stationary distributionπ , this corresponds
to bounding the convergence ofξP n to π . Our results extend and sharpen the
nonquantitative results developed, for example, by Meyn and Tweedie [(1993),
Chapters 15 and 16], where one typically finds conditions under which there exists
somerate functionr(n) such thatr(n)‖P n(x, ·) − π‖f → 0 asn → ∞.
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The problem of getting explicit bounds on‖P n(x, ·) − π‖f has received much
attention in recent years, motivated by control of convergence for Markov chain
Monte Carlo and operation research problems [see, e.g., Jones and Hobert (2001)].
Most of the results available cover only total variation bound [see Rosenthal (1995)
and Roberts and Tweedie (1999)]. To the best of our knowledge, the only explicit
bound in f -total variation distance was given by Meyn and Tweedie [(1994),
Theorem 2.3]. This bound is based on the Nummelin splitting construction and
depends in a very intricate way on the constants of the kernel. In this section, we
use a different approach, based oncoupling. We obtain a bound (Theorem 2) which
is simple, very generally applicable and, although not tight, does improve on the
work of Meyn and Tweedie [(1994), Theorem 2.3].

1.2. Assumptions and lemma.Let a ∧ b = min(a, b) anda ∨ b = max(a, b).
To use the coupling construction, we first need a set where coupling may occur.
We make the following assumption:

(A1) There exist a set̄C ⊂ X × X, a constantε > 0 and a family of probability
measures{νx,x′, (x, x′) ∈ C̄} onX with

P (x,A) ∧ P (x′,A) ≥ ενx,x′(A) ∀A ∈ B(X), (x, x′) ∈ C̄.(1)

Following Bickel and Ritov (2001), we call̄C a (1, ε)-coupling set. For
simplicity, only one-step minorization is considered in this paper. Adaptations
to m-step minorization can be carried out as in Rosenthal (1995). We note that
condition (1) is in many cases satisfied by settingC̄ = C × C, whereC is a so-
calledpseudo-smallset. Recall that a subsetC ⊂ X is (1, ε)-pseudo-smallif there
exist a constantε > 0 and a family of probability measure{νx,x′, (x, x′) ∈ C × C}
with P (x, ·) ∧ P (x′, ·) ≥ ενx,x′(·) for all (x, x′) ∈ C × C [see Roberts and
Rosenthal (2001)]. We stress thatC is a subset ofX and that, despite the obvious
similarity, a (1, ε)-pseudo-small set is not a(1, ε)-coupling set. Recall finally
that a setC is (1, ε)-small if it is (1, ε)-pseudo-small with the same minorizing
probability measureν = νx,x′ for all (x, x′) ∈ C × C. The primary motivation for
using(1, ε)-coupling set is that the usual pairwise coupling argument can be used
without change and that, in some cases detailed below,(1, ε)-coupling sets can be
significantly larger than the product of(1, ε)-pseudo-small sets.

To introduce the coupling construction, some additional definitions are required.
Let R̄ be a Markov transition kernel that satisfies, for all(x, x′) ∈ C̄ and all
A ∈ B(X),

R̄(x, x′;A × X) = (1− ε)−1(P (x,A) − ενx,x′(A)
)
,

(2)
R̄(x, x′;X × A) = (1− ε)−1(P (x′,A) − ενx,x′(A)

)
.

For example, we can set, for(x, x′) ∈ C̄,

R̄(x, x′;A × A′) = (
(1− ε)−1(P (x,A) − ενx,x′(A)

))
× (

(1− ε)−1(P (x′,A′) − ενx,x′(A′)
))

,
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but other trickier constructions may also be considered. Similarly, letP̄ be
a Markov transition kernel onX × X such that, for (x, x′) ∈ C̄ and all
A,A′ ∈ B(X),

P̄ (x, x′;A × A′) = (1− ε)R̄(x, x′;A × A′) + ενx,x′(A ∩ A′),(3)

and satisfies, for(x, x′) /∈ C̄ and allA ∈ B(X),

P̄ (x, x′;A × X) = P (x,A) and P̄ (x, x′;X × A) = P (x′,A).(4)

For example, we can once again set, for(x, x′) /∈ C̄, P̄ (x, x′;A × A′) =
P (x,A)P (x′,A′), to get thatP̄ satisfies (4) for all(x, x′) ∈ X × X.

Define the product spaceZ = X × X × {0,1} and the associated product
sigma algebraB(Z). We define on the space(ZN,B(Z)⊗N) a Markov chain
(Zn := (Xn,X

′
n, dn), n ≥ 0). Indeed, givenZn, we constructZn+1 as follows. If

dn = 1, then drawXn+1 ∼ P (Xn, ·), and setX′
n+1 = Xn+1 anddn+1 = 1. If dn = 0

and (Xn,X
′
n) ∈ C̄, flip a coin with probability of headsε. If the coin comes up

heads, then drawX from νXn,X′
n
(·), and setXn+1 = X′

n+1 = X anddn+1 = 1. If the
coin comes up tails, then draw(Xn+1,X

′
n+1) from the residual kernel̄R(Xn,X

′
n; ·)

and setdn+1 = 0. If dn = 0 and(Xn,X
′
n) /∈ C̄, then draw(Xn+1,X

′
n+1) according

to the kernelP̄ (Xn,X
′
n; ·) and setdn+1 = 0. Heredn is called abell variable;

it indicates whether the chains have coupled (dn = 1) or not (dn = 0) by timen.
For µ a probability measure onB(Z), denote byPµ the probability measure

induced on(ZN,B(Z)⊗N) by the Markov chain(Zn,n ≥ 0) with initial distribu-
tion µ. The corresponding expectation operator is denoted byEµ. It is then easily
checked that(Xn,n ≥ 0) and(X′

n, n ≥ 0) are each marginally updated according
to the transition kernelP ; that is, for anyn, for any initial distributionsξ andξ ′,
and for anyA,A′ ∈ B(X),

Pξ⊗ξ ′⊗δ0(Zn ∈ A × X × {0,1}) = ξP n(A),
(5)

Pξ⊗ξ ′⊗δ0(Zn ∈ X × A′ × {0,1}) = ξ ′P n(A′),

where δx is the Dirac measure centered onx and ⊗ is the tensor product of
measures. Define thecoupling timeT = inf{k ≥ 1;dk = 1} (with the convention
inf ∅ = ∞). Let P ∗ be the Markov kernel defined, for all(x, x′) ∈ X × X and all
A ∈ B(X × X), by

P ∗(x, x′;A) =
{

P̄ (x, x′;A), if (x, x′) /∈ C̄,

R̄(x, x′;A), if (x, x′) ∈ C̄.
(6)

Forµ a probability measure onX × X, denote byP∗
µ andE

∗
µ the probability and

the expectation induced by the Markov chain onX × X with initial distributionµ

and transition kernelP ∗.
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LEMMA 1. Assume(A1). Then, for any n ≥ 0 and any nonnegative Borel
functionφ : (X × X)n+1 → R

+, we have

Eξ⊗ξ ′⊗δ0{φ(X̄0, . . . , X̄n)1(dn = 0)} = E
∗
ξ⊗ξ ′{φ(X̄0, . . . , X̄n)(1− ε)Nn−1},

whereX̄i := (Xi,X
′
i ), Ni :=∑i

j=0 1C̄(X̄j ) andN−1 := 0.

PROOF. We first verify that the result holds for all functionsφ(x̄0, . . . , x̄n) =∏n
i=0 ψi(x̄i), wherex̄i := (xi, x

′
i) and(ψi, i ≥ 0) are nonnegative Borel functions

onB(X×X). The proof is by induction. Forn = 0, the result is obvious. Assume
that the result holds up to ordern − 1 for somen ≥ 1. We have

Eξ⊗ξ ′⊗δ0{φ(X̄0, . . . , X̄n)1(dn = 0)}

= Eξ⊗ξ ′⊗δ0

{
n−1∏
i=0

ψi(X̄i)1C̄c (X̄n−1)ψn(X̄n)1(dn = 0)

}

+ Eξ⊗ξ ′⊗δ0

{
n−1∏
i=0

ψi(X̄i)1C̄(X̄n−1)ψn(X̄n)1(dn = 0)

}
,

whereC̄c := X\C̄. DefineGk = σ(Zi = (X̄i, di),0≤ i ≤ k). Note that, forn ≥ 1,

E{ψn(X̄n)1(dn = 0)|Gn−1}1C̄c (X̄n−1)1(dn−1 = 0)

= P̄ψn(X̄n−1)1C̄c(X̄n−1)1(dn−1 = 0).

Since Nn−21C̄c(X̄n−1) = Nn−11C̄c(X̄n−1) and P̄ (x, x′; ·) = P ∗(x, x′; ·) for
(x, x′) /∈ C̄, we have, under the induction assumption,

Eξ⊗ξ ′⊗δ0

{
n−1∏
i=0

ψi(X̄i)1C̄c (X̄n−1)ψn(X̄n)1(dn = 0)

}

= Eξ⊗ξ ′⊗δ0

{
n−1∏
i=0

ψi(X̄i)1C̄c (X̄n−1)P̄ψn(X̄n−1)1(dn−1 = 0)

}

(7)

= E
∗
ξ⊗ξ ′

{
n−1∏
i=0

ψi(X̄i)1C̄c (X̄n−1)P
∗ψn(X̄n−1)(1− ε)Nn−1

}

= E
∗
ξ⊗ξ ′

{
n∏

i=0

ψi(X̄i)1C̄c(X̄n−1)(1− ε)Nn−1

}
.

Similarly, note that

E{1(dn = 0)ψn(X̄n)|Gn−1}1C̄(X̄n−1)1(dn−1 = 0)

= (1− ε)R̄ψn(X̄n−1)1(dn−1 = 0).
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Since(Nn−2+1)1C̄(X̄n−1) = Nn−11C̄(X̄n−1) andR̄(x, x′; ·) = P ∗(x, x′; ·) for all
(x, x′) ∈ C̄, the induction assumption implies

Eξ⊗ξ ′⊗δ0

{
n−1∏
i=0

ψi(X̄i)1C̄(X̄n−1)ψn(X̄n)1(dn = 0)

}

= (1− ε)Eξ⊗ξ ′⊗δ0

{
n−1∏
i=0

ψi(X̄i)1C̄(X̄n−1)R̄ψn(X̄n−1)1(dn−1 = 0)

}

(8)

= E
∗
ξ⊗ξ ′

{
n−1∏
i=0

ψi(X̄i)1C̄(X̄n−1)P
∗ψn(X̄n−1)(1− ε)Nn−1

}

= E
∗
ξ⊗ξ ′

{
n∏

i=0

ψi(X̄i)1C̄(X̄n−1)(1− ε)Nn−1

}
.

Thus, the two measures onB(X × X)⊗(n+1) defined, respectively, by

A �→ Eξ⊗ξ ′⊗δ0{1A(X̄0, . . . , X̄n)1(dn = 0)} and

A �→ E
∗
ξ⊗ξ ′{1A(X̄0, . . . , X̄n)(1− ε)Nn−1}

are equal on the monotone classC = {A :A = A0×· · ·×An,Ai ∈ B(X×X)} and
thus these two measures coincide on the product sigma algebra, which concludes
the proof. �

1.3. Main time-homogeneous result.Let f :X → [1,∞] and letφ :X → R

be any Borel function such that supx∈X |φ(x)|/f (x) < ∞. Using (5), the classical
coupling inequality [see, e.g., Thorisson (2000), Chapter 2, Section 3] implies that

|ξP nφ − ξ ′P nφ| = ∣∣Eξ⊗ξ ′⊗δ0{φ(Xn) − φ(X′
n)}

∣∣
= ∣∣Eξ⊗ξ ′⊗δ0

{(
φ(Xn) − φ(X′

n)
)
1(dn = 0)

}∣∣
≤
(

sup
x∈X

|φ(x)|/f (x)

)
Eξ⊗ξ ′⊗δ0

{(
f (Xn) + f (X′

n)
)
1(dn = 0)

}
.

By Lemma 1,

Eξ⊗ξ ′⊗δ0

{(
f (Xn) + f (X′

n)
)
1(dn = 0)

}= E
∗
ξ⊗ξ ′

{(
f (Xn) + f (X′

n)
)
(1− ε)Nn−1

}
.

Thus, the following key coupling inequality holds:

|ξP nφ − ξ ′P nφ|
(9)

≤
(

sup
x∈X

|φ(x)|/f (x)

)
E

∗
ξ⊗ξ ′

{(
f (Xn) + f (X′

n)
)
(1− ε)Nn−1

}
.

To bound the term on the right-hand side of (9), we need adrift condition
outsideC̄ for the kernelP ∗:
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(A2) There exist a functionV̄ :X × X → [1,∞) and constantsb and λ,
0 < λ < 1, such that

P ∗V̄ ≤ λV̄ + b1C̄ .(10)

THEOREM 2. Assume(A1) and (A2). Let f :X → [1,∞) be a function
which satisfiesf (x) + f (x′) ≤ 2V̄ (x, x′) for all (x, x′) ∈ X × X. Then, for all
j ∈ {1, . . . , n + 1} and for all initial probability measuresξ andξ ′ onX,

‖ξP n − ξ ′P n‖TV ≤ 2(1− ε)j1(j ≤ n) + 2λnBj−1(ξ ⊗ ξ ′)(V̄ ),(11)

‖ξP n − ξ ′P n‖f ≤ 2(1− ε)j
(
b(1− λ)−1 + λn(ξ ⊗ ξ ′)(V̄ )

)
1(j ≤ n)

(12)
+ 2λnBj−1(ξ ⊗ ξ ′)(V̄ ),

where

B = 1∨
(
(1− ε)λ−1 sup

(x,x′)∈C̄

R̄V̄ (x, x′)
)
.

PROOF. For anyj ∈ {1, . . . , n + 1}, we have

E
∗
ξ⊗ξ ′

{(
f (Xn) + f (X′

n)
)
(1− ε)Nn−1

}
≤ E

∗
ξ⊗ξ ′

{(
f (Xn) + f (X′

n)
)
(1− ε)Nn−11(Nn−1 ≥ j)

}
(13)

+ 2E
∗
ξ⊗ξ ′{V̄ (X̄n)(1− ε)Nn−11(Nn−1 < j)}.

Consider the first term on the right-hand side of (13). We have

E
∗
ξ⊗ξ ′

{(
f (Xn) + f (X′

n)
)
(1− ε)Nn−11(Nn−1 ≥ j)

}
(14)

≤ (1− ε)jE
∗
ξ⊗ξ ′

{(
f (Xn) + f (X′

n)
)}

.

If f ≡ 1, thenE
∗
ξ⊗ξ ′{(f (Xn) + f (X′

n))} = 2. Otherwise, by repeated application
of the drift condition (A2), we have

(P ∗)nV̄ ≤ λ(P ∗)n−1V̄ + b ≤ λnV̄ + b

n−1∑
k=0

λk ≤ λnV̄ + b/(1− λ).

Sincef (x) + f (x′) ≤ 2V̄ (x, x′), we get

E
∗
ξ⊗ξ ′

{(
f (Xn) + f (X′

n)
)}≤ 2E

∗
ξ⊗ξ ′{V̄ (X̄n)} ≤ 2λn(ξ ⊗ ξ ′)(V̄ ) + 2b/(1− λ).

Consider the second term on the right-hand side of (13). Denote fors ≥ 0,

Ms := λ−sB−Ns−1V̄ (X̄s)(1− ε)Ns−1.

We show that(Ms, s ≥ 0) is an(F ,P
∗
ξ⊗ξ ′) supermartingale, whereF := (Fs :=

σ(X̄i, i ≤ s), s ≥ 0). The definition ofNs and the drift condition (A2) imply

1C̄c(X̄s)Ns = 1C̄c (X̄s)Ns−1 and 1C̄c(X̄s)P
∗V̄ (X̄s) ≤ 1C̄c(X̄s)λV̄ (X̄s).
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Thus, we have

E
∗{Ms+1|Fs}1C̄c(X̄s)

= λ−(s+1)B−Ns P ∗V̄ (X̄s)(1− ε)Ns 1C̄c (X̄s)(15)

= λ−(s+1)B−Ns−1P ∗V̄ (X̄s)(1− ε)Ns−11C̄c(X̄s) ≤ Ms1C̄c(X̄s).

By definition, sup(x,x′)∈C̄ R̄V̄ (x, x′) ≤ λ(1 − ε)−1B. Since by construction

1C̄P ∗V̄ = 1C̄R̄V̄ , we have

E
∗{V̄ (X̄s+1)|Fs}1C̄(X̄s) = R̄V̄ (X̄s)1C̄(X̄s) ≤ λ(1− ε)−1B1C̄ (X̄s).

Since1C̄(X̄s)Ns = 1C̄(X̄s)(Ns−1 + 1), we have

E
∗{Ms+1|Fs}1C̄(X̄s)

(16)
≤ λ−(s+1)B−1B−Ns−1(1− ε)Ns−1+1λ(1− ε)−1B1C̄(X̄s) ≤ Ms1C̄(X̄s).

Equations (15) and (16) show that(Ms, s ≥ 0) is an(F ,P
∗
ξ⊗ξ ′) supermartingale.

By the optional stopping theorem,E
∗
ξ⊗ξ ′{Mn} ≤ E

∗
ξ⊗ξ ′{M0}. SinceB ≥ 1, we have

1(Nn−1 < j) ≤ Bj−1B−Nn−1, which implies

E
∗
ξ⊗ξ ′{V̄ (X̄n)(1− ε)Nn−11(Nn−1 < j)}

≤ λnBj−1
E

∗
ξ⊗ξ ′{λ−nB−Nn−1V̄ (X̄n)(1− ε)Nn−1}(17)

≤ λnBj−1
E

∗
ξ⊗ξ ′{Mn} ≤ λnBj−1ξ ⊗ ξ ′(V̄ ).

By combining (14) and (17) forf ≡ 1, we have

E
∗
ξ⊗ξ ′

{(
f (Xn) + f (X′

n)
)
(1− ε)Nn−1

}
≤ 2(1− ε)j 1(j ≤ n) + 2λnBj−1ξ ⊗ ξ ′(V̄ )

and (11) follows from (9). Similarly, forf such thatf (x) + f (x′) ≤ 2V̄ (x, x′),
we have

E
∗
ξ⊗ξ ′

{(
f (Xn) + f (X′

n)
)
(1− ε)Nn−1

}
≤ 2(1− ε)j

(
λn(ξ ⊗ ξ ′)(V̄ ) + b/(1− λ)

)+ 2λnBj−1ξ ⊗ ξ ′(V̄ )

and (12) follows from (9). �

1.4. Application to convergence to stationarity.If P has a stationary distribu-
tion π , (i.e., if πP = π ), then we can chooseξ ′ = π . ThenπP n = π for all n and,
hence, the results (11) and (12) allow us to bound‖ξP n −π‖TV and‖ξP n −π‖f ,
respectively.

To compare our result with Meyn and Tweedie (1994), Rosenthal (1995) and
Roberts and Tweedie (1999), we now derive from the explicit expressions of the
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bounds provided in Theorem 2 the rate of convergence for the total variation dis-
tance or thef -norm, that is, we find a bound for lim supn→∞ n−1 log‖P n(x, ·) −
π‖f . We follow the approach originally taken by Rosenthal (1995), but we adapt
the results to the expression of the bound given in Theorem 2.

PROPOSITION 3. Assume(A1) and (A2), and thatπP = π . Let f :X →
[1,∞) be a function that satisfiesf (x) + f (x′) ≤ 2V̄ (x, x′) for all (x, x′) ∈
X × X. Then, for all x ∈ X,

lim sup
n→∞

n−1 log‖P n(x, ·) − π‖f

≤




− log(λ) log(1− ε)

log((M − ε)/λ) − log(1− ε)
, if

M − ε

λ
≥ 1,

log(λ), if
M − ε

λ
< 1,

(18)

whereM := sup(x,x′)∈C̄ P̄ V̄ (x, x′).

PROOF. By definition ofP̄ [see (3)], for all(x, x′) ∈ C̄ we have

(1− ε)R̄V̄ (x, x′) + ε

∫
νx,x′(dy)V̄ (y, y) = P̄ V̄ (x, x′) ≥ (1− ε)R̄V̄ (x, x′) + ε,

where we have used thatV̄ ≥ 1. Thus

sup
(x,x′)∈C̄

R̄V̄ (x, x′) ≤ M − ε

1− ε
,

which implies

(1− ε) sup
(x,x′)∈C̄

R̄V̄ (x, x′)λ−1 ≤ (M − ε)λ−1.

Assuming first(M − ε)λ−1 ≥ 1, the bounds for total variation andf -norm can be
expressed forj ∈ {1, . . . , n},

‖P n(x, ·) − π‖TV ≤ 2(1− ε)j + 2λn−j+1(M − ε)j−1
∫

V̄ (x, x′)π(dx′),

‖P n(x, ·) − π‖f ≤ 2b(1− ε)j

1− λ

+ 2λn
(
(1− ε)j + λ−j+1(M − ε)j−1) ∫ V̄ (x, x′)π(dx′).

The result follows by choosing

j =
⌊ − log(λ)n

log((M − ε)/λ) − log(1− ε)

⌋
.
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When(M − ε)λ−1 < 1, we putj = n + 1 in (11) and (12), showing that

‖ξP n − ξ ′P n‖TV ≤ 2λn
∫

V̄ (x, x′)π(dx′) and

‖ξP n − ξ ′P n‖f ≤ 2λn
∫

V̄ (x, x′)π(dx′).

The result follows. �

REMARK 1. The bounds we find in this paper for thef -total variation distance
are the same as those found for the total variation distance by Roberts and Tweedie
[(1999), Theorem 2.3].

In some applications, the minorization and drift conditions (A1) and (A2)
are more naturally expressed in terms of the kernelP , and it is thus required
to derive the bivariate drift and minorization conditions from the corresponding
single variate conditions [Rosenthal (1995), Theorem 12, and Roberts and
Tweedie (1999), Section 5]. The crucial point here is to relate the bivariate
drift condition (A2) to single variate drift condition. We essentially follow to
Rosenthal’s [(1995), Theorem 12] argument, which allows us to construct such
a drift functionV̄ from univariate test functions [see Roberts and Tweedie (1999),
Theorem 5.2, for a refinement of this result].

Consider the following assumption:

(S) There exist a functionV and a constantc such that:

• The level setC = {x ∈ X :V (x) ≤ c} is (1, ε)-small; that is,P (x, ·) ≥
εν(·) for all x ∈ C for someε > 0 and some probability measureν.

• There existλc < 1 and bc < ∞ such thatPV ≤ λcV + bc1C and
λc + bc/(1+ c) < 1.

Under (S),C̄ = {(x, x′); V (x) ≤ c, V (x′) ≤ c} is a (1, ε)-coupling set, that is,
for all (x, x′) ∈ C̄ and allA ∈ B(X), P (x,A) ∧ P (x′,A) ≥ εν(A). Define the
univariate residual kernelR as

R(x,A) = (1− ε)−1(P (x,A) − εν(A)
) ∀x ∈ C, ∀A ∈ B(X).(19)

To apply Theorem 1, we need to define the kernelsR̄, P̄ andP ∗. Because the drift
condition is expressed on the univariate kernelP , we define bothR̄ andP̄ from the
corresponding univariate kernelsR andP . More precisely, for allA,A′ ∈ B(X),
define

R̄(x, x′;A × A′) := R(x,A)R(x′,A′) if (x, x′) ∈ C̄,(20)

P̄ (x, x′;A × A′) := P (x,A)P (x′,A′) if (x, x′) /∈ C̄.(21)

These kernels satisfy (2) and (4).
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PROPOSITION 4. Assume(S). Then(A1) is satisfied withC̄ = C × C and
νx,x′ = ν for all (x, x′) ∈ C × C. DefineP ∗ as in (6) with R̄ and P̄ given in
(20) and (21).Then(A2) is satisfied withV̄ (x, x′) = (1/2)(V (x) + V (x′)) for all
(x, x′) ∈ X × X with

λ = λc + bc/(1+ c) and b =
{

cελc

1− ε
− cbc

1+ c

}
∨ 0+ bc − ε

1− ε
.

PROOF. The proof follows from Roberts and Tweedie [(1999), Theorem 5.2].
Since, for(x, x′) /∈ C̄, (1+ c)/2≤ V̄ (x, x′), we have

P ∗V̄ (x, x′) ≤ λcV̄ (x, x′) + bc

2
≤
(
λc + bc

1+ c

)
V̄ (x, x′) ∀ (x, x′) /∈ C × C

and, for(x, x′) ∈ C × C,

P ∗V̄ (x, x′) = 1

2

(
RV (x) + RV (x′)

)

= 1

2(1− ε)

(
PV (x) + PV (x′) − 2εν(V )

)

≤ λc

(1− ε)
V̄ (x, x′) + bc − ε

1− ε
≤ λV̄ (x, x′) + b,

where we have used that, for(x, x′) ∈ C̄, V̄ (x, x′) ≤ c. The proof follows. �

Under (S), we may thus apply Theorem 2 withf = V which yields explicit
bounds for the total variation and theV -norm, under the assumptions used by
Rosenthal (1995) and Roberts and Tweedie (1999) to obtain bounds for the total
variation distance [see also Rosenthal (2002)]. It is worthwhile to note that (see
the discussion above) the rate of convergence inV -norm is thesameas the rate of
convergence in total variation.

REMARK 2. It may be checked that if the sets{V ≤ d} are 1-small for all
d ≥ c, then assumption (S) is always satisfied for large enoughd [see Roberts and
Tweedie (1999), discussion following Theorem 5.2].

We summarize the discussion above in the following theorem.

THEOREM 5. Assume(S). Then, for all j ∈ {1, . . . , n + 1} and for all initial
probability measuresξ andξ ′ onX,

‖ξP n − ξ ′P n‖TV ≤ 2(1− ε)j 1(j ≤ n) + λnBj−1(ξ(V ) + ξ ′(V )
)
,

‖ξP n − ξ ′P n‖V ≤ 2(1− ε)j
(
b(1− λ)−1 + λn(ξ(V ) + ξ ′(V )

)
/2
)
1(j ≤ n)

+ λnBj−1(ξ(V ) + ξ ′(V )
)
,
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whereλ = λc + bc/(1+ c) and

B = 1∨
(
(1− ε)λ−1 sup

x∈C

RV (x)

)
.

1.5. Example. We conclude this section with a simple example that shows
a situation where we can exploit the additional degree of flexibility brought by
(1, ε)-coupling sets. Consider the Markov chain onR

d defined fork ∈ Z
+ by

Xk+1 = g(Xk) + Zk,

where:

1. g is a Lipshitz function overRd for some norm‖ · ‖ with Lipshitz constant

‖g‖Lip = sup
(x,y)∈Rd ×Rd

x �=y

‖g(x) − g(y)‖
‖x − y‖ < 1;

2. (Zk, k ≥ 0) is a sequence of independent and identically distributed random
vectors with densityq w.r.t. Lebesgue measure onR

d . In addition,q is positive
and continuous.

It is known [see, e.g., Doukhan and Ghindes (1980)] that under these assumptions
the Markov chain is positive recurrent and thus has a unique invariant distribution.
Define forδ > 0,

C̄(δ) := {(x, x′) ∈ R
d × R

d :‖x − x′‖ ≤ δ}.(22)

Usinga ∧b = (1/2)((a +b)−|a −b|), it is easily shown that for all(x, x′) ∈ C̄(δ)

and allA ∈ B(Rd),

P (x,A) ∧ P (x′,A)

≥ 1
2

∫
A

(
q
(
z − g(x)

)+ q
(
z − g(x′)

)− ∣∣q(z − g(x)
)− q

(
z − g(x′)

)∣∣)dz

and thusP (x,A) ∧ P (x′,A) ≥ ε(δ)νx,x′(A) with

νx,x′(A) =
∫
A

(
q
(
z − g(x)

)+ q
(
z − g(x′)

)
− ∣∣q(z − g(x)

)− q
(
z − g(x′)

)∣∣)dz

(23)

×
(

2−
∫ ∣∣q(z − g(x)

)− q
(
z − g(x′)

)∣∣dz

)−1

,

ε(δ) = 1− 1
2 sup

(x,x′)∈C̄(δ)

∫ ∣∣q(z − (
g(x) − g(x′)

))− q(z)
∣∣dz.
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Note that for all(x, x′) ∈ C̄(δ), ‖g(x)−g(x′)‖ ≤ ‖g‖Lip‖x −x′‖ ≤ ‖g‖Lipδ. Since
the functionu → ∫ |q(z−u)−q(z)|dz is continuous andq is everywhere positive,
for all δ > 0, the setC̄(δ) is a(1, ε(δ))-coupling set.

Let δ > 0. For all(x, x′) ∈ R
d × R

d and allA,A′ ∈ B(Rd), defineP̄ by

P̄ (x, x′;A × A′) =
∫

1A

(
f (x) + z

)
1A′

(
f (x′) + z

)
q(z) dz

and let, for(x, x′) ∈ C̄(δ),

R̄δ(x, x′;A × A′) = (
1− ε(δ)

)−1(
P̄ (x, x′;A × A′) − ε(δ)νx,x′(A ∩ A′)

)
.

It is easily checked thatR̄δ and P̄ satisfy (2) and (4), respectively. Finally,
defineP ∗

δ as in (6).
We now determine an explicit bound for the total variation distance. Put

V̄ (x, x′) = 1+ ‖x − x′‖. Note that for all(x, x′) ∈ R
d × R

d ,

P̄ V̄ (x, x′) = 1+ ‖g(x) − g(x′)‖ ≤ 1+ ‖g‖Lip‖x − x′‖.
Chooseλ such that‖g‖Lip < λ < 1. By construction, for all(x, x′) /∈ C̄(δ),
we have ‖x − x′‖ ≥ δ. Hence, for anyδ > (1 − λ)/(λ − ‖g‖Lip) and all
(x, x′) /∈ C̄(0, δ), we have

1+ ‖g‖Lip‖x − x′‖ = λ(1+ ‖x − x′‖) + (
1− λ − (λ − ‖g‖Lip)‖x − x′‖)

≤ λ(1+ ‖x − x′‖) + (
1− λ − (λ − ‖g‖Lip)δ

)
< λ(1+ ‖x − x′‖).

It remains to prove that sup(x,x′)∈C̄(δ) R̄V̄ (x, x′) < ∞. Note that

sup
(x,x′)∈C̄(δ)

R̄V̄ (x, x′) ≤ sup(x,x′)∈C̄(δ) P̄ V̄ (x, x′) − ε(δ)

1− ε(δ)
≤ 1+ ‖g‖Lipδ − ε(δ)

1− ε(δ)
.

Summarizing our findings, for anyλ with ‖g‖Lip < λ < 1 and anyδ > (1 − λ)/

(λ − ‖g‖Lip), (A1) is satisfied withε := ε(δ) and (A2) is satisfied with̄V (x, x′) =
1 + ‖x − x′‖. We may thus apply Theorem 2 to obtain a total variation distance
bound as follows. [Note that with this choice of bivariate drift functionV̄ we may
only compute total variation bound; the conditionf (x)+f (x′) ≤ 2(1+‖x − x′‖)
indeed implies thatf ≤ 1.]

PROPOSITION 6. For all λ such that‖g‖Lip < λ < 1, for all δ > (1 − λ)/

(λ − ‖g‖Lip), for all j ∈ {1, . . . , n + 1} and for all initial probability measures
ξ andξ ′ onX,

‖ξP n − ξ ′P n‖TV

≤ 2
(
1− ε(δ)

)j1(j ≤ n) + 2λnBj−1
(

1+
∫ ∫

ξ(dx)ξ ′(dx′)‖x − x′‖
)
,

whereε(δ) is defined in(23)and

B = 1∨ {
λ−1(1+ ‖g‖Lipδ − ε(δ)

)}
.
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2. Time-inhomogeneous case. We now proceed to extend Theorem 2 to
time-inhomogeneous chains. Specifically, we consider a family(Pk, k ≥ 1) of
Markov transition kernels. That is, we allowPk(x,A) to depend not only on
the starting pointx and the target subsetA, but also on the time parameterk.
For example, this would be the case for simulated annealing and hidden Markov
models; a specific example is discussed in Section 3.

2.1. Assumptions and lemma.The assumptions and notations parallel those
from the time-homogeneous case. We first assume the following minorization
condition.

(NS1) There exist a sequence(C̄k, k ≥ 1) of subsets ofX × X, C̄k ⊂ X × X,
a sequence(εk, k ≥ 1), εk ≥ 0, and a family of probability measures
(νk,x,x′, (x, x′) ∈ C̄k, k ≥ 1) such that

Pk(x, ·) ∧ Pk(x
′, ·) ≥ εkνk,x,x′(·).

Let (P̄k, k ≥ 1) be a family of transitions kernels that satisfy, for allk, the analog
of (4) with P = Pk and let(R̄k, k ≥ 0) be a family of transition kernels that verify,
for all k, the analog of (2) withP = Pk , νx,x′ = νk,x,x′ , ε = εk and C̄ = C̄k .
The proof is based on straightforward adaptation of the coupling construction
used in the homogeneous case. Forn ≥ 0, if (Xn,X

′
n) ∈ C̄n+1 and dn = 0,

flip a coin with probability of successεn+1. If the coin comes up heads, then
drawXn+1 from νn+1,Xn,X′

n
and setXn+1 = X′

n+1 anddn+1 = 1. Otherwise, draw
(Xn+1,X

′
n+1) from R̄n+1(Xn,X

′
n; ·) and setdn+1 = 0. If (Xn,X

′
n) /∈ C̄n+1 and

dn = 0, then draw(Xn+1,X
′
n+1) from P̄n+1(Xn,X

′
n; ·) and setdn+1 = 0. Finally,

define(P ∗
k , k ≥ 0) to be the family of transition kernels defined as the analog of (6).

Forµ a probability measure onX × X, denoteP∗
µ andE

∗
µ the probability and the

expectation induced by the Markov chain with initial distributionµ and transition
kernels(P ∗

k , k ≥ 0).

LEMMA 7. Assume(NS1) and let f :X → [1,+∞). For any probability
measuresξ , ξ ′ onB(X), for anyn ≥ 1,

‖ξP1 · · ·Pn − ξ ′P1 · · ·Pn‖f

(24)

≤ E
∗
ξ⊗ξ ′

{(
f (Xn) + f (X′

n)
) n∏
i=1

(
1− εi1C̄i

(X̄i−1)
)}

,

whereX̄i = (Xi,X
′
i ).

The proof can be adapted from Lemma 1 and (9). We also assume the following
drift condition:
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(NS2) There exist a family of functions{V̄k}k≥0, V̄k :X × X → [1,∞), and two
sequences(λk, k ≥ 0), 0≤ λk ≤ 1 for all k ≥ 1 and(bk, k ≥ 0), such that

P ∗
k+1V̄k+1 ≤ λkV̄k + bk1C̄k+1

∀ k ≥ 0.(25)

Define forj ∈ {1, . . . , k},

(1− ε)j,k := max
1≤k1<···<kj ≤k

j∏
l=1

(
1− εkl

)
and Bj,k := max

1≤k1<···<kj ≤k

j∏
l=1

Bkl
,

where, for any integerk,

Bk := 1∨
(
(1− εk)

(
sup

(x,x′)∈C̄k

R̄kV̄k(x, x′)
)
λ−1

k−1

)
.(26)

By convention, we setB0,k = 1 for all k.

2.2. Main time-inhomogeneous result.We can now state our main result, as
follows.

THEOREM 8. Assume(NS1)and (NS2).Let (fk, k ≥ 0) be a family of func-
tions such that, for all k ≥ 0, fk(x) + fk(x

′) ≤ 2V̄k(x, x′) for all (x, x′) ∈ X × X.
Then, for all j ∈ {1, . . . , n + 1} and for all initial probability measuresξ andξ ′,

‖ξP1 · · ·Pn − ξ ′P1 · · ·Pn‖TV
(27)

≤ 2(1− ε)j,n1(j ≤ n) + 2

(
n−1∏
s=0

λs

)
Bj−1,n(ξ ⊗ ξ ′)(V̄0),

‖ξP1 · · ·Pn − ξ ′P1 · · ·Pn‖fn

(28)

≤ 2(1− ε)j,nDn1(j ≤ n) + 2

(
n−1∏
s=0

λs

)
Bj−1,n(ξ ⊗ ξ ′)(V̄0),

where Dn := (
∏n−1

l=0 λl)ξ ⊗ ξ ′(V0) + ∑n−1
j=0(

∏n−1
l=j+1 λl)bj with the convention∏j

l=i λl = 1 wheni > j .

PROOF. The proof is along the same lines as for the time-homogeneous case.
DenoteNk =∑k

j=0 1C̄j+1
(Xj ,X

′
j ). For anyj ∈ {1, . . . , n + 1}, we have

E
∗
ξ⊗ξ ′

{(
fn(Xn) + fn(X

′
n)
) n∏
i=1

(
1− εi1C̄i

(X̄i−1)
)}

≤ (1− ε)j,nE
∗
ξ⊗ξ ′

{(
fn(Xn) + fn(X

′
n)
)}

1(j ≤ n)

+ 2E
∗
ξ⊗ξ ′

{
V̄n(X̄n)

n∏
i=1

(
1− εi1C̄i

(X̄i−1)
)
1(Nn−1 < j)

}
,
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where we have used that
∏n

i=1(1− εi1C̄i
(X̄i−1))1(Nn−1 ≥ j) ≤ (1− ε)j,n. When

fn ≡ 1,

E
∗
ξ⊗ξ ′

{(
fn(Xn) + fn(X

′
n)
)}= 2.

Otherwise,

E
∗
ξ⊗ξ ′

{(
fn(Xn) + fn(X

′
n)
)}≤ 2E

∗
ξ⊗ξ ′{V̄n(X̄n)} ≤ 2Dn.

Now, since by definitionBj ≥ 1 [see (26)], we haveBj,n ≤ Bj ′,n for all 0 ≤ j ≤
j ′ ≤ n and

1(Nn−1 ≤ j − 1)(Bj−1,n)
−1 ≤ (

BNn−1,n

)−1
,

which implies that

E
∗
ξ⊗ξ ′

{
V̄n(X̄n)

n∏
i=1

(
1− εi1C̄i

(X̄i−1)
)
1(Nn−1 < j)

}

(29)

≤
(

n−1∏
j=0

λj

)
Bj−1,nE

∗
ξ⊗ξ ′{Mn},

where, fors ≥ 0,

Ms :=
(

s−1∏
j=0

λj

)−1(
B1,Ns−1,s

)−1
s∏

j=1

(
1− εj 1C̄j

(X̄j−1)
)
V̄s(Xs,X

′
s).(30)

As above,(Ms, s ≥ 0) is an(F ,P
∗
ξ⊗ξ ′) supermartingale w.r.t., whereF := {Fs :=

σ(X̄j ,0≤ j ≤ s), s ≥ 0}, which concludes the proof.�

3. Application to simulated annealing. In this section, we apply the results
above to study the convergence of the simulated annealing (SA) algorithm for
continuous global optimization [see Locatelli (2001, 2002), Fouskakis and Draper
(2001), Andrieu, Breyer and Doucet (2001) and the references therein].

3.1. Assumptions. Let f be a function defined onR, and letM be the set of
global minima off (to keep the discussion simple, multidimensional versions are
not considered here). We make the following assumptions:

(SA0) the functionf is twice continuously differentiable and there existα > 0,
x1 ∈ R, such that, for ally ≥ x ≥ x1,

f (y) − f (x) ≥ α(y − x)(31)

and similarly, for ally ≤ x ≤ −x1,

f (y) − f (x) ≥ α(x − y).(32)
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(SA1) For eachx ∈ M, we havef ′′(x) > 0.

Under (SA0),M ⊆ [−x1, x1], that is, the set of global minima off is contained
in the interval[−x1, x1]. Assumption (SA1) implies that the global minima are
isolated and thus, that the setM is finite. Assumption (SA0) implies that for
all γ ≥ 0,

∫
exp(−γf (y))µLeb(dy) < ∞, whereµLeb is the Lebesgue measure

overR.
Consider acandidate transition kernel, Q(x,A), x ∈ R, A ∈ B(R), which

generates potential transitions for a discrete time Markov chain evolving onR.
We focus on the case where the candidate points are proposed from a ran-
dom walk with increment distribution that has a densityq with respect to
µLeb:Q(x,A) = ∫

A q(y − x)µLeb(dy), A ∈ B(R). In addition, make the follow-
ing assumption:

(SA2) The proposal densityq is continuous and strictly positive and symmetric:
q(y) > 0 andq(y) = q(−y).

3.2. The random walk Metropolis–Hastings algorithm.The random walk
Metropolis–Hastings (RWMH) algorithm corresponds to the Hastings–Metropolis
algorithm introduced by Metropolis, Rosenbluth, Rosenbluth, Teller and Teller
(1953) and Hastings (1970). It proceeds as follows to sample from the (unnor-
malized) distribution exp(−γf (x))µLeb(dx) for γ > 0. (For RWMH, the “inverse
temperature” parameterγ is held constant. We see later that with simulated an-
nealing, by contrast,γ is modified at each iteration of the algorithm.)

Given the current statex, a candidate new statey is chosen according to the
law Q(x, ·). This candidatey is then accepted with probabilityαγ (x, y), where

αγ (x, y) = 1∧ (
exp

(−γ
(
f (y) − f (x)

)))
.

The RWMH kernel is thus given by

Kγ (x,A) =
∫
A

αγ (x, y)q(y − x)µLeb(dy)

(33)
+ δx(A)

∫ (
1− αγ (x, y)

)
q(y − x)µLeb(dy), A ∈ B(R).

It then follows thatπγ (·) is a stationary distribution forKγ , where

πγ (A) =
∫
A exp(−γf (x))µLeb(dx)∫
R

exp(−γf (x))µLeb(dx)
∀A ∈ B(R).

The RWMH algorithm onR was extensively studied by Mengersen and Tweedie
(1996), who showed that the transition kernelsKγ areπγ -irreducible (Lemma 1.1)
and that all the compact sets are small (Lemma 1.2).
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LEMMA 9. Assume(SA0)–(SA2).Then, for every compact subsetC of R such
thatµLeb(C) > 0, we have for allx ∈ C, Kγ (x,A) ≥ εγ νγ (A) with

εγ := εe−γ dλLeb(C) and ν(A) := λLeb(A ∩ C)

λLeb(C)
,(34)

where

d := sup
x∈C

f (x) − inf
x∈C

f (x) and ε := inf
(x,y)∈C×C

q(y − x) > 0.(35)

PROOF. For allx ∈ C,

Kγ (x,A) ≥
∫
A∩C

(
e−γ (f (y)−f (x)) ∧ 1

)
q(y − x)µLeb(dy) ≥ εe−γ dλLeb(A ∩ C).

�

To apply Theorem 8, we need to find drift functions that satisfy drift conditions
outside the compact sets ofR. The existence of drift functions for the RWMH
algorithm was shown by Mengersen and Tweedie [(1996), Theorem 3.2]. The
proposition below relaxes some of the assumptions required in their result, and
shows that the same drift function can be taken for all the Markov kernelsKγ for
large enoughγ . For 0< s ≤ γ , let Vs(x) := esf (x) and

r(γ, s) := 1−
(

γ − s

γ

)γ /s

+
(

γ − s

γ

)(γ−s)/s

.(36)

PROPOSITION 10. Assume(SA0)–(SA2).Then, for all β such that1/2 <

β < 1, there existx < ∞, γ > 0 ands > 0 such that:

(i) (Kγ Vs(x))/(Vs(x)) ≤ r(γ, s) for all x ∈ R andγ ≥ 0;
(ii) (Kγ Vs(x))/(Vs(x)) ≤ β for all |x| ≥ x andγ ≥ γ .

PROOF. By (33) and using thatVs(y) = esf (x), we have, forγ > s > 0,

Kγ Vs(x)

Vs(x)
=
∫

ϕγ,s

(
e−(f (y)−f (x))

)
q(y − x)µLeb(dy),(37)

whereϕγ,s(u) := u−s(uγ ∧ 1) + 1− (uγ ∧ 1). We easily check that, for allu ≥ 0,

ϕγ,s(u) ≤ ϕγ,s

[(
γ − s

γ

)1/s]
= r(γ, s),(38)

which proves the first assertion of the proposition. Now, for anyε > 0, we prove
that there exists somex such that

lim
γ→∞ sup

x≥x

Kγ Vs(x)

Vs(x)
≤ ε + 1

2
.



1660 R. DOUC, E. MOULINES AND J. S. ROSENTHAL

The proof of the corresponding inequality wherex ≥ x is replaced byx ≤ −x

follows the same lines. ChooseM > 0 such that∫ −M

−∞
q(z)µLeb(dz) ≤ ε/2.

Inserting this inequality into (37), wherez = y − x, and using (38) yields

Kγ Vs(x)

Vs(x)
≤
∫ 0

−M
ϕγ,s

(
e−(f (x+z)−f (x))

)
q(z)µLeb(dz)

+ r(γ, s)

(∫ ∞
0

q(z)µLeb(dz) + ε

2

)
.

For all x ≥ x := x1 + M and all −M ≤ z ≤ 0, we have by assumption (SA0),
exp(−(f (x + z) − f (x))) ≥ exp(−αz) ≥ 1 and sinceϕγ,s(u) = u−s for u ≥ 1,

Kγ Vs(x)

Vs(x)
≤
∫ 0

−M
eαszq(z)µLeb(dz) + r(γ, s)

1+ ε

2
.

Now, chooses sufficiently large so that the first term on the right-hand side is less
thanε/2. Onces is chosen, we easily check that limγ→∞ r(γ, s) = 1. This proves
the second assertion.�

Define K̄γ (x, x′;A × A′) = Kγ (x,A)Kγ (x′,A′) and, for s ≥ 0, V̄s(x, x′) =
(1/2)(Vs(x) + Vs(x

′)).

PROPOSITION 11. Assume(SA0)–(SA2).For all s ≥ 0 and for all c ≥ 0,
{Vs ≤ c} is a compact1-small set forKγ . Moreover, there exist0 ≤ λ0 < λ < 1,
s > 0, c0 ≤ c, b andγ such that, for all γ ≥ γ ,

Kγ Vs ≤ λ0Vs + b1{Vs≤c0},(39)

K̄γ V̄s ≤ λV̄s + b1{Vs≤c}×{Vs≤c}.(40)

PROOF. The compactness of{Vs ≤ c} is straightforward from (SA0). Then,
by Lemma 9, it is a 1-small set forKγ . Equation (39) follows from Proposition 10.
To prove (40), write forc ≥ c0,

K̄γ V̄s ≤ λ0V̄s + b1{Vs≤c}×{Vs≤c} + (b/2)
(
1{Vs≤c}×{Vs>c} + 1{Vs>c}×{Vs≤c}

)
.

Set 0≤ λ0 < λ < 1 andc = (b/(λ − λ0) − 1) ∨ c0. We have, for all(x, x′) ∈
{Vs ≤ c} × {Vs > c},

b/2 ≤ (λ − λ0)(1+ c)/2≤ (λ − λ0)V̄s(x, x′),

which implies (
λ0V̄s + (b/2)

)
1{Vs≤c}×{Vs>c} ≤ λV̄s1{Vs≤c}×{Vs>c}.
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This concludes the proof.�

The key point in the above result [also outlined in Andrieu, Breyer and Doucet
(2001)] is that, for large enoughγ (γ ≥ γ ), all the transition kernels̄Kγ satisfy
a drift condition outside thesame small set{Vs ≤ c} × {Vs ≤ c}, with the same
drift function V̄s and thesameconstantsλ andb.

3.3. The simulated annealing algorithm.We now consider the simulated
annealing case. Hereγ = γi depends on the iteration, and for theith iteration,
the kernelPi = Kγi

is used. Define similarlyP̄i = K̄γi
and πi = πγi

. Denote
C̄ = {Vs ≤ c} × {Vs ≤ c}, with the constantss andc chosen to satisfy (40). For
(x, x′) ∈ C̄, setR̄i(x, x′;A × A′) = Ri(x,A)Ri(x

′,A′), with

Ri(x,A) = (1− εi)
−1(Pi(x,A) − εiνi(A)

)
, εi = εγi

andνi = νγi
,(41)

whereεγ andνγ are defined in (34). We may now state the main result of this
section.

THEOREM 12. Assume(SA0)–(SA2).For ξ ≥ 0, set

γi = log(i + 1)

d(1+ ξ)
+ γ ,(42)

whered is defined in(35).Then for any initial probability measureµ, we have

lim
n→∞‖µP1 · · ·Pn − πn‖TV = 0.(43)

PROOF. For any 1≤ m ≤ n, we have

‖µP1 · · ·Pn − πn‖TV

≤ ‖(µP1 · · ·Pm)Pm+1 · · ·Pn − πmPm+1 · · ·Pn‖TV(44)

+
n−1∑
l=m

‖πlPl+1Pl+2 · · ·Pn − πl+1Pl+1Pl+2 · · ·Pn‖TV .

Let (an, n ≥ 0) be a sequence of integers such that lim supn→∞(a−1
n + an/n) = 0.

Note that for sufficiently largen,

(
λLeb(C)

)−1
n∑

i=n−an

εi = ε

n∑
i=n−an

e−γid = e−γdε

n∑
i=n−an

(1+ i)−1/(1+ξ ).

Hence limn→∞
∑n

i=n−an
εi = ∞.

From Proposition11, we have supi sup(x,x′)∈C̄ R̄i V̄s(x, x′) < ∞, and thus
there exists an integerl such thatλl supi sup(x,x′)∈C R̄iV̄s(x, x′) ≤ λ, with λ < 1
satisfying (40). Since

λl sup
i

sup
(x,x′)∈C

R̄iV̄s(x, x′)λ−1 ≤ 1,
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Theorem 8 implies that, for alln ≥ (l + 1)an and any initial distributionsξ andξ ′,∥∥ξPn−(l+1)an · · ·Pn − ξ ′Pn−(l+1)an · · ·Pn

∥∥
TV

≤
[

n∏
i=n−an

(1− εi)

]
+ λanξ ⊗ ξ ′(V̄s)

≤ exp

(
−

n∑
i=n−an

εi

)
+ λanξ ⊗ ξ ′(V̄s).

To bound the first term on the right-hand side of (44), we use the expression above
with ξ = µP1 · · ·Pm and ξ ′ = πm with m = n − (l + 1)an − 1. Equation (39)
implies that for any initial distributionµ and any integerm,

µP1 · · ·PmVs ≤ λm
0 µVs + b

1− λ0
.

SinceπmPm = πm,

πmVs ≤ λ0πmVs + b �⇒ πmVs ≤ b

1− λ0
.

HenceµP1 · · ·Pm ⊗ πm(V̄s) ≤ λm
0 µVs/2+ b/(1− λ0) < ∞, which implies

lim
n→∞

∥∥(µP1 · · ·Pn−(l+1)an−1
)
Pn−(l+1)an · · ·

(45)
Pn − πn−(l+1)an−1Pn−(l+1)an · · ·Pn

∥∥
TV = 0.

We now bound the second term on the right-hand side of (44). For any
l ∈ {1, . . . , n}, ‖πlPl+1 · · ·Pn − πl+1Pl+1 · · ·Pn‖TV ≤ ‖πl − πl+1‖TV and thus

n−1∑
l=m

‖πlPl+1 · · ·Pn − πl+1Pl+1 · · ·Pn‖TV ≤
n−1∑
l=m

‖πl − πl+1‖TV .

To bound this difference we use Lemma A.1, which simplifies the argument in
Haario, Saksman and Tamminen (2001). This lemma shows that

n−1∑
l=m

‖πl − πl+1‖TV ≤ 2 log
(
Z(γm)/Z(γn)

)
,(46)

whereZ(γ ) = ∫
R

e−γf (x)µLeb(dx)/supx∈R e−γf (x). Using the Laplace formula
[see, e.g., Barndorff-Nielsen and Cox (1989)], it may be shown that

Z(γ ) = (2πγ −1)1/2

(∑
x∈M

(
f ′′(x)

)−1/2
)(

1+ o(1)
)

asγ → ∞,(47)
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where M is the set of global minima off (x) (recall that, under the stated
assumptions, these minima are isolated and there are only a finite number of them).
For any integerj , (46) and (47) show that

lim
n→∞

n−1∑
l=n−jan

‖πl − πl+1‖TV ≤ 2 lim
n→∞ log

(
Z(γn−jan)

Z(γn)

)
(48)

≤ lim
n→∞ log

(
γn

γn−jan

)
= 0.

Together with (45), this concludes the proof.�

APPENDIX: TECHNICAL LEMMAS

LEMMA A.1. Let h be a nonnegative function on a measurable space
(X,B(X),µ). Assume that0 <

∫
hγ dµ < ∞ for all γ > γ0 > 0 and that

‖h‖∞ = esssupX h(x) := inf{M :µ{x :h(x) > M} = 0} < ∞. For γ ≥ γ0, denote
byµγ the measure over(X,B(X)) with probability density functionhγ /

∫
hγ dµ

w.r.t. µ. Then, for γ ′ ≥ γ ≥ γ0,

‖µγ − µγ ′‖TV ≤ 2 log
(

Z(γ )

Z(γ ′)

)
, Z(γ ) =

∫
hγ dµ

‖h‖γ∞
.

PROOF. Sheffé’s identity shows that

‖µγ − µγ ′‖TV =
∫

|f − g|dµ,

where f = hγ /
∫

hγ dµ and g = hγ ′
/
∫

hγ ′
dµ. Note that f/‖f ‖∞ =

(h/‖h‖∞)γ ≥ g/‖g‖∞ = (h/‖h‖∞)γ
′
, µ-a.e. and‖g‖∞/‖f ‖∞ = Z(γ )/Z(γ ′).

The proof follows from Lemma A.2, which may be of independent interest.�

LEMMA A.2. Let f and g be two probability density functions w.r.t.
a common dominating measureµ on (X,B(X)). Assume that‖f ‖∞ < ∞ and
‖g‖∞ < ∞, andf (x)/‖f ‖∞ ≥ g(x)/‖g‖∞, µ-a.s. Then∫

|f − g|dµ ≤ 2 log(‖g‖∞/‖f ‖∞).

PROOF. Using the inequality(‖f ‖∞/‖g‖∞)g ≤ f and |f − g| = f + g −
2(f ∧ g), we have∫

|f − g|dµ = 2
(

1−
∫

f ∧ g dµ

)

≤ 2
(

1−
∫ ‖f ‖∞g

‖g‖∞
∧ g dµ

)

= 2
(

1− ‖f ‖∞
‖g‖∞

)
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and the proof follows from the inequality

1− x ≤ log(1/x) for x > 0. �
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